SPLITTINGS OF TORIC IDEALS

GIUSEPPE FAVACCHIO, JOHANNES HOFSCHEIER, GRAHAM KEIPER, AND ADAM VAN TUYL

ABSTRACT. Let I C R = K|[z1,...,x,] be a toric ideal, i.e., a binomial prime ideal. We
investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a
general toric ideal I, we give a sufficient condition for this splitting in terms of the integer
matrix that defines I. When I = I is the toric ideal of a finite simple graph G, we give
additional splittings of I related to subgraphs of G. When there exists a splitting [ = I1 + I
of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti
numbers of I in terms of the (multi-)graded Betti numbers of I; and Is.

1. INTRODUCTION

Toric ideals appear in the intersection of many areas of mathematics, including commutative
algebra, algebraic geometry, combinatorics, and have applications to many areas, e.g., algebraic
statistics [7]. A toric ideal I in a polynomial ring R = K[z1,...,z,] (with K an algebraically
closed field of characteristic zero) is a prime ideal generated by binomials. For detailed
introductions to toric ideals, we refer the readers to [6, 8, 15, 23].

Under some mild assumptions, a toric ideal I C R is a (multi-)homogeneous ideal, and
consequently, one can compute its (multi- )graded Betti numbers, that is,

B:;(I) = dimg Tor/(I,K);,

where j € N or j € N", depending upon our grading. Betti numbers are examples of the
homological invariants of I that are encoded into the minimal (multi-)graded free resolution of
I. It was shown by Campillo and Marijuan [3] and Campillo and Pison [4], and independently
by Aramova and Herzog [1], that one can compute the multi-graded Betti numbers of any
multi-homogeneous toric ideal by computing the ranks of reduced simplicial homology groups
(see [22, Theorem 67.5] and [23, Theorem 12.12]). This result is a toric ideal analog of the
well-known Hochster’s Formula (e.g., [15, Theorem 3.31]) for monomial ideals. Applying these
formulas, however, to compute the (multi-)graded Betti numbers can be a formidable task.

One current stream of research has been interested in these homological invariants under
the additional assumption that I = I is the toric ideal of finite simple graph G. Specifically,
given a finite simple graph G with vertex set V(G) = {z1,...,2,} with edge set E(G) =
{e1,...,e,}, the toric ideal I is the kernel of the map ¢: Kley, ..., e,] = K[z1,...,z,] given
by p(e;) = x;i1x;2 where e; = {z;1,x;2} (see Section 2). One is then interested in relating
the homological invariants of I to the graph theoretical invariants of G. As examples of
this approach, [21, 24, 26] relate the generators of I to walks in G, [2, 5, 14] give graph
theoretical bounds on the regularity and projective dimension for the toric ideals of some
families of graphs, [13] investigates the N,-property of the toric ideals of bipartite graphs,
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[17, 25] studies when the toric ideal of a bipartite graph has a linear resolution, [10, 20]
compute all the graded Betti numbers of I for specific families of graphs, and [11, 16] relate
the invariants of depth and multiplicity of R/Is to G.

Given this interest in homological invariants, it is natural to ask when one can compute the
Betti numbers of toric ideals using recursive or inductive methods. With this goal in mind,
we investigate when one can “split” the toric ideal into “smaller” toric ideals. More precisely,
we say a toric ideal I has toric splitting (or I is a splittable toric ideal) if there exists toric
ideals I; and I3 such that [ = I; + I,. Our main motivation is to identify toric splittings of I
so that the graded Betti numbers of I can be computed in terms of those of I; and I5, thus
complementing existing approaches to computing these invariants. We were also inspired by
[9] which considered splittings of monomial ideals to compute (or bound) the Betti numbers.

One immediately encounters the following obstacle: Suppose the toric ideal I = (f1,..., fi)
is minimally generated by the binomials V' = {f,..., fi}. Given a non-trivial partition of the
generators, say V =W UY, theideals Iy = (g | g € W) and I, = (g | g € Y) are binomial
ideals, but these ideals may fail to be prime. Hence, toric splittings may not even exist!

The main results of this paper were inspired by the following prototypical example of a
toric splitting. Given a graph G and cycle C' of even length 2d, consider the graph H which
is formed by identifying any edge of G with an edge of C' (see Figure 1). In this case, the

F1GURE 1. Connecting an even cycle C' to a graph G to make a graph H.

toric ideal of H is splittable. Specifically, Iy = I + I¢, and furthermore, the graded Betti
numbers satisfy (Corollary 3.12)

ﬁw(R/]H) = ﬁi’j(R/Ig) + 6i,j—d(R/]G) for all i,j Z 0.
We want to determine a more general context where this example becomes a special case.

In Section 3 we considered toric ideals in general. A toric ideal can be constructed from
an n X s integer matrix A (see Section 2). Our first main result (see Lemma 3.4) gives a
sufficient condition for a toric ideal I to be a splittable toric ideal in terms of the matrix A.
In fact, under the hypotheses of Lemma 3.4, one of the two ideals in the splitting will be
a principal ideal. If the toric ideal is also multi-graded, we apply Lemma 3.4 to relate the
graded Betti numbers of splittable ideal I = I + I5 to those of I; and I,. When we specialize
our Lemma 3.4 to the toric ideals of graphs, we recover the example described above. Of
independent interest, our Lemma 3.2 gives an ideal membership criterion for a particular
binomial to belong to a two-generated binomial ideal.

In Section 4 we restrict to splittings of toric ideals of graphs. The results in this section
are based upon the observation that the graph H in Figure 1 is formed by “gluing” an even
cycle to an edge of a graph. After formally defining “gluing” (and its inverse operation of
“splitting” ), we generalize the above example by showing that if any bipartite graph K is glued
along an edge of a graph G to form H, then Iy = Ig + I is a splitting of toric ideals (see
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Corollary 4.8). Furthermore, Theorem 4.11 relates the graded Betti numbers of I, I, and
Iy. Our main result (Theorem 4.5) is more general in that we consider a gluing of G and K
along a path; in this case Iy is the sum of I and Ik up to a saturation by a monomial.

Our paper is structured as follows. In Section 2 we recall the relevant definitions and results
about toric ideals and graph theory. In Section 3 we present our main technical lemma and
consequences for the graded Betti numbers of toric ideals. In Section 4 we consider splittings
of toric ideals of graphs and the consequence of this splitting for the graded Betti numbers of
such graphs. The last section suggests some future research directions.
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2. NOTATION AND BACKGROUND
We recall the relevant definitions and background on toric ideals and toric ideals of graphs.

2.1. Toric Ideals. Fix an integer n > 1, and let ey, ..., e, denote the standard basis vectors
of R" (or Z"™). The support of a vector a = (ay,...,a,) in R™ (or Z") is

supp(a) ={i=1,...,n | a; # 0}
Any a € R" (or Z™) can be decomposed uniquely as « = a; — a_ where

ap = Z ae; and a_ = Z(—ai)ei.

a; >0 a; <0

Let {a1,...,as} CZ", and set A to be the n x s matrix A = [a -+ a5]. The matrix A
induces a map Z°* — 7Z"; in fact, we have an exact sequence

0—>L—>7°—7",

where L is the kernel of A. Recall that L is a lattice, i.e., a finitely generated free abelian group.
In particular, L is isomorphic (as a Z-module) to Z' for some t. The notion of saturation is
needed for the proof of Theorem 3.7. Let M be a lattice and L C M a sublattice. The lattice
L is saturated in M if for any ¢ € M such that some positive integer multiple of ¢ is contained
in L, then ¢ is already in L. Note that L is saturated in M if and only if M/L is torsionfree.

Definition 2.1. Let A = [a; -+ «,] be an n x s matrix as above, and let R = K[z, ..., x].
The toric ideal of A is the ideal

Iy = (2% — 2% | o € ker(4)) C R.

Remark 2.2. A toric ideal is sometimes defined as a binomial ideal (an ideal generated by
binomials, that is, the difference of two terms) that is a prime ideal. It is clear from our
definition that I is a binomial ideal. To see that I, is a prime ideal, consider the polynomial
ring R = K[y, ...,z,] and the Laurent polynomial ring S = K[t;,#; ', ..., t,,t;!]. Define a
homomorphism of semigroups algebras ¢: R — S by mapping

) Qi1 .G .
IZ s tal — t11,1t21,2 . tfrle,n Where az — (a/i,lﬂ . 7ai7n)‘
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Then an equivalent definition (see [23, Chapter 4]) for the toric ideal of A is 4 = ker .
Because the image of ¢ is a domain, it follows that I, is prime.

Information about R/l is encoded into the matrix. For example:

Theorem 2.3. [15, Proposition 3.1] With A as above, dim(R/I4) = rank(A).

Toric ideals are not necessarily homogeneous with respect to the standard grading of R,
i.e., deg(x;) =1fori=1,...,s, or even non-standard graded. Because our primary interest
is the minimal graded free resolution of toric ideals, it is necessary to know when I, is a
(multi-)homogeneous ideal. The next lemma captures when 4 is standard graded.

Lemma 2.4. [23, Lemma 4.14] Let A = [ay -+ «] be an n X s matriz with o; € Z". Then
14 is a homogeneous ideal if and only if there exists a vector ¢ € Q" such that o; - ¢ =1 for
alli=1,...,n. Here, o - ¢ denotes the standard Fuclidean inner product.

If LNN® = {0}, we can induce an N"-grading on R, I4, and R/l by setting deg z; = «; for
i=1,...,s. For example, if each column of A belongs to N, then the condition L NN* = {0}
is satisfied. If I4 is N"-graded, then there is a minimal multi-graded free resolution of 14, i.e.,

0 — @R BzaIA %@R Bz1a(1A %@R ,BOa(IA — 140,
aeN™ aeN™ aeN™
where R(—«) denotes the N"-grading of R twisted by —«;, i.e., R(—a), = R,_, for all v € N™.
The multi-graded Betti number ; o(I4) is the number of minimal generators of the i-th syzygy
module of 74 of multidegree v € N". Each f3; o(14) is equal to the rank of a reduced simplicial
homology group of a simplicial complex related to « (see [23, Theorem 12.12]).

If there exists an integer d > 0 such that every column «; of A satisfies |o;| = Y, a;; = d,

7j=1
then the standard grading and the N"-grading of 14 are compatible in the following sense:
(21) ﬁzg IA Z Bzoa IA
lo|=d-j

The theme of this paper is to understand when [, can be “split” into smaller toric ideals.
The following result, which is undoubtedly known, describes one case in which 14 is splittable.

Lemma 2.5. Let Ay, ..., A; be matrices with integer entries of dimensions n; X s; (i =
k) and set R=K[z11,..., %165+ Tk1,--.,Tks,]. Consider the block matrix

A 0
A= { ) ] c gmtn) X (s1tsi)
0 A
Then

In=14,+---+14 CR

where 14, is the toric ideal of A;, but viewed as an ideal in R.

Proof. For each i = 1,...,k, set R; = Klx;1,...,7;4]. Let 8 € ker(4;). So 2+ — 2P~ €
14, C R;. But then
vy=1(0,...,0,8,0,...,0) € ker(A).
—— H/—/
S1+-+8i—1 Sit+1+ - +Sk
So P+ —af- = g7+ —ax7- € I4. Thus I 4, € I4,if 14, is viewed as an ideal of R. Consequently,
Ta, + -+ 14 C 14
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For the reverse inclusion, we do induction on k, where our base case is kK = 2. Suppose that
a € ker(A) C Z %2, Write a as o = (8, ) where g € Z*' and vy € Z*2. Then

10 o = P P = (x5+ _ xﬁ—) + 2P (x'YJr _ J}’Y_).

But 2P+ — 28~ € I4, and 27+ — a7 € Iy,. So [y C 1g, + 14,.

Now suppose that & > 2, and let o € ker(A) C Z#+ T Write a as ((,7) with
B € Zsrttsk-1 and v € Z%. As above,

O — % = g+ (xlh _ xﬁf) + 2P (27 — 277).
By induction, 2%+ — 2%~ € Ia, +---+14, ,, while 27+ — 27 € I4,. The result now holds. [

Theorem 2.6. With the notation and hypotheses of Lemma 2.5, suppose that in addition that
the matriz A induces an N+ _grading on R/I4. Then for all i >0 and o € N+

5i,a<R/1A) = Z 61'1,&1 (R/L‘h)/@izcw (R/IA2> o 'Bik,ak (R/‘[Ak>

i =i
i;€EN
where
a; = ( 0,...,0 ,aiyl,...,aiﬁni, 0,...,0 ) ZfOé: (al,l,...,ak’nk).
—— N——
Nyt N1+ +ng

Proof. Let R = K|z;1,..., 7] and set R, = K[z;1,...,2;5]. We give R; an N™M T
grading by using the matrix A;, but viewing A; as an (n; +- - - +ny) X s; matrix where the first
ny + - - -+ n;_1 rows and the last n;;1 + - - - + ng rows all consist of zeroes. As a consequence,
if Brs(Ri/1a,) # 0, then supp(6) C{ny+---+ni1+1,...,n1 + - +n;}.

If we abuse notation and view [4, as both an ideal of R and R;, we have

R/Ia=R/(Ia, + -+ 14,) = R /14, @k Ro/14, Rk -+ @k Ri/14,.

This follows since each I4, generated by binomials only in the variables {x;1,...,2;}. The
multi-graded minimal free resolution of R/I, is then the tensor product of the multi-graded
resolutions of the R;/I4,’s (see [18, Lemma 2.1] which does the standard graded case for
k = 2, but the proof extends naturally to the multi-graded case and to all k£ by induction).

It then follows by the Kiinneth formula that

Bi,a(R/IA) = Z Z Bilz'ﬂ (Rl/IAl) T /Bik:')’k (Rk/IAk)
i1+ Fig=t Y1t te=a
;€N q;eNmLt g
As noted above, if supp(y) € {ni1+---+n;_1+1,...,n1+---+n;}, then 5, (R;/14,) = 0. So
we can assume the support of each index ; is a subset of {n; +---+n;_1+1,...,ny+---+n;}.
But then the only decomposition v; + --- + 7 = « that satisfies this condition is the
decomposition aq + - - - + a = a with the o;’s defined as in the statement, and thus,

> Bum(Bi/Ia) - Bipr(Ri/Ia) = Bisan (R1/1a,) -+ Biyoe (Ri/ La)-

Y1t tHvp=a
"/jENn1+m+nk

To complete the proof, note that R;/I4, and R/I, will have same graded Betti numbers with
respect to our multi-grading, so we can replace each Sy, (R;/14,) with By~ (R/14,). O
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2.2. Toric ideals of graphs. Let G = (V(G), E(G)) denote a finite simple graph (a graph
with no loops or multiple edges) with vertex set V(G) = {z1,...,x,} and edge set E(G) =
{e1,...,e,} where each e; is a two-element subset of V. Set R = K[E(G)] = Kley, ..., e,] and
S =K[V(G)] =K][zy,...,z,), and define the K-algebra homomorphism ¢: R — S by

€; > Ti1T52 where e, = {JIZ'J, 5131'72}.
The toric ideal of G is the ideal I = kerp.

The toric ideal of G is the toric ideal of the incidence matrix of G. More precisely, order the
elements of V(@) and E(G), then the incidence matriz of G is the |V(G)| x |E(G)| matrix
A where A;; = 1if z; € e; and 0 otherwise. Each column of A contains only two ones, and
the remaining entries are zero. Consequently, Io is both a graded ideal (take the vector
c= (%, %, e 2) and apply Lemma 2.4) and a multi-graded ideal. In particular, by (2.1), w
have

(22> ﬁz] IG Z 6104 IG

|ov|=25

The dimension of R/I; depends upon whether or not G is bipartite. We say that G is a
bipartite graph if there is a partition of the vertices V(G) = V4 U V3 such that every e € E(G)
has the property that e NV} # () and e NV, # (). This is equivalent to having no odd cycles
in G, a fact which we will make use of. Furthermore, G is connected if for every z,y € V(G)
with x # y, there exists a sequence of edges ey,...,e; in E such that x € ey, y € ¢;,and
eiNe #Wfori=1,...,t—1.

Theorem 2.7. [27, Corollary 10.1.21] If G is a finite simple connected graph on n vertices,
then
n if G is not bipartite

n—1 of G is bipartite.

dim(R/1g) = {

Work of Ohsugi-Hibi [21] and Villarreal [26] allows us to describe the minimal generators
of I in terms of the combinatorics of G. We summarize the relevant results.

Definition 2.8. Let G be a finite simple graph. A walk is a sequence of edges w = (eq, ..., ex)
such that e; Ne;y # 0 for i = 1,..., k. This is equivalent to specifying a sequence of vertices
(x1,..., 2k, Tg1) such that G has an edge which is associated to any consecutive x; and ;1
in the sequence. A walk is an even walk of k is even. A closed walk is a walk which has a
vertex sequence (1, ..., Ty 1) such that x; = zp. .

In the sequel, we will also require the family of path graphs. The path graph P, is the graph
with vertex set V(P,) = {z1,..., 2,11} and edge set E(P,) = {{z1, 22}, ..., {®n, Tns1}}.

Closed even walks in G correspond to elements of I. Indeed, let w = (eil, €iyy -+ €, ) DE A
closed even walk corresponding to the following sequence of vertices (z;,,z;,, ..., 2, ., = Tj,)
which are not necessarily distinct. We associate the walk w with the binomial

= H €i; — H Cij-
2tj 20

This element belongs to the ideal I since

¢(fw) = ¢(6%1)¢(623) e ¢(ei2n—1) - qb(eiz)qb(eu o elzn H Lj, — H Ljy = 0
k=1
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The set of all binomials associated with closed even walks forms a generating set of I;. Using
the following notion, we can further reduce our generating set.

Definition 2.9. Let [ be a toric ideal. A binomial x®+ — %~ € [ is primitive if there exists
no binomial 2%+ — 2%~ € I such that 27+ | 2%+ and 27~ | 2. A closed even walk w in a
graph G is primitive if the corresponding binomial f,, is primitive in /.

Theorem 2.10. [27, Proposition 10.1.10] Let G be a finite simple graph. Then I is generated
by binomials which correspond to closed even walks that are also primitive.

Remark 2.11. The conclusion of [27, Proposition 10.1.10] is stronger where it is shown that
the closed even walks that are primitive correspond to a universal Grobner basis of 1.

3. SPLITTING OF TORIC IDEALS

Given an n X s matrix A with entries in Z, we give a sufficient condition on A that implies
that the toric ideal 14 is splittable, i.e., I4 can be written as the sum of two (or more) toric
ideals. Although 74 need not be (multi-)graded, when A is chosen so that I, is also N*-graded,
we can describe the multi-graded Betti numbers in terms of those of the Betti numbers of the
smaller ideals. This result will be the consequence of the following technical lemmas.

Lemma 3.1. Let a, 3 € Z° be two linearly independent vectors with positive and negative
entries such that v = a+f also has positive and negative entries. Then (z®+ —x%) t (27 —27~)
and (2% — 2P-) § (27+ — 27-).

Proof. We prove only the statement about z“+ — 2%~ since the other statement is similar.
Suppose that 7+ — 27~ = f . (z* — 2% ). If f = f1+ fo+ -+ + fs, where the f;’s are the
terms of f, then when we expand out the right hand side, we get

flxa+ _|_ f2xa+ + e + fsxa+ — flaja* — f2xa* — e — fsl‘a*.
If f = f; was a single monomial term, then we would have f; = 7=+ and f; = 27-7%~, or
in other words, v = v4 — v = a4 — a_ = «, and thus 8 = 0, contradicting our choice of j3.

So s > 2. Furthermore, the monomial x7+ appears exactly once in the expansion. Indeed,
if 27+ = fix®t — f;2% for some i # j, this means that supp(as) Usupp(a—) C supp(y4).
But the support of 7_ is disjoint from that of v,. However, the support of every term in the
expansion contains supp(ay ) or supp(a_), which means that 7_ cannot appear on the right
hand side. The same argument now also applies to z7-.

So, without loss of generality, suppose that fiz® = 7+ and fsz® = 27~ (note that we
could have fiz®t = 27~ and fsz®- = 27+, but our argument will also work for this case). So,
fi = 2772+, The term fi2% = 27+ %1% must now cancel out with some term of the form
fiz®+, say fox®t = fiz®- after relabelling. This means that f, = 27+ 2%+T%  Now fox%"
must cancel with some term f;z%+, say fsz®+. This forces f3 = 27+ 3%++29-~  Repeating

this argument gives that f; = a7+ ++0-Ne— for § =1 ... 5. Since fo® = 27, we have
vy — say + sa_ =v_. Consequently, v = a+ = sa, i.e., f = (s — 1), contradicting our
assumption on linearly independence. O

The next lemma can be viewed as giving a criterion for ideal membership in a binomial
ideal generated by two elements.
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Lemma 3.2. Let o, B € Z° be two linearly independent vectors with positive and negative
entries such that v = «a + [ also has positive and negative entries. Then 7+ — 27~ €
(o — 2%, 2 — 25-) if and only if supp(a.) Nsupp(B-) = 0 or supp(a_) Nsupp(BL) = 0.

Proof. We show the implication “=" by contradiction, i.e., we assume 27+ — 27~ is contained
in (v — 2%, 2%+ — 2°-) and both supp(a ) Nsupp(B_) # @ and supp(a_) N supp(By) # 0.
The binomial 27+ — 27~ is contained in (z%+ — 2=, 2%+ — 2%-) if and only if

(3.1) 2= = f (% =% )4 g- (:r;5+ - :cﬁ—),

for some non-zero polynomials f, g € K[z1, ..., xs] by Lemma 3.1. It follows that one of the
monomials %+, %, 2%+, 2%~ divides 27+, respectively z7-.

Note that neither 2%+ nor 27+ divide 27+. To see why, suppose j € supp(a, ) Nsupp(B-).
Then a:? appears in the monomial 2+ and x§ appears in the monomial 28~ for some integers
d,e > 1. The j-th coordinate of v is then d —e. If d — e > 1, then a:?_e appears in the
monomial 27+, and so z*+ cannot divide this monomial. If d — e < 0, then no power of x;
appears in 27+, and so again, ®+ does not divide z7+. A similar argument holds for 2°+. So,
up to swapping o and 3, we may assume that z°- divides 27+.

Since supp(7.) C supp(as+) Usupp(f+), we obtain supp(8-) C supp(a+) and supp(y-) C
supp(«_) using the fact that supp(ay) Nsupp(a_) = 0, and similarly for 5, and 5_. We

conclude the preparatory observations by noting that neither z®-, 2%, nor x*+ divide
27~ so that 2°* must divide 27-. To summarize, supp(5_) C supp(yy) C supp(a,) and
supp(f+) € supp(7-) C supp(a-).

We now claim that v, = o, — f_ and v = a_ — .. For the first equality, observe
that there are three ways for v to have a positive value in the j-th coordinate: (1) the
j-th coordinates of o and [ are both non-negative and at least one coordinate is positive,
(2) the j-th coordinate of «, say a;, is positive, and the j-th coordinate of 3, say b;, is
negative, but a; + b; > 0, or (3) the j-th coordinate of 3, say b;, is positive, and the j-th
coordinate of «, say a;, is negative, but b; + a; > 0. However, as supp(f;) C supp(y-) and
supp(By) Nsupp(ay ) = 0, case (1) can only happen if the j-th coordinate of « is positive and
the one of 3 vanishes. Case (3) is impossible since this implies that j € supp(5;) C supp(y-)
and j € supp(7y,). This leaves case (2), so that we can conclude v, = ay — f_. The second
equality is proved similarly.

As z*+ and z®- do not divide 27+ and 27~ respectively, we have 27+ (resp. 27-) is a multiple
of 2%~ (resp. 2%+), ie., g = ¢ — 27+~ P~ — 7= =P+ for some ¢’ € K[zy,...,x,], so that (3.1)
becomes:

(3.2) —fe(a™ — 2™ ) =g - (@ — 2P ) O g e P

Note that, x@- { 27~ —F++8- = 27-=F If 2+ t 27-78, then 27-—® must be cancelled by a
multiple of 27+, i.e., ¢ = ¢ — 27~ "2P+T5~ for some ¢” € K[z, ...,z,]. We obtain:

—f- (l‘a+ _ ma—) — g// . (:U’3+ _ xﬁ—) + V- 284428 _ =B | B

Again, z% { 27~ "2%++20- 50 that, if 2%+ { 27- 72+ F25- we can repeat the same step again.
This process must eventually stop, and we obtain that x®+ | 7~ ~*++kf~ for some positive
integer k. Then kS, < v = a_ — By and oy < kS_ (where the inequalities are meant
coordinate-wise).
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If we go back to equation (3.2), and repeat the same reasoning for the monomial z7+5-+5+
we obtain that 2% | 27+ ~%-+5+ for some positive integer ¢, and thus ¢3_ < v, = ay — 3
and o < ¢f,. Summarizing, we obtain:

(k+1)By <a_ <B4 and (C+1)p- <ay <kB_.
Hence k+1< /¢ and ¢4+ 1 < k. A contradiction.
For the converse implication “<”, assume that supp(a.) Nsupp(S_) = @ (the other case
works similarly). If § = . — a_ € Z°, and thus, 0y + a_ = 0_ + [, then
g gt — g0 (g0 ) g0 (xﬁJr — :L‘B*) € (z%+ — g% 2P+ — 2P-).
It remains to show that the left side of this equation coincides with z7+ — z7-. Note

supp(ay + d4) C supp(ay) U supp(By) and supp(f- + d-) C supp(B-) U supp(a—). As
supp(ay ) Nsupp(f_) = 0, the support of a is disjoint from supp(S_) U supp(d_). From
this it straightforwardly follows that the supports of a, 4+, and S_ + d_ are disjoint. The
statement follows by the observation that oy + 6, — (- +J_) =a+ 5 ="1. O

If in Lemma 3.2 the ideal is replaced by its saturation with respect to the monomial z; - - - x4,
then the assumption on the supports can be dropped.

Example 3.3. Let « = e; +e; —e; —e; and B = e, + e5 — es — e3 in Z° such that
v = a+ 8 = e; — e3. Note that the assumption on the supports of Lemma 3.2 is not satisfied
and that 27+ — 27~ & I := (2*+ — 2%, 2%+ — 2%-). However, 27+ — 27~ is contained in the
saturation I : (xy---x5)>

The next lemma gives us a criterion for when a toric ideal I, is splittable.

Lemma 3.4. Let Ay, ..., A; be matrices with integer entries of dimensions n; X s; (1 =
S k)andlet ... ¢ € ZN with N > ny + - -- +ng. Consider the matriz
A1 |
A= c ZN X (s14-Fsp+l)

. Cc1 ... C]
Al

0
Let U; be the set of indices of the columns in which A; is located in the matrix A. Suppose
ker(A) = ker(A;) @ ... ® ker(Ay) @ Zr for some T € Z5T T [f for all i € {1,...,k}, the
set U; is disjoint from either supp(ry) or supp(7_), then

]A:IA1+"'+]Ak+<l‘T+—IT7>.

Proof. As Iy = (27 — 27~ | v € ker(A)), the inclusion “D” is clear. To prove the reverse
inclusion, let v = B + -+ + 8% + ¢7 € ker(A) where 8 € ker(4;) and ¢ € Z.

We do induction on k. The base case k = 0 is straightforward. If £ > 0, then we set
B = B' + ...+ B + cr. Note that our assumptions imply that supp(ﬁ+) or supp(f_) is
disjoint from supp(B*). By Lemma 3.2, 27+ — 27~ € (2 — 2%~ 2% — 2%") and we conclude
the proof by the induction hypothesis, that is, o7 —af- € Ig, +-+ s, + (@™ —2™). O

Note that in order to apply Lemma 3.4, it might be necessary to choose a suitable basis,
so that the matrix A € Z"** has the appropriate shape. However, when we restrict to toric
ideals of graphs, Lemma 3.4 holds for some graph constructions (see Theorem 3.7).

When a matrix A that satisfies conditions of Lemma 3.4 also induces a multi-grading,
Lemma 3.4 has implications for the multi-graded Betti numbers.
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Theorem 3.5. With the notation and hypotheses of Lemma 3.4, suppose that in addition the
matriz A induces an NN -grading on R/I14. Then for all i >0 and o € NV,

ﬁi,a(R/IA) = ﬁz,a(R/J> + ﬁifl,afu(R/J)
where J = T4, + -+ L4, and p = deg (z™ — 2™ ) € NV,

Proof. By Lemma 3.4, we have I, = J+ (™ —z"), and furthermore, this ideal is N*-graded.
Set F' = 2™ — x™. We then have a multi-graded short exact sequence of R-modules

0 — (R/(J:(F)))(—n) SN R/J — R/(J+(F)) =R/I4 — 0.

The ideal J is a toric ideal by Lemma 2.5, and consequently, it is prime. Since F' & .J, it then
follows that J : (F)) = J. So we can rewrite the short exact sequence above as

(3.3) 0— (R/J)(—p) 25 R/J — R/I4 —> 0.

Let (H,d) denote the multi-graded minimal free resolution of R/J. Then the multi-graded
minimal free resolution (G, d’) of (R/J)(—pu) is the same except all the free R-modules in
H will have their grading twisted by p. Hence the map xF': (R/J)(—u) — R/J lifts to a
map of complexes ¢: (G,d') — (H,d) where ¢;: G; — H; is the map ¢; that takes each basis
element of GG; and multiplies it by F'.

The mapping cone construction applied to (3.3), gives a minimal multi-graded free resolution
of R/14. Indeed, the resolution produced by the mapping cone construction is minimal if all
maps ¢; can be represented by matrices where none of the non-zero entries of the matrices
are constants. In our case, all the non-zero entries are F'. The multi-graded Betti numbers in
the statement now follow from our minimal multi-graded free resolution. ([l

Remark 3.6. The multi-graded Betti numbers of R/J can be computed by Theorem 2.6.
Hence, under the hypotheses Theorem 3.5, the multi-graded Betti numbers of 74 only depend
on the Betti numbers of the ideals in the splitting of 4.

If we specialize our results to toric ideals of graphs, Lemma 3.4 allows us to find splittings
of I in terms of graph theoretic constructions. In particular, the technical hypotheses of
Lemma 3.4 correspond to a graph theoretic construction of taking a large even cycle, and
joining (mostly bipartite) graphs in a prescribed manner to this cycle.

Theorem 3.7. Let Gy,...,Gy be finite simple connected graphs with at most one G; not
being bipartite. Let C' be an even cycle with at least k edges. For each 1, identify an edge of
G; with a distinct edge of C' (see Figure 2). Then the toric ideal I of the resulting graph is
given by

I=lIg 4o+ Lo, + (),
where Ig, s the toric ideal of G; and f is the binomial corresponding to the even cycle C.

Proof. Let A; be the incidence matrix of Gy, i.e., A; is an n; X s; matrix where n; = |V(G;)|
and s; = |E(G;)|. Note that rank(4;) € {n;,n; — 1} with at most one matrix having rank
n; (if G; is not bipartite) by Theorem 2.7. Let [ be the number of additional edges, so that
the resulting graph has ny + --- 4+ ng + [ — k vertices and s :=s; + - -+ + s, + [ edges. Let B
be the (ny 4+ -+ +n, +1—k) x (s1 + -+ s, + ) incidence matrix of the resulting graph G
whose shape coincides with the shape of the matrix in Lemma 3.4 where the block-diagonal
part is built from the matrices A; and the additional [ columns correspond to the additional
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G;
N T
7 C A\
G, € L 777777 D.IBJI G,
FiGURrE 2. Connecting graphs G, ..., Gy along k edges of an even cycle C.

edges. It is straightforward to verify that the even cycle C' induces an element 7 in the kernel
of B, so that L :=ker(A;) @ ... ® ker(Ax) ® Z7 C ker(B).

Next, we determine the rank of ker(B). We distinguish two cases: If all G; are bipartite,
then G is also bipartite, and thus by Theorem 2.7

rank(ker(B)) = s —rank(B) =s1 4+ -+ s+l — (i + -+ +1—k —1)
(51— (= 1))+ o+ (s — (= 1) + 1.
Similarly, if say G is not bipartite, then G is not bipartite, and thus by Theorem 2.7
rank(ker(B)) =s —rank(B) =s1 4+ -+ s+l — (i +---+npg +1— k)
=(s1—n1)+(sa—(ng—1))+--+ (s, — (nr. — 1)) + 1.
We conclude that in either case rank(ker(B)) = rank(ker(A;)) + ... + rank(ker(Ay)) + 1.
However, to show the equality L = ker(B), it remains to show that L is saturated in
ker(B). If a € ker(B) such that ko € L for some integer k, then ka =  + ur for some
B € ker(A)) @ ... D ker(A;) = L' and some integer u. As L' C Z51+-+sx x {0} and 7 has an
entry “£1” in its last [ coordinates, we can conclude that k divides u, say u = ku’, so that
f = k(a—u'T). As L' is the kernel of the matrix obtained from B by replacing the last [
columns by 0-columns, it follows that L/ is saturated in Zs**+s+! and thus 8’ == a—u/T € L'.
Hence a = B’ + /7 is contained in L which concludes the proof that L is saturated in ker(B),

and therefore the two lattices coincide. If U; is as in Lemma 3.4, then, since |supp(7)NU;| = 1,
the result follows by Lemma 3.4. !

Remark 3.8. Note that Theorem 3.7 is independent of the edge we pick in each Gj.

We end this section by recording some consequences for the graphs of Theorem 3.7.

Theorem 3.9. Let Gy, ...,Gy be finite simple connected graphs with at most one G; not
being bipartite. Let G be the graph constructed as in Theorem 3.7. If the even cycle C has
size 2d, then

5i,j(R/[G) = BZ,](R/J) + 51',17j,d(R/J) fOT’ all Z,j 2 0
where J = Ig, + -+ + Ig, with each I, viewed as an ideal of R.
Proof. The standard grading of R/Ig is compatible with the multi-grading of R/Ig given by

the incidence matrix of G. Now combine Theorem 3.5 with equation (2.2), after noting that
the generator f of Theorem 3.7 has deg(f) = d (in the standard grading). O
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Remark 3.10. By applying Theorem 2.6, we also have a formula for the graded Betti numbers
of R/J in Theorem 3.9. In particular, if J = I, + -+ + Ig,, we have

Bij(RIT) = > > Bun(R/a,) B (R/g,).

i1+ i =t j1++ =]
i>0 J=0

We record some consequences for the homological invariants. Let I be a homogeneous ideal
in the standard graded polynomial ring S = K[zy,...,z,]. The Hilbert series of a standard
graded K-algebra S/I is the formal power series

HSgyr(t) = [dimg (S/T),]
>0
By the Hilbert-Serre Theorem (e.g., [27, Theorem 5.1.4]) there is an hgy;(t) € Z[t] such that

hs/1(t) .
HSS/I(t) = m with hg/[(l) #0.

The polynomial hg/;(t) is the h-polynomial of S/I. The (Castelnuovo-Mumford) regularity is
veg(S/1) = max{j — i | B;(S/1) #0}.

The projective dimension of S/I is the length of the graded minimal free resolution, that is
pdim(S/I) = max{i | 8;;(S/I) # 0}.

We now have:

Corollary 3.11. Let G4,...,Gy be finite simple connected graphs with at most one G; not
being bipartite. Let G be the graph constructed as in Theorem 3.7. If the even cycle C' has
size 2d, then

(i) hryre(t) = & td I, hryjig, (t) where R, = K[E(G)));
(ii) reg(R/1g) = reg(R/Icl) ~treg(R/Ig,) + (d—1);
(111) pdim(R/1g) = pdim(R/[Gl) + -+ pdim(R/Ig,) + 1.

Proof. Set R; = K[E(G;)]. Let J = Ig, + - + Ig,, where we view each I, as an ideal of
S == K[E(Gl) U---u E(Gk>] Then
S/J = Rl/fgl QK RQ/.[G2 Rk -+ Ok Rk/IGk.

By tensoring the resolutions of each R;/Ig, to construct a resolution of S/.J we get:

=

hs)s(t) HhR/Ic , reg(S/J) = Zreg R;/1s,), and

=1
k

pdim(S/.J) = pdim(R;/I¢,).

=1

Now view J as an ideal of R = K[E(G)]. That is, R is obtained by adjoining the variables
to S that correspond to the edges of C' that do not appear in G1,...,Gg. As shown in the
proof of Theorem 3.5, we have a short exact sequence

0= (R/J)(—d) 25 R)J — R/Ie — 0,
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where f is the degree d binomial that corresponds to the even cycle C. For statement (i), the
Hilbert series are additive on short exact sequences. So HSp/y,(t) = HSp/;(t) —t*HSp/,(t) =
(1 —¢"YHSp/y(t). Since hg/;(t) = hgy;(t), the numerator of the reduced Hilbert series for

R/l is ((11__'5:)) 11, b, /16, (t). Statements (ii) and (i) are consequences of the fact that
the mapping cone construction on this short exact sequence produces a minimal graded free
resolution, and the fact that the regularity and the projective dimension of I, and I remain

the same when we view them as ideals in the ring R. 0

We end with a special case of Theorem 3.9 which justifies the example in the introduction.

Corollary 3.12. Let G be any finite simple graph. Fiz an edge e in G, and connect a new
even cycle of length 2d > 4 along e (see Figure 1). If H is the resulting graph, then

Bz,](R/IH) = ﬁm-(R/Ig) + ﬁi,j_d(R/Ig) fOT alli,j Z 0
4. OTHER SPLITTINGS FOR TORIC IDEALS OF GRAPHS

In this section we give another splitting of a toric ideal of a graph. The starting point of our
approach is the observation that Corollary 3.12 implies that if we “glue” an even cycle onto
the edge of a graph to make a new graph GG, then I is the sum of the toric ideals of “glued”
graphs, that is, I is splittable. The notion of a “gluing” also appears in [15, Proposition
7.49 and Theorem 7.50] where the authors show how some properties of the toric ideals of
graphs are preserved for a certain class of graphs after “gluing” the graphs at one vertex.

We formalize the notion of gluing, and a corresponding inverse operation, which we call
a splitting. Note that variations of this construction have appeared in the literature (e.g.,
Koh and Teo [19] describes a gluing along a complete graph); other examples undoubtedly
exist. For our constructions we require induced subgraphs. Given a graph G = (V(G), E(G))
and W C V(G), the induced subgraph of G on W is the graph H with V(H) = W and
EH)={ec E(G) | e CW}.

Construction 4.1. Let G, G5 be two graphs and suppose that H; C Gy, Hy C G4 are two
induced subgraphs which are isomorphic with respect to some graph isomorphism ¢: H; — Ho.
We define the glued graph G, U, G5 of G; and G along ¢ as the disjoint union of GG; and
(G2, and then using ¢ to identify associated vertices and edges. At times, we may be more
informal and say that Gy and G5 is glued along H if the induced subgraphs H = H; and
H = H, and isomorphism ¢ are clear.

Construction 4.2. Let G = (V(G), E(G)) be a finite simple graph. Suppose there are two
subsets Wy, Wy C V(G) whose union gives V(G), and denote the induced subgraph with
vertex set W; by G; for i = 1,2. Let Y = W; N W, and denote the corresponding induced
subgraph by H. We say that G; and G form a splitting of G along H if the graph obtained
by removing the vertices Y from G yields two disconnected pieces.

The two constructions given above are inverses of each other in the following sense. If
G is the glued graph of G; and G5 along ¢, then GG; and G5 form a splitting of G along H
where we identify G; with the corresponding induced subgraph in G and where H is the
induced subgraph of G corresponding to H;. Inversely, if G is a finite graph and G, G5 are
two induced subgraphs which form a splitting of G along some common induced subgraph
H C Gy, then G can be obtained from G; and G5 as the corresponding glued graph.
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Remark 4.3. Using the analogy of direct products of groups, note that a gluing of graphs is
similar to an external direct products of groups in the sense that the glued graph is constructed
from two given graphs. On the other hand, we can view a splitting of a graph as similar
to an internal direct product in that we are decomposing the graph in terms of subgraphs.
Depending upon the context, one point-of-view may be preferable.

Different choices of the isomorphism ¢ can result in non-isomorphic glued graphs.

Example 4.4. Let G; = G5 be the graph in Figure 3. Consider the edge Hy = Hy = {x1, 22}
The two possible choices of isomorphisms ¢: H; — Hs (depending on whether we flip the

T T2
H, = Hy

FiGURE 3. The graph from Example 4.4.

edge or not) yield non-isomorphic glued graphs (see Figure 4). Indeed, one graph contains a
vertex of degree five while the degree of any vertex in the other graph is at most four.

FI1GURE 4. Different ways to glue graphs along one edge.

Although the gluing of GG; and G5 depends upon the isomorphism ¢, in some cases the toric
ideal of the glued graph is independent of . Specifically, if at least one graph is bipartite,
and if we glue along a particular type of subgraph, then the toric ideal of the glued graph is
almost splittable (i.e., splittable up to a saturation with respect to a particular element).

Theorem 4.5. Let G; and Gy be a splitting of a graph G along a path graph P, = H C G
such that any vertex of H distinct from the endpoints considered as a vertex inside G has
degree 2. If G is bipartite, then we obtain.

Ig = (Ig, + 1g,) : f~,

where f denotes the square-free monomial corresponding to the edges in H with even indices.

Proof. The inclusion “2” follows by the fact that I, is contained in I, and that I is a
prime ideal.

For the reverse inclusion, recall from Theorem 2.10 that I; is generated by binomials
corresponding to primitive closed even walks p in G. Note that p cannot contain a subpath in
(31 starting and ending at the same endpoint of H (otherwise, as G is bipartite, this subpath
would be even, and thus p is a concatenation of closed even walks contradicting the fact that
p was chosen to be primitive). Let us label the edges in H by hy,...,h; and the remaining
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edges in G5 by hyyq, ..., h,. Furthermore, label the edges in (G; which are not contained in
H by eq,...,e,. Using this notation, we can write a primitive closed even walk p as follows

(41) P = (61'117 .. .,61'1”,}1]'11, .. .,hJ‘lSl,ein, Ce ,61'2r2,hj21, R 7h’j2527 cey
—— ———
=p1 =p2

6iul7 ce 7€iuru’ hjul’ ctt h]usu)
—_———
=Pu

We obtain subpaths pq, pa, ..., p, that contain edges of E(G7) \ E(G5) that begin at one of
the endpoints of H, and end at the other endpoint.

We conclude the proof by showing that a path p in G that accepts a representation as
in Equation 4.1 yields a binomial f, contained in (Ig, + Ig,) : f>. The proof is done by
induction on the number of subpaths pq,ps,...,p,. If there are no such paths, then p is
contained entirely in G or G, and the corresponding binomial belongs to the respective
binomial ideal.

If there is at least one such path p;, we proceed as follows. To simplify notation, we
write p; = (e1,...,e,) (here r = ry) and p = (e1,...,€9m), Where €,41,..., €9, is an edge
in either G; or Gy (p contains an even number of edges since it is a primitive even walk).
Furthermore, we denote the edges of the path graph H by (hq,...,h;) (ordered such that
they form a path starting at the endpoint of p;). Our goal is to decompose the binomial
fp into a linear combination of binomials ¢g; and f,; corresponding to the closed even walks
(e1,... €, hy, ... ) and p' == (e,41,..., €, hy, ..., hy) respectively. We define

E1= H (&3 01: H (&3 Fl:Hhk

1<k<r2|k 1<k<r2tk 2tk
E2 = H €pi 02 = H (A FQ == Hhk
r+1<k<2m,2|k r+1<k<2m,2tk 2|k

This allows us to write f, = 0109 — Ey Ej.

If [ is even, we have g1 = O Fy — E1Fs € I, and fy = O2Fy — E>Fy. Note that since [ is
even, then either f = F} or f = Fy (i.e., the edges with even indices in (hq, ..., h;) will either
be {hg, h4, ey hl} or {hl, PN hl—l})' If f = Fl, then

Oz g1+ Er- fy =F1- [
On the other hand, if f = F3, then
Ey g1+ 01 fy = Fy- fp.
If [ is odd, we have g1 = O1Fy, — E\Fy € Ig,, fy = ExFy — O2Fy, and f = F5 (since the

only edges with even indices in (hy,...,h;) are {hs,...,h_1}). Furthermore, we have
Os- g1 — Eo- fy = Fo- |

Note that p’ in both the odd and even case is a path in G accepting a representation as in
Equation 4.1 with exactly one less subpath pi,...p!,_,. Hence, the statement follows by the
induction hypothesis. O

Remark 4.6. By exploiting the characterization of primitive even closed walks (see [15,
Lemma 5.11]), one can replace the saturation of f in Theorem 4.5 with the second power,
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that is, Is = (Ig, + Ig,) : f*. For the purposes of this paper we only require the saturation,
so we have elected not to present the more technical proof.

Example 4.7. Theorem 4.5 is false if we drop the assumption that at least one graph is
bipartite. Clearly the toric ideal of a triangle is the zero ideal. Suppose we glue two triangles
along an edge (see Figure 5). Then the toric ideal of the resulting graph will be nontrivial
since there is now a four cycle, introducing a nonzero generator. When we glue together

FIGURE 5. Theorem 4.5 is false if none of the graphs are bipartite.

non-bipartite graphs, we may introduced new primitive even walks, i.e., generators.

If the path in Theorem 4.5 has length one, i.e, it is an edge, we get a splitting of I.

Corollary 4.8. Let G be a graph, and suppose that G1 and G5 form a splitting of G along
an edge e. If Gy is bipartite, then I¢ = Ig, + Ig,.

Remark 4.9. If we view GG as the glued graph of G; and G5, then note that Corollary
4.8 does not depend upon the orientation of the gluing, i.e., it is independent of the graph
isomorphism ¢. However, this fact requires that (G; is bipartite. If we glue two non-bipartite
graphs along an edge, then, as noted in Example 4.4, the resulting graphs are non-isomorphic.
In fact, the toric ideals of the resulting graphs may not be equal. For example, the toric ideals
of the two graphs in Figure 4 will have non-equal toric ideals.

Note that Corollary 4.8 is false if we split a graph along a path of length > 1:

Example 4.10. Let G be the graph in Figure 6. Note that the two subsets W; =
{x1, 29, 23,24} and Wy = {x1, 29, x3,y4} of V(G) yield two induced subgraphs G, Gy which
intersect along the diagonal H = P, which form a splitting of G. Since G is isomorphic to a

Ty T3

e4 e6

€ Ya

FiGURE 6. The graph from Example 4.10.

four cycle, its toric ideal I, is generated by a single generator, i.e., I, = (e1e3 — ege4) and
I, = (eses—ejeqg). However, the toric ideal I of G has three generators corresponding to three
primitive even closed walks of length four, namely I5 = (e1e3 — eqey, eaes — eqeq, €365 — €4€6).
Hence I # Ig, + Ig,. However, es(eses — eseq) = eg(eres — exeq) + es(eses — e1€6), S0
eses — eges € (Ig, + Ig,) €

The toric splittings of I in Corollary 4.8 has consequences for the Betti numbers of /.
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Theorem 4.11. Let G = (V(G), E(G)) be a graph. Suppose that G1 = (V(G1), E(G1)), Gy =
(V(Gs), E(Gy)) are two induced subgraphs which form a splitting of G along an edge e. If G
1s bipartite, then

Bis(KIEG)/ 1) = Y B (KIE(G1)]/16,)Bia s (KIE(G2))/6,) for all i, j = 0.

11+ia=1

Ji+je=j
Proof. Splitting and gluing of graphs are inverse operations. To be more precise, G can be
obtained from the disjoint union of G; and G5 and then identifying the corresponding edge in
(G1, respectively G5. We translate this graph theoretical construction into algebra.

Let G, = (V(G}), E(GY)) be isomorphic to G; where we assume that V(G}) NV (G}) = 0.
We define the graph G’ = (V(G') = V(G)) UV (GY), E(G') = E(GY)UE(GY)). Let e; € E(G))
be the edges along which we glue. Algebraically, the process of gluing €/ along e}, corresponds
to taking the quotient by the principal ideal (e} — e)) C K[E(G')]. By Corollary 4.8, I
corresponds under the isomorphism K[E(G)] 2 K[E(G")]/ (e} —¢}) to (Ig+ (€] —€h)) /(€] —€h),

so that we obtain:
L KE@( ) . KEG)
KOs S e = G- To+ ()

The toric ideal of G’ is a prime ideal, so K[E(G")]/I¢ is a domain. Therefore €| — ¢}, gives
rise to a regular form in K[E(G")]/Ie. As a consequence of [22, Corollary 20.4], both
K[E(G")]/Ie and K[E(G")]/(Ier + (€] — €})) share the same graded Betti numbers. But
I = I + I, € K[E(G")] where each ideal is in a different set of variables. So then

KIE(G)]/Ier = K[E(G)]/ ey @x K[E(G))]/ 1, = KIE(GY)]/ I, ©@x K[E(G2)]/1a,-
By taking the tensor product of the resolutions of K[E(G1)]/Ig, and K[E(G2)]/Ig,, we have

P (KIEG)/1e) = Bi;(KIE(G /)]/(IG' () —€5))

= B (KIE(@/Ie) = Y Bij(KIE(G)]/1e,) B o (KIE(G2)]/es,),

i1tiz=i

Jitj2=j
as desired. ([l
Remark 4.12. Given graphs G, ..., G,, where at most one graph is not bipartite, one can

first glue G; and G4 along an edge to form G o, then glue G along an edge of G 2 to form
G123, and so on, to form a new graph G By iteratively applying the results in this
section, we can compute the graded Betti numbers of this new graph. Theorem 3.7 can be
seen as a special case of what has just been remarked, where the first graph is an even cycle
C, and then we glue the remaining graphs along edges of C' (see Figure 2).

Example 4.13. To illustrate some of the ideas of this section, consider the three graphs in
Figure 7. The graphs G and G’ are obtaining by gluing in two different ways four copies of
the four cycle Cy4 along one edge. Note that it is not possible to construct G” by iteratively
gluing four four cycles along one edge at each step. From Theorem 4.11, the ideals I and I
have the same graded Betti numbers, §; ; = 5, ;(K[E(G)]/Ia) = 5 ;(K[E(G")]/I¢), see the
following Betti table. One can check, using for instance Macaulay?2, that I~ has graded Betti
numbers 3/, = B; ;(K[E(G")]/Igv) that are different from f;; as seen in the second Betti
table.
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G = ¢ = G" =

FIGURE 7. G and G’ are a gluing of four 4-cycles at an edge, G” is not.

total: (1) 411 2 i le o 1 2 3 4
N total: 1 5 10 10 4
’ ’ ’ 0: 1 . .
Pij= 1. 4 . - BliE
27 1: 4 .
2: 6 .
3. 4 2: . 6 .
4 1 3: 1 4 10 4

5. FUTURE DIRECTIONS

Theorem 3.7 and Corollary 4.8 describe two ways in which the toric ideal of a graph can be
split. Tt is natural to ask the following (but possibly difficult) question.

Question 5.1. For what graphs G can we find graphs G; and G5 so that their respective toric
ideals satisfy I = Ig, + Ig, ? More generally, can we classify when Ig is a splittable toric
ideal in terms of G?

In Theorem 3.7 and Corollary 4.8, our graphs are glued along a single edge. An edge can
also be viewed as a complete graph. A complete graph on n vertices, denoted K,, is the graph
where each vertex is adjacent to every other vertex. Since an edge is a K5, it is natural to ask
if our main results can be generalized if we glue along a subgraph that is a complete graph.

As an example of this behaviour, consider the two graphs G; and G, that are glued along
the triangle (which is a K3) to create the graph G as in Figure 8. We have highlighted the
glued edges in G by making the corresponding edges thicker. Using a computer algebra
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FI1GURE 8. The graph G obtained by gluing G; and G5 along a K3

system, one can verify that the toric ideal of I is splittable, and in fact, I¢ = I, + Ig,.

The graph G actually highlights a subtlety of Question 5.1 since the splitting of I also
follows from our results. In particular, observe that G can also be constructed by gluing the
graphs G| and G, along a single edge as in Figure 9. Since G is bipartite, Corollary 4.8 gives
Ig = Ig, + Ig,. Note that Ig; = Ig, since the non-bipartite graph ;1 has only one generator
coming from the four cycle. Thus, the two splittings are the same.

Since we are interested in the Betti numbers of I, we pose a follow up to Question 5.1.

Question 5.2. Suppose that there exists graphs G, Gy and Gy such that I = I, + 1g,. How
do the graded Betti numbers of I related to those of Ig, and Ig,?
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FIGURE 9. The graph G obtained by gluing G/ and G5 along a Ko

Understanding Questions 5.1 and 5.2 for arbitrary toric ideals would also be of interest.
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