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a b s t r a c t 

Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography 

(MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow 

data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to 

realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation 

of brain networks. Networks, and the connectivities that underlie them, have become a core area of neurosci- 

entific investigation, and their importance is underscored by many demonstrations of their disruption in brain 

disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step 

forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the 

electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo- 

motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show 

that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, 

with correlation values > 70%. In addition, in task data, similar differences in connectivity between individuals 

(scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the 

OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results 

add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement. 
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. Introduction 

Since its inception, functional neuroimaging has made many impor-

ant contributions to our understanding of brain function, and one of

he most significant is the discovery of brain networks. A network is

ound when a statistical relationship between neuroimaging signals, de-

ived from two or more spatially separate brain regions, is shown to

xist. Such a relationship is termed functional connectivity. The first

easurements of functional connectivity used functional magnetic res-

nance imaging (fMRI; Biswal et al. (1995) ) to measure correlation be-

ween blood-oxygenated-level-dependent (BOLD) time courses from left

nd right motor cortex, in the absence of a task (in the so-called “rest-

ng state ”). Following this, many fMRI studies (e.g. ( Beckmann et al.,

005 ; Fox and Raichle, 2007 ; Smith et al., 2009 )) focused on identify-

ng other resting-state networks (RSNs); some associated with sensory

rocessing (e.g. auditory or visual networks) and others with attention

nd cognition (e.g. the default-mode and dorsal-attention networks).

aichle (2009) described this era of functional imaging as a «paradigm

hift». Indeed, study of RSNs offers a powerful means to investigate
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ealthy function, and dysfunction in a wide range of disorders, including

chizophrenia, depression, anxiety and dementia ( Menon, 2011 ). 

Most functional connectivity studies have been based on fMRI.

owever, the BOLD signal is an indirect metric of function, based on

aemodynamics, which leads to significant disadvantages: for example,

right et al. (2020 ) showed an overlap between neural and vascular net-

ork components and this makes the interpretation of fMRI networks

hallenging without first understanding network-specific vascular ar-

hitecture. In addition, whilst fMRI exhibits exquisite spatial resolution

~1 mm accuracy), it has limited temporal resolution due to the latency

nd longevity of the haemodynamic response. This means that the time

cale of a functional connectivity measurement is limited, and so it is

hallenging to probe the formation and dissolution of functional net-

orks on a time scale relevant to cognition ( Hutchison et al., 2013 ).

or these reasons, a move towards electrophysiological imaging tech-

iques (which exhibit significantly better temporal resolution) for the

haracterisation of network connectivity is important. 

Magnetoencephalography (MEG; Cohen (1972) ) measures the mag-

etic fields generated outside the head by current flow through neu-

onal assemblies in the brain. In this way, it offers a means to bypass

aemodynamics and infer directly the electrophysiological connectome.
 24 January 2021 
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EG data (like all electrophysiological data) are dominated by “neu-

al oscillations ” (rhythmic electrical activity synchronised across neu-

ons) in the 1–200 Hz frequency range. Emerging evidence suggests

hat these oscillations mediate (in part) network formation and con-

equently their measurement offers an exciting means to probe net-

ork coupling ( Engel et al., 2013 ). MEG has been used successfully

o measure functional connectivity in many studies (e.g. ( Baker et al.,

014 ; Brookes et al., 2011b , 2012 ; Gross et al., 2001 ; Hipp et al., 2012 ;

uckhoo et al., 2012 ; O’Neill et al., 2015 )). Networks similar to those

een with fMRI have been found and the excellent temporal resolution

nables measurement of dynamic connectivity. Indeed, recent studies

how that canonical networks modulate on the time scale of seconds

 O’Neill et al., 2015 ) and even milliseconds ( Baker et al., 2014 ). More

ecently, Seedat et al. (2020) suggested the involvement of extremely

hort (e.g. ~300 ms) punctate events in driving canonical network con-

ectivity, further underscoring the importance of temporal precision. 

A combination of high spatial and temporal accuracy means that

EG offers arguably the best means to measure functional connectiv-

ty. However, existing MEG systems have huge limitations: the sensors

hat form the basic building block of MEG systems (superconducting

uantum interference devices; SQUIDs) operate at cryogenic tempera-

ures. These sensors must therefore be fixed in position within a cryo-

enic dewar, making systems large, cumbersome, and “one-size-fits-all ”

i.e. they cannot adapt to different head shapes or sizes. This results

n inhomogeneous and sometimes poor brain coverage (particularly in

nfants). Even if the head is well fitted to a MEG system, the gap be-

ween the scalp and the sensors that is needed for thermal insulation

educes sensitivity (according to an inverse square law). The fixed na-

ure of the sensors also means that any head movement during data ac-

uisition can significantly reduce data quality. For this reason, ideally,

ubjects should remain extremely still, which makes the environment

oorly tolerated by many groups, again including children. In recent

ears, a number of algorithms have become available that are able to

correct ” for head movements inside a MEG helmet. However, the de-

ree of movement remains limited (by the size of the helmet itself) and

o algorithm can correct for changing signal-to-noise ratio (SNR) in spe-

ific brain regions as the brain gets closer to, or further from sensors.

or this reason, even with movement compensation algorithms, motion

particular at large scale) remains problematic. Finally, the cryogenic

nfrastructure and complex electronics make systems expensive. These

actors have, to date, limited the uptake of MEG, and if MEG-based con-

ectome measures are to realise their potential for neuroscientific dis-

overy and clinical translation, then new types of MEG technology will

e required. 

Recent advances in quantum technology have led to the development

f a new type of magnetic field sensor. Optically-pumped magnetome-

ers (OPMs) offer measurement of magnetic field with a similar sensi-

ivity to the cryogenic sensors used in conventional MEG, however they

o not require cooling. Furthermore, they are small and lightweight.

his has led a number of groups to begin to fabricate OPM-based MEG

evices. Suitability of OPMs to capture neuromagnetic signals has been

ell documented (e.g. ( Barry et al., 2019 ; Borna et al., 2020 ; Boto et al.,

017 ; Iivanainen et al., 2019 ; Johnson et al., 2013 ; Kamada et al., 2015 ;

im et al., 2014 ; Roberts et al., 2019 ; Sander et al., 2012 ; Tierney et al.,

018 ; Xia et al., 2006 ) and more recently their lightweight nature has

een exploited to develop “wearable ” systems in which (if background

elds are controlled appropriately) subjects can move freely during data

cquisition ( Boto et al., 2018 ). OPM arrays are beginning to be devel-

ped with up to 50 sensors surrounding the head ( Hill et al., 2020 ) and

here is a growing argument that these devices – which also have the

otential to be cheaper than conventional MEG – will ultimately super-

ede the current generation of scanners. However, OPM-MEG remains a

ascent technology and if the functional neuroimaging field is to gain

onfidence in it, OPM-based systems must be able to do everything a

QUID system can do. Given the importance of functional connectivity,

emonstration of its measurement with OPM systems is a vital step. 
2 
There are a number of reasons why functional connectivity is a

hallenge for OPM-MEG. Firstly, most OPM experimental demonstra-

ions have targeted specific brain regions due to a relatively low sensor

ount. Given that networks are distributed across the whole brain, cov-

rage that rivals conventional MEG is required. Secondly, networks are

patially-specific and their measurement relies on the ability to project

agnetic field data into source space (a process termed source locali-

ation; ( Schoffelen and Gross, 2009 )). Consequently, if an OPM system

s to characterise networks then it must offer the ability to accurately

ocalise large numbers of sources, across the whole cortex, with high

patial accuracy. In reality this means achieving equivalent reconstruc-

ion accuracy with around 50 OPMs, rather than ~300 cryogenic sen-

ors. Finally, functional connectivity is heavily reliant on high quality

ata since, unlike task-based studies where data can be averaged over

any trials (and thus artefacts will often be averaged out) functional

onnectivity (particularly in the resting state) must be measured using

naveraged data. This latter point is amplified since unlike conventional

EG systems which often rely on a gradiometer formulation to reduce

nvironmental interference, commercially-available OPMs are naturally

ormed as magnetometers. This, at least in principle, increases the effect

f external interference, both from environmental (e.g. lab equipment)

nd biological (e.g. the heart) sources. Such interference can artificially

nflate or reduce connectivity estimates, especially in unaveraged data. 

In this paper, we aim to test whether a 50-channel OPM-MEG sys-

em can successfully measure the electrophysiological functional con-

ectome. To this end, we measure connectivity during a visuo-motor

ask, and in the resting state. In both cases we compare quantitatively

ur OPM findings to equivalent measures generated using a 275-channel

ryogenic system. 

. Methods 

.1. OPM-MEG system 

The wearable OPM-MEG device used in this study has been devel-

ped at the Sir Peter Mansfield Imaging centre, University of Notting-

am, and was described recently in Hill et al. (2020) . A schematic repre-

entation of the system is shown in Fig. 1 a: the OPM-MEG suite contains

 magnetically-shielded room (MSR), the design of which has been op-

imised for OPM operation (MuRoom, Magnetic Shields Ltd. Kent, UK).

his MSR provides a remnant magnetic field magnitude < 2 nT and < 2

T/m magnetic field gradient following a demagnetisation procedure

 Altarev et al., 2015 ). These fields are significantly lower than those

ound in MSRs that do not feature demagnetisation coils. 

Inside the MSR, the participant sits in a non-magnetic chair, and

ears an additively-manufactured rigid helmet in which 50 OPMs (sec-

nd generation zero-field magnetometers, QuSpin Inc., ( Osborne et al.,

018 )) are mounted (see photograph in Fig. 1 b). The helmet contains

 total of 133 possible slots where OPMs can be placed (grey dots in

ig. 1 c), and for this study, we chose 50 locations to provide whole-

ead coverage (blue dots). The OPMs themselves were configured to

easure the radial component of magnetic field. Fig. 1 d shows the cor-

ical coverage achieved with 50 radial OPMs placed in the slots shown

n blue: for each vertex of the brain surface, the colour represents the

orm of the field (across all sensors) produced by a current dipole lo-

ated at that vertex. (Dipoles were oriented in two orthogonal tangential

irections, and the result is taken to be the average of the two lead field

orms.) Note that reasonable coverage of the whole cortex is achiev-

ble, although sensitivity to the temporal pole is somewhat diminished

a problem also found in conventional MEG devices). 

Further reduction of background magnetic fields inside the MSR is

chieved using a set of bi-planar coils ( Holmes et al., 2018 ) positioned

ither side of the participant. These coils are coupled to an OPM refer-

nce array placed behind the subject’s head. The remnant static mag-

etic field and its (linear) spatial variation inside the MSR is estimated

y the reference array, and an equal and opposite field applied by the
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Fig. 1. The OPM-MEG system. a) Schematic of the 

OPM-MEG suite. b) Photograph of subject wearing an 

additively-manufactured helmet with 50 OPM sensors 

mounted within it. c) Digitised head surface for an ex- 

ample participant, showing the 133 slots available in 

the helmet (grey) and the 50 chosen for this study 

(blue). Note that OPMs were made sensitive to the 

field in the radial direction only. d) Cortical coverage 

achieved by the selected 50 OPM locations: the norm 

of the forward fields across all sensors is plotted at each 

vertex of the brain surface. 
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4  

s  
oils in order to effect field cancellation. This reduces the remnant field

typically to < 1 nT), better enabling OPM-MEG operation by minimising

ny artefact caused by the subject moving their head (and consequently

he sensors) through the background field. 

The OPMs themselves have been described previously and

 complete description will not be repeated here (see e.g.

ierney et al. (2019) or Boto et al. (2020) for a review). Note

hat they are controlled via a computer located outside the MSR,

nd analogue output signals proportional to local magnetic field, are

ed into a National Instruments (Austin, TX, USA) Digital Acquisition

nit (DAQ), digitised, and recorded. A separate computer is coupled

o stimuli delivery systems and sends triggers to the DAQ which are

ynchronously recorded with the MEG data. 

.2. OPM co-registration 

In order to enable source localisation, accurate knowledge of the

PM sensor locations and orientations relative to the brain is required.

his was provided by a 3-dimensional optical imaging system (structure

O camera (Occipital Inc., San Francisco, CA, USA) coupled to an Apple

Pad, operating with Skanect Pro software) and an anatomical MRI scan

 Hill et al., 2020 ; Homölle and Oostenveld, 2019 ; Zetter et al., 2019 ).

he anatomical MRI was recorded using a 3 T Philips Ingenia MRI sys-

em, running an MPRAGE sequence, at an isotropic spatial resolution

f 1 mm. The locations and orientations of the sensor casings with re-

pect to the helmet are known a-priori from the additive manufacturing

rocess, and the co-registration procedure was used to map the helmet

n to the head. This was done in two stages. First, 6 coloured mark-

rs were placed at known locations on the helmet, with a further 4 on

he participant’s face. The camera, coupled with a colour-thresholding

lgorithm, was used to map the relative locations of these markers, al-

owing mapping of the helmet to the face. Following this, the helmet was
3 
emoved and the participant was asked to wear a swimming cap (to flat-

en their hair). A second digitisation was then acquired measuring the

ositions of the markers on the face, relative to the head surface. The

ead surface was then fitted to the equivalent surface extracted from

he anatomical MRI scan. Combining two transforms (helmet-to-head

nd head-to-MRI) we were able to effect a complete co-registration of

ensor casing to brain anatomy. The location of the sensitive cell within

he OPM casing was accounted for and we assumed that the sensitive

xis was radial, and parallel to the external sensor housing. 

.3. Task-based connectivity experiment 

The data used for our task-based connectivity demonstration have

een previously reported by Hill et al. (2020) . 

.3.1. Paradigm and data acquisition 

Two subjects undertook a visuo-motor task. The task comprised pre-

entation of a centrally-presented, inward-moving, maximum-contrast

ircular grating ( Hoogenboom et al., 2006 ; Iivanainen et al., 2019 ),

hich is known to increase gamma oscillations in the visual cortex.

hilst the visual stimulus was on the screen, participants were asked to

erform continuous abductions of their right index finger; a task known

o modulate beta oscillations in sensorimotor cortex. The grating was

resented for either 1.6, 1.7 or 1.9 s, depending on the trial. Each trial

nded with a 3-s baseline period, and 100 trials were recorded. 

Both participants were scanned six times in the OPM-MEG system

nd six times in a cryogenic MEG instrument (CTF, Coquitlam, BC,

anada). The study was approved by the University of Nottingham Med-

cal School Research Ethics committee. 

OPM data were acquired using a sampling frequency of 1,200 Hz.

2 and 49 OPM sensors were available for participants 1 and 2, re-

pectively. The visual stimulus was back projected onto a screen placed
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85 cm in front the participant’s head. A separate co-registration pro-

edure was performed after each experiment. 

Cryogenic MEG data were acquired using a 275-channel CTF sys-

em, operating in 3rd-order gradiometer configuration, at a sampling

requency of 600 Hz. The stimulus was presented on a back-projection

creen placed 95 cm in front of the participant (the stimulus was

atched for visual angle between the two scanner types). Three head-

osition indicator (HPI) coils were placed on the participant’s head at

hree fiducial locations (nasion, left and right pre-auricular points). Con-

inuous tracking of the head was achieved via these coils, which were pe-

iodically energised during MEG data acquisition. A 3D digitiser (Polhe-

us) was used to measure the locations of the fiducial markers relative

o the head surface, prior to each experiment. By matching the partici-

ant’s digitised head surface with the equivalent surface extracted from

heir anatomical MRI, co-registration of the fiducial markers, and con-

equently the MEG sensor geometry, to the individual’s brain anatomy

as achieved. 

.3.2. Task-based data analysis 

All MEG data (OPM and cryogenic) were band-pass filtered between

–80 Hz and epoched into trials (-3.5 s to + 3.0 s relative to time zero,

hich was taken as stimulus onset; giving a 6.5-s trial length). A “bad ”

rial was removed (completely; i.e. all channels removed) in cases where

he standard deviation of the signal (in any single channel) was greater

han 3 times the average standard deviation across all trials (for the same

hannel). Data were then concatenated into a single signal per channel.

Both cryogenic and OPM data were analysed in the same way:

unctional connectivity was calculated between 78 discrete cortical re-

ions, defined based on the automated anatomical labelling (AAL) atlas

 Tzourio-Mazoyer et al., 2002 ). A scalar beamformer was used to obtain

 single electrophysiological time course representative of each region

i.e. a ‘virtual electrode’ placed at the centre of mass of each region

 Hillebrand et al., 2016 ). The data covariance matrix was computed in

he 8–80 Hz frequency range for a time window spanning the whole

xperiment. Regularisation was not applied, to maximise spatial resolu-

ion ( Brookes et al., 2008 ). The forward model was based on a single

phere for the OPM system and multiple local spheres for the cryogenic

ystem. 

After beamforming, regional signals were frequency-filtered to the

lpha (8–13 Hz), beta (13–30 Hz), and gamma (52–80 Hz) fre-

uency bands, and epoched into trials. Pairwise orthogonalization

 Brookes et al., 2012 ; Hipp et al., 2012 ) was used to mitigate the prob-

em of signal leakage between AAL regions (itself a result of the ill-

osed MEG inverse problem). Following this, the absolute value of the

ilbert transform of the frequency-filtered data was computed to gener-

te the amplitude envelope of oscillatory signals, which was then down-

ampled to 10 Hz. (Note down sampling in this way has been used in

revious connectivity studies ( Brookes et al., 2011a ); whilst a lower fre-

uency cut-off is typically used for resting-state data we employed 10 Hz

o ensure that task-induced dynamics in the envelope were maintained.)

earson correlation was calculated between amplitude signals for all

ossible AAL region pairs and averaged over trials. For each participant,

ach experiment and each frequency band, this procedure resulted in a

ingle 78 × 78 matrix representing whole-brain connectivity. Finally,

onnectivity matrices were averaged across experimental runs. 

OPM and cryogenic results in the beta band were compared. (Note

e chose the beta band because this range has been shown to provide

obust brain network measurements (e.g. Hunt et al. (2016) ). Compar-

sons were made in two ways: 

Connectome repeatability (correlation) : For each subject, we have 12

onnectivity matrices (6 OPM and 6 cryogenic). Our aim was to as-

ess how similar these matrices are; that is, “how repeatable is the

hole-brain connectome across experimental runs? ” We wished to com-

ute this repeatability within/between scanner types (i.e. OPM-to-OPM;

ryogenic-to-cryogenic and OPM-to-cryogenic) and within/between

ubjects (i.e. subject 1 – to – subject 1; subject 2 – to – subject 2; subject
4 
 – to – subject 2). To this end, we first vectorised the matrices from all

xperimental runs. The 6 OPM runs and 6 cryogenic runs (for the same

ubject) were paired (all 36 possible pairings used) and Pearson correla-

ion between the vectorised connectivity matrices was calculated. This

esults in 36 values of correlation which were averaged. In this way,

e obtained a within-subject correlation between OPM and cryogenic

onnectivity matrices. This comparison was repeated for both subjects.

e then performed the equivalent calculation between subjects (e.g.

orrelating connectivity from subject 1 ′ s cryogenic data and subject 2 ′ s

PM data, and vice versa ). Combined, this gave measures of repeatability

ithin and between subjects, across scanner platforms. In addition, we

lso calculated repeatability within scanner platform: i.e. OPM-to-OPM

nd cryogenic-to-cryogenic. Here, pairing separate experimental runs

e.g. run 1 to run 2; run 1 to run 3 etc.) allowed 15 values of correlation

o be derived within a subject and 36 values of correlation to be derived

etween subjects. This analysis allowed the calculation of measures of

epeatability within and between subjects, but this time within scanner

latforms. Bringing together all these measures allowed us not only to

ssess the repeatability of connectivity matrices, but also subject speci-

city, and sensitivity to scanner platform. We hypothesised that there

ould be individual differences in the connectivity matrices between

ubject 1 and subject 2, and that these differences would be maintained

cross the two scanner types (i.e. colloquially, "the scanner would know

ho it was scanning ’ "). Consequently, we expected that correlation val-

es would be higher within subject than between subject. 

Connectivity strength : We calculated the linear sum of elements within

ach connectivity matrix, in one direction; this resulted in 78 regional

alues of “connectivity strength ” (i.e. for each of the AAL regions, this

etric represents the strength of the connection between that region

nd all other regions in the AAL atlas). These values were normalised

ithin each run, by dividing by the maximum value across all regions.

onnectivity strength was separately calculated for each subject, MEG

ystem, and experimental run. Here, we wished to probe whether indi-

idual differences in connectivity strength were maintained across the

wo MEG systems. To this end, for each of the 78 regions, a t -test (see

lso Supplementary Material) was used to determine the statistical sig-

ificance of differences between subjects. These calculations were per-

ormed for each scanner type separately (i.e. for a single scanner, and a

ingle region, we tested whether the 6 connectivity strength measures

rom subject 1 were significantly different to the equivalent 6 connec-

ivity strength measures from subject 2). Multiple comparisons (across

he 78 regions) were controlled using the Benjamini-Hochberg proce-

ure ( Benjamini and Hochberg, 1995 ). We hypothesised that any re-

ions where a significant between-subject difference occurred, would

e matched across scanner types. 

.4. Resting-state connectivity experiment 

.4.1. Paradigm and data acquisition 

Seven subjects (2 females, mean age 26 ± 4 years) took part in the

esting-state study. All participants gave written informed consent, and

he study was approved by the University of Nottingham Medical School

esearch Ethics Committee. 

Seven minutes of eyes-open, resting-state MEG data were acquired

sing the wearable OPM-MEG system at a sampling frequency of

,200 Hz. Participants were asked to fixate on a small red cross which

as centrally positioned on a grey background on the back-projection

creen. Apart from this, they were simply asked to relax and do noth-

ng. Participants were free to move during the recording, but they were

ot encouraged to do so. Co-registration was performed (as described

bove) at the end of each experiment, and individual anatomical MRIs

ere available for all participants. 

For comparison, we employed eyes-open resting-state data which

ad been acquired previously, in 63 subjects as part of the United King-

om MEG Partnership (UKMP; ( Hunt et al., 2016 )) programme. These

ata were all acquired using the same 275-channel cryogenic MEG sys-



E. Boto, R.M. Hill, M. Rea et al. NeuroImage 230 (2021) 117815 

t  

s  

p  

d  

c  

c  

d  

b  

t

2

 

w  

d  

s

 

b  

c  

w  

d  

w  

f  

a  

s  

c  

w  

b  

s  

r  

s  

c

 

c  

e  

d  

7  

a  

c  

o

 

d

 

a  

F  

g  

i  

v  

t  

(  

m  

(  

p  

t  

m  

t  

t  

c  

v  

t  

c  

c  

o

 

i  

t  

p  

t  

l  

v  

n  

t  

o  

o

3

3

 

p  

d  

s  

t  

T  

w  

C  

b  

j  

i  

m  

2  

b  

p  

i

 

t  

d  

m  

w  

t  

c  

w  

0  

1  

j  

s  

f  

g  

r

 

b  

m  

d  

t  

p  

O  

s  

t  

c  

s  

b  

v  

t  

a  

i  

i  

t  

s  

𝑦

 

p  

h  
em used in our task-based study. The system was operated in 3rd-order

ynthetic gradiometer configuration, and data were acquired at a sam-

ling frequency of 1,200 Hz. The paradigm comprised a 5-min recording

uring which participants focused on a small, centrally-positioned red

ircle, back-projected onto a screen. Head position monitoring was fa-

ilitated via three head-position indicator coils which were energised

uring the scan. Co-registration of MEG sensor geometry to individual

rain anatomy was achieved via head shape digitisation, equivalent to

hat described above for our task-based study. 

.4.2. Resting-state data analysis 

Data were band-pass filtered between 8–80 Hz, and bad channels

ere discarded based on visual inspection. This meant there were OPM

ata from 49, 47, 47, 48, 47, 48 and 45 channels for subjects 1–7, re-

pectively. 

OPM and cryogenic data were processed in the same way. A scalar

eamformer was employed to reconstruct a representative signal at the

entre of mass of each of the 78 cortical AAL regions. Data covariance

as computed in the 8–80 Hz frequency band and within a time win-

ow encompassing the complete resting-state recording. Regularisation

as not used (see also Appendix). Following this, regional signals were

requency-filtered into the alpha (8–13 Hz) and beta (13–30 Hz) bands,

nd pairwise orthogonalisation used to mitigate signal leakage. The ab-

olute value of the analytic signal was computed for each regional time

ourse, to generate the amplitude envelope of oscillatory signals, which

as then down-sampled to 5 Hz (the lower frequency cut-off was used

ecause we expected envelopes to fluctuate more slowly in the resting

tate). Pearson correlation was calculated between envelopes for each

egion pair. For each participant and frequency band, this resulted in a

ingle connectivity matrix representing whole-brain connectivity. Group

onnectivity matrices were computed by averaging across subjects. 

We aimed to show that OPM-derived connectivity was similar to

onnectivity derived using a cryogenic instrument and to this end we

xploited the large UKMP dataset. We randomly grouped the cryogenic-

erived connectivity matrices from our 63 subjects into 9 groups, with

 subjects per group. For each frequency band, we computed a group

verage connectivity matrix. This resulted in 9 matrices derived from

ryogenic data which we could compare with the single average (also

f 7 subjects) derived from our OPM system. 

Quantitative analysis of the similarity between OPM- and cryogenic-

erived connectivity matrices was made in two ways: 

First we aimed to test whether the OPM-to-cryogenic correlation was

bove chance. To test this, we first vectorised connectivity matrices.

or both frequency bands, we derived correlations between the OPM

roup average, and each of the 9 cryogenic average matrices, resulting

n 9 values of correlation which were averaged. Following this, to pro-

ide a statistical value, we used a Monte-Carlo approach. Starting with

he OPM connectome matrix, we used a phase randomisation method

 Hunt et al., 2016 ; O’Neill et al., 2015 ) to produce a set of “pseudo-

atrices ”: this method has been described in full in a previous paper

 Tewarie et al., 2016 ). Briefly, the real connectome matrix is decom-

osed into its constituent eigenvalues and eigenvectors. The eigenvec-

ors are then phase randomised ( Prichard and Theiler, 1994 ), and the

atrix is reconstructed. The result is a new matrix with similar structure

o the real matrix, but critically not representative of real brain connec-

ivity. We made 10,000 pseudo-matrices and correlated each with the 9

ryogenic-derived (real) connectome matrices. This resulted in 90,000

alues of correlation which was used as a null distribution. In order to

est whether our real OPM-derived connectivity was correlated beyond

hance with cryogenic-derived connectivity, we compared the 9 real

orrelation values to the null distribution, setting a significance thresh-

ld of 1%. 

Second, we aimed to test whether the OPM-to-cryogenic connectiv-

ty was similar to cryogenic-to-cryogenic connectome correlation. To

his end, for each frequency band we measured correlation between all

ossible pairs of cryogenic-derived connectivity matrices (i.e. group 1
5 
o group 2; group 1 to group 3 etc.). This yields a total of 36 corre-

ation values showing how different randomly-selected groups of indi-

iduals compare in terms of their whole-brain (cryogenic-derived) con-

ectome. We reasoned that if OPM-derived connectivity was different

o cryogenic-derived connectivity, then we would expect our 9 values

f OPM-to-cryogenic correlation to fall outside the range of 36 values

btained when considering cryogenic-to-cryogenic correlation. 

. Results 

.1. Task-based connectivity 

Fig. 2 shows results from our task-based connectivity study. For each

articipant, connectivity matrices obtained from OPM and cryogenic

ata, averaged across six experimental runs, are shown. The left panel

hows results in the alpha band, the middle panel shows beta band and

he right panel shows gamma band. Colour indicates connectivity value.

he inset 3D brain plots show the 50 connections between AAL regions

ith the highest connectivity values (represented by the coloured lines).

lear differences in network structure can be seen between the three

ands: the alpha-connectome is predominantly occipital, although sub-

ect 1 shows some parietal connections; the beta band shows primar-

ly parietal (bilateral sensorimotor) connections. Anecdotally, we note a

ore unilateral network in subject 1 and a bilateral network in subject

. The gamma-band is dominated by occipital connections. Similarities

etween OPM- and cryogenic-derived matrices are clear, a good exam-

le being the agreement on inter-individual differences that are shown

n the beta band. This will be formalised below. 

An interesting observation from Fig. 2 is that, in the beta band,

he OPM-derived connectivity values are lower than the cryogenic-

erived values. Specifically, averaging values over the connectivity

atrices and computing standard deviation across experimental runs,

e found that mean connectivity was 0.10 ± 0.01 (OPM) compared

o 0.13 ± 0.02 (cryogenic), for subject 1 and 0.08 ± 0.01 (OPM)

ompared to 0.11 ± 0.01 (cryogenic) for subject 2. This observation

as less marked in the alpha band where mean connectivity was

.09 ± 0.01 (OPM) compared to 0.10 ± 0.02 (cryogenic), for subject

 and 0.06 ± 0.01 (OPM) compared to 0.06 ± 0.01 (cryogenic) for sub-

ect 2. Conversely in the gamma band, OPM connectivity values were

lightly higher: 0.04 ± 0.01 (OPM) compared to 0.03 ± 0.01 (cryogenic),

or subject 1 and 0.04 ± 0.01 (OPM) compared to 0.02 ± 0.01 (cryo-

enic) for subject 2. This observation will be addressed further in the

esting state results, and in the Discussion. 

Fig. 3 probes the similarity of connectome matrices, within- and

etween-subjects, in OPM and cryogenic recordings. Comparison is

ade in the beta band only. In panel a, scatter plots show OPM-

erived connectivity values for all region pairs ( y -axis), plotted against

he equivalent cryogenic-derived connectivity values ( x -axis). I.e. each

oint on the graph represents a measured connection, and assuming

PMs and cryogenic sensors measure the same connectivities, in the

ame subject, we would expect to see a linear relationship. Plots on

he left show a within-subject comparison: the top scatter plot (blue)

orresponds to subject 1 and the bottom plot (yellow) corresponds to

ubject 2. The scatter plots on the right compare connectivity matrices

etween subjects (i.e. subject 1 – cryogenic vs subject 2 – OPM, and vice

ersa ). Note that to generate these plots, we averaged connectome ma-

rices over all 6 runs in both MEG systems. A line of best fit is added,

nd the dotted line shows ‘ 𝑦 = 𝑥 ’. Note that a clear linear relationship

s observed, demonstrating that OPM- and cryogenic-derived connectiv-

ty matrices are similar. Also within-subject correlation (left-hand scat-

er plots) appears tighter than between-subject correlation (right-hand

catter plots). Finally note that the linear trend is not distributed around

 = 𝑥 , again suggesting lower connectivity values measured via OPMs. 

The bar chart in Fig. 3 b shows within- and between-subject re-

eatability (correlation) of connectome matrices (i.e. these values show

ow repeatable task-based connectivity is between experimental runs;
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Fig. 2. Task-based functional connectivity matrices. Average connectivity matrices (across 6 runs) in the alpha (left), beta (middle) and gamma (right) bands for 

participants 1 (top) and 2 (bottom). For each participant, both OPM-derived (top) and cryogenic-derived (bottom) matrices are shown. Colour bars show connectivity 

(i.e. Pearson correlation between amplitude envelope) values. Alongside the matrices, the 3D brains show the 50 connections with the highest connectivity values. 

Fig. 3. Cryogenic vs OPM connectivity in the beta band. a) Scatter plots showing connectivity values derived from cryogenic data plotted against connectivity values 

derived from OPM data (each dot depicts a measured connection). Left column shows within-subject correlation for subject 1 (top) and subject 2 (bottom). Right 

column corresponds to between-subject correlation. b) Bar plot showing the mean within- and between-subject correlation of connectome matrices. Connectome 

repeatability is calculated in three ways; cryogenic-to-cryogenic (dark grey; here we compare connectome matrices taken using the cryogenic system in separate 

runs); OPM-to-OPM (middle grey; comparing matrices taken using the OPM system in separate runs); and OPM-to-cryogenic (light grey; comparing matrices derived 

using the OPM system to matrices derived using the cryogenic system). Error bar corresponds to standard deviation across the 15 or 36 comparisons. Crosses and 

triangles indicate individual values from a single calculation of correlation between two matrices – i.e. all raw data are shown. 
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n other words they show the strength of the correlation in the scat-

er plots in panel a). Correlation values were split into three groups:

PM-to-OPM; cryogenic-to-cryogenic and OPM-to-cryogenic. The bar

hart shows the mean value (across subjects and runs) and the error

ars depict corresponding standard deviations. In addition, individual

ata points relating to all possible comparisons are shown: specifically,
6 
lue crosses show subject 1 – to – subject 1; yellow crosses show sub-

ect 2 – to – subject 2; red triangles show subject 1 – to – subject 2 and

urple triangles show subject 2 – to – subject 1. Importantly these corre-

ation values are relatively high in all cases, but the within-subject val-

es are consistently higher than the between-subject correlations. This

s an important point because it suggests that differences in the con-
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Fig. 4. Connectivity strength in the beta band. a) Normalised connectivity strength recorded using cryogenic- (red) and OPM- (blue) derived data. Values are plotted 

for all 78 AAL regions, for participants 1 (top) and 2 (bottom). The shaded area represents standard deviation across 6 runs. Note the similarities between cryogenic 

and OPM plots. b) Normalised connectivity strength plotted on the brain surface for both subjects and both systems. c) Same as (a) but grouped by scanner type: 

normalised connectivity strength recorded using cryogenic- (bottom) and OPM- (top) derived data for participants 1 (solid line) and 2 (dashed line). d) Brain areas 

showing significant difference between participants (grey indicates no significant difference). Note both systems highlight similar regions. 
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ectome matrix between the two subjects are maintained across exper-

mental runs; or more colloquially, we can identify which subject was

eing scanned based on the connectivity matrix. Repeatability of con-

ectivity was higher for within-subject measures regardless of whether

his was measured from data acquired on the OPM system, cryogenic

ystem, or both, demonstrating the robustness of the finding. Interest-

ngly, repeatability was highest for the cryogenic system (i.e. dark grey

ars show the highest correlation when measured within and between

ubjects). This is likely due to the inhomogeneous coverage afforded by

 cryogenic system and will be addressed further in the Discussion. 

Results of our connectivity strength analysis are shown in Fig. 4 .

anel a shows line plots depicting normalised connectivity strength from

he cryogenic- (red) and OPM-derived (blue) beta-band connectome, for

ubject 1 (top) and 2 (bottom). On the x -axis each of the AAL regions are

epresented. Thick lines correspond to the average connectivity strength

nd shaded areas represent standard deviation, across all 6 runs. There

re clear similarities between the cryogenic- and OPM-derived values

ith the regions with highest values corresponding to sensorimotor ar-

as (which is to be expected given the task). This is better visualised in

ig. 4 b, where the normalised connectivity strength is plotted on a 3D

rain. Cryogenic results are at the top, OPM results at the bottom, left

anels correspond to subject 1 and right panels to subject 2. For each

ubject, both cryogenic and OPM data yield very similar connectivity

trength patterns. In agreement with Fig. 2 , we see that subject 1 ex-

ibits a more unilateral beta-band connectome, as opposed to subject 2,

n which a clear bilateral network can be observed. Panel c shows the

ame data as in panel a but grouped by scanner type: OPM at the top,
7 
ryogenic at the bottom. In both plots, subject 1 is represented with a

olid line and subject 2 with dashed line. Here, the difference in con-

ectivity strength between both participants around the right sensori-

otor areas can be seen clearly. Finally, Fig. 4 d shows brain regions

hose connectivity strength differed significantly ( p < 0.05, unpaired t -

est with 6 degrees of freedom, corrected for multiple comparisons) be-

ween subjects. Both cryogenic (bottom) and OPM (top) data highlight

imilar regions – in particular right sensorimotor cortices and pre-motor

reas stretching forward to the frontal lobe. This result formalises the

nding in the bar chart in Fig. 3 , by demonstrating why within-subject

orrelation is higher than between-subject correlation, for both OPM

nd cryogenic systems. 

.2. Resting-state connectivity 

Results from the resting-state OPM-MEG connectivity study are

hown in Fig. 5 . Group-average connectivity matrices in the alpha (panel

) and beta (panel b) bands are plotted. The 3D brain plots show domi-

ant connections between AAL regions (200 connections with the high-

st connectivity value). Differences between alpha- and beta-band con-

ectomes are clear; alpha oscillations support connections between oc-

ipital and motor regions (with some frontal projections), whilst the

eta-band connectome appears dominated by sensorimotor and fronto-

arietal connectivity. 

Resting-state connectivity results, derived from cryogenic data, are

lotted in Fig. 6 . Panels a and b show alpha- and beta-band connec-

ivity matrices, respectively. In each panel, 9 different matrices are
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Fig. 5. Resting-state connectivity plots derived from OPM data. Alpha- (a) and beta- (b) band connectivity matrices averaged across the 7 participants. Brain plots 

show the top 200 connections. 

Fig. 6. Resting-state group connectivity matrices from cryogenic data and a comparison with the OPM-derived connectome. Alpha- (a) and beta- (b) band connectivity 

matrices from 9 groups of 7 subjects. 3D brain plots show dominant connections (top 200). Note that even though these are group-averaged results, clear differences 

across groups remain (although the overall pattern appears robust). c) Results for alpha (top row) and beta (bottom row). The scatter plots on the left show 

cryogenic-derived connectivity values, with different groups plotted against each other i.e. each data point shows connectivity for the same connection, in two 

different subject groups, plotted against each other. The black line shows y = x ; the grey lines show lines of best fit for the 36 different possible comparisons between 

independent groups. The scatter plots in the centre show cryogenic-derived connectivity versus OPM-derived connectivity values. 9 separate comparisons are made 

between the OPM-derived connectome (averaged across 7 subjects) and 9 separate cryogenic-derived connectomes (each the average of 7 subjects). The bar chart 

shows mean correlation values for cryogenic-to-cryogenic connectivity (left-hand bar) and OPM-to-cryogenic connectivity (right-hand bar). The individual points 

(squares/triangles) show individual correlation values from all possible matrix parings. The dashed line shows the 99th percentile of the null distribution. 
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hown: these correspond to the 9 (randomly selected) groups of 7 sub-

ects. Colour bars are the same for all matrices. The 3D brains show

he dominant connections (again the 200 connections with the highest

onnectivity values; these are derived from the grand average across

3 subjects). Here we see that alpha oscillations mediate connections

rimarily in occipital areas whilst the beta-band connectome shows a

ore widespread connectivity, between occipital and parietal regions.

nterestingly, whilst a common structure exists across all groups, in both

ands, there is large discrepancy between connectivity strength values

cross groups. 

Fig. 6 c shows a comparison between cryogenic- and OPM-derived

esting-state connectomes. The upper and lower rows show results for

lpha and beta bands, respectively. In the scatter plots, we show resting-

tate connectivity values from different groups of people, plotted against

ach other. In the left-hand scatter plot, 36 different comparisons are

ade, corresponding to 36 available pairs within our 9-group connec-

ivity matrices from cryogenic data. The black line shows ‘ 𝑦 = 𝑥 ’ and,

iven that the points represent connectivity values derived using the

ame system, for the same connections, in different subject groups, we

ould expect to see a scatter around this line. This is broadly the case,

owever it is important to note how wide the variation around this line

s. This reflects differences between subjects/groups. The middle scat-

er plot contains 9 comparisons. Here, our group-averaged OPM-derived

onnectivity values are plotted against equivalent values for each of the

 cryogenic group averages. Note here that for both the alpha and beta

and, although data do not necessarily lie along the ‘ 𝑦 = 𝑥 ’ line, a very

lear linear trend is observed suggesting that, in general, the OPM and

ryogenic resting-state connectomes are well matched. As with the task-

ased connectivity, we found that in the beta band, connectivity val-

es across the matrix were lower for OPMs than for the cryogenic sys-

em. Specifically, the mean (across the connectome matrix) connectivity

alue was 0.09 ± 0.03 (OPM) compared to 0.14 ± 0.06 (cryogenic) (av-

rage ± standard deviation across subjects). However, this was not the

ase for the alpha band where OPM-derived connectivity was slightly

igher (0.10 ± 0.04 (OPM) compared to 0.09 ± 0.04 (cryogenic)). 

Finally, the right-hand bar chart shows correlation values between

roup-level connectomes; the left-hand bar shows cryogenic vs cryo-

enic connectomes (36 separate comparisons between the 9 group con-

ectivity matrices); the right-hand bar shows OPM vs cryogenic connec-

omes (9 comparisons between the mean OPM connectome and the 9

ryogenic groups). The bars show averages, whilst all data contributing

o those averages are shown overlaid as squares/triangles. The dashed

ine corresponds to the 99th percentile of the null distribution; that is,

he cryogenic-to-OPM correlation should cross this threshold to be above

hance. Here we see a clear result. Firstly, there is clearly a significant

orrelation between OPM- and cryogenic-derived connectivity matrices.

econd, whilst the average OPM-to-cryogenic correlation (0.68 for alpha

nd 0.74 for beta) is marginally lower than cryogenic-to-cryogenic com-

arisons (0.80 for both alpha and beta) (probably a result of coverage

ias – see Discussion) the range of OPM-to-cryogenic correlation val-

es is well contained within the range of cryogenic-to-cryogenic values

uggesting no measurable difference between the two. Consequently,

e conclude that OPM and cryogenic connectivity are approximately

quivalent. 

. Discussion 

OPMs represent a step change for MEG instrumentation: OPM-MEG

ffers the potential for cheaper MEG systems which can ultimately

ome into more widespread use, particularly in clinical settings. Wear-

ble helmets mean that sensors move with the head, removing worries

round subject movement which can lead to data becoming unusable in

ryogenic systems ( Boto et al., 2018 ). Flexible placement of small and

ightweight sensors means that, in principle, an OPM-MEG system can

dapt to any head shape or size ( Hill et al., 2020 ). Ultimately this means

hat OPM-based systems are better able to accommodate challenging
9 
atient groups, in particular children (with smaller heads) or subject

roups who find it hard to keep sufficiently still in a conventional scan-

ing environment. The ability to move whilst scanning opens up new

ossibilities for neuroscientific experimentation – for example we can

can people as they undertake naturalistic tasks ( Hill et al., 2019 ) or

ecome immersed in a virtual environment ( Roberts et al., 2019 ). Fi-

ally, because OPM sensors can get closer to the brain, we can capture

etter data with higher sensitivity and spatial resolution ( Boto et al.,

019 , 2016 ; Iivanainen et al., 2017 ). These factors point towards OPMs

uperseding cryogenic MEG devices in the coming years. However, the

echnology remains largely unproven, and it is critical that OPM-MEG

ystems begin to demonstrate that they can perform as well as (or prefer-

bly better than) cryogenic systems for neuroscientific measurements. 

Functional connectivity is an area that has become of great impor-

ance in recent years. Canonical networks, and the functional connec-

ivities that underlie them, are fundamental to healthy brain function

nd have been shown to be perturbed in a number of abnormalities

anging from mental health disorders that strike in the very young, to

eurodegenerative conditions that become a problem for the elderly.

he combination of high spatial and temporal resolution makes MEG,

rguably, the technique of choice for measurement of brain network ac-

ivity and connectivity. This is particularly true for the measurement of

ynamic connectivity (e.g. during a task) where we might aim to probe

he formation and dissolution of transient networks as they modulate

o support cognition. It is for these reasons that functional connectivity

nd network measurement represent a key part of MEG research. Con-

equently, showing that OPM-MEG systems are capable of such mea-

urements, with similar fidelity to conventional devices, is a key step

orward in the journey towards a viable OPM-MEG device. 

Here, we aimed to show that OPM-MEG could offer characterisation

f the brain-wide functional connectome. As noted in our introduction,

uch demonstration relies not only on high fidelity (unaveraged) MEG

ata, but also on whole-brain coverage, spatial specificity and the re-

onstruction of large numbers of sources; given the limited number of

hannels in OPM-MEG systems (~50 compared to ~300 in cryogenic

ystems) these latter points could have posed a challenge. However, re-

ults show that 50-channel OPM-MEG, in combination with accurate

o-registration procedures and an appropriate source localisation algo-

ithm, can measure functional connectivity with similar efficacy to a

ryogenic system. At face value, this is perhaps surprising, but we note

hat previous electroencephalography (EEG) studies have shown that

onnectivity patterns can be measured using relatively small numbers of

ensors. For example, Siems et al. (2016) directly compared connectivity

easures using 275-channel (cryogenic) MEG and 64-channel EEG sys-

ems. Results showed that similar brain networks are observable (albeit

ith less spatial specificity in EEG – likely a consequence of the EEG

orward model, which is complicated by inhomogeneous conductivity

cross the brain skull and scalp). The likely reason that fewer channels

esults in similar data is field spread: because the magnetic field from a

ingle source affects multiple sensors, there is a degree of redundancy

cross an array of MEG sensors. This means that at least some signal

rom each of the 78 AAL regions will be captured by one or more OPMs,

ven with a relatively low channel count. However, we also stress that,

ecause OPMs get closer to the head, the field topography at the scalp is

ess diffuse compared to cryogenic systems and so channel redundancy

s diminished. Further, it is known ( Boto et al., 2016 ; Iivanainen et al.,

017 ) that the performance of any MEG system improves as sensors

re added – there are three reasons for this: first, extra sensors enable

apture of higher spatial frequencies in the scalp topography, which

ill improve spatial resolution. Second, extra sensors enable us to re-

olve more sources in the brain (i.e. they will reduce source leakage).

hird, extra sensors enable higher SNR, partly because there are more

easurements over which the signal can be averaged and partly be-

ause the array is better able to characterise interference (which can

hen be supressed). Consequently, whilst 50-channel OPM-MEG offers

ood characterisation of the human connectome, the addition of more
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hannels will always provide a significant advantage. OPM-systems with

.g. hundreds of channels should therefore remain an ambition. 

Our task-based connectivity demonstration showed that both

ryogenic- and OPM-MEG yield robust networks in the alpha, beta and

amma bands in response to a visuo-motor paradigm. Of interest here

s the ability to measure individual differences between subjects. We

howed that, in the beta band, both systems measured a robust sensori-

otor network which exhibited significantly more bilateral connectivity

n subject two, compared to subject 1. Of course, the reason for these

ifferences between subjects is unclear, but the fact that the same differ-

nces were observed using both cryogenic and OPM-MEG is compelling.

e argue that this finding is important for two reasons. First, from an

PM-MEG point of view, it validates the fact that the MEG data are of

igh quality; indeed the ability to “tell which subject you are scanning ”

ased only on the MEG data is a satisfying demonstration of the equiva-

ence between OPM- and cryogenic-derived data. Second, more broadly,

his finding demonstrates the importance of inter-individual differences.

any clinically-oriented MEG studies employ cross-sectional designs

here large subject numbers from different ‘groups’ are scanned and

ifferences between groups sought. However, here we show that size-

ble differences between two healthy individuals can be robustly ob-

erved and it is tempting to speculate that these differences are larger

han the more subtle deviations that are often observed between groups.

t follows that, given the robustness of the within-subject measures, it is

ikely that acquisition of longitudinal datasets, tracking how e.g. a pa-

ient’s brain changes throughout the course of an illness, may ultimately

e more fruitful (and more useful) than cross-sectional group studies. Fi-

ally, an important methodological point relating to task-based connec-

ivity is that the analysis method used here (amplitude envelope correla-

ion) may highlight connections that are not driven by intrinsic coupling

er se . For example, two unrelated brain regions could both be modu-

ated (independently) by the task and would appear “connected ”. Here,

ur aim was to show similarity or differences between OPM and cryo-

enic MEG systems and with this in mind, we believe this caveat can be

verlooked, however it should be taken into account in future studies

f connectivity. 

In many ways, our resting-state data posed a greater challenge for

PM-MEG compared to task-based data, for the simple reason that the

ask-based connectome could be averaged over trials, potentially mask-

ng the effect of any artefacts at the sensor level. Conversely, resting-

tate connectivity must be inferred based on unaveraged data, meaning

hat sensor artefacts could have a greater influence. Our findings showed

hat similar resting-state network structure could be elucidated both us-

ng cryogenic and OPM-based MEG. Our beta-band analyses (taken from

ig. 6 c) showed that, when considering a group result across 7 subjects,

ryogenic-derived connectome matrices showed 80% correlation; when

omparing OPM- and cryogenic-derived connectomes, this was reduced

arginally to 74%. In the alpha band, this reduction was somewhat

arger with 80% correlation for cryogenic-derived connectomes reduc-

ng to 68% for OPM-cryogenic comparison. These reductions are not

urprising considering the vast differences between the systems – in par-

icular, the channel count and differences in spatial coverage (see also

elow). However, in both cases these reductions were small compared

o the range of possible correlation values and could easily be due to

ifferences in the groups of participants scanned. These data therefore

how that OPM-MEG, even with a modest number of sensors, is able to

ffectively reproduce the human connectome measurable by cryogenic

EG. 

An important consideration for connectivity measurement is data

uality. Given the fact that OPMs are configured as magnetometers, as

istinct from gradiometers, we might expect a higher degree of inter-

erence in our OPM compared to our cryogenic data. In fact, further

nalysis (see Appendix) showed that magnetic artefacts of no interest

re present in OPM-MEG sensor level data, however, using beamforming

hese artefacts are likely to be eliminated efficiently. This is an important

oint; at present, commercial grade OPMs are formed as magnetometers.
 f  

10 
hilst it is possible to form gradiometers from two magnetometers, and

uch methods have been shown to be effective ( Hill et al., 2019 ), this

nvolves a digital subtraction of signals from two adjacent sensors which

ecessarily means (assuming a simple Gaussian model) a 
√
2 increase in

ensor noise. Recent work has shown that inherent OPM-gradiometers

i.e. OPMs where the same light is passed through two separate vapour

ells, eliminating the need for digital subtraction and consequently the

2 noise increase) are possible to construct ( Nardelli et al., 2020 ). How-

ver, axial gradiometers would require cells to be stacked on top of one

nother (i.e. radial to the head) and any reasonable (e.g. 5 cm) baseline

ould make a wearable helmet bulky and arguably impractical. In ad-

ition, planar gradiometers (two cells separated tangentially along the

calp surface) with a long baseline would limit the numbers of sensors

hat fit around the head; and shorter baseline planar gradiometers limit

epth sensitivity. With this in mind, it is possible that wearable sys-

ems with high channel counts and gradiometer-based sensors may be

hallenging. Consequently, it is positive that mechanisms such as beam-

orming work well for reduction of interference. It remains to be seen

s to whether other interference rejection strategies (for example sig-

al source separation; ( Taulu and Simola, 2006 )) are also effective, but

s shown in our Appendix, effective interference minimisation will be

xtremely important for future OPM-MEG studies. 

Whilst OPM- and cryogenic-derived connectomes were largely simi-

ar, there are some differences which are worth noting. First, in the beta

and, OPM-derived functional connectivity values were generally lower

n magnitude than their cryogenic equivalents. At face value this could

uggest increased noise in the OPM data which would diminish connec-

ivity. However alpha connectivity values were marginally higher (in

he resting state) for the OPM system (and comparable for the task-based

ata). In addition, we know from previous analyses on the same (task)

ata ( Hill et al., 2020 ) that SNR values in the OPM and cryogenic data

re approximately the same (in the beta band in motor cortex, source-

ocalised SNR was 22 ± 4 in the OPM system compared to 21 ± 4 in the

ryogenic system). We therefore think it unlikely that increased noise is

esponsible for the systematic connectivity reduction in OPMs. There are

wo potential more likely explanations. First, it is possible that reduced

onnectivity could result from the smaller number of channels: with only

0 channels in the OPM helmet (compared to 275 SQUID channels), the-

ry would predict that there would be more spatial blurring across the

8 AAL regions, and consequently increased source leakage. This leak-

ge would be addressed by our leakage reduction algorithm (pairwise

rthogonalisation) with the likely result being diminished connectivity

alues; this potentially suggests that a general reduction in connectivity

ith lower channel count is possible. Second, lower overall (average)

onnectivity could result from changing spatial coverage; in particular,

f the OPM system was less sensitive, and the cryogenic system propor-

ionally more sensitive, to regions which demonstrate high functional

onnectivity. 

Comparing Figs. 5 and 6 we see that, for the resting state, even

hough connectomes are largely similar (evidenced by the high corre-

ation values) the 200 connections with the highest connectivity show

 different spatial pattern in OPM compared to cryogenic MEG; specifi-

ally, for the cryogenic data, in both the alpha and beta bands, connec-

ivity is largest in the occipital and parietal lobes whereas for OPM data,

he alpha band is more widespread, including frontal regions while for

eta, the motor system and fronto-parietal connections are highlighted.

e believe that these relatively large differences are due to coverage.

ensitivity in the cryogenic system is greatest at the back of the head;

his is a known problem because subjects tend to sit with their head

esting on the rear of the cryogenic helmet, meaning high SNR for vi-

ual/parietal areas and poor coverage in frontal lobes. Indeed this was

hown by sensitivity plots in Hill et al. (2020) and is supported by a

ecent study ( Coquelet et al. (2020) ) which showed that EEG yields

igher frontal connectivity compared to (conventional) MEG; the au-

hors cited an increased gap between the MEG sensors and the brain, in

rontal regions, as the reason. Conversely, the additively-manufactured
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PM helmet used in this study was a good fit for most subjects over

he top of the head, but a noticeable gap (of ~1–2 cm) exists across

he back of the head. This gap acts to move sensors away from occip-

tal lobe and, consequently, signals will diminish, as will connectivity.

t is possible that diminishing the naturally high connectivity values in

eta band in visual cortex could have contributed towards the overall

ower values of connectivity observed in the OPM system compared to

he cryogenic system. Likewise, because the OPM system brings sensors

loser to frontal cortices, this could explain the increased sensitivity to

rontal alpha connectivity in OPMs. In general, it is clear that the OPM

elmet, despite problems over the occipital lobe, has more uniform cov-

rage than cryogenic MEG. This likely means that for cryogenic MEG the

patial signature of the connectome matrix rides on top of a sensitivity

rofile which diminishes frontal lobe contributions. The upshot would

e that when measuring repeatability (i.e. the correlation measures used

n Figs. 3 and 6 ) underlying coverage-based modulation would inflate

orrelation for cryogenic-to-cryogenic comparison, possibly explaining

in part) the results shown. What is clear is that inhomogeneous brain-to-

ensor spacing for different areas of cortex can have a marked effect on

onnectivity results and this must be taken into account in future gener-

tions of scanner design. One potential solution is to use individualised

canner-casts, however these tend to be difficult and time-consuming

o generate and are expensive. The introduction of more sophisticated

elmets that allow a degree of adaptation to different head shapes (e.g.

y including built-in facility to adjust sensor positions along the radial

irection), could negate this problem. 

Finally, it is important to note the current state of maturity of

PM-MEG technology. At the time of writing, to our knowledge,

ll operational OPM-MEG systems are “home-made ”; that is, con-

tructed by research groups “in house ” based on OPM sensors, mag-

etic shielding, coils for field control and bespoke integrative data

cquisition and control electronics, and software. Commercial grade

PMs, appropriate for MEG applications, are now available from

t least two vendors ( www.quspin.com ; www.fieldlineinc.com ). Fur-

her, OPM-optimised magnetic shielding, including electromagnetic

oils similar to those used here, are also now available commercially

 www.magneticshields.co.uk ). However, to date there is no commercial

olution for an integrated system. That said, it is clear from the results

resented here and in other recent demonstrations that OPM technol-

gy is progressing rapidly and can now compete with cryogenic MEG

echnology. Furthermore, recent results show clearly the advantages of

PM-MEG compared to the widely established EEG (vastly improved

patial resolution and tenfold reduced sensitivity to non-neural signals

e.g. from muscles; ( Boto et al., 2019 )). It therefore seems highly likely

hat commercial integrated OPM-MEG systems will become available in

he near future. Such systems have the potential to overtake cryogenic

EG systems, and even possibly replace some EEG systems for clinical

valuation of patients with neurological problems such as epilepsy. 

. Conclusion 

In conclusion, our study has shown that OPM-MEG can measure

hole-brain functional connectivity with a fidelity similar to that

emonstrated by conventional cryogenic MEG machines. In the rest-

ng state, our results show that connectome matrices from OPM and

ryogenic systems exhibit an extremely high degree of similarity, with

orrelation values > 70%. This value is not measurably different to the

orrelation observed between connectomes measured across different

ubject groups on a single cryogenic MEG device. In a task-based study,

e showed that robust differences in connectivity between individuals

scanned multiple times) exist, and similar individualised features could

e identified in cryogenic and OPM-MEG measurements, again demon-

trating the fidelity of OPM-MEG data. OPMs offer a step change for

EG instrumentation, however OPM-MEG remains a nascent technol-

gy with significant work still to be done. The present demonstration

akes us one step closer to routine use of OPM-MEG for neuroscientific
11 
easurement. This adds weight to the argument that OPMs will ulti-

ately supersede cryogenic-based instrumentation. 
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ppendix. External interference and its influence on OPM data 

A major concern related to connectivity measurement using OPM-

EG is the influence of external magnetic interference. As outlined in

ur introduction, most cryogenic MEG systems employ gradiometers to

educe the effect of external magnetic fields. Some also use reference

rrays, higher-order synthetic gradiometry ( Vrba and Robinson, 2001 ),

r software approaches ( Taulu and Simola, 2006 ). However, OPMs are

nherently formed as magnetometers and this means that interference is

ore problematic. This is a particular concern for connectivity measures

in the resting state) since averaging across trials is impossible. Thus,

nderstanding how OPM data is influenced by interference is important.

A good example of interference from a distal source is the magnetic

rtefact from the heart. Even at a distance, the field from the heart is

any times larger than the field from the brain. Also, the fundamental

http://www.quspin.com
http://www.fieldlineinc.com
http://www.magneticshields.co.uk
https://doi.org/10.1016/j.neuroimage.2021.117815
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Fig. A1. Presentation of the heartbeat artefact in OPM-MEG: a) Sensor-space data filtered to the beta band. Four channels are shown (indicated on the sensor layout 

on the right) and despite the separation of approximately 40 cm between the heart itself and the head-mounted sensors, the magnetocardiogram can be seen clearly. 

b) Correlation between the heartbeat artefact and source-localised data, across 78 AAL regions. Top left: beamforming applied with the cardiac artefact removed. 

Top right: beamforming applied to the full dataset with no regularisation. Bottom left: beamforming applied with 5% regularisation. Bottom right: beamforming 

applied with 15% regularisation. 
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requencies of the heartbeat overlap with the frequency bands of in-

erest for connectivity (i.e. the alpha and beta ranges). Consequently,

his poses a significant challenge since, if the heartbeat artefact appears

cross many sensors, and is projected (via source localisation) into brain

pace, this will necessarily inflate functional connectivity measurement.

or these reasons, we aimed to test the extent to which the heartbeat

rtefact is found in source-localised OPM-MEG data. 

ethods 

In order to probe the presence of a heartbeat artefact in OPM-MEG

esting-state data, independent component analysis (ICA) was applied

o beta-band filtered sensor-level data. ICA was applied in the temporal

imension using the fastICA algorithm ( Hyvärinen, 1999 ); we selected

 sufficient number of independent components to explain 95% of the

ata variance. This procedure was applied to data from all 7 subjects

ndependently. For one subject, a clear heartbeat artefact was contained

ithin a single independent component. For the other 6 subjects, the

eartbeat was split across two independent components. 

Following this, for all subjects we re-ran the beamformer spatial filter

n order to reconstruct source-space data at the 78 pre-selected AAL

egions. This was done in two different ways: 

1) Following ICA, data were reconstructed with the heartbeat artefact

removed (by removing either 1 or 2 independent components). The
12 
data covariance matrix was derived based on these reduced data,

and a beamformer applied. Note that component removal in this way

necessitates the application of matrix regularisation and so this was

applied, using the Tikhonov method, with a regularisation parameter

equal to 0.1% of the maximum singular value of the unregularised

matrix. 

2) Beamforming was applied without removal of the heartbeat artefact.

This was done with no regularisation (as in our main manuscript)

as well as with regularisation parameters equal to 5% and 15% of

the maximum singular value of the unregularised matrix. (Note, the

addition of regularisation reduces the ability of the beamformer to

supress external magnetic interference, and consequently this proves

a useful marker of how other source localisation algorithms (e.g. a

dipole fit) might behave.) 

In both cases we correlated the ICA-derived heartbeat to the source-

ocalised MEG data in order to assess the influence of interference. 

esults and discussion 

Fig. A1 a shows representative beta-band filtered OPM-MEG data at

he channel level. Data for four channels, for a single subject, are shown

nd we see that the beta-band component of the heartbeat is easily iden-

ified. Fig. A1 b shows the cortical topography of correlation with the

eartbeat artefact following source localisation. In the top left, we show



E. Boto, R.M. Hill, M. Rea et al. NeuroImage 230 (2021) 117815 

t  

t  

5  

r  

s  

t  

w  

c  

f  

m

 

i  

i  

c  

s  

i  

c  

l  

t  

(  

d  

t  

r  

l  

w  

o  

r  

w  

m  

(  

f  

s  

s  

l  

p  

2

R

A  

 

 

B  

 

B  

 

 

B  

 

B  

 

B  

 

B  

 

 

B  

 

 

B  

 

 

B  

 

 

 

 

B  

 

 

 

B  

 

 

 

B  

 

B  

 

 

B  

 

B  

 

B  

 

 

C  

 

C  

 

 

E  

 

F  

G  

 

H  

 

 

H  

 

 

H  

 

 

H  

 

H  

 

 

H  

 

H  

 

H  

 

H  

 

 

 

H  

I  

 

I  

 

he case where the heartbeat artefact was removed. The top right, bot-

om left, and bottom right show the case for a beamformer with zero,

% and 15% regularisation, respectively. As expected, heartbeat cor-

elation is zero in the case where the heartbeat has been removed (a

imple consequence of ICA). More importantly, correlation is very close

o zero (0.03 ± 0.02 (mean ± standard deviation across all 78 regions))

hen an unregularised beamformer is applied. As regularisation is in-

reased, correlation increases markedly (to 0.06 ± 0.04 and 0.11 ± 0.06

or 5% and 15% regularisation, respectively). Note that correlation is

ost pronounced for deeper regions. 

It is clear from this result that the good performance of OPM-MEG

n connectivity assessment observed in our manuscript is due, at least

n part, to the noise rejection characteristics of the beamformer. In

ases where beamforming is less efficacious, artefacts begin to leak into

ource-space data and as a consequence, connectivity measurement (or

ndeed any assessment of neural oscillatory processes) would become

ontaminated. However with a well-functioning beamformer, unregu-

arised, such artefacts are well rejected. (An important point here is

hat beamforming becomes more accurate for longer data recordings

note that our OPM recordings were 7 min compared to the “stan-

ard ” 5 min that is often employed). This will have helped with in-

erference rejection.) Of course, the artefact as defined here can also be

emoved by other techniques (e.g. ICA – as demonstrated) but this re-

ies on a-priori artefact identification. This was easy for the temporally

ell-characterised heartbeat, but is harder for less well-known sources

f magnetic interference. On the other hand, the beamformer does not

ely on a-priori assumptions. Further, if it works well on the heartbeat,

e can assume it works equally well in nulling other sources of external

agnetic interference. In conclusion, we recommend that beamforming

or at least an adaptive source-localisation technique with good inter-

erence rejection properties) is used when attempting to assess source-

pace functional connectivity using OPM-MEG. However it should be

tressed that beamforming comes with specific caveats – in particu-

ar that spatially-separate but temporally-correlated sources will be su-

ressed in source reconstructions; this has the potential ( Sjøgård et al.,

019 ) to supress genuine functional connectivity. 
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