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Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor with
a short median survival. Tumor recurrence is a clinical expectation of this disease
and usually occurs along the resection cavity wall. However, previous clinical ob-
servations have suggested that in cases of ischemia following surgery, tumors are
more likely to recur distally. Through the use of a previously established mech-
anistic model of GBM, the Proliferation Invasion Hypoxia Necrosis Angiogenesis
(PIHNA) model, we explore the phenotypic drivers of this observed behavior. We
have extended the PIHNA model to include a new nutrient-based vascular effi-
ciency term that encodes the ability of local vasculature to provide nutrients to
the simulated tumor. The extended model suggests sensitivity to a hypoxic mi-
croenvironment and the inherent migration and proliferation rates of the tumor
cells are key factors that drive distal recurrence.
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1 Introduction

Glioblastoma (GBM) is the most aggressive primary brain tumor [24]. It is uni-
formly fatal with a median survival from diagnosis of only 15 months with standard
of care treatment, consisting of a combination of resection, chemotherapy and ra-
diotherapy [37]. Due to the sensitive location of the tumor, there is a reliance on
clinical imaging to assess tumor treatment response and progression. Enhancement
on T1-weighted magnetic resonance imaging (T1Gd MRI) with gadolinium con-
trast shows regions where gadolinium has leaked through disrupted vasculature.
T2-weighted MRI (T2 MRI) shows infiltrative edema, fluid that has leaked from
vasculature. Abnormalities on T1Gd MRI spatially correlate with the bulk of the
tumor mass with central dark regions typically showing necrosis, whereas edema
visible on T2 MRI corresponds to regions of lower tumor cell density.

An unfortunate clinical expectation following surgical resection is tumor re-
currence, which usually presents on the edge of the resection cavity [9]; this is
known as a local recurrence. The recurrent tumor will occasionally enhance on
T1Gd MRI in a different region of the brain, away from the primary site, which
is known as a distant recurrence [9]. In some cases, the T2 MRI abnormality will
become much larger relative to the enhancement on T1Gd MRI, these cases are
known diffuse recurrences [9]. In a retrospective study by Thiepold et al. it was
shown that patients with GBM who had also suffered from perioperative ischemia,
defined as an inadequate blood supply to a part of the brain following resection,
were more likely to have a distantly and/or diffusely recurring GBM [45]. A dis-
ruption in normal vasculature can occur following GBM resection and can lead
to ischemia, affecting abnormal tissue in the same way it affects the healthy tis-
sue. By reducing available nutrients to the tumor, the tumor is forced towards a
hypoxic phenotype and becomes necrotic if the reduction is sustained. Thiepold
attributed the observed difference in recurrence patterns to the hypoxic conditions
caused by the reduction in vasculature [45]. In retrospective analyses of patient
data, Bette et al. found further supporting evidence that perioperative ischemia
promoted aggressive GBM recurrence patterns [5,6]. Bette et al. showed that pe-
rioperative infarct volume was positively associated with more multifocal disease
and contact to the ventricle, which have both been shown to negatively impact
patient survival in a pretreatment setting [1,35].

Spatiotemporal mathematical models have been used extensively to describe
the growth of GBM. These models incorporate features of tumor cells such as
cell phenotype, migration, proliferation and interactions with other cells to under-
stand how these influence observed growth behavior in GBM. Such models have
the ability to provide mechanistic insight into observed tumor growth patterns
and treatment effects. Mathematical models have been created to simulate GBM
growth on varying spatial scales from clusters of cells [15,25,36] and murine mod-
els [16,22,32] to tissue-level scales seen throughout the presentation of the disease
in patients [18,38,39,41,42,44]. Various treatments for GBM have also been mod-
eled, such as resection [27,44], chemotherapy [2,4,7] and radiotherapy [8,22,30],
which are all elements of the current standard of care. Other less widely used and
experimental treatments have also been modeled such as anti-angiogenic drugs
[18,33] and oncolytic virus therapy [13].

An example of a tissue-level growth model of GBM is the Proliferation In-
vasion Hypoxia Necrosis Angiogenesis (PIHNA) model, which has been used to
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study different mechanisms of tumor development and shows similar growth and
progression patterns to those seen in patient tumors [43]. Simulated hypoxic events
have shown an increase in glioma growth rates in spatiotemporal models of GBM
[26,28]. We have recently found the parameters of the PIHNA model that drive
faster outward growth of these simulated tumors and found that those relating to
hypoxia were in some cases extremely influential [12].

To the best of our knowledge, the impact of perioperative ischemia on recur-
rence in GBM has not been mathematically modeled before. We aim to use the
PIHNA model to gain insight into the tumor kinetics that may play a role in this
behavior.

In this work, we extend a term in the PIHNA model known as the vascular effi-
ciency term, which determines the ability of local vasculature to provide nutrients
to the tumor. We carry this out through the inclusion of a nutrient-transport equa-
tion parametrized through glucose uptake rates in GBM. We apply this extended
PIHNA model to a set of simulated perioperative ischemia cases to determine
influential mechanisms in the model that could drive ischemia-induced distal re-
currence patterns in GBM. Specifically, we vary migration and proliferation rates
of normoxic and hypoxic cell phenotypes, as well as switching rates between these
phenotypes. We find that simulated tumors with faster migration and slower pro-
liferation rates are more likely to recur distantly in cases of perioperative ischemia.
We see that this can be promoted by changes in switching rates between normoxic
and hypoxic cell phenotypes. We have also simulated these same cases with a less
intense ischemic event, and show that this in turn leads to less distantly recur-
ring tumors. Following an initial exploration of simulated resection and ischemic
injury, we present a second case example of simulated perioperative ischemia in
which we observe similar recurrence patterns that depend on migration and pro-
liferation rates of the normoxic cells. We also present two example simulations,
one with and one without ischemia, to show that ischemia can offset the growth of
dense tumor in simulations, which may contribute to diffuse recurrence following
perioperative ischemia.

2 Methods

2.1 The PIHNA Model

To simulate glioblastoma growth and spread, we have adapted a previously es-
tablished tumor growth model – the PIHNA model [12,43]. The PIHNA model
describes the growth of GBM with the interactions of vasculature in the process of
angiogenesis. This model simulates five different species. that all depend on space
and time, and their interactions:

c(x, t) – the density of normoxic tumor cells,

h(x, t) – the density of hypoxic tumor cells,

n(x, t) – the density of necrotic cells,

v(x, t) – the density of vascular endothelial cells,

a(x, t) – the concentration of angiogenic factors.
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Fig. 1: A schematic for the PIHNA model. Normoxic tumor cells (c) proliferate,
migrate, convert towards hypoxia and can become necrotic. Hypoxic tumor cells
(h) migrate and can convert back to normoxic cells or to necrotic cells. Necrotic
cells (n) accumulate as other cell types die. Angiogenic factors (a) are created in
the presence of normoxic and hypoxic cells, migrate, decay and promote the local
creation of vasculature. Vascular cells (v) proliferate through the facilitation of
angiogenic factors and migrate.

Normoxic cells proliferate with rate ρ and migrate with rate Dc, whereas hy-
poxic cells do not proliferate and migrate with rate Dh. Cells convert from nor-
moxic to hypoxic phenotypes (with rate β) and from hypoxic to normoxic phe-
notypes (with rate γ) depending on the ability of the local vascular density to
provide nutrients at their location; hypoxic cells in the model become necrotic if
they remain in a vasculature-poor region with rate αh. When any other cell type
meets a necrotic cell, they become necrotic with rate αn, as necrotic cells have
been shown to encourage cell death through the creation of an unfavorable mi-
croenvironment [29,48]. Angiogenic factors migrate with rate Da, are created by
the presence of normoxic and hypoxic tumor cells (with rates δc and δh, respec-
tively), decay naturally (λ) and are consumed through the creation and presence
of vascular cells. For a more in depth justification of these model parameters, see
Curtin et al. and Swanson et al. [12,43]. The parameter values used in this work,
as well as their units, can all be found in Table 1.

Following the literature [40], we have assumed that a high total relative cell
density of at least 80% is visible on a T1Gd MRI through the aforementioned
imaging abnormalities of enhancement and necrosis present on the image. We have
also assumed a total relative density of at least 16% is visible on a T2 MRI, due
to the spatial correlation between lower cell densities and edema. In the PIHNA
model, this translates to the total cell density T ≥ 0.8 being visible on a T1Gd
MRI and T ≥ 0.16 being visible on a T2 MRI. By construction, the T1Gd lesion
is always less than or equal in size to the T2 lesion, which agrees with patient data
[17].

We present a schematic for the PIHNA model in Figure 1 that indicates the
migration and proliferation of individual species as well as the interactions between
all model species. The PIHNA model itself is presented in Equations (1)-(5), which
we have annotated to give a full description of each of the terms in the model.
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where
V (c, h, v) =

v

v + ηc(Dc,ρ)c+ηh(Dh)h
ps

. (6)

and
T = (c+ h+ n+ v)/K. (7)

The term V is called the vascular efficiency and it models the relationship between
the vasculature and its effect on the tumor. We let V take values in [0, 1] such that
it affects the switching rates between the normoxic (c), hypoxic (h) and necrotic
(n) cell populations. When vasculature is abundant relative to other cells, V is close
to 1 representing ample nutrient supply. Whereas when vasculature is relatively
low, V is close to 0, which represents an unfavorable microenvironment of limited
nutrient supply; this promotes conversion towards hypoxic and necrotic cells. In
this work, we have extended the vascular efficiency term from previous iterations
of the PIHNA model and present the derivation of this term in the next section.

The model equations are run on a two-dimensional slice of a realistic brain
geometry from the Brainweb Database [10,11,20,21], which spatially differentiates
physiological structures such as white matter, grey matter, cerebrospinal fluid
(CSF) and anatomical boundaries of the brain. This geometry is an average of
multiple MR scans on a single patient to create a brain geometry with 1mm
accuracy on and between MR slices. This gives a voxel volume of 1mm3, which
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Definition Value/Range Units Source

Dc Diffusion rate of normoxic cells 1− 1000 mm2

year [17]

Dh Diffusion rate of hypoxic cells (0.1− 100)Dc
mm2

year [17,26]∗

ρ Proliferation rate of normoxic cells 10− 100 1/year [17]

β
Switching rate from
normoxia to hypoxia

0.1ρ, 0.5ρ 1/year [43]∗

γ
Switching rate from
hypoxia to normoxia

0.005, 0.05, 0.5 1/day [43]

αh
Switching rate from
hypoxia to necrosis

0.1β 1/year [43]∗

αn Rate of contact necrosis log(2)/50 1/day [31]

Dv Diffusion rate of endothelial cells 0.18 mm2

year [43]

Da Diffusion rate of angiogenic factors 3.15 mm2

year [43]

δc
Normoxic cell production rate

of angiogenic factors
2.77× 10−13 µmol

cell×year
[43]

δh
Hypoxic cell production rate

of angiogenic factors
5.22× 10−10 µmol

cell×year
[43]

µ
Angiogenesis vasculature

production rate
log(2)/15 1/day [43]

q
Consumption of angiogenic

factors per cell
1.66 µmol/cell [43]

λ
Natural decay rate

of angiogenic factors
15.6 1/day [43]

ω
Rate of removal of angiogenic

factors by vasculature
λ/v0

1
cell×day

[43]

K Maximal cell density 2.39× 105 cells/mm3 [43]

Pwc
Glucose consumption ratio for
normoxic cells in white matter

1.66− 4.5 - [14]∗

Pwh
Glucose consumption ratio for
hypoxic cells in white matter

1.66− 4.5 - [14]∗

P gc
Glucose consumption ratio for
normoxic cells in grey matter

0.5− 2 - [14]∗

P gh
Glucose consumption ratio for
hypoxic cells in grey matter

0.5− 2 - [14]∗

Table 1: Parameter definitions and values for the PIHNA model. ∗Parameters that
we have added/altered from the original publication of the PIHNA model [43].

we use to track tumor volume on the two-dimensional brain slice. The simulations
are implemented on white and gray matter, with differences in initial vasculature
density and nutrient consumption ratios between these tissues, not allowing for
growth of the tumor into the CSF or past the boundaries of the brain.

We initiate the simulation with a small normoxic cell population that decreases
spatially from a point with coordinates (x0, y0)

c(x, 0) = 1000e−100R2

, (8)

where R2 = (x − x0)2 + (y − y0)2. The initial seeding locations are described in
Section 2.3 and can be seen for the first location in Figure 2.

The initial vascular cell densities are heterogeneous, set to 3% and 5% of the
carrying capacity, K, in white and grey matter respectively; these values fall within
the values for cerebral blood volume found from the literature [47]. All other spatio-
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Fig. 2: An example simulation shown at a size equivalent to a circle of 1cm radius
on simulated T1Gd MRI. We show all cell densities divided by K and the an-
giogenic factor concentration divided by KM . We see how normoxic cells lead the
outward growth of the simulated GBM, followed by hypoxic cells and necrotic cells.
Angiogenic factors are mostly found in the hypoxic cell region. We also show the
regions that are assumed visible on T1Gd MRI (T ≥ 0.8) and T2 MRI (T ≥ 0.16)
as well as the point where the tumor is initiated (black pixel). In this simulation,
Dh/Dc = 10, Dc = 101.5mm2/year, ρ = 100/year, β = 0.5ρ and γ = 0.05/day.

temporal variables are initially set to zero. There are no-flux boundary conditions
on the outer boundary of the brain for all variables as well as on the CSF that do
not allow growth outside of the brain or into CSF regions.

2.2 Nutrient-Based Vascular Efficiency

The extended vascular efficiency term uses a reaction-transport equation to model
the nutrient consumption by the tumor cells. Using this reaction-transport equa-
tion for the movement and consumption of nutrient, f1, the derivation of the
vascular efficiency term goes as follows:

∂f

∂t
= ∇ · (Df∇f) + psv(fblood − f)− ηc(Dc, ρ)cf − ηh(Dh)hf, (9)

where p is the permeability of the blood brain barrier to nutrient, s is the vascular
surface area per unit volume, fblood is the concentration of nutrient in the blood

1 We denote this as f to represent fuel for the cells, to avoid reusing n which is already
assigned to necrotic cells.
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which is assumed fixed2, ηc is the rate of nutrient consumption by normoxic cells
and ηh is the nutrient consumption rate by hypoxic cells. We have let ηc depend on
the diffusion (Dc) and proliferation (ρ) rates of normoxic cells, as these processes
require energy. A larger Dc and ρ will require more energy as the tumor cells
migrate and proliferate relatively quickly. Similarly, we have set ηh to depend on
the value of Dh, as faster migrating tumor cells require more energy and in turn
more nutrient.

Now if we assume that in the timescale of interest, the nutrient concentration
rapidly reaches steady state, and that the nutrient is consumed much faster than
it diffuses, we can eliminate those terms to be left with

0 = 0 + psv(fblood − f)− ηc(Dc, ρ)cf − ηh(Dh)hf (10)

and rearrange to get

f

fblood
=

v

v + ηc(Dc,ρ)c+ηh(Dh)h
ps

. (11)

We assign this expression as the vascular efficiency term, V , as it corresponds to
the ability of the vasculature to provide nutrients to the tumor. This term is similar
to that seen in the original formulation of the PIHNA model but now includes the
nutrient consumption and extravasation of nutrients from the blood [43].

To estimate the parameters ηc, ηh and ps, we used Fludeoxyglucose (FDG)
Positron Emission Tomography (PET) data from a paper by Delbeke et al. [14].
FDG is analogous to glucose and can be detected on PET scans. We have chosen
glucose as an estimate for our generic nutrient due to the availability of imaging
data that we could use to parametrise our vascular efficiency term. Due to the in-
crease in anaerobic respiration of cancer cells compared with normal tissue, known
as the Warburg effect [23,46], we might expect oxygen uptake ratios to be lower
than glucose.

We note that to parametrize our nutrient-based vascular efficiency term, we
only need to consider the ratio between ηc : ps and ηh : ps. As both of these
expressions are in the same units of mm3/cell/year, their ratio is dimensionless.
Delbeke presents the uptake ratios between tumor and healthy tissue within both
white and grey matter. To make use of these values, we assume that in a home-
ostatic healthy brain, the rate of glucose being used by healthy tissue that is not
vasculature is equal to the rate of glucose entering from the vasculature. We do
not, however, model healthy tissue in the current formulation of the PIHNA model.
For the benefit of this section, let us introduce unaffected healthy tissue u0, with
glucose uptake rate ηu, we assume

psv0 = ηu(u0 − v0), (12)

where v0 is the initial background vascular cell density in the PIHNA model, and
u0 is the healthy tissue density. We then have ps = ηu(u0/v0−1), which will always
be positive in PIHNA simulations as vasculature takes up a small percentage of

2 It is well known that nutrient concentrations in blood (such as glucose concentration)
fluctuates throughout a single day, however we are interested in modeling tumor growth over
many days and months, so only consider the average nutrient concentration across these daily
fluctuations.
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brain volume compared to other tissue. We assume that in healthy white matter
tissue there is 3% vasculature and in grey there is 5%, so we let v0/u0 = 0.03 in
white matter and v0/u0 = 0.05 in grey matter; these values fall within realistic
values for cerebral blood volume [47]. Now the ratios of glucose uptake rates by
tumor to the glucose uptake rates by healthy tissue given by Delbeke can be
considered as various values of Pc = ηc/ηu and Ph = ηh/ηu in the PIHNA model.
So Equation 11 is now expressed as

V =
v

v + Pcηuc+Phηuh
ηu(u0/v0−1)

, (13)

and the ηu terms cancel to give

V =
v

v + Pcc+Phh
u0/v0−1

. (14)

We noted that in the work by Delbeke et al.[14] there was a spread of relative
tumor uptake values for high grade gliomas within cortical and white matter tissue
across 20 patients. As an approximation, we attributed these differences to the
nutritional demands of the individual high grade gliomas. We assign normoxic
cells with high (low) Dc and high (low) ρ in the PIHNA model with the higher
(lower) glucose uptake rates from the literature, which also vary between white
and grey matter. We assign hypoxic cells with high (low) Dh high (low) glucose
uptake rates in the same manner as the normoxic cells. The values in between the
extremes are assigned using a log linear scale, due to the large range of Dc, Dh
and ρ values used in PIHNA simulations. The ratios Pwc , P gc , Pwh and P gh are then
given by

Pw,gc (Dc, ρ) = Gw,gmax − (Gw,gmax −Gw,gmin)
log10

(
Dcmax

Dc

)
+ log10

(
ρmax

ρ

)
log10

(
Dcmax

Dcmin

)
+ log10

(
ρmax

ρmin

) (15)

and

Pw,gh (Dh) = Gw,gmax − (Gw,gmax −Gw,gmin)
log10(Dhmax

/Dh)

log10(Dhmax
/Dhmin

)
, (16)

where we use the extremes of tumor to normal tissue uptake ratios in white matter
(taken as Gwmin = 1.66 and Gwmax = 4.5) and the extremes of observed uptake ratio
in grey matter (taken as Ggmin = 0.5 and Ggmax = 2) as the minimum to maximum
glucose uptake ratios Gmin and Gmax. The maximum and minimum Dc, Dh and ρ
values are equal to the maximal and minimal rates that we run in our simulations,
see Table 1. This along with the values of v0/u0 give the parametrisation of the
nutrient-based vascular efficiency term.

2.3 Modeling Resection and Ischemia

Using the PIHNA model, we have simulated a resection that occurs once the tumor
has grown to a shape with a volume equivalent to a disc of 1cm radius on simu-
lated T1Gd imaging. The tumor was initiated at x0 = 100, y0 = 150 on the 85th
axial slice of the brain geometry. Post resection, zero-flux boundary conditions are
added around the simulated frontal lobectomy (green outline in Figure 3) so that
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regrowth into the resection cavity is not possible. This boundary condition was
chosen as recurrence into the resection cavity itself is unlikely in GBM. GBM cells
have a migratory nature and need structure and nutrients to migrate and grow [3].
As there is a lack of tissue and vasculature within the resection cavity, it is not
an environment conducive to GBM growth. Every resection is the same, in that
the same region of brain geometry is removed, which removes all of the enhanc-
ing T1Gd region. To incorporate the potential reality that surgery could induce
a nearby ischemic event (red outline in Figure 3), we add subsequent ischemia
through a transient reduction in the vasculature term, v, to a region adjacent to
the resection cavity wall. We have modeled ischemia as a reduction only at the
time point of resection, the vessels then continue to follow the model equations.
We reduced the vasculature to 1% of its value at the time of resection thus simu-
lating a near complete ischemic event in the region noted in red in Figure 3, which
is also the value used in all recurrence pattern figures presented in the main text.
In further simulations, we have also reduced the vasculature to 10% to see the
impact of this less intense simulated ischemia on recurrence locations; results of
these simulations are presented in Appendix Figures 12 - 14.

We also present a second location with a recurrence that occurs when the
tumor has reached a volume of a disc of 0.25cm radius on T1Gd imaging. In this
setting, the tumor location was initiated at x0 = 44, y0 = 132 on the 89th coronal
slice of the brain geometry. This resection cavity was simulated as a 10 pixel
radius around the initial tumor location, with ischemia as a further 5 pixel radius.
Zero flux boundary conditions are added to this resection cavity and perioperative
ischemia is simulated in the surrounding tissue.

2.4 Virtual Experiments

We run simulations for different values of normoxic cell migration (Dc with range
1− 1000mm2/year) and proliferation (ρ with range 10− 100/year), as well as test
two values of β (0.1ρ and 0.5ρ), which is the switching rate from the normoxic cell
density towards hypoxic cell density, three values of γ (0.005, 0.05, 0.5/day), which
is the switching rate back from hypoxic cell density to a normoxic cell density, and
the rate of hypoxic to normoxic cell migration, Dh/Dc (1, 10 or 100). We vary
the ratio of hypoxic to normoxic cell migration due to evidence that GBM cells
migrate faster in hypoxic conditions [19,49]. These parameters were chosen as
they represent the tumor’s response to hypoxic stress. In previous work, we have
observed that all of these parameters (except for β) influence the outward growth
rate of PIHNA simulations, which is another consideration of the effects of hypoxia
on GBM [12]. We note that the varying tumor kinetics (migration rates Dc, Dh
and proliferation rate ρ) affect the nodularity of the simulated tumors. Simulations
with higher ratios of migration to proliferation will be more infiltrative tumors,
whereas those with higher ratios of proliferation to migration will be denser tumor
masses with less infiltration and more well-defined tumor cell density boundaries.
Examples of this effect can be seen in Figure 3. We ran further simulations of
a second tumor location with β = 0.5ρ, γ = 0.5/day and Dc = 10Dh, as a
validation that the observed dependency of recurrence patterns on migration and
proliferation rates were not simply a function of the resection and ischemic regions
that we chose in the first location.
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Fig. 3: The tumor undergoes resection that removes the T1Gd imageable tumor
cell density at 1cm radius (assumed at 80% of the maximum cell density and shown
in white) as well as the surrounding tissue. In these two examples, the nodular
tumor (top row) recurs locally, whereas the infiltrative tumor (bottom row) recurs
distantly. In these simulations, β = 0.5ρ, γ = 0.05/day and Dh = 10Dc. For
the nodular tumor, Dc = 100.5mm2/year and ρ = 101.5/year. For the infiltrative
tumor, Dc = 100mm2/year and ρ = 10/year.

2.5 Defining Recurrence Location

Recurrence location of a tumor is classified as the reappearance of the tumor on
T1Gd MR scans as is done clinically [50]. If a tumor initially reappears outside
of the simulated ischemic region above a certain thresholded size (a disc of radius
2mm on simulated T1Gd MRI) before appearing anywhere else, it is classified as
distant. Whereas if it appears within the ischemic region along the cavity wall
above the same threshold before anywhere else, it is classed as a local recurrence.
Examples of these cases can be seen in Figure 3. We do not consider the nature
of T2 signal in our definition of distant recurrence. We define a mixed recurrence
when the tumor appears on simulated T1Gd MRI both inside and outside the
ischemic region before the size threshold within either region is reached. This
method of defining distant, local and mixed recurrence patterns is applied to both
tumor locations presented in this work.



12 Lee Curtin et al.

100 101 102 103

Dc (mm2/year)

101

102

 (1
/y

ea
r)

Local
Distant
Mixed

Migration Rate (mm2/year)

Pr
ol

ife
ra

tio
n 

R
at

e 
(m

m
/y

ea
r)

Slow conversion of normoxic cells to hypoxic cells

(a) β = 0.1ρ.

100 101 102 103

Dc (mm2/year)

101

102

 (1
/y

ea
r)

Local
Distant
Mixed

Migration Rate (mm2/year)

Pr
ol

ife
ra

tio
n 

R
at

e 
(m

m
/y

ea
r)

Fast conversion of normoxic cells to hypoxic cells

(b) β = 0.5ρ.

Fig. 4: Recurrence location classified for various Dc, ρ and β for Dh = 10Dc and
γ = 0.05/day. We see that higher values of β (the conversion rate from normoxic
to hypoxic cells) lead to a larger proportion of distant recurrences in Dc and ρ
parameter space. Higher migration rates, Dc, and lower proliferation rates, ρ, lead
to more distantly recurring simulated tumors.

3 Results

3.1 Individual tumor kinetics affect recurrence location following
perioperative ischemia

Extending on the paper by Thiepold et al., that suggests distant recurrence can
occur through ischemia and subsequent hypoxia [45], the PIHNA model suggests
that tumor kinetics also play a role. Figure 3 shows two simulated tumors, one
nodular and the other infiltrative, that go through resection and subsequently re-
cur. The recurrence pattern for the nodular tumor is local, whereas the infiltrative
tumor recurs distantly. Such distantly recurring tumors remain in lower cell densi-
ties within the ischemic region and appear outside on simulated T1Gd imaging as
they continue to increase their cell density outside of the ischemic region. The only
differences between the two simulations presented in Figure 3 are the migration
and proliferation rates of the tumor cells.

3.2 Tumor response to hypoxic conditions affects recurrence location

By varying individual tumor kinetics (Dc and ρ with Dh = 10Dc) and the maximal
rate at which tumor cells become hypoxic and in turn necrotic (β), with a fixed
vascular ischemia post resection, we are able to show differing tumor recurrence
locations, see Figure 4. We also varied the maximal rate at which hypoxic tumor
cells returned to a normoxic state, γ. Changing this parameter also had an effect
on the recurrence patterns, see Figure 5. A low level of γ promotes more distant
recurrence, while a high level of γ promotes local recurrence. Recurrence location
is classified as the first reappearance of a tumor on T1Gd MR imaging as described
in the previous section.
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Fig. 5: Recurrence location classified for various Dc, ρ and γ for Dh = 10Dc and
β = 0.5ρ. We see the higher (lower) values of γ lead to a lower (higher) proportion
of distant recurrences in Dc and ρ parameter space. Higher migration rates, Dc,
and lower proliferation rates, ρ, lead to more distantly recurring simulated tumors.

An increase in β leads to more sensitivity in the tumors to ischemia, which
causes them to become more hypoxic and therefore less proliferative within the
ischemic region. They are more likely to become more dense, and therefore im-
ageable on simulated T1Gd MRI, outside of the ischemic region and be seen as
a distant recurrence. Conversely, an increase in γ, the conversion rate from a hy-
poxic cell phenotype back to normoxic, hinders this effect as it limits the impact
of hypoxia on the growth of the simulated tumor. We present other simulation
results of varying β and γ in Appendix Figure 10.

3.3 Faster Hypoxic Cell Migration Rates Promote Distant Recurrence

Following this initial analysis, we also varied the hypoxic diffusion rate relative to
the normoxic counterpart, Dh/Dc. Along with the simulations where Dh = 10Dc
described in the previous section, we have set Dh/Dc = 1 and Dh/Dc = 100 (see
Figure 6). We see that the higher the Dh/Dc value, the more distantly recurring
tumors occur for fixed values of β and γ. The effect of an increase in Dh/Dc is
more pronounced for tumors that are more sensitive to the hypoxic environment
caused by the ischemia, see Appendix Figures 9 - 11. In previous work, we have
shown that an increase in Dh/Dc increases the outward growth rate of PIHNA-
simulated GBM [12]. With faster hypoxic migration rates, the simulated tumor
cell densities are able to travel through the hypoxic region faster. These tumors
can then reach the region of the brain slice unaffected by ischemia and develop
into a dense tumor mass before the tumor develops within the ischemic region.
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Fig. 6: Recurrence location classified for various Dc, ρ and Dh/Dc for β = 0.5ρ.
We see that the higher (lower) level Dh/Dc lead to a larger (smaller) proportion of
distant recurrences in Dc and ρ parameter space. Higher migration rates, Dc, and
lower proliferation rates, ρ, lead to more distantly recurring simulated tumors.

3.4 Diffuse Recurrence Present Through an Ischemia-Induced
Reduction in Dense Tumor

The paper by Thiepold considered distal recurrence as either diffuse or distant [45].
Diffuse recurrence presents as a marked increase in T2 signal without an accom-
panying increase in T1Gd enhancement. To explore how diffuse recurrence may
occur in the PIHNA model, we present a plot of T1Gd and T2 volume over time
for a simulated case of perioperative ischemia, compared with the same simulation
without such ischemia. This case recurred distantly and is an example of parame-
ters used in Subfigure 5a, with Dc = 102.5mm2/year, ρ = 101.25/year, Dh = 10Dc,
β = 0.5ρ and γ = 0.005/day. As can be seen in Figure 7, we see a reduction in
T1Gd signal as a result of the perioperative ischemia for a period of growth, while
T2 signal is less affected. If the tumor with perioperative ischemia was observed
in this window, the relative T2 signal compared with T1Gd enhancement would
appear larger, resulting in a higher probability of the tumor being considered dif-
fuse at recurrence. After some further growth, the T1Gd radii of both simulations
meet, as the tumor within the ischemic region eventually grows to a high-enough
density to be visible on T1Gd MRI.

3.5 Extent of Vasculature Reduction Impacts Recurrence Patterns

PIHNA model simulations were run with a lower level of reduction in functional
vasculature to 10% within the same geometry of perioperative ischemia shown in
Figure 3. This was implemented for all changes in β, γ and Dh presented in the
main text. In this setting, all recurrence location results in Figures 4 - 6 showed
a shift towards more local recurrence within the values of Dc and ρ that were
tested. We present these corresponding recurrence location figures in the Appendix
(Figures 12 - 14).
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Fig. 7: We present the imageable tumor radii as a function of time for two sim-
ulations. The only difference between these simulations is that one has periop-
erative ischemia and the other does not. Note that the growth of the T1Gd im-
ageable radius is delayed by the ischemia, whereas the T2 imageable radius is
minimally affected. This offset of dense tumor growth may be a contributing fac-
tor to diffuse recurrence following perioperative ischemia. In these simulations,
Dc = 102.5mm2/year, ρ = 101.25/year, Dh = 10Dc, β = 0.5ρ and γ = 0.005/day.

3.6 Validation in a Second Tumor Location

To explore the simulated recurrence location further, we ran PIHNA simulations
for a second tumor location in a coronal view. This tumor was initiated closer
to the surface of the brain and resected at a smaller T1Gd imageable tumor vol-
ume (equivalent to a disc of 0.25cm radius). We present recurrence locations and
example simulations for β = 0.5ρ, γ = 0.5/day and Dh = 10Dc with varying mi-
gration and proliferation rates in Figure 8. Other than the different location and
size at resection, these simulations have the same parameters as Subfigure 5b. As
we observed in the first location, tumors with more diffuse characteristics recurred
distantly, whereas those with more nodular characteristics and lower migration
rates tended to recur locally or mixed. In this second location, we observe some
simulated tumors with faster proliferation rates but mid-range migration rates
that also recur distantly, which we also saw some evidence of in the first location,
present in Subfigures 4b, 5a and 6a.
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Fig. 8: A) Recurrence location classified for the second tumor location in coro-
nal view, for various Dc and ρ values. As in the first location, tumors with more
diffuse characteristics recur distantly, while those with lower migration rates and
faster proliferation rates tended to be more mixed. In these simulations, β = 0.5ρ,
γ = 0.5/day and Dh = 10Dc, parameter values are equivalent to Subfigure 5b.
B) Two example simulations, with local recurrence (left) and distant recurrence
(right), showing the resection (inner green outline) and ischemic (outer red out-
line) regions. Migration and proliferation rates of these example simulations are
indicated on Subfigure A.

4 Discussion

Through mathematical modeling, we have found a possible mechanism for distal
GBM recurrence in response to ischemia. If the tumor has an invasive phenotype, it
can remain unimageable on simulated T1Gd MRI as it travels through the ischemic
region (using our assumed threshold of 80% total cell density). Once it reaches
healthy intact vasculature, it will return to a normoxic phenotype and proliferate
to an imageable density outside of the ischemic region before it does so next to
the cavity wall. We see that the switching rate from normoxic cells to hypoxic
cells plays a role in this behavior, increasing this rate leads to more distantly
recurring tumors within the parameter range of Dc and ρ that we have used
(Figure 4). Conversely, increasing the recovery rate from a hypoxic cell phenotype
to a normoxic cell phenotype leads to less distantly recurring tumors (Figure 5).
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We also note that an increase in the rate of hypoxic cell migration relative to
normoxic cell migration promotes distantly recurring tumors (Figure 6).

The migratory nature of GBM cells is a key limitation of conventional treat-
ment efficacy and contributes to tumor recurrence [34]. The dependency of distant
recurrence on cell migration shown in these simulations suggests that the use of
anti-migratory drugs may reduce the cases of distal recurrence, especially in in-
stances of perioperative ischemia. However, this result is purely theoretical at this
stage. These results may also be suggestive of tumor response to hypoxic conditions
more generally. Future work may explore patient data to compare pre-operative
infiltration patterns with distance to recurrence.

We have shown the intensity of the ischemia plays a role in the observed simu-
lated recurrence patterns (see Appendix Figures 12 - 14). A reduction in functional
vasculature to 10% of its pre-resection value does not promote distant recurrence
for as many values of Dc and ρ as the lower value of 1%. As the value of 10% does
not promote quite as much hypoxia in the ischemic region, more simulations are
able to reach a T1Gd imageable density inside this region and recur locally.

Furthermore, we have shown that similar simulated recurrence patterns occur
in a second tumor location, that was located closer to the surface of the brain
than the first and in a more functionally-important region. We also simulated
the resection of this second location at a smaller size, yet saw similar patterns of
recurrence as the first location. This suggests that the observed model behavior is
not simply a function of tumor location or the geometries that we chose for the
first resection and ischemic regions. We also ran this simulation in a coronal view
of the brain to highlight that this recurrence behavior can occur in any plane. In
the future, we can bypass this by moving the model to a more realistic 3D space.

Simulated T1Gd MRI volumes are inhibited within the ischemic region, which
may explain why diffuse as well as distant recurrences are observed in patients with
perioperative ischemia. If the hypoxic cell phenotype were maintained following
exposure to ischemia, the tumor as a whole could remain more diffuse in a clinical
sense of a large T2 volume relative to T1Gd. Utilizing the PIHNA model may
be a useful tool in our effort to understand patterns of recurrence in GBM and
understanding the role of ischemia in recurrence and growth patterns more broadly.
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cell waves around necrotic cores in glioblastoma: a biomathematical model and its thera-
peutic implications. Bulletin of Mathematical Biology 74, 12 (2012), 2875–2896.

27. Neufeld, Z., von Witt, W., Lakatos, D., Wang, J., Hegedus, B., and Czirok, A.
The role of allee effect in modelling post resection recurrence of glioblastoma. PLoS
computational biology 13, 11 (2017), e1005818.

28. Pardo, R., Martinez-Gonzalez, A., and Perez-Garcia, V. M. Nonlinear ghost waves
accelerate the progression of high-grade brain tumors. Communications in Nonlinear
Science and Numerical Simulation 39 (2016), 360–380.

29. Raza, S. M., Lang, F. F., Aggarwal, B. B., Fuller, G. N., Wildrick, D. M., and
Sawaya, R. Necrosis and glioblastoma: a friend or a foe? a review and a hypothesis.
Neurosurgery 51, 1 (2002), 2–13.

30. Rockne, R. C., Trister, A. D., Jacobs, J., Hawkins-Daarud, A. J., Neal, M. L.,
Hendrickson, K., Mrugala, M. M., Rockhill, J. K., Kinahan, P., Krohn, K. A.,
et al. A patient-specific computational model of hypoxia-modulated radiation resistance
in glioblastoma using 18f-fmiso-pet. Journal of the Royal Society Interface 12, 103 (2015),
20141174.

31. Roniotis, A., Sakkalis, V., Tzamali, E., Tzedakis, G., Zervakis, M., and Marias, K.
Solving the pihna model while accounting for radiotherapy. In Advanced Research Work-
shop on In Silico Oncology and Cancer Investigation-The TUMOR Project Workshop
(IARWISOCI), 2012 5th International (2012), IEEE, pp. 1–4.

32. Rutter, E. M., Stepien, T. L., Anderies, B. J., Plasencia, J. D., Woolf, E. C.,
Scheck, A. C., Turner, G. H., Liu, Q., Frakes, D., Kodibagkar, V., et al. Math-
ematical analysis of glioma growth in a murine model. Scientific reports 7, 1 (2017),
1–16.

33. Scribner, E., Saut, O., Province, P., Bag, A., Colin, T., and Fathallah-Shaykh,
H. M. Effects of anti-angiogenesis on glioblastoma growth and migration: model to clinical
predictions. PLoS One 9, 12 (2014), e115018.

34. Silbergeld, D., and Chicoine, M. Isolation and characterization of human malignant
glioma cells from histologically normal brain. Journal of Neurosurgery 86, 3 (1997), 525–
531.

35. Stark, A. M., van de Bergh, J., Hedderich, J., Mehdorn, H. M., and Nabavi, A.
Glioblastoma: clinical characteristics, prognostic factors and survival in 492 patients. Clin-
ical neurology and neurosurgery 114, 7 (2012), 840–845.

36. Stein, A. M., Demuth, T., Mobley, D., Berens, M., and Sander, L. M. A math-
ematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro
experiment. Biophysical journal 92, 1 (2007), 356–365.

37. Stupp, R., Hegi, M., Mason, W., van den Bent, M., Taphoorn, M., Janzer, R.,
Ludwin, S., Allgeier, A., Fisher, B., Belanger, K., et al. Effects of radiotherapy
with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in
glioblastoma in a randomised phase iii study: 5-year analysis of the eortc-ncic trial. The
Lancet Oncology 10, 5 (2009), 459–466.

38. Subramanian, S., Gholami, A., and Biros, G. Simulation of glioblastoma growth using
a 3d multispecies tumor model with mass effect. Journal of mathematical biology 79, 3
(2019), 941–967.

39. Swan, A., Hillen, T., Bowman, J., and Murtha, A. A patient-specific anisotropic
diffusion model for brain tumour spread. Bulletin of Mathematical Biology 80, 5 (2018),
1259–1291.

40. Swanson, K. Mathematical Modeling of the Growth and Control of Tumors. PhD thesis,
University of Washington, 1999.



20 Lee Curtin et al.

41. Swanson, K., Alvord, Jr, E., and Murray, J. A quantitative model for differential
motility of gliomas in grey and white matter. Cell Prolif 33, 5 (Oct 2000), 317–29.

42. Swanson, K., Bridge, C., Murray, J., and Alvord, E. Virtual and real brain tumors:
using mathematical modeling to quantify glioma growth and invasion. Journal of the
Neurological Sciences 216, 1 (2003), 1–10.

43. Swanson, K., Rockne, R., Claridge, J., Chaplain, M., Alvord, E., and Anderson, A.
Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling
integrates imaging and histology. Cancer Research 71, 24 (2011), 7366–7375.

44. Swanson, K., Rostomily, R., and Alvord, E. A mathematical modelling tool for predict-
ing survival of individual patients following resection of glioblastoma: a proof of principle.
British Journal of Cancer 98, 1 (2008), 113–119.

45. Thiepold, A., Luger, S., Wagner, M., Filmann, N., Ronellenfitsch, M., Harter,
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A Recurrence Results of Other PIHNA Simulations

We present the results of PIHNA simulations that were not shown in the main text. The trends
in distant recurrence patterns that we observe in the main text all hold in these simulations,
supporting our observations regarding Dh/Dc, β, γ, Dc and ρ.
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Fig. 9: Recurrence location classified for various Dc, ρ, β and levels of ischemia
for Dh = Dc for γ = 0.005/day and γ = 0.5/day. We see that higher values of β
and lower levels of γ lead to a larger proportion of distant recurrences in Dc and
ρ parameter space. Higher migration rates, Dc, and lower proliferation rates, ρ,
lead to more distantly recurring simulated tumors.
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Fig. 10: Recurrence location classified for various Dc, ρ, β and levels of ischemia
for Dh = 10Dc for γ = 0.005/day and γ = 0.5/day. We see that higher values of β
and lower levels of γ lead to a larger proportion of distant recurrences in Dc and
ρ parameter space. Higher migration rates, Dc, and lower proliferation rates, ρ,
lead to more distantly recurring simulated tumors.
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Fig. 11: Recurrence location classified for various Dc, ρ, β and levels of ischemia
for Dh = 100Dc for γ = 0.005/day and γ = 0.5/day. We see that higher values
of β and lower levels of γ lead to a larger proportion of distant recurrences in Dc
and ρ parameter space. Higher migration rates, Dc, and lower proliferation rates,
ρ, lead to more distantly recurring simulated tumors.
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Fig. 12: Recurrence location classified for various Dc, ρ, β and levels of ischemia
for Dh = 10Dc for γ = 0.05/day. In these simulations, perioperative ischemia was
set at 10% of the pre-resection value. We see a larger proportion of local recurrence
in these figures compared with those in the main text (see Figure 4).
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Fig. 13: Recurrence location classified for various Dc, ρ, β and levels of ischemia
for Dh = 10Dc for γ = 0.005/day. In these simulations, perioperative ischemia was
set at 10% of the pre-resection value. We see a larger proportion of local recurrence
in these figures compared with those in the main text (see Figure 5).
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Fig. 14: Recurrence location classified for various Dc, ρ and Dh levels for β = 0.5ρ
and γ = 0.05/day. In these simulations, perioperative ischemia was set at 10%
of the pre-resection value. We see a larger proportion of local recurrence in these
figures compared with those in the main text (see Figure 6).
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