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Abstract
Aim: Trait-based approaches are increasingly important in ecology and biogeography, 
but progress is often hampered by the availability of high-quality quantitative trait 
data collected in the field. Alternative sources of trait information include scientific 
floras and taxonomic monographs. Here we test the reliability and usefulness of trait 
data acquired from scientific floras against trait values measured in the field, and 
those in TRY, the most comprehensive global plant trait database.
Location: Tenerife and La Palma, Canary Islands, Spain.
Methods: We measured leaf area and specific leaf area (SLA) in the field for 451 native 
vascular plant species and compared them with equivalent trait data digitised from the 
most recent and comprehensive guide of the Canarian flora, and data sourced from TRY. 
We regressed the field-measured traits against their equivalents estimated from the lit-
erature and used the regression models from one island to predict the trait values on the 
other island.
Results: For leaf area, linear models showed good agreement between values from 
the scientific flora and those measured in the field (r2 = 0.86). These models were 
spatially transferable across islands. In contrast, for SLA we found a weak relation-
ship between field-measured values and the best estimates from the scientific flora 
(r2 = 0.11). Insufficient data were available in the TRY database for our study area to 
calculate trait correlations with other data sources.
Conclusions: Scientific floras can act as useful data sources for quantitative plant trait 
data for some traits but not others, whilst the TRY database contains many traits, but 
is incomplete in species coverage for our study region, and oceanic islands in general.
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1  | INTRODUC TION

Functional trait-based approaches in ecological research have, in 
recent years, enhanced our understanding of biodiversity and how 
traits relate to ecosystem functioning. Functional traits are morpho-
logical, physiological or phenological features of organisms, mea-
surable at the individual level, that impact individual performance 
and fitness (Violle et al., 2007). While the classification of species 
into functional groups has a long tradition (Raunkiaer, 1934; Weiher 
et al., 1999), the definition of a “trait” has shifted from a simple 
grouping towards a more quantitative categorisation, allowing more 
predictive science within ecology (McGill et al., 2006). Trait-based 
approaches are now abundantly used to answer research questions 
across a variety of topics including community ecology (Mouillot 
et al., 2013; Satdichanh et al., 2015), species diversity gradients 
(Lamanna et al., 2014; Whittaker et al., 2014; Si et al., 2017; Costa 
et al., 2018b), responses to environmental change (Bjorkman et al., 
2018; Liu et al., 2018; Winchell et al., 2020), and niche dynamics 
(Reif et al., 2016; Costa et al., 2018b).

Functional traits have been particularly important in understand-
ing the role of plant diversity in ecosystem functioning, and efforts 
have been made to identify trait–trait correlations and trade-offs to 
develop an economic spectrum for plant traits (Wright et al., 2004; 
Chave et al., 2009; Reich, 2014; Díaz et al., 2016; Kong et al., 2019; 
Shen et al., 2019). This, in turn, has aided the quantification of trait–
environment relationships to understand how abiotic factors influ-
ence functional characteristics (Ordoñez et al., 2009; Bruelheide 
et al., 2018). Recognising the importance of plant functional traits in 
ecology has increased the demand for plant trait data (Kattge et al., 
2020). However, acquiring such data is a challenge. The fundamental 
source of trait data is through the direct measurements of plant indi-
viduals, either in the field or under experimental conditions. A major 
disadvantage of these direct methods of data collection is their in-
tensiveness — they require a significant amount of time, equipment 
and money. Even if resources are abundant, accessibility to field sites 
can be difficult and field work can be disrupted. This can lead to 
biased data collection, whereby field sites that are easier to access, 
such as those at low elevations or near roads, are preferentially cho-
sen. As a result, the data may be limited in geographic or taxonomic 
coverage. Furthermore, measuring traits in the field can be destruc-
tive — collecting leaf and stem samples can be detrimental to an indi-
vidual's survival. This is important to consider when studying rare or 
endangered species, for which non-destructive methods should be 
preferred (if acquiring a collection permit is even possible).

An alternative source for trait information is to rely on data that 
have been sampled in the past and made available via global data-
bases (Kleyer et al., 2008; Kattge et al., 2020). This has benefited 
trait-based research by making plant trait data accessible to more 
researchers and it has allowed recent studies to examine plant trait 
variation across larger geographic and phylogenetic scales (e.g. Díaz 
et al., 2016; Bjorkman et al., 2018; Bruelheide et al., 2018). For plants, 
the TRY database is the largest collection of plant functional traits 
and holds an impressive amount of trait records for almost 280,000 

species (Kattge et al., 2020). Despite efforts to update and improve 
trait databases, they are still incomplete (Schrodt et al., 2015; Jetz 
et al., 2016) and large taxonomic and geographic gaps remain. These 
knowledge gaps are non-randomly distributed, such that some spe-
cies and regions are underrepresented (Schrodt et al., 2015; Jetz 
et al., 2016; Cornwell et al., 2019). There are also biases towards cer-
tain traits and trait values. Easily measured traits are more likely to 
be reported than those that are difficult, or require more resources, 
to measure. In addition, bias towards higher or lower trait values 
has been found for frequently measured traits in the TRY database 
(Sandel et al., 2015), and certain trait values may go unreported (but 
see Scheffer et al., 2015).

Outside of these databases, a wealth of information about plant 
form and function exists in the literature that is yet to be digitised. 
Information on plant species has been assembled and published 
in thousands of scientific floras (Floras hereafter) and taxonomic 
monographs for centuries. In fact, attempts to assemble botanical 
knowledge were made in ancient times and date as far back as AD 77 
(see Pliny & Healey, 2004). Floras catalogue all known plant species 
in a given geographic region and represent some of the oldest col-
lections of plant information in the botanical literature. They contain 
detailed taxonomic descriptions, keys, illustrations and sometimes 
distribution maps, geographical and ecological information that can 
be used for locating and identifying species (Frodin, 2001). Such de-
tailed descriptions of plant morphology often systematically provide 
values for some traits. They may even include basic information on 
intraspecific variation, such as when maximum and minimum values 
are reported for a given trait, or when different values are reported 
for different regions.

Trait values extracted from Floras have the potential to be used 
for ecological purposes (Whittaker et al., 2000; Hawkes, 2007; 
Kissling et al., 2008; Kissling et al., 2010), and there is a growing ef-
fort to mobilise and integrate them into global biodiversity databases 
(Weigelt et al., 2020). Data from Floras and checklists provide highly 
representative and complete data from large regions, which is ben-
eficial to macroecological research, but this data type is currently 
underutilised compared to fine-scale, high-resolution data, such as 
site-specific trait measurements (König et al., 2019). Comparing data 
quality with systematically collected field data is necessary to un-
derstand how data from Floras can be successfully applied in trait-
based research. Thus, the aim of our study is to compare trait data 
obtained via three different methods of collection: (a) Floras, where 
trait information is extracted from species descriptions and iden-
tification keys; (b) field work, where established quantitative plant 
traits are measured directly in the field, specific to the geographic 
location of interest; and (c) the TRY database, where a species list of 
the focal region is used to download data for the focal traits.

We use the islands of Tenerife and La Palma in the Canary Islands 
(Spain) as the study system, for which an up-to-date, comprehensive 
and modern Flora is available (Muer et al., 2016). Oceanic islands 
are an appropriate study system for trait-based research (Ottaviani 
et al., 2020) due to their spectacular radiations and disproportion-
ately high numbers of endemic species (Stuessy et al., 2006; Kier 
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et al., 2009). Island systems have the potential to answer fundamen-
tal questions in functional ecology (Patiño et al., 2017) but the use 
of trait-based research on islands remains underexploited (Ottaviani 
et al., 2020) and readily available trait data for island species are rare. 
Leaves are at the core of plant functional ecology due to their role in 
carbon acquisition and transpiration, which influences biochemical 
cycling and ecosystem functioning (Press, 1999). Thus we specifi-
cally focus on two commonly used traits: leaf area and specific leaf 
area (SLA), for which precise measurements are not usually recorded 
in Floras. We estimate leaf area and SLA using simpler trait mea-
surements recorded in Floras and evaluate how well these estimates 
reflect leaf area and SLA measured directly from specimens col-
lected in the field. We expected that leaf area estimated using leaf 
length and leaf width would be strongly positively correlated with 
field-measured leaf area, and that SLA estimated using leaf thick-
ness would be positively correlated with field-measured SLA. We 
also tested the ability of traits from Floras to predict field traits using 
independent data by using trait data from one island to predict trait 
values on another.

2  | METHODS

2.1 | Field data

We studied traits of native vascular plant species of the islands 
of Tenerife and La Palma, Canary Islands, Spain. The latest plant 
checklist of the Canary Islands classifies species into to six cat-
egories: definitely native (either endemic or not), probably native, 
possibly native, probably introduced, introduced non-invasive and 
introduced invasive (Arechavaleta et al., 2009). We focused on 
species within the definitely native category only. Leaf traits were 
measured using standardised protocols for measurement of plant 
functional traits (Pérez-Harguindeguy et al., 2013): leaf area is the 
one-sided area of a fresh adult leaf, and SLA is the leaf area divided 
by its dry mass. We aimed to measure these traits for five adult indi-
viduals per species but, due to logistical constraints and the rarity of 
certain species, this was not always possible. If sampling more than 
one individual per species, we took samples from different locations 
across the islands where possible, to account for environmental var-
iation in trait values. Species were sampled where botanical experts 
or the Flora indicated they were located. We collected between 10 
and 100 adult leaves per individual, depending on the species: for 
most species we collected 10–20 leaves but for species with small 
leaves we collected up to 100 to accurately measure their mass. 
Where possible, we sampled leaves that were not in the shade. 
Leaves were cut from the stem and the petiole was removed. Up 
to 10 leaves were scanned per individual using an A4 scanner and 
leaf area calculated for each leaf using WinFOLIA software (version: 
2016b Pro; Regent Instruments Inc., Québec, Canada, 2016) for 
Tenerife specimens and ImageJ software (version 1.52a; Schneider 
et al., 2012) for La Palma specimens. We used the mean value for 

leaf area per species. The two software packages produced near-
identical average values for leaf area per species (paired-t44 = 1.32, 
p = 0.19; Pearson's r = 0.99). The leaf samples were weighed, then 
oven-dried and weighed again to calculate both fresh mass and dry 
mass per leaf. For compound leaves, we kept the entire leaf intact 
for scanning. SLA was calculated by dividing the leaf area by its 
oven-dried mass (Pérez-Harguindeguy et al., 2013). We calculated 
leaf dry matter content (LDMC) of a single leaf by dividing the oven-
dry mass by its fresh mass.

2.2 | Flora data

We sourced plant trait data from the most recent and comprehen-
sive guide to the Canarian flora (Muer et al., 2016). The informa-
tion in the Flora is based on expert knowledge and contains species 
from all islands in the archipelago. These data were supplemented 
using other Floras to increase data coverage (Bramwell & Bramwell, 
1974; Hohenester & Welß, 1993; Schönfelder & Schönfelder, 2018). 
In some instances, we recorded data for subspecies when the trait 
values were known to differ between subspecies found on different 
islands. This ensured the field and Flora data matched as precisely 
as possible, according to our aim throughout: that the data we ob-
tained would be those typically used in trait-based research using 
the data source in question. We extracted the following leaf traits: 
leaf length, leaf width and leaf thickness (information on SLA was 
not provided). Maximum and minimum values were often reported 
for these traits but we calculated and used the mean values. We 
used leaf length and leaf width to estimate leaf area using the fol-
lowing formula:

where LA = leaf area, LL = leaf length, LW = leaf width. This equation 
assumes elliptical-shaped leaves. SLA is normally calculated by dividing 
leaf area by its dry mass. Dry mass will depend on the volume and den-
sity of the leaf. In the absence of information on dry mass or leaf den-
sity, we cannot estimate SLA directly. However, it still may be possible 
to obtain a proxy for SLA in the absence of dry mass data if variation in 
volume has a greater influence. Given that leaf volume, LV = LA × Lth, 
where Lth is leaf thickness, then:

where LD is leaf density (dry mass per unit volume (Poorter et al., 
2009)). Thus, assuming invariant LD across species, SLA will vary as a 
function of Lth:

Following this reasoning, we test whether SLA, measured in the 
field, can be estimated from the Lth values in the Flora. As a test-of-
concept, we also test whether SLA varies with 1/Lth using only our 

estimated LA =
LL × LW × �

2

SLA =
LA

LV × LD

estimated SLA ∼
1

Lth
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field data. Lastly, leaf thickness has also been shown to correlate 
reasonably well with SLA × LDMC (Vile et al., 2005). We tested this 
by regressing leaf thickness from the Flora with SLA × LDMC as cal-
culated from field data.

2.3 | TRY data

Species names in TRY, our species list and the Flora were resolved 
using the Taxonomic Name Resolution Service (Boyle et al., 2013). 
We used the resolved species list to download the following traits 
from the freely available data: leaf length, leaf width, leaf thickness, 
leaf area and SLA. To ensure consistency with field data, TRY data 
were filtered to include only measurements from living adult indi-
viduals in their natural environments.

2.4 | Statistical analyses

Simple linear regressions were carried out with field data as the de-
pendent variable and Flora data as the independent variable. We 
removed Kunkeliella retamoides from the analysis — this species has 
tiny ephemeral leaves that are reduced to scales, making it difficult 
to define the functional equivalent of the leaf, which led to differ-
ent definitions across data sources, and thus non-comparable val-
ues between field and Flora datasets. We regressed field-measured 
leaf area against Flora-estimated leaf area and field-measured SLA 
against Flora-estimated SLA. We also regressed field-measured leaf 
area and SLA against leaf length and leaf width obtained from the 
Flora to determine how well each measurement predicted leaf area 
and SLA by itself. Furthermore, to scrutinise our method of esti-
mating SLA using Flora data, we regressed field-measured SLA with 
field-measured 1/Lth. We compared these models with a second 
set of models that included leaf type (simple vs compound) and leaf 
shape (broad-leaved vs needle-like) as interaction variables in order 
to determine if the regression slope differed between these groups 
(see Supporting Information). We also compared leaf thickness from 
field data and Flora data. All variables were loge-transformed to 
improve the residuals of the regressions. In addition, we compared 
trait values obtained from the Flora with those from TRY using 
Pearson's r.

Firstly, we looked at the relationships across all the data (La 
Palma + Tenerife). Secondly, we modelled La Palma data only and 
tested the predictions of this model against data from Tenerife 
(with field-measured leaf area from Tenerife as the dependant 
variable and predicted values from La Palma regressions as the in-
dependent variable). We also did the reverse, regressing observed 
values from La Palma against values predicted from Tenerife. We 
then compared the slope and intercept parameters of the ob-
served vs predicted values against the 1:1 line (i.e. slope = 1, in-
tercept  =  0) using a one-sample t test to determine the spatial 
transferability of the models. All analyses were carried out in R 
(version 3.6.1, R Core Team, 2017).

3  | RESULTS

3.1 | Data coverage

We measured traits for 451 definitely native species in the field 
(Table 1); 398 of these were measured on Tenerife and the remaining 
53 on La Palma. From the Floras, we compiled a list of 554 definitely 
native species (including all 451 species sampled in the field) from La 
Palma and Tenerife that had values for at least one of our selected 
traits (most species came from Muer et al., 2016). We found data for 
only 24 out of these 554 species in TRY, of which just five were en-
demic to the Canary Islands (Table 1). When considering individual 
traits, eight definitely native species had measurements for leaf area 
in TRY and 16 had measurements for SLA. Due to this low coverage 
of the TRY data, we were unable to conduct meaningful comparisons 
with the field and Flora data. Leaf thickness was scarcely reported 
in the Flora (only 4% of native species; Table 1) and only for species 
with clearly succulent leaves (to within 0.1 mm precision). Thus, our 
sample size for the regression of field-measured SLA with estimated 
SLA is very small (n = 18) and is not representative of all leaf types.

To maintain consistency among data sources, we focus primarily 
on definitely native species occurring on La Palma and Tenerife, as 
these were the species measured for the field data. However, for 
informative purposes, in Table 2 we also report Flora and TRY data 
for all species, including exotics, occurring across the entire Canary 
Island archipelago. We considered probably introduced, introduced 
non-invasive and introduced invasive as exotic species.

3.2 | Linear regressions

The relationship between field-measured leaf area and Flora-
estimated leaf area was strong for the overall dataset (r2  =  0.86, 
p  <  0.001, df  =  146; Figure  1), and when considering Tenerife 
(r2 = 0.82, p < 0.001, df = 116) and La Palma (r2 = 0.96, p < 0.001, 
df  =  23) separately. This relationship did not differ between leaf 
groups (Appendix S2, Appendices S5 and S6). Relationships between 

TA B L E  1  Trait coverage for native species occurring on La Palma 
and/or Tenerife from each data source. Columns show the numbers 
(and percentages) of species that have a value for each trait in each 
data source, respectively; totals are the numbers of species with 
at least one measured trait. The percentage is in reference to the 
number of La Palma/Tenerife species recorded in the Flora

Flora (%)
Field work 
(%)

TRY 
(%)

Leaf length 267 (48) – 8 (1.4)

Leaf width 215 (39) – 8 (1.4)

Leaf thickness 22 (4) 401 (72) 22 (4.0)

Leaf area 192 (35) 392 (71) 8 (1.4)

Specific leaf area 22 (4) 384 (69) 16 (2.9)

Total no. of species 554 (100) 451 (81) 24 (4)
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leaf area and leaf length or leaf width were also significant (leaf 
length: r2 = 0.64, p < 0.001, df = 192; leaf width: r2 = 0.69, p < 0.001, 
df = 162; Figure 1).

Field-measured SLA was not significantly correlated with es-
timated SLA for the overall dataset (r2  =  0.11, p  =  0.17, df  =  16; 
Figure 2), neither was it when looking at Tenerife only (r2  =  0.20, 
p = 0.08, df = 14). We did not analyse for La Palma only because 
not enough species from La Palma had trait values for leaf thickness 
and SLA. No significant relationship was found between SLA and 
either leaf length or leaf width for Tenerife or La Palma (Table 3). 
When testing this using only field data, we found the r2 values to 
be extremely low (df = 382, r2 = 0.07, p < 0.001; Appendix S1). The 
addition of leaf type and shape as interactions terms did not improve 
the regression model (r2 = 0.08; Appendix S3; Appendices S7 and 
S8). In addition, there was no relationship between leaf thickness 
and SLA × LDMC (r2 = 0.01, p = 0.71, df = 16; Appendix S4). Leaf 
thickness measured from the field showed a reasonably strong and 
significant relationship with leaf thickness from the Flora (df = 18, r2 
= 0.49, p < 0.001). Due to the low sample size no further analysis was 
conducted using SLA.

Correlations between Flora data and TRY data using all 
species (including exotics) showed a significant correlation 
for leaf area (Pearson's r  =  0.89, p  <  0.001, df  =  65) and leaf 
width (Pearson's r  =  0.63, p  <  0.001, df  =  67), but not for leaf 
length (Pearson's r = −0.18, p = 0.31, df = 31). This was due to an 

TA B L E  2  Trait coverage for all Canary Island species in the Flora 
and in the TRY database. Columns show the total number (and 
percentage) of species that have a value for at least one measured 
trait. Numbers are shown for all species (which includes exotics) 
and for definitely native species. The percentages relate to the 
number of species recorded in the Flora of the relevant category 
(all or definitely native)

Trait

Flora (%) TRY (%)

All species
Definitely 
native

All 
species

Definitely 
native

Leaf length 1,060 (47) 403 (47) 43 (2) 9 (1)

Leaf width 974 (44) 335 (39) 111 (5) 9 (1)

Leaf thickness 42 (2) 37 (4) 256 (11) 23 (3)

Leaf area 882 (39) 306 (35) 141 (6) 8 (1)

Specific leaf area 42 (2) 37 (4) 220 (10) 17 (2)

Total no. of 
species

2,237 (100) 865 (100) 270 (12) 24 (3)

F I G U R E  1   Scatter plots showing the relationship between field-measured leaf area (on the y-axis) and Flora traits (on the x-axis) for: (a) 
all data; (b) Tenerife only; and (c) La Palma only. The grey lines are the linear regression models (grey dashed lines indicate a non-significant 
relationship). The black dashed lines are the 1:1 lines (not shown on the leaf length and leaf width graphs because the axes are on different 
scales). The left-hand panel shows relationships between field-measured SLA and Flora-estimated SLA. All axes are loge-transformed. See 
Table 4 for regression equations
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incorrect leaf length value (or incorrect units) for Phoenix canar-
iensis in the TRY data (0.55 cm). When this species was removed, 
leaf length values correlated well (Pearson's r = 0.64, p < 0.001, 
df  =  30). We could not make any further comparisons of traits 
among data sources because, although the numbers in Tables 1 
and 2 look promising, often trait values are not available for the 
same set of species.

3.3 | Cross-island predictions

We used the linear regression models to predict leaf area outside 
the geographical range of input data (i.e. the other island), using 
Flora data. We then correlated these predicted values with the ob-
served values. All La Palma models successfully predicted leaf area 
on Tenerife; there was a strong positive relationship between the 
observed values on Tenerife and the predicted values from La Palma 
models based on Flora data (r2 = 0.79). This was also true the other 
way around, i.e. observed values from La Palma vs predicted values 
from Tenerife models (r2 = 0.85). Again, leaf width had a higher pre-
dictive power than leaf length (Table 4). For leaf area predictions on 
both La Palma and Tenerife, the slope and intercept were very close 
to, and not significantly different from, 1 and 0 respectively (i.e. the 

1:1 line: Table 4; Figure 2). For leaf length, the slope differed signifi-
cantly from 1 but the intercept did not differ from 0 for both islands. 
For leaf width, the slope and intercept differed significantly from 1 
and 0 for both islands.

4  | DISCUSSION

We have demonstrated that a combination of easily obtained leaf pa-
rameters — leaf length and leaf width — can be used to estimate leaf 
area as a non-destructive alternative to field sampling. Furthermore, 
we were able to successfully predict independent field-measured 
data on leaf area across islands in the Canaries, indicating that the 
reliability of Floras as sources of trait data may be transferable to 
new regions.

Our estimates of leaf area correlated strongly with field-
measured leaf area on both La Palma and Tenerife despite assuming 
an elliptical shape. Other studies using leaf length and width to esti-
mate leaf area have found similar results (Kraft et al., 2008; Pandey 
& Singh, 2011; Shi et al., 2019). Accounting for the differences in leaf 
type (simple vs compound) and leaf shape (broad-leaved vs needle-
like) did not improve our models. In fact, we find that the species that 
diverge furthest from the 1:1 line are a mix of species with simple 

F I G U R E  2   Scatter plots showing the observed vs predicted leaf area. Predictions (x-axes) are based on leaf area, leaf length and leaf 
width models. (a) The observed La Palma data (loge-transformed) were regressed against predictions from Tenerife data; (b) The observed 
Tenerife data (loge-transformed) were regressed against predictions based on La Palma data. Grey lines are the linear regression models; 
black dashed lines are the 1:1 lines. See Table 4 for regression equations
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or compound leaves. Thus, the variation in leaf type and leaf shape 
does not necessarily correspond to variations of leaf area (leaf shape 
probably relates more closely to leaf perimeter). Therefore, the addi-
tional variance in leaf area due to leaf shape that is not accounted for 
in the model (e.g. from compound or severely lobed leaves) does not 
have a sufficient effect on leaf area to render a parsimonious model 
uninformative.

To evaluate the performance of the leaf area model, we used it 
to make predictions on a different island. The success of the predic-
tions could be driven by the climatic overlap between islands as leaf 
area is linked to climate and microclimate (Byars et al., 2007; Peppe 
et al., 2011; Guerin et al., 2012; Sumida et al., 2018). Also, the phylo-
genetic relatedness within the Canary Island flora means that many 
species occurring on different islands belong to the same genera and 
are morphologically similar, such as Argyranthemum, which might 
contribute to the strong predictive ability. Nonetheless, despite con-
siderable overlap, the climates of Tenerife and La Palma are different 
in some areas — La Palma receives the highest levels of precipitation 
in the archipelago due the northeasterly trade winds, and is cooler 
and wetter than Tenerife in some places, whereas Tenerife, being 
taller, reaches lower temperatures than La Palma at its summits. 
Also, although many of the closely related species are morpholog-
ically similar, some genera have radiated into species that are mor-
phologically quite different (Jorgensen & Olesen, 2001). Therefore, 
despite both environmental and trait differentiation, the model 
predicts well across islands. Whether or not this can be translated 
beyond the Canary Island archipelago is a subject for further study. 
Intraspecific trait differences could be present in native species oc-
curring on both the islands and the continent and could potentially 
have an island–continental gradient.

Despite our expectation, and considering that SLA is a function 
of leaf thickness (Witkowski & Lamont, 1991; Pérez-Harguindeguy 
et al., 2013), we only found a weak and non-significant relationship 
between field-measured SLA and Flora-estimated SLA. Accounting 
for differences between leaf groups only slightly improved these 
estimations. Perhaps a more complex model is required — assum-
ing a constant volume to mass ratio for leaves is simplistic, because 
plants invest more or less in structural elements based on their 
ecological strategies (Westoby et al., 2002). Therefore, accounting 
for different leaf strategies might reveal different relationships. 
However, Vendramini et al. (2002) found a clear association be-
tween SLA and leaf thickness, but when accounting for leaf strate-
gies (succulent, sclerophyllous and tender-leaved) this relationship 
disappeared. SLA is also a function of LDMC (Vile et al., 2005), 
thus, future research could see how the relationship differs across 
different LDMC values. Our attempt to estimate SLA using leaf 
thickness from available Flora data was unsuccessful. Leaf thick-
ness seems to be scarcely reported in Floras, perhaps due the 
difficulty of making precise measurements, resulting in little vari-
ation. Furthermore, it is possible that leaf thicknesses from Floras 
are obtained from dried herbarium specimens, which would not 
be comparable to measurements from fresh leaves. This might ac-
count for the unexplained variation in the relationship between TA

B
LE

 3
 
U
ni
va
ria
te
 li
ne
ar
 re
gr
es
si
on
s 
w
ith
 fi
el
d-
m
ea
su
re
d 
tr
ai
ts
 a
s 
th
e 
re
sp
on
se
 v
ar
ia
bl
es
 (L
A

fie
ld

 =
 fi
el
d-
m
ea
su
re
d 
le
af
 a
re
a,
 S
LA

fie
ld

 =
 fi
el
d-
m
ea
su
re
d 
sp
ec
ifi
c 
le
af
 a
re
a,
 L
th

fie
ld

 =
 fi

el
d-


m
ea
su
re
d 
le
af
 th
ic
kn
es
s)
 a
nd
 F
lo
ra
-m
ea
su
re
d 
tr
ai
ts
 a
s 
th
e 
ex
pl
an
at
or
y 
va
ria
bl
es
 (L
A

flo
ra

 =
 F
lo
ra
-e
st
im
at
ed
 le
af
 a
re
a,
 L
L f

lo
ra

 =
 le
af
 le
ng
th
 fr
om
 F
lo
ra
, L
W

flo
ra

 =
 le
af
 w
id
th
 fr
om
 F
lo
ra
, 

SL
A

flo
ra

 =
 F
lo
ra
-e
st
im
at
ed
 s
pe
ci
fic
 le
af
 a
re
a,
 L
th

flo
ra

 =
 le
af
 th
ic
kn
es
s 
fr
om
 F
lo
ra
). 
SL
A

fie
ld

-e
st

 =
 S
LA
 e
st
im
at
ed
 u
si
ng
 1
/L
th
 fr
om
 fi
el
d 
da
ta
. A
ll 
da
ta
 w
er
e 
lo
g e
-t
ra
ns
fo
rm
ed
 (e
xc
ep
t L
th

fie
ld

 a
nd

 
Lt
h f

lo
ra

). 
SE

 =
 s

ta
nd

ar
d 

er
ro

r

A
ll 

da
ta

Te
ne

rif
e

La
 P

al
m

a

df
Sl

op
e 

±
 S

E
In

te
rc

ep
t ±

 S
E

r2
p

df
Sl

op
e 

±
 S

E
In

te
rc

ep
t ±

 S
E

r2
p

df
Sl

op
e 

±
 S

E
In

te
rc

ep
t ±

 S
E

r2
p

LA
fie

ld
 ~
 L
A

flo
ra

14
6

0.
93

 ±
 0

.0
3

−0
.5
2 

±
 0

.1
1

0.
86

<
0.

00
1

11
6

0.
91

 ±
 0

.0
4

−0
.4
7 

±
 0

.1
3

0.
82

<
0.

00
1

23
0.

99
 ±

 0
.0

4
−0
.7
1 

±
 0

.1
6

0.
96

<
0.

00
1

LA
fie

ld
 ~
 L
L f

lo
ra

19
2

1.
48

 ±
 0

.0
8

−0
.7
1 

±
 0

.1
6

0.
64

<
0.

00
1

15
5

1.
40

 ±
 0

.0
9

−0
.6
1 

±
 0

.1
8

0.
59

<
0.

00
1

27
1.

83
 ±

 0
.1

2
−1
.6
1 

±
 0

.2
5

0.
90

<
0.

00
1

LA
fie

ld
 ~
 L
W

flo
ra

16
2

1.
34

 ±
 0

.0
7

1.
58

 ±
 0

.0
9

0.
69

<
0.

00
1

13
2

1.
26

 ±
 0

.0
8

1.
63

 ±
 0

.1
0

0.
66

<
0.

00
1

23
1.

90
 ±

 0
.1

5
1.

09
 ±

 0
.1

9
0.

87
<

0.
00

1

SL
A

fie
ld

 ~
 S
LA

flo
ra

16
0.

32
 ±

 0
.2

9
4.

58
 ±

 0
.2

1
0.

20
0.

06
14

0.
26

 ±
 0

.1
4

4.
66

 ±
 0

.1
9

0.
20

0.
08

–
–

–
–

–

SL
A

fie
ld

 ~
 S
LA

fie
ld

-e
st

38
2

0.
25

 ±
 0

.0
5

4.
56

 ±
 0

.0
7

0.
07

<
0.

00
1

31
2

0.
28

 ±
 0

.0
4

4.
62

 ±
 0

.0
5

0.
14

<
0.

00
1

50
0.

41
 ±

 0
.2

3
4.

10
 ±

 0
.3

2
0.

06
0.

09

SL
A

fie
ld

 ~
 L
L f

lo
ra

18
9

−0
.1
1 

±
 0

.0
9

4.
55

 ±
 0

.1
7

0.
01

0.
20

15
3

−0
.0
9 

±
 0

.0
5

5.
01

 ±
 0

.0
9

0.
02

0.
08

27
0.

23
 ±

 0
.1

8
1.

63
 ±

 0
.3

8
0.

06
0.

20

SL
A

fie
ld

 ~
 L
W

flo
ra

16
1

−0
.0
2 

±
 0

.0
8

4.
44

 ±
 0

.1
0

0.
00

0.
84

13
1

0.
02

 ±
 0

.0
5

4.
90

 ±
 0

.0
6

0.
00

0.
64

23
0.

39
 ±

 0
.1

8
1.

82
 ±

 0
.2

4
0.

16
0.

05

Lt
h f

ie
ld

 ~
 L
th

flo
ra

18
0.

48
 ±

 0
.1

1
1.

07
 ±

 0
.4

8
0.

49
<

0.
00

1
15

0.
49

 ±
 0

.1
4

1.
12

 ±
 0

.5
3

0.
46

0.
00

3
–

–
–

–
–



8 of 11  |    
Journal of Vegetation Science

CUTTS et al.

field-measured leaf thickness and Flora leaf thickness. We there-
fore encourage researchers to continue reporting true values for 
SLA.

We have identified significant gaps in the TRY database for 
the Canary Islands — only 3% of the definitely native species in 
the Canary Islands had any trait data, of which only five species 
were endemic to the archipelago (representing only 1% of the 
endemic species). Trait data may be scarce for islands in gen-
eral, due to the high proportion of endemic species. If island 
data are disproportionally underrepresented in the TRY data-
base, this could hinder trait-based research in insular systems 
(Ottaviani et al., 2020). The lack of data available for Canary 
Island endemics in TRY makes data available in the Flora all the 
more valuable  \—  many Canary Island endemics are extremely 
rare and some are critically endangered (e.g. Lotus eremiticus). As 
well as lacking species, the TRY database often also lacks sim-
ple morphological traits in favour of more complex ones that 
are assumed to be more informative about plant functions. For 
example, researchers may provide data for SLA, but not upload 
the measurements used to calculate this (leaf area and leaf dry 
mass), which are useful in their own right. Floras provide highly 
representative data that are currently underexploited in ecology 
and, although the trait data they contain are limited in precision, 
these data have been shown to represent a more complete and 
unbiased view of spatial variation in functional traits (König et al., 
2019). Thus, Floras provide complementary information to the 
data that are available in TRY.

In addition to the limitations of field data and TRY data, there 
are also clear limitations to using data from Floras. Firstly, the lack 
of standardised taxonomy across geographic regions is present, 
and probably reinforced, in Floras. However, applications are avail-
able to aid in resolving species lists once they have been digitised, 
for example the Taxonomic Name Resolution Service (Boyle et al., 
2013). Secondly, Floras lack standardised vocabulary and defini-
tions for the traits they describe, though recent efforts to harmon-
ise the terminology around plant characteristics might alleviate this 
(Hoehndorf et al., 2016; Garnier et al., 2017). Finally, it is not always 

clear whether the data from Floras were collected in a standardised 
way, due to a lack of transparency. The limitations referred to here 
have been addressed by recent efforts to collate trait and distri-
bution data from Floras and checklists, where trait values are 
standardised by language, terminology and unit of measurement 
(Global Inventory of Floras and Traits [GIFT]; Weigelt et al., 2020). 
This provides a standardised way of digitising and presenting the 
data in Floras and checklists worldwide.

A promising avenue for future research would be to evaluate digi-
talised herbarium specimens as a source of trait data. There are some 
clear advantages to using herbarium specimens to gather trait data, 
namely that the measurements are precise and the geographical/tem-
poral origin of the specimens are known. However, there may be bias 
from using this type of data, whereby the most appealing specimens 
are collected. This may not accurately represent a species mean for a 
given trait.

4.1 | Concluding remarks

We have demonstrated that Floras can provide some valuable data 
for the Canary Islands, whereas the TRY database currently can-
not, a situation that we expect will affect other insular systems 
with high numbers of endemic species. This points towards a need 
for more field work to fill in gaps and reduce bias. However, due to 
the high cost and typically destructive nature of field sampling, it 
may not be feasible to sample rare and endangered species if we 
are to protect them. Thus, Floras remain an important resource in 
the emerging field of functional island biogeography, for which a 
lot of new data are required.
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df Slope ± SE Slope p Intercept ± SE
Intercept 
p r2

Tenerife observed LA vs predicted La Palma LA

Flora-
estimated 
leaf area

116 0.95 ± 0.04 0.06 −0.19 ± 0.10 0.07 0.82

Leaf length 155 0.76 ± 0.05 <0.001 0.27 ± 0.14 0.05 0.59

Leaf width 132 0.66 ± 0.04 <0.001 0.91 ± 0.12 <0.001 0.66

La Palma observed LA vs predicted Tenerife LA

Flora-
estimated 
leaf area

23 1.08 ± 0.05 0.11 −0.21 ± 0.15 0.17 0.96

Leaf length 27 1.31 ± 0.08 <0.001 −0.35 ± 0.21 0.10 0.90

Leaf width 23 1.51 ± 0.12 <0.001 −1.37 ± 0.33 <0.001 0.87

TA B L E  4   Observed vs predicted 
regressions for field-measured leaf area 
(LA), where Flora-estimated leaf area, 
leaf length and leaf width were used 
as explanatory variables. Predicted 
LA values from La Palma models were 
regressed against observed values from 
Tenerife (top) and vice versa (bottom). 
SE = standard error. All regressions were 
significant at p < 0.001. “Slope p” and 
“Intercept p” are p-values from one-
sample t tests comparing slopes with 
1 and intercepts with 0. All data were 
loge-transformed
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Additional supporting information may be found online in the 
Supporting Information section.

Appendix S1. Linear regressions with specific leaf area (SLA; 
mm2mg-1) as the response variable and 1/leaf thickness (mm) as the 
explanatory variable using field data only. Both variables are loge-
transformed. SE = standard error, df = degrees of freedom
Appendix S2. Linear regressions with field-measured leaf area (cm2) 
as the response variable and Flora-estimated leaf area (cm2) as the 
explanatory variable. Both variables are loge-transformed. Leaf type 
(simple/compound) and leaf shape (broad-leaved/needle-like) are in-
cluded as interaction terms. r2 = 0.87, n = 104
Appendix S3. Linear regressions with specific leaf area (SLA; 
mm2/mg) as the response variable and 1/leaf thickness (mm) as 
the explanatory variable using field data only. Both variables are 
loge-transformed. Leaf type (simple/compound) and leaf shape 

(broad-leaved/needle-like) are included as interaction terms. 
SE = standard error. r2 = 0.08, n = 237
Appendix S4. Linear regressions with specific leaf area (SLA; mm2/
mg) × leaf dry matter content (LDMC; (mg/g) from field data as the 
response variable and leaf thickness (mm) from Flora data. Both 
variables are loge-transformed. Regressions were carried out for all 
data and Tenerife separately. We did not have enough samples from 
La Palma to do a regression. SE  =  standard error, df  =  degrees of 
freedom
Appendix S5. Scatter plots showing field-measured leaf area on 
the y-axis and Flora-estimated leaf area on the x-axis for compound 
leaves and simple leaves. Solid lines indicate a significant relationship
Appendix S6. Scatter plots showing field-measured leaf area on the 
y-axis and Flora-estimated leaf area on the x-axis for broad leaves 
and needle-like leaves. Solid lines indicate a significant relationship
Appendix S7. Scatter plots showing field-measured specific leaf area 
(SLA) on the y-axis and SLA estimated using 1/ Leaf thickness from 
field data on the x-axis for compound leaves and simple leaves. Solid 
lines indicate a significant relationship
Appendix S8. Scatter plots showing field-measured specific leaf 
area (SLA) on the y-axis and SLA estimated using 1/Leaf thickness 
from field data on the x-axis for broad leaves and needle-like leaves. 
Solid lines indicate a significant relationship
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