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A B S T R A C T   

The motivation behind using physiological measures to estimate cognitive activity is typically to build tech
nology that can help people to understand themselves and their work, or indeed for systems to do so and adapt. 
While functional Near Infrared Spectroscopy (fNIRS) has been shown to reliably reflect manipulations of mental 
workload in different work tasks, we still need to establish whether fNIRS can differentiate variety within 
common office-like tasks in order to broaden our understanding of the factors involved in tracking them in real 
working conditions. 20 healthy participants (8 females, 12 males), whose work included office-like tasks, took 
part in a user study that investigated a) the sensitivity of fNIRS for measuring mental workload variations in 
representations of everyday reading and writing tasks, and b) how representations of natural interruptions are 
reflected in the data. Results supported fNIRS measuring PFC activation in differentiating between workload 
levels for reading tasks but not writing tasks in terms of increased oxygenated haemoglobin (O2Hb) and 
decreased deoxygenated haemoglobin (HHb), for harder conditions compared to easier conditions. There was 
considerable support for fNIRS in detecting changes in workload levels due to interruptions. Variations in 
workload levels during the interruptions could be understood in relation to spare capacity models. These findings 
may guide future work into sustained monitoring of cognitive activity in real-world settings.   

1. Introduction 

Sensors to monitor our physiological wellbeing have arguably 
become ubiquitous; technologies to track how many steps have been 
taken or how much quality sleep was experienced, for example, are now 
widely available. Research has also shown that the same data captured 
by wearable sensors can reflect cognitive changes (Collet et al., 2014; 
Fridman et al., 2018; Shi et al., 2007; Shimomura et al., 2008). Although 
so far typically demonstrated in controlled laboratory conditions, it 
seems that we are not so far away from also being able to track our 
cognitive data as a form of personal informatics (Wilson et al., 2018), in 
a similar way to which we already track our physical activity. Indeed, a 
number of wearable technology start-ups aim to track cognitive activity 
and emotion4. 

Being able to track cognitive activity at work, and to use this data to 
make improvements to our working habits and lives falls within the 
areas of neuroergonomics and passive Brain-Computer Interfaces 
(pBCIs). There is in fact a central research aim within neuroergonomics 
to assess mental workload using neural measures (Parasuraman, 2011), 
and in the BCI community, monitoring mental workload at work to 
develop aids is increasingly popular (Aricò et al., 2018). For now, 
however, research lacks the insight into how our cognitive activity 
changes during our every day office-work and life tasks, as ground truth 
data are harder to observe than for physical actions. Additionally, Arico 
and colleagues (Aricò et al., 2018) outlined how very few pBCI appli
cations have been tested in real life or realistic settings; due to the 
complexity of real-life conditions, laboratory settings are unable to take 
into account the factors that could impair the usability of pBCIs during 

* Corresponding author. 
E-mail addresses: serena.midha@nottingham.ac.uk (S. Midha), hmaior@lincoln.ac.uk (H.A. Maior), max.wilson@nottingham.ac.uk (M.L. Wilson), sarah. 

sharples@nottingham.ac.uk (S. Sharples).   
1 [orcid=0000-0003-3174-382X]  
2 [orcid=0000-0002-3515-6633]  
3 [orcid=0000-0003-0288-915X]  
4 http://spire.io estimates stress from breathing and https://myfeel.co estimates emotional changes from wrist data. 

Contents lists available at ScienceDirect 

International Journal of Human - Computer Studies 

journal homepage: www.elsevier.com/locate/ijhcs 

https://doi.org/10.1016/j.ijhcs.2020.102580 
Received 5 June 2020; Received in revised form 16 November 2020; Accepted 8 December 2020   

mailto:serena.midha@nottingham.ac.uk
mailto:hmaior@lincoln.ac.uk
mailto:max.wilson@nottingham.ac.uk
mailto:sarah.sharples@nottingham.ac.uk
mailto:sarah.sharples@nottingham.ac.uk
http://spire.io
https://myfeel.co
www.sciencedirect.com/science/journal/10715819
https://www.elsevier.com/locate/ijhcs
https://doi.org/10.1016/j.ijhcs.2020.102580
https://doi.org/10.1016/j.ijhcs.2020.102580
https://doi.org/10.1016/j.ijhcs.2020.102580
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2020.102580&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Human - Computer Studies 147 (2021) 102580

2

real-world applications. Thus, in order to develop our understanding of 
mental workload in office work, and whether different levels can be 
discerned in office-like conditions, this work used personalised reading 
and writing tasks alongside representations of interruptions to increase 
ecological validity, whilst still maintaining laboratory-style control, as a 
step towards the measurement of cognitive activity in the wild. 

In terms of effort at work, there are several related models, including 
mental workload (Baddeley, 2000; Sharples and Megaw, 2015; Wickens, 
2008), Cognitive Load Theory (Paas et al., 2003), and Mental Effort 
(Hart and Staveland, 1988). Across these different terminologies, how
ever, mental workload may be described as the amount of mental effort 
required to complete a task within a limited time period (Maior et al., 
2015). In Human-Computer Interaction (HCI), we have seen an increase 
in research that tries to objectively estimate mental workload, e.g. 
through deep learning of pupil dilation (Fridman et al., 2018), or 
through changes in facial temperature (Marinescu, 2018; Marinescu 
et al., 2018). One promising approach is the measurement of brain ac
tivity using functional Near-Infrared Spectroscopy (fNIRS), as a 
non-invasive and movement tolerable brain scanner (Afergan et al., 
2014; Maior et al., 2015, 2018; Pike et al., 2014; Solovey et al., 2009; 
Yuksel et al., 2016). fNIRS uses near-infrared light to measure changes in 
blood oxygenation in the brain. Brain activity can be indirectly evalu
ated from this based on the concept of neurovasuclar coupling in which 
active brain regions require increased blood flow to meet enhanced 
energy demands. For understanding the effort involved in everyday 
work tasks, the prefrontal cortex (PFC) is one area of the brain often 
measured in mental workload studies (Baddeley, 2012; Foy et al., 2016; 
Gabrieli et al., 1998; Miller and Cohen, 2001) as it is an area associated 
with executive functions required for the cognitive processes that mental 
workload is comprised of. 

The current study used fNIRS to examine the measurement of mental 
workload in more representative work-like tasks, which differs from the 
more tightly controlled psychology tasks that are most commonly seen 
in the literature. We used personalised reading and writing material to 
investigate the ability of fNIRS to detect different mental workload 
levels. Representations of natural interruptions were incorporated dur
ing the tasks to investigate whether fNIRS could detect the effect of 
interruptions. 

Through this work we make the following contributions:  

1. We show that fNIRS measurements can differentiate between 
reading task levels but saw no significant differences between 
writing levels (despite self-reported differences).  

2. We consider fNIRS measurements in terms of spare capacity models 
to reflect on how interruptions are handled.  

3. We provide a deepened understanding of the factors that will be 
involved in measuring mental workload in real-world environments. 

2. Related Work 

2.1. Mental Workload Theories 

One important characteristic that is presented is limited capacity, 
meaning that humans can only process a limited amount of information 
at any one time. Early work by Wickens (Hollands and Wickens, 1999; 
Wickens, 2008) was fundamental in the development of the concept of 
mental workload, which described how the cognitive resources neces
sary for task completion are limited. In an updated model, Sharples and 
Megaw highlight the relationship between available cognitive resources 
and task performance (Sharples and Megaw, 2015). When a person has 
spare capacity of cognitive resources, they may have the ability to take 
on additional work concurrently; as task demands begin to exceed the 
amount of cognitive resources a person has available, mental workload 
levels become overloaded and performance may drop rapidly. This 
model further acknowledges that at underload, task performance may 
also drop from lack of attention to the task. 

The Multiple Resource Model (Wickens, 2008) extends the notion of 
limited resources to consider different types of resources and different 
stages of processing. The theory has three dimensions and posits that 
encoded information (left dimension) can either be of a spatial (visual) 
or verbal (auditory) nature, the perception and cognition (processing; 
middle dimension) of that information can also be spatial or verbal, and 
the selected responses (right dimension) will either be of a spatial 
(manual) or verbal (vocal) nature. Multiple tasks may be completed at 
the same time with good performance only if, across the three di
mensions, they do not compete for or overlap in the resources that are 
required. For example, driving whilst texting can be disastrous because 
according to the model they are both encoded visually, are spatially 
processed and require a manual response. Driving whilst having a con
versation, however, is theoretically sound because different resources 
are required over the three dimensions. 

2.2. Measuring Mental Workload 

There are a variety of subjective and objective methods used for 
assessing mental workload. Physiological methods to objectively mea
sure mental workload have the advantage of being implemented 
continuously throughout, and independently of, the task, unlike sub
jective measures that require participants to self-report their experi
enced mental workload at intervals or after the task. Physiological 
measures stand on the assumption that as mental workload levels 
change, there will be a corresponding response in the autonomic ner
vous system which can be reflected and measured in a number of 
physiological parameters. Electrodermal activity (Collet et al., 2014; Shi 
et al., 2007; Shimomura et al., 2008) and changes in facial temperature 
(Marinescu, 2018; Marinescu et al., 2018) are examples of physiological 
measures that have evidence supporting their use as tools for dis
tinguishing between mental workload levels. 

Brain imaging techniques as a measure of mental workload are 
growing rapidly in popularity (Afergan et al., 2014; Ayaz et al., 2013; 
Maior et al., 2018; Pinti et al., 2018a; Yuksel et al., 2016). Traditionally, 
participant movement has interrupted the imaging signal, meaning that 
mental workload data was indistinguishable from movement artefacts. 
Due to technological progress, imaging methods are now available to 
enable the investigation of cognition in ecological settings (Dehais et al., 
2018). Electroencephalography (EEG) is the most commonly used 
technique for measuring mental workload (Borghini et al., 2014), but in 
recent years fNIRS has gained a lot of momentum (Dehais et al., 2018). 
EEG measures brain activation directly and therefore has high temporal 
resolution, but has a relatively weak spatial resolution (Herold et al., 
2018) and can be susceptible to artefacts (Herold et al., 2018; Pinti et al., 
2018). fNIRS, however, has a relatively good spatial and temporal res
olution (Herold et al., 2018) and is robust against motion artefacts 
(Herold et al., 2018; Pinti et al., 2018). As a non-invasive, portable and 
movement tolerant brain imaging method, fNIRS is perhaps the most 
effective tool for measuring mental workload in-the-wild. 

There are many mental workload studies using fNIRS that have taken 
place in controlled laboratory environments, using tasks such as the n- 
back task (Ayaz et al., 2012; Fishburn et al., 2014) where mental 
workload levels can be manipulated by increasing the amount of 
numbers to memorise. These controlled studies also extend to tasks such 
as memorising verbally presented information and spatially presented 
patterns (Maior et al., 2015). Lab studies generally show strong support 
for fNIRS as a tool for measuring mental workload levels in controlled 
environments. 

2.3. Moving from Controlled Studies to the Real World 

For many years, mental workload has been studied in the workplace 
to ensure that work demands remain within the operators’ capabilities 
in order to prevent poor performance outcomes (Sharples and Megaw, 
2015) through task errors or slow completion (Maior et al., 2014). 
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Considering the promise fNIRS has shown in measuring mental work
load in laboratory controlled studies, it could be a potential tool to 
measure mental workload in the workplace, which could benefit 
self-reflection and productivity. Cinaz et al. (Cinaz et al., 2013) also 
suggested that tracking mental workload could prevent a decline in 
wellbeing. 

Dehais et al. (2020) highlight the importance of mental workload 
measurement in safety-critical jobs. Because of the huge implications to 
safety, tracking mental workload in safety-critical jobs is a key research 
area within neuroergonomics and pBCI. Research in the area of 
safety-critical jobs have used fNIRS as a measurement tool in mental 
workload studies. The tasks used in these studies can be realistic to 
workplace tasks. For example, fNIRS could detect different levels of 
mental workload in participants during a task representative of remotely 
operated vehicle operational tasks (Durantin et al., 2014). In another 
study example, certified professional controllers participated in realistic 
air traffic controller tasks and it was found that fNIRS could detect 
mental workload levels effectively (Ayaz et al., 2012). 

There is research beginning to study mental workload using fNIRS in 
more uncontrolled environments. For example, fNIRS was effective in 
distinguishing low and high mental workload levels in pianists playing 
music pieces (Yuksel et al., 2016), computer programmers compre
hending programming languages (Nakagawa et al., 2014), and a table 
tennis player playing at two levels of difficulty (Balardin et al., 2017). 
However, research so far does not represent mental workload mea
surements during standard office work tasks or take into account the 
factors that could impair mental workload measurements in real-life 
office-work applications due to the increased complexity of natural 
settings (Aricò et al., 2018). 

In a working environment, being interrupted whilst undertaking a 
task is often inevitable. Research has suggested that people at work are 
interrupted four times per hour on average, and the most common form 
of interruption is verbally face to face (O’Conaill and Frohlich, 1995), 
though online distractions are ever-more common (Mark et al., 2017). 
Most research into interruptions has focused on their impact on task 
performance or completion (Mark et al., 2008), or into delivering in
terruptions at a timely stage of a task (Bailey and Iqbal, 2008; Iqbal and 
Bailey, 2008). The effect of interruptions on mental workload levels 
have not yet been investigated, and thus alongside investigating the 
sensitivity of fNIRS in measuring mental workload levels during per
sonalised work-like tasks, we investigate whether fNIRS can detect 
changes in mental workload levels due to realistic verbal interruptions 
in order to deepen our understanding of the factors involved in tracking 
mental workload in the real-world. The current research, therefore, is 
another key stepping stone between controlled laboratory studies and 
naturalistic studies, which aims to progress research further towards the 
sustained objective monitoring of mental workload in office workers. 

3. Experiment Design 

Considering the previous research presented and the features of the 
present study, the following hypotheses apply:  

H1a fNIRS will detect differences in brain activity between conditions 
that correspond to different mental workload levels of a reading 
task.  

H1b fNIRS will detect differences in brain activity between conditions 
that correspond to different mental workload levels of a writing 
task.  

H2 fNIRS will detect changes in brain activity corresponding to 
interruptions. 

3.1. Participants 

20 healthy participants took part in the study (8 females and 12 

males, aged 31 ± 9.57). Opportunity sampling was used to recruit par
ticipants and each participant provided written and informed consent. 
Participants were eligible for participation if their work included typical 
office-like tasks, such as reading professional documents. The experi
ment was approved by the School’s ethics board (approval ID: CS-2017- 
R13) and participants were provided with a £10 Amazon voucher as an 
inconvenience allowance. 

3.2. Tasks and Conditions 

There was a reading and writing task, each with three conditions of 
an ‘easy,’ ‘medium,’ and ‘hard’ difficulty designed to require corre
sponding levels of mental workload. The easy and medium conditions 
involved personalised materials, and the hard conditions were a 
continuation of the medium conditions with an addition of a secondary 
task designed to overload participants’ mental workload according to 
the Multiple Resource Model. 

3.2.1. Reading task. 
The easy condition for the reading task involved participants reading 

basic material related to their area of research, work, or study. The 
medium condition involved reading a previously-unread academic 
journal article, also relevant to participants’ individual areas. For the 
hard condition, participants continued reading the materials from the 
medium condition whilst completing a secondary task that competed for 
the same cognitive resources according to the Multiple Resource Model 
— this involved counting the amount of times the word ‘the’ was read. 
This secondary task was the same for all participants and aimed to 
represent tasks in which one is searching for words or information whilst 
reading. 

The difficulty of the reading materials was formally assessed using 
the Flesch-Kincaid Grade Level and Flesch Reading Ease scores (Flesch, 
1948). These measures are based upon word length and sentence length 
and can assess how difficult a piece of text is to read. The easy condition 
materials were at least 2 levels below the medium condition materials 
material in both the Flesch-Kincaid Grade Level and the Flesch Reading 
Ease measures to ensure a definite difference in task demands. All 
reading materials were presented in an identical format with images 
removed to reduce the effect of confounding variables. 

3.2.2. Writing Task 
All writing conditions were conducted in an email format which was 

addressed to the experimenter, and the difficulty of the conditions was 
based upon the assumption that an increased amount of required 
cognitive processes positively correlates with task demand. For the easy 
condition participants were asked to “Describe the tasks that you have 
done so far in this experiment in some detail”. This was designed to require 
retrospectively recent memory. 

The premise for both the medium and hard conditions were to 
“Pretend I have emailed you asking about your area of research. I’m inter
ested in what you research, how you research it and why you research this 
area. Please reply to that email. You can assume I have a basic but limited 
knowledge of your field so you will need to explain certain terms to me. I also 
mentioned that I would be interested in meeting with you to discuss your 
research.” Wording was altered slightly when required to be relevant to 
participants. 

The medium condition required participants to start by outlining 
some real days and times that they were available to meet this week and 
then talk about their research. This required retrospective memory, 
short term prospective memory and working memory to remember the 
vast amount of information that was provided. The hard condition 
required participants to continue with the task as well as outlining some 
real days and times they would be available to meet the next week. The 
secondary task for the hard condition involved participants saying ‘blah’ 
repeatedly out loud whilst writing. This condition was designed to 
require retrospective memory, longer term prospective memory and 
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working memory, whilst completing a difficult secondary task that 
competed for the same resources according to the Multiple Resource 
Model. This secondary task was the same for all participants and aimed 
to represent the notion of speaking whilst working. 

3.2.3. Interruptions 
Verbal interruptions involved the experimenter briefly disrupting the 

condition with generic conversation, and were added to 3 out of the 6 
conditions, counter-balanced between participants. 

To further increase ecological validity and make the study environ
ment less controlled, all participants were provided with a drink (coffee, 
tea or water - if a drink was declined, water was provided on the desk). 
Drink consumption was permitted as desired except during the baseline 
conditions. 

3.2.4. Baseline Conditions 
A fixation cross presented for 1 minute on a monitor was used as a 

baseline condition at the beginning of both the reading and writing task. 
Before each further task condition, the fixation cross was used again for 
1 minute to allow brain activity to return to baseline. 

3.3. Setup and Procedure 

A standard office set-up was created. Participants sat behind an office 
desk and in front of a computer monitor and keyboard. A non- 
transparent board was placed between the participant and experi
menter to provide a sense of open-plan office form of semi-privacy. In 
order to identify the times at which the verbal interruptions occurred, a 
GoPro Hero4 Silver placed in an audible protective case was used. This 
was placed inconspicuously behind participants and recorded their 
frame and monitor. 

3.3.1. Study Procedure. 
Participants were first provided with a drink and seated at the desk 

where the study instructions were given and informed consent was 
provided. The fNIRS device was fitted and the GoPro was started. 

The reading task was completed first due to the writing task being 
partially based on the reading task. When the study started, participants 
first stared at the fixation cross for 1 minute before the easy reading 
condition began. The condition lasted for 5 minutes, and when time was 
up participants immediately filled out a NASA-TLX questionnaire. After 
the questionnaire was completed, the fixation cross appeared again for 1 
minute before the next reading condition began. The order of the me
dium and hard reading conditions were counterbalanced across partic
ipants and all conditions lasted for 5 minutes. Once the second condition 
was completed, the NASA-TLX questionnaire was administered imme
diately again, followed by the 1 minute fixation cross and the final 
reading condition which was again followed by the NASA-TLX ques
tionnaire. After the reading conditions, the writing conditions started 
and followed the same format as the reading conditions. 

3.4. Measurements and Data Analysis 

3.4.1. Mental workload questionnaire. 
A NASA-TLX workload questionnaire (Hart, 2006) was used to 

collect subjective mental workload information. The self-assessed 
questionnaire comprises of six 21 point scales where a rating of 
0 equates to ‘Very Low’ and 20 to ‘Very High’. The scales include mental 
demand, physical demand, temporal demand, performance, effort, and 
frustration. Friedman tests were run to investigate whether there was a 
significant difference in ratings between the easy, medium, and hard 
reading and writing tasks; post hoc analysis was conducted with Wil
coxon signed-ranks with a Bonferroni correction applied. 

3.4.2. fNIRS Measurements 
A wireless fNIRS device (Octamon, Artinis Medical Systems) with 8 

channels with a source-detector distance of 3.5cm measured oxygenated 
(O2Hb) and deoxygenated (HHb) haemoglobin across the PFC, as 
showin in Fig. 1. The wavelengths used were 760 and 850nm with a 
differential pathlength factor of 6 and a sampling rate of 10Hz. Raw data 
was exported to Homer2 fNIRS processing package (Huppert et al., 
2009). Data was converted into changes in optical density, and motion 
artifacts were corrected using a Wavelet filter (iqr=1.5) and a bandpass 
filter (0.5 LPF and 0.01 HPF). Physiological noise was reduced using a 
Principal Component Analysis (nSV=0.97) and concentration changes 
in O2Hb and HHb were calculated using the Modified Beer-Lambert 
Law. 

Baseline correction was performed by subtracting baseline mean 
values from the task data; the first baseline condition from both the 
reading and writing tasks were used and subtracted from their respective 
tasks. To test whether there were significant differences in brain activity 
between the easy, medium, and hard difficulty reading and writing 
tasks, one-way repeated measures ANOVAs were conducted using the 
average values from the first 2.5 minutes of each condition before any 
interruption occurred. 

For the interruption analysis, the interruption timings were marked 
down from the video footage and added as stimuli in Homer2. Data was 
baseline corrected in the same way as the task data. To compare brain 
activity during the task compared to during the interruptions, paired t- 
tests were used to compare 10 seconds of interruption data against the 
previous 10 seconds of task data for the participants that were inter
rupted in the same conditions as the interruptions. All interruption 
stimuli were shifted by 2 seconds after the onset of the interruptions to 
account somewhat for the temporal delay of fNIRS measurements. 

When a region of the brain becomes activated, cerebral blood flow 
increases to meet the increase in oxygen demand; this is known as the 
hemodynamic response and is reflected by an increase in O2Hb and a 
decrease in HHb (Scholkmann et al., 2014). Measurements of O2Hb 
alone are vulnerable to physiological noise which risks false conclusions 
about neural activity being drawn (Herold et al., 2017; Pinti et al., 
2018a). Whilst measurements of HHb are less affected by these con
founds (page 364) and most highly correlated with other brain imaging 
methods (Huppert et al., 2006) the strongest indicator of functional 
brain activity is when there is an increase in O2Hb corresponding with a 
decrease in HHb (Herold et al., 2017), and thus this is what will be our 
main focus in the results. 

Data from 2 male participants were excluded due to technical diffi
culties making the final analysis include data from 18 participants. All 
fNIRS measurements are reported in micromoles (μM). Post-hoc analysis 
for the fNIRS data was conducted using a Bonferroni correction. 

4. Results 

4.1. NASA-TLX ratings 

Figures 2 and 3 display mean subjective scores for the Mental De
mand, Effort and Performance subscales for reading and writing 
respectively. 

A Friedman test revealed a significant effect of condition on mental 
demand ratings for the reading task (χ2(2)=18.250, p<0.001). Post hoc 
analysis with Wilcoxon tests was conducted with a Bonferroni correction 
applied which resulted in a p=0.017 significance value for all NASA-TLX 
post hoc analyses. This showed that the easy and medium reading 
conditions were rated significantly lower than the hard reading condi
tion (Z=-3.335, p<0.001 and Z=-2.519, p=0.012 respectively) but did 
not significantly differ to each other. Mental demand ratings also 
showed significance in the writing task (χ2(2)=14.464, p<0.001), where 
the easy and medium conditions were both rated lower than the hard 
condition (Z=-3.463, p<0.001 and Z=-2.872, p=0.004 respectively) but 
did not significantly differ to each other. 

There was a significant effect of condition on physical demand rat
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ings for the reading task (χ2(2)=17.211, p<0.001). Wilcoxon tests 
showed that the easy and medium reading conditions were rated 
significantly lower than the hard condition (Z=-2.958, p=0.003 and Z=- 
2.534, p=0.011 respectively) but were not rated significantly different 
to each other. Physical demand was not significant for the writing task. 
There was also no significant effect of condition on temporal demand or 
performance ratings for the reading or writing tasks. 

A significant effect of condition on effort ratings for the reading task 
was found (χ2(2)=25.054, p<0.001). Post hoc analysis revealed that the 
easy and medium conditions were rated as significantly lower than the 
hard conditions (Z=-3.830, p<0.001 and Z=-3.604, p<0.001 respec
tively), but again did not significantly differ to each other. The Friedman 
test was also significant for the writing task (χ2(2)=22.243, p<0.001). 
Wilcoxon tests revealed that the easy and medium conditions were rated 
lower than the hard difficulty condition (Z=-3.428, p<0.001 and Z=- 
3.732, p<0.001 respectively) but did not differ to each other. 

A significant effect of condition on frustration ratings for the reading 
task was revealed (χ2(2)=18.613, p<0.001). The post hoc analysis 
showed that the easy and medium conditions were rated significantly 
lower than the hard condition (Z=-3.416, p<0.001 and Z=-3.316, 
p<0.001 respectively), but not significantly different to each other. 
Effort was also significant for the writing task (χ2(2)=15.254, p<0.001), 
where the easy and medium conditions were rated significantly lower 
than the hard condition (Z=-3.157, p=0.002 and Z=-3.465, p<0.001 
respectively) but again were not significantly different to each other. 

4.2. fNIRS data 

Condition analysis On an individual channel basis, only channel 7 

HHb (see Figure 1) showed a significant ANOVA result (F(2, 34)=4.258, 
p=0.022), where means showed that reading medium had the lowest 
brain activity, followed by reading easy, and reading hard had the 
highest brain activity, though this did not reach significance in the 
Bonferroni post hoc test. 

When averaging across the different sides of the PFC, the ANOVA 
showed a significant reading result for channels 5-8 (left side of the PFC) 
for both O2HB (F(2, 34)=3.400, p=0.045) and HHb (F(2, 34)=3.425, 
p=0.044). For both O2Hb and HHb, the means showed that like channel 
7, reading medium had the lowest brain activity followed by reading 
easy, and reading hard had the highest brain activity (Figure 4), though 
Bonferroni correction did not reach significance. 

No writing results reached significance in the condition analysis. 
Interruption analysis On an individual channel level, the paired t-tests 

showed that for channel 6, those who were interrupted during the 
reading easy task (n=8) had significantly higher O2Hb brain activity 
during the task compared to during the interruption (t(7)=3.119, 
p=0.017). On the contrary, channel 7 showed significantly more HHb 
(indicating less brain activation) during the reading easy task compared 
to during the interruption (t(7)=2.525, p=0.040) (Figure 5a). Channel 7 
also showed significantly less HHb levels (more brain activity) for par
ticipants (n=8) during the writing hard task compared to during the 
writing hard interruptions (t(7)=2.749, p=0.029). 

When considering the averages for the sides of the PFC, channels 1-4 
(right side of the PFC) for both O2Hb and HHb were significant for 
writing hard (t(7)=2.496, p=0.041 and t(7)=2.514, p=0.040 respec
tively). Both the O2Hb and HHb showed, like channel 7, more brain 
activity during the writing hard task compared to during the interrup
tion during the writing hard task (Figure 5b). 

Fig. 1. Sensor placement and sensitivity (Aasted, Yücel, Cooper, Dubb, Tsuzuki, Becerra, Petkov, Borsook, Dan, Boas, 2015).  

Fig. 2. Average NASA-TLX ratings across the reading task conditions for Mental Demand, Effort and Performance sub scales. All error bars represent standard error of 
the mean. 
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5. Discussion 

The study aimed to investigate the measurement of mental workload 
using fNIRS in tasks and environments more relevant to the workplace. 
The study can be seen as a stepping stone between tightly controlled lab 
studies and unconstrained real-world studies, and the findings can 
provide guidance for progressing research into workplace environments. 

5.1. The Sensitivity of fNIRS 

Results showed support for the ability of fNIRS to detect mental 
workload levels in reading tasks (H1a) but not writing tasks (H1b). For 
the reading task, fNIRS could detect significant differences between 
conditions in the left side of the PFC and the results aligned with the 
subjective ratings of mental workload in terms of the hard condition 
showing the highest mental workload. Subjective ratings of mental 
workload showed no significant differences between the easy and me
dium conditions, and fNIRS measurements showed only small differ
ences between these conditions compared to the hard condition, also 
supporting the sensitivity of fNIRS (H1a). 

The reading results are supported by the findings from other studies. 
Because of the different sizes of participant’s heads and the fixed optode 
locations on the fNIRS device, we can broadly assume which channels 
correspond to the different areas of the PFC via the 10-20 electrode 
system from the EEG field (Herold et al., 2017; Jasper, 1958). Reading 
comprehension is heavily associated with the PFC (as well as temporal 
regions), namely Broca’s area located in the left inferior frontal gyrus, 
and thus the consensus is for left hemispheric dominance in reading 
comprehension (Baretta et al., 2012; Paquette et al., 2015; Price, 2012). 
Our results were significant for channel 7, which is in the left hemi
sphere and where Broca’s area is expected to be located (Vergotte et al., 
2018), in line with the areas of activation one would expect to find. The 
results were also significant for channels 5-8, which is the left hemi
sphere, further corresponding to previous literature, including fNIRS 
studies into reading comprehension (Dieler et al., 2012). 

As there was strong evidence for fNIRS detecting differences in 

Fig. 3. Average NASA-TLX ratings across the writing task conditions for Mental Demand, Effort and Performance sub scales.  

Fig. 4. fNIRS results for the reading task show a mirroring pattern of increased 
O2Hb and decreased HHb during the hard difficulty condition - Channels 5-9. 

Fig. 5. fNIRS measurements during task completion compared to during the interruption periods.  
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mental workload levels between conditions for channels 5-8 with sig
nificant results for both O2Hb and HHb, it seems sensible to infer that 
averaging across channels captured the activation area across partici
pants, which may not have been captured fully by channel 7 if it didn’t 
exactly correspond to the inferior frontal gyrus in all participants. 

Regarding the non-significant post hoc tests of the ANOVA, Bonfer
roni is a conservative test as it attempts to control the overall alpha level. 
As ANOVA results for both O2Hb and HHb were significant, we consider 
this as strong supporting evidence for fNIRS detecting differences (Pinti 
et al., 2018b) between reading difficulties, and hence our focus is on this 
global effect. 

As means for brain activity consistently showed the medium condi
tion corresponding to slightly less activity than the easy condition, and 
non-significant differences in subjective ratings between these condi
tions, this is an interesting finding for the challenges associated with 
objectively tracking of mental workload in the workplace (and beyond). 
Even if task demands were harder for the medium condition, it appears 
that participant feelings could have impacted on the results. As the 
medium condition had more stimulating materials, it is expected that 
participants felt more engaged with the task. Indeed, previous work 
found that mental workload ratings were lower for demanding tasks 
when participants were more engaged (Horrey et al., 2009). Similarly, 
Lukanov et al. found that, for an insurance claim form, participants 
preferred the user interface condition that objectively and subjectively 
generated the highest levels of mental workload (Lukanov et al., 2016), 
and thus emotional factors could be a challenge for objectively 
measuring mental workload in the workplace. 

In contrast to reading, fNIRS did not detect significant differences 
between conditions in the writing task, not aligning with the subjective 
results and not supporting H1b. Writing organisation in the brain ap
pears to represent a complex human function that involves several 
language sub-components, and thus localisation in the brain is highly 
individualised between people (Lubrano et al., 2004). Nevertheless, 
writing localisation is thought to heavily involve the frontal lobe (and 
the anterior parietal lobe), more specifically the posterior part of the 
middle and superior frontal gyri (Exner’s area, Katanoda et al., 2001; 
Lubrano et al., 2004). The fNIRS device in the current study measured 
isolated activation in the PFC, meaning activation from the ‘writing 
centre’ was not covered. This finding, where different levels of mental 
workload for the writing task were not distinguished in the PFC, does not 
only hold relevance for the current study, but also challenges percep
tions from the wider HCI field. FNIRS studies of mental workload most 
often measure cognitive activity from the PFC (Maior et al., 2015, 2018; 
Pike et al., 2014; Solovey et al., 2009, 2012; Yuksel et al., 2016); there is 
a consensus that mental workload will consistently be exhibited and 
measurable in the PFC. However, the results from the writing task 
suggest that the processing involved when task demand increased and 
subsequent mental workload increased between the hard and the easy 
and medium conditions (as found in the subjective ratings) may not have 
been measurable from the PFC. As the writing task required a complex 
amount of neural processing and cognitive processes, it seems that it was 
not possible to capture the full picture of mental workload level from the 
PFC alone. Working memory cognitive load is measurable from the PFC 
(Fishburn et al., 2014; Tomasi et al., 2007), but the writing conditions 
might not have differed significantly from each other in the working 
memory aspect of the writing task like we intended with the study 
design, and the combination of cognitive processes that increased 
mental demand for the hard condition might have been localised outside 
of the PFC. This is supported by some of our recent work (Argyle et al., 
2021) which did not find differences in oxygenation in the PFC for a 
visual search task despite significantly different subjective mental 
workload ratings; here, mental workload might have been detectable in 
the occipital and parietal lobes (Tomasi et al., 2007), and did not involve 
the PFC enough to detect objective changes in mental workload level. 
Thus, future studies of realistic or real-world tasks should consider 
carefully which brain areas mental workload might be most represented 

in, and perhaps measure multiple lobes to gather a richer insight into 
brain activation as these types of task come with more cognitive com
plexities compared to laboratory studies (Aricò et al., 2018). Future 
studies could also benefit from further investigating varying levels of 
mental workload and specific cognitive task demands for tasks and ac
tivities relevant to daily life. This perhaps would also explain why papers 
using machine learning to classify mental workload levels (Chan et al., 
2012; Herff et al., 2014; Sassaroli et al., 2008) typically achieve fairly 
low levels of accuracy. In support, it has been shown that measuring a 
larger neural area resulted in a higher accuracy of mental workload 
classification (Saadati et al., 2019). That being said, the PFC may more 
often than not provide a reasonable insight into mental workload levels 
due to its involvement in a wide variety of tasks. It is notable that the 
reading results support the finding that changes in mental workload for 
reading are detectable in the PFC, where more complex reading tasks are 
associated with increased neural activity (Just et al., 1996; 2003). 

A limitation of the study could be that the data was analysed in 2.5- 
minute blocks which is likely to contain more artefacts compared to 
shorter trials (Zhu et al., 2020) that are often seen in laboratory studies. 
A main research area in pBCIs and neuroergonomics is to use fNIRS to 
measure mental workload of workers in safety-critical jobs and to 
develop aids to improve the safety of these jobs based on their mental 
state. Our aim is related to this, in the sense that we wish to investigate 
mental workload levels in office workers and this data might progress to 
aid improvements to working habits and lives. These types of research 
aims (in addition to many other research areas using fNIRS) require 
long-time continuous monitoring of brain activity, which is an 
acknowledged advantage of fNIRS (Pinti et al., 2018). With rigorous 
processing of the data, the noise should not impact the validity of the 
data, and longer blocks may reveal a more representative picture of 
brain activity compared to a short snapshot. We did opt to shorten the 
analysis from 5 minutes of data to 2.5 minutes of data with the aim of 
somewhat ensuring control over the data considering the study was still 
essentially lab based. 

5.2. Interruptions 

In terms of the effect of verbal interruptions on fNIRS measurements 
(H2), there was less brain activity in the right side of the PFC during the 
interruption of the writing hard condition, compared to before the 
interruption, and this was significant for both O2Hb and HHb. If we 
consider this in relation to spare capacity (Sharples and Megaw, 2015), 
as the hard writing condition was subjectively rated as requiring the 
most mental workload, there might not have been enough cognitive 
resources available to take on the interruption concurrently with the 
primary task. This means the interruption would have become a primary 
task which was less demanding than the hard writing condition. 
Whereas for the easy reading condition, HHb levels (which are inter
preted a bit more cautiously alone) showed an increase in brain activity 
during the interruption compared to during the task. In relation to the 
model, this could be explained by the notion that there was spare ca
pacity during the easy reading condition which meant that responding 
to the interruption could have been achieved through multi-tasking, 
which increased mental demand and hence mental workload. Obser
vationally, we note that verbal responses to interruptions during the 
reading easy conditions tended to be briefer and more distractible, 
whereas in the writing hard participants could not keep saying ‘blah’ and 
respond to the interruption, so they would pause the task to give a 
proper response. 

Even though results were only significant for two of our conditions, 
perhaps due to the small number of participants for each interruption, 
they do contribute to a deeper understanding of the factors involved in 
measuring mental workload objectively in the workplace, which are not 
encountered during controlled lab studies. The results emphasise that 
changes in mental workload levels are not ‘black and white’; instead 
they often depend on situational factors which might be different from 
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one person to the next (Sharples, 2018). This also means that it is 
difficult to evaluate the effectiveness of objective measures because 
determining changes in mental workload in these situations depends on 
subjective interpretation. Objective measures might not reflect the 
interpretation made about a person’s mental workload but that does not 
necessarily mean that the measurement is wrong. Such variability in 
factors contributing to mental workload levels and the different re
sponses between people could mean that future studies might benefit 
from considering results on a participant by participant basis. Addi
tionally, whilst we have incorporated natural interruptions into the 
study design to gain an understanding of challenges to do with subtle 
within task variations of mental workload whilst completing a single 
task, workplaces are increasingly made up of multi-tasking activities 
(Mark et al., 2005), which most likely means that objectively measuring 
mental workload in the workplace will come with increased complexity. 
It should be noted that the sample size was limited for the interruption 
analysis; with more data to analyse the statistical power and validity 
would have been increased. We do believe our results have opened an 
interesting area for discussion and further research area on the effect of 
interruptions on mental workload levels and how these measurements 
can be dealt with in real-world settings. 

We further increased ecological validity by including uncontrolled 
drink consumption. Because this data was messy, due to participants 
drinking at different frequencies and during different conditions, it was 
not possible to analyse the effect of drink consumption on brain activity. 
This type of interruption data, however, could prove to be valuable if 
incorporated plausibly in future studies, as it could provide insight into 
whether different types of interruptions seem to follow the same trend in 
which data can be understood in relation to spare capacity models, or 
whether different factors need to be considered. 

Finally, continuing to bridge the gap between controlled lab studies 
and real-world studies is hugely important. Ladouce suggested that true 
cognition and its complexities can often only be understood correctly 
when examined in ecologically valid environments (Ladouce et al., 
2017), and mental workload appears to belong to this category. Pro
gressing this research to in-the-wild studies of mental workload will 
enable further understanding of the research and challenges associated 
with the sustained measurement of mental workload in the workplace 
with fNIRS as a potential candidate. Our own future work aims to make 
progress towards being able to track cognitive activity as a form of 
personal informatics. 

6. Conclusions 

Through using personalised tasks and verbal interruptions in a 
workplace-like setting, we show that fNIRS placed over the PFC alone 
was able to detect the differences in mental workload experienced by 
participants during personalised reading tasks, but was not sensitive to 
the reported differences in writing tasks. This finding could be due to the 
PFC not exhibiting mental workload levels for all tasks, and thus careful 
consideration of optode placement over a larger region of interest is 
emphasised for naturalistic studies especially. Verbal interruptions 
appeared to cause within task mental workload variation, causing 
increased load if done in parallel with tasks and decreased load if 
becoming the primary task temporarily. These findings demonstrated 
the complexity of mental workload as concept that is non-quantifiable 
and often affected by situational factors reliant on interpretation. With 
the goal in mind of the sustained objective monitoring of mental 
workload in the workplace for self-improvements, further work is 
needed to establish the sensitivity of fNIRS for further work-like tasks 
and to build on understanding of the factors involved in these 
measurements. 
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Cinaz, B., Arnrich, B., Marca, R., Tröster, G., 2013. Monitoring of mental workload levels 
during an everyday life office-work scenario. Personal and ubiquitous computing 17 
(2), 229–239. 

Collet, C., Salvia, E., Petit-Boulanger, C., 2014. Measuring workload with electrodermal 
activity during common braking actions. Ergonomics 57 (6), 886–896. 

Dehais, F., Dupres, A., Di Flumeri, G., Verdiere, K., Borghini, G., Babiloni, F., Roy, R., 
2018. Monitoring pilot’s cognitive fatigue with engagement features in simulated 
and actual flight conditions using an hybrid fNIRS-EEG passive BCI. 2018 IEEE 
International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 
pp. 544–549. 

Dehais, F., Lafont, A., Roy, R., Fairclough, S., 2020. A neuroergonomics approach to 
mental workload, engagement and human performance. Frontiers in Neuroscience 
14, 268. 

S. Midha et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0001
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0001
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0001
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0002
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0002
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0002
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0002
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0003
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0003
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0003
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0004
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0004
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0004
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0005
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0005
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0005
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0005
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0006
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0006
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0006
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0007
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0007
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0008
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0008
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0009
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0009
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0009
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0010
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0010
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0010
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0010
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0011
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0011
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0011
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0012
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0012
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0012
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0012
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0013
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0013
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0013
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0014
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0014
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0014
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0015
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0015
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0016
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0016
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0016
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0016
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0016
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0017
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0017
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0017


International Journal of Human - Computer Studies 147 (2021) 102580

9

Dieler, A., Tupak, S., Fallgatter, A., 2012. Functional near-infrared spectroscopy for the 
assessment of speech related tasks. Brain and Language 121 (2), 90–109. 

Durantin, G., Gagnon, J.-F., Tremblay, S., Dehais, F., 2014. Using near infrared 
spectroscopy and heart rate variability to detect mental overload. Behavioural brain 
research 259, 16–23. 

Fishburn, F.A., Norr, M.E., Medvedev, A.V., Vaidya, C.J., 2014. Sensitivity of fNIRS to 
cognitive state and load. Frontiers in human neuroscience 8, 76. 

Flesch, R., 1948. A new readability yardstick. Journal of applied psychology 32 (3), 221. 
Foy, H.J., Runham, P., Chapman, P., 2016. Prefrontal cortex activation and young driver 

behaviour: a fNIRS study. PLoS one 11 (5), e0156512. 
Fridman, L., Reimer, B., Mehler, B., Freeman, W.T., 2018. Cognitive load estimation in 

the wild. Proceedings of the 2018 CHI Conference on Human Factors in Computing 
Systems. ACM, p. 652. 

Gabrieli, J.D., Poldrack, R.A., Desmond, J.E., 1998. The role of left prefrontal cortex in 
language and memory. Proceedings of the national Academy of Sciences 95 (3), 
906–913. 

Hart, S.G., 2006. NASA-task load index (NASA-TLX); 20 years later. Proceedings of the 
human factors and ergonomics society annual meeting, 50. Sage publications Sage 
CA: Los Angeles, CA, pp. 904–908. 

Hart, S.G., Staveland, L.E., 1988. Development of NASA-TLX (task load index): Results of 
empirical and theoretical research. Advances in psychology 52, 139–183. 

Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., Schultz, T., 2014. Mental 
workload during n-back task-quantified in the prefrontal cortex using fNIRS. 
Frontiers in human neuroscience 7, 935. 

Herold, F., Wiegel, P., Scholkmann, F., Müller, N.G., 2018. Applications of functional 
near-infrared spectroscopy (fNIRS) neuroimaging in exercise–cognition science: a 
systematic, methodology-focused review. Journal of clinical medicine 7 (12), 466. 

Herold, F., Wiegel, P., Scholkmann, F., Thiers, A., Hamacher, D., Schega, L., 2017. 
Functional near-infrared spectroscopy in movement science: a systematic review on 
cortical activity in postural and walking tasks. Neurophotonics 4 (4), 041403. 

Hollands, J.G., Wickens, C.D., 1999. Engineering psychology and human performance. 
Journal of surgical oncology. 

Horrey, W.J., Lesch, M.F., Garabet, A., 2009. Dissociation between driving performance 
and drivers’ subjective estimates of performance and workload in dual-task 
conditions. Journal of safety research 40 (1), 7–12. 

Huppert, T.J., Diamond, S.G., Franceschini, M.A., Boas, D.A., 2009. Homer: a review of 
time-series analysis methods for near-infrared spectroscopy of the brain. Applied 
optics 48 (10), D280–D298. 

Huppert, T.J., Hoge, R.D., Diamond, S.G., Franceschini, M.A., Boas, D.A., 2006. 
A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor 
stimuli in adult humans. Neuroimage 29 (2), 368–382. 

Iqbal, S.T., Bailey, B.P., 2008. Effects of intelligent notification management on users and 
their tasks. Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems. ACM, New York, NY, USA, pp. 93–102. https://doi.org/10.1145/ 
1357054.1357070. 

Jasper, H., 1958. Report of the committee on methods of clinical examination in 
electroencephalography. Electroencephalogr Clin Neurophysiol 10, 370–375. 

Just, M.A., Carpenter, P.A., Keller, T.A., Eddy, W.F., Thulborn, K.R., 1996. Brain 
activation modulated by sentence comprehension. Science 274 (5284), 114–116. 

Just, M.A., Carpenter, P.A., Miyake, A., 2003. Neuroindices of cognitive workload: 
Neuroimaging, pupillometric and event-related potential studies of brain work. 
Theoretical Issues in Ergonomics Science 4 (1-2), 56–88. 

Katanoda, K., Yoshikawa, K., Sugishita, M., 2001. A functional MRI study on the neural 
substrates for writing. Human brain mapping 13 (1), 34–42. 

Ladouce, S., Donaldson, D.I., Dudchenko, P.A., Ietswaart, M., 2017. Understanding 
minds in real-world environments: toward a mobile cognition approach. Frontiers in 
human neuroscience 10, 694. 

Lubrano, V., Roux, F.-E., Démonet, J.-F., 2004. Writing-specific sites in frontal areas: a 
cortical stimulation study. Journal of neurosurgery 101 (5), 787–798. 

Lukanov, K., Maior, H.A., Wilson, M.L., 2016. Using fNIRS in usability testing: 
understanding the effect of web form layout on mental workload. Proceedings of the 
2016 CHI Conference on Human Factors in Computing Systems. ACM, 
pp. 4011–4016. 

Maior, H.A., Pike, M., Sharples, S., Wilson, M.L., 2015. Examining the reliability of using 
fNIRS in realistic HCI settings for spatial and verbal tasks. Proceedings of the 2015 
CHI Conference on Human Factors in Computing Systems. ACM, pp. 3807–3816. 

Maior, H.A., Pike, M., Wilson, M.L., Sharples, S., 2014. Continuous detection of workload 
overload: an fNIRS approach. Contemporary Ergonomics and Human Factors 2014: 
Proceedings of the international conference on Ergonomics & Human Factors 2014, 
Southampton, UK, 7-10 April 2014. CRC Press, p. 450. 

Maior, H.A., Wilson, M.L., Sharples, S., 2018. Workload alerts-using physiological 
measures of mental workload to provide feedback during tasks. ACM Transactions 
on Computer-Human Interaction (TOCHI) 25 (2), 9. 

Marinescu, A.C., 2018. Facial thermography for assessment of workload in safety critical 
environments. University of Nottingham. Ph.D. thesis.  

Marinescu, A.C., Sharples, S., Ritchie, A.C., Sánchez López, T., McDowell, M., Morvan, H. 
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Florea, O., Béland, R., Lepore, F., Gallagher, A., 2015. Developmental patterns of 
expressive language hemispheric lateralization in children, adolescents and adults 
using functional near-infrared spectroscopy. Neuropsychologia 68, 117–125. 

Parasuraman, R., 2011. Neuroergonomics: Brain, cognition, and performance at work. 
Current directions in psychological science 20 (3), 181–186. 

Pike, M.F., Maior, H.A., Porcheron, M., Sharples, S.C., Wilson, M.L., 2014. Measuring the 
effect of think aloud protocols on workload using fNIRS. Proceedings of the 32nd 
annual ACM conference on Human factors in computing systems. ACM, 
pp. 3807–3816. 

Pinti, P., Aichelburg, C., Gilbert, S., Hamilton, A., Hirsch, J., Burgess, P., Tachtsidis, I., 
2018a. A review on the use of wearable functional near-infrared spectroscopy in 
naturalistic environments. Japanese Psychological Research 60 (4), 347–373. 

Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., Tachtsidis, I., 2018b. Current status 
and issues regarding pre-processing of fnirs neuroimaging data: An investigation of 
diverse signal filtering methods within a general linear model framework. Frontiers 
in human neuroscience 12, 505. 

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., Burgess, P.W., 
2018. The present and future use of functional near-infrared spectroscopy (fNIRS) 
for cognitive neuroscience. Annals of the New York Academy of Sciences. 

Price, C.J., 2012. A review and synthesis of the first 20 years of PET and fMRI studies of 
heard speech, spoken language and reading. Neuroimage 62 (2), 816–847. 

Saadati, M., Nelson, J., Ayaz, H., 2019. Convolutional neural network for hybrid fNIRS- 
EEG mental workload classification. International Conference on Applied Human 
Factors and Ergonomics. Springer, pp. 221–232. 

Sassaroli, A., Zheng, F., Hirshfield, L.M., Girouard, A., Solovey, E.T., Jacob, R.J., 
Fantini, S., 2008. Discrimination of mental workload levels in human subjects with 
functional near-infrared spectroscopy. Journal of Innovative Optical Health Sciences 
1 (02), 227–237. 

Scholkmann, F., Kleiser, S., Metz, A.J., Zimmermann, R., Pavia, J.M., Wolf, U., Wolf, M., 
2014. A review on continuous wave functional near-infrared spectroscopy and 
imaging instrumentation and methodology. Neuroimage 85, 6–27. 

Sharples, S., 2018. Workload II: A future paradigm for analysis and measurement. 
Congress of the International Ergonomics Association. Springer, pp. 489–498. 

Sharples, S., Megaw, T., 2015. Definition and mesurement of human workload. In: 
Wilson, J.R., Sharples, S. (Eds.), Evaluation of human work. CRC Press. 

Shi, Y., Ruiz, N., Taib, R., Choi, E., Chen, F., 2007. Galvanic skin response (GSR) as an 
index of cognitive load. CHI’07 extended abstracts on Human factors in computing 
systems. ACM, pp. 2651–2656. 

Shimomura, Y., Yoda, T., Sugiura, K., Horiguchi, A., Iwanaga, K., Katsuura, T., 2008. Use 
of frequency domain analysis of skin conductance for evaluation of mental workload. 
Journal of physiological anthropology 27 (4), 173–177. 

Solovey, E.T., Girouard, A., Chauncey, K., Hirshfield, L.M., Sassaroli, A., Zheng, F., 
Fantini, S., Jacob, R.J., 2009. Using fNIRS brain sensing in realistic HCI settings: 
experiments and guidelines. Proceedings of the 22nd annual ACM symposium on 
User interface software and technology. ACM, pp. 157–166. 

Solovey, E., Schermerhorn, P., Scheutz, M., Sassaroli, A., Fantini, S., Jacob, R., 2012. 
Brainput: enhancing interactive systems with streaming fNIRS brain input. 
Proceedings of the 2012 CHI Conference on Human Factors in Computing Systems. 
ACM, pp. 2193–2202. 

Tomasi, D., Chang, L., Caparelli, E., Ernst, T., 2007. Different activation patterns for 
working memory load and visual attention load. Brain research 1132, 158–165. 

Vergotte, G., Perrey, S., Muthuraman, M., Janaqi, S., Torre, K., 2018. Concurrent changes 
of brain functional connectivity and motor variability when adapting to task 
constraints. Frontiers in physiology 9, 909. 

Wickens, C.D., 2008. Multiple resources and mental workload. The Journal of the Human 
Factors and Ergonomics Society 50 (3), 449–455. 

Yuksel, B.F., Oleson, K.B., Harrison, L., Peck, E.M., Afergan, D., Chang, R., Jacob, R.J., 
2016. Learn piano with BACh: An adaptive learning interface that adjusts task 
difficulty based on brain state. Proceedings of the 2016 CHI Conference on Human 
Factors in Computing Systems. ACM, pp. 5372–5384. 

Zhu, Y., Rodriguez-Paras, C., Rhee, J., Mehta, R.K., 2020. Methodological approaches 
and recommendations for functional near-infrared spectroscopy applications in HF/ 
E research. Human factors 62 (4), 613–642. 

Wilson, M. L., Sharon, N., Maior, H. A., Midha, S., Craven, M. P., Sharples, S., 2018. 
Mental workload as personal data: designing a cognitive activity tracker. In 
Proceedings of the 3rd Symposium on Computing and Mental Health: 
Understanding, Engaging, and Delighting Users. 

S. Midha et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0018
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0018
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0019
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0019
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0019
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0020
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0020
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0021
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0022
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0022
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0023
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0023
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0023
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0024
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0024
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0024
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0025
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0025
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0025
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0026
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0026
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0027
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0027
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0027
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0028
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0028
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0028
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0029
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0029
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0029
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0030
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0030
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0031
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0031
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0031
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0032
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0032
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0032
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0033
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0033
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0033
https://doi.org/10.1145/1357054.1357070
https://doi.org/10.1145/1357054.1357070
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0035
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0035
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0036
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0036
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0037
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0037
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0037
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0038
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0038
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0039
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0039
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0039
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0040
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0040
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0041
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0041
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0041
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0041
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0042
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0042
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0042
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0043
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0043
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0043
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0043
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0044
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0044
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0044
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0045
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0045
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0046
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0046
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0046
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0047
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0047
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0047
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0048
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0048
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0048
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0049
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0049
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0049
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0049
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0050
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0050
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0051
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0051
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0051
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0051
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0051
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0052
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0052
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0052
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0053
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0053
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0054
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0054
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0054
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0054
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0055
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0055
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0056
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0056
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0056
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0056
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0057
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0057
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0057
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0058
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0058
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0058
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0058
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0059
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0059
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0059
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0060
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0060
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0061
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0061
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0061
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0062
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0062
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0062
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0062
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0063
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0063
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0063
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0064
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0064
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0065
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0065
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0066
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0066
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0066
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0067
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0067
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0067
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0069
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0069
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0069
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0069
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0068
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0068
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0068
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0068
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0070
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0070
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0071
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0071
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0071
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0072
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0072
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0074
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0074
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0074
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0074
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0075
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0075
http://refhub.elsevier.com/S1071-5819(20)30182-8/sbref0075

	Measuring Mental Workload Variations in Office Work Tasks using fNIRS
	1 Introduction
	2 Related Work
	2.1 Mental Workload Theories
	2.2 Measuring Mental Workload
	2.3 Moving from Controlled Studies to the Real World

	3 Experiment Design
	3.1 Participants
	3.2 Tasks and Conditions
	3.2.1 Reading task.
	3.2.2 Writing Task
	3.2.3 Interruptions
	3.2.4 Baseline Conditions

	3.3 Setup and Procedure
	3.3.1 Study Procedure.

	3.4 Measurements and Data Analysis
	3.4.1 Mental workload questionnaire.
	3.4.2 fNIRS Measurements


	4 Results
	4.1 NASA-TLX ratings
	4.2 fNIRS data

	5 Discussion
	5.1 The Sensitivity of fNIRS
	5.2 Interruptions

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


