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Abstract: Greater awareness of the serious human rights abuses associated with the extraction and 

trade of cobalt in the Democratic Republic of the Congo (DRC) has applied increasing pressure for 

businesses to move towards more responsible and sustainable mineral sourcing. Artisanal and 

small-scale mining (ASM) activities in rural and remote locations may provide heightened 

opportunities to conceal the alleged human rights violations associated with mining, such as: 

hazardous working conditions, health impacts, child labour, child trafficking, and debt bondage. In 

this study, we investigate the feasibility of the Intermittent Small Baseline Subset (ISBAS) 

interferometric synthetic aperture radar (InSAR) method, teamed with high temporal frequency 

Sentinel-1 imagery, for monitoring ASM activity in rural locations of the “Copperbelt”, the DRC. 

The results show that the ISBAS descriptive variables (mean, standard deviation, minimum, and 

maximum) were significantly different (p-value = ≤ 0.05) between mining and non-mining areas. 

Additionally, a significant difference was found for the ISBAS descriptive variables mean, standard 

deviation, and minimum between the different mine types (industrial, surface, and tunnels). As 

expected, a high level of subsidence (i.e., negative ISBAS pixel value) was a clear indicator of mine 

activity. Trial activity thresholds were set for the descriptive variables mean (-2.43 mm/yr) and 

minimum (-5.36 mm/yr) to explore an ISBAS approach to active mine identification. The study 

concluded that the ISBAS method has great potential as a monitoring tool for ASM, with the ability 

to separate mining and non-mining areas based on surface motion values, and further distinguish 

the different mine types (industrial, surface, and tunnel). Ground data collection and further 

development of ISBAS analysis needs to be made to fully understand the value of an ISBAS-based 

ASM monitoring system. In particular, surrounding the impact of seasonality relative to longer-

term trends in ASM activity. 

Keywords: cobalt; sustainable mining; surface motion; Copperbelt; Intermittent Small BAaseline 

Subset (ISBAS); InSAR; Sentinel-1 
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1. Introduction 

The increasing demand for rechargeable batteries to power the necessities of modern life, such 

as smartphones, laptops, and electric vehicles, has resulted in a chaotic scramble for cheap materials 

in the world’s largest known copper/cobalt reserve (in the Democratic Republic of the Congo (DRC)). 

Reports from non-government organisations (NGOs) and media outlets [1–7] have sparked outrage 

over the alleged serious injustices associated with the extraction and trade of cobalt in the DRC, 

including: hazardous working conditions, child labour, child trafficking, debt bondage, and health 

and environmental impacts. Such injustices map onto a number of United Nations (UN) Sustainable 

Development Goals (SDGs), most notably SDG 8: Decent Work and Economic Growth and SDG 16: Peace, 

Justice and Strong Institutions. There is also a growing level of concern over potential conflicts in 

striving to address the SDGs surrounding “green conflict minerals” such as cobalt [8]. Efforts to step 

into low-carbon economies to meet SDG 7: Affordable and Clean Energy and SDG 13: Climate Action, via 

cobalt, contradict the targets of other SDGs. Thus, it is essential that responsible and sustainable 

sourcing practices are secured in “green conflict mineral” supply chains, in order to achieve the UN 

SDGs by 2030. 

The DRC produces an estimated 50%-70% of global cobalt supply in a region known as the 

“Copperbelt”, an area of concentrated copper/cobalt deposits that extends from southern DRC to 

northern Zambia. Cobalt mining in the DRC is divided into two distinct categories: large-scale mining 

(LSM) and artisanal and small-scale mining (ASM). LSM is the main producer of cobalt in the DRC, 

comprising 70%-80% of total production while ASM represents the remaining 20%-30% [9]. The exact 

percentage breakdown of LSM and ASM output is a topic of debate, a lack of credible material 

traceability, and ASM’s role as a “swing producer” to meet fluctuating supply and demand, mean 

reported ASM/LSM estimates can vary widely. Unlike industrial LSM, ASM adopts a rudimental, 

labour-intensive form of mineral exploration, extraction, and processing with minimal to no 

oversight, regulation, and safety measures. Poverty and a lack of alternative employment have 

“pushed” miners into working under increasingly unsafe and economically unstable employment 

[10,11]. Furthermore, child labour is widespread in ASM [12–14]. Away from the major cities 

(Lubumbashi, Likasi, and Kolwezi) and towns of the Copperbelt, large areas of land cover a more 

remote and rural setting. This remote mountainous landscape may provide heightened opportunities 

to conceal the serious abuses associated with cobalt ASM practices in the DRC. Kara’s fieldwork [15], 

documented 31 ASM locations in the Copperbelt. Some of these sites were previously undocumented 

and tended to be situated in the remote mountains near the Zambian border. Estimates for workers 

involved in ASM practices vary widely [9], where discrepancy between estimates results from the 

questionable legal status and seasonality, by the fluctuating international market and calendar year, 

of ASM. Additional uncertainty stems from a lack of data for ASM activity in rural and remote 

settings as these tend to be “hidden”. 

From a “responsible” supply chain management standpoint, sourcing cobalt from LSM is often 

presented as a viable measure to avoid the human rights risks which are considered to be more 

prevalent in ASM. However, there is extensive interactions between LSM and ASM from production 

through to supply. Despite the “cleaner” perception of LSM, a significant number of LSM operators, 

processors, and refiners source and blend ASM material with those of LSM [9]. Kara’s research 

discovered many workers involved in ASM activates were also working on LSM sites with tacit 

approval of mining companies. Lack of reliable information or traceability of source materials has 

made it highly likely that cobalt derived for ASM has entered global supply chains as LSM [16]. 

Increasing customer and stakeholder awareness of the human rights abuses associated with sourcing 

cobalt from the DRC has applied pressure for businesses to prove responsible and sustainable activity 

throughout their supply chains [17]. 

In December 2019, a US lawsuit based on Kara’s research named several large tech companies, 

such as Apple, Google, Microsoft, Dell, and Tesla, as knowingly sourcing cobalt mined by children 

at various sites under dangerous conditions that ultimately led to serious injury and death [18]. In 

response to this legal challenge, several of the named companies have restated their commitment to 

work against human rights abuses in their supply chains, opting to halt all sourcing of cobalt from 
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ASM in the DRC. However, for many, including China’s biggest cobalt producer Huayou Cobalt, this 

halting is just a temporary measure “until relevant standards can be recognised and supported by 

the whole industry” (Huayou Cobalt statement) [19]. Many, such as Mark Dummet, head of business, 

security and human rights at Amnesty International, have criticised this direct approach, saying “We 

need to see companies working with the authorities to formalise ‘the ASM cobalt sector’— make it 

safer, remove children, provide miners with a fair price. By refusing to buy from artisanal miners, 

Huayou risks making the situation for these miners worse, not better.” [19]. 

In early 2020, the DRC government announced a new formalisation of ASM in a bid to take 

charge and improve the country’s cobalt sector. A new State-run company, named Entreprise 

Generale du Cobalt (overseen by Gecamines), has been granted monopoly powers to purchase and 

market all ASM cobalt outputs. It is hoped that this new purchasing power will allow greater State 

oversight of working conditions in the ASM sector, prioritising the elimination of child labour and 

improved safety measures. This move has been branded as an effort to clean up supply chains 

dominated by Chinese traders and support the price of cobalt in a fluctuating market [20]. Through 

NGOs, the Entreprise Generale du Cobalt selects ASM cooperatives based on their compliance to 

responsible sourcing criteria. Those that do not meet the criteria will be “sanctioned”, although what 

these sanctions may look like remains unclear [21]. Increased State control might be a welcome 

development for the cobalt market; however, the country’s history of weak governance and grand 

corruption poses a serious risk to the responsible management of a formalised ASM sector. It must 

also be asked, how far will these new government efforts work towards formalising ASM in rural 

and remote settings? Undocumented ASM sites operate undetected and unregulated in the 

Copperbelt’s densely forested and mountainous landscape. Thus, a major data gap lies in our 

knowledge of the scale and impact of ASM activity, particularly in remote and rural locations. 

Satellite Earth Observation (EO) has been flagged as a practical and informative data source in 

tackling the diverse range issues addressed by the SDGs [22–24]. Recently, a growing number of 

studies have applied a range of EO technologies and data to explore SDG targets and indicators 

related to human rights violations [25–28]. In this paper, we focus on satellite radar interferometry as 

a technology suitable for providing data on ASM activity in the DRC. Radar interferometry is a well-

established EO technique for monitoring surface motion [29,30] and has been widely applied in the 

mining sector [31–33]. Differential interferometric synthetic aperture radar (DInSAR) is a method that 

measures the difference in the recorded phase from two synthetic aperture radar (SAR) images 

acquired over the same region of the Earth’s surface at different times. Teamed with state-of-the-art 

satellite constellations, such as the European Space Agency’s Sentinel-1, this method has the capacity 

to repeatedly monitor surface motion at millimetre precision over large areas, including areas 

inaccessible by fieldwork due to access issues or safety risks. The integration of DInSAR and Global 

Positioning System (GPS) measurements has been previously trailed as a monitoring tool for 

underground mine-induced surface subsidence. Yuan et al. [34] and Hu et al. [35] both investigated 

this approach for illegal coal mine detection, producing encouraging results over case study areas in 

Asia. Hu et al. [35], in particular, demonstrated the efficiency and reliability of a DInSAR-based 

method for extracting key information on the geometric, spatial, and temporal characteristics of mine 

and illegal mine subsidence. An advanced DInSAR processing technique, the Intermittent Small 

BAseline Subset (ISBAS) method [36], has been increasingly utilised in rural and densely vegetated 

landscapes, areas which are often challenging for DInSAR algorithms as a result of low coherence 

[37]. The development of the ISBAS method has proved useful in investigating surface motion in 

various applications including: groundwater rebound and abstraction [38], oil and gas production 

and storage [39,40], landslides [41], and monitoring peatland in temperate and tropical environments 

[42–45]. Notably, the ISBAS method has been previously used in mining applications, predominantly 

in coalfields found in the United Kingdom (UK) [36,46–49]. Gee et al. [46] applied the ISBAS method 

to ERS (European Remote Sensing), ENVISAT (Environmental Satellite), and Sentinel-1 SAR datasets 

covering the time periods of the late 1990s, the 2000s, and the mid-2010s, respectively, over the 

Northumberland and Durham coalfield, UK. The study reported regional patterns of uplift present 

in the ISBAS derived outputs from all three datasets, often occurring in previously mined areas. The 
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uplift was attributed to the increase in pore water pressure after mine closure; however, it was 

recognised that further work is required to fully understand the degree of influence rising mine water 

has on ground surface motion. Localised subsidence was also identified over former mines during 

the late 1990s, with subsidence hotspots detected in close proximity to former mining infrastructure.  

Bateson et al. [47] implemented the ISBAS method on ERS data for the time period 1992–1999 over 

the South Wales coalfield, UK. The results presented broad areas of uplift from the derived ISBAS 

outputs; again this was associated with groundwater rebound following the removal of mining 

infrastructure and pumping activity associated with mine closure. Both investigations highlight the 

complexity of a post-mining landscape, in particular the interactions between surface motion and the 

subsurface environment, and the benefit of the ISBAS method in characterising these. 

When pairs of SAR images are used to form an interferometric pair, the coherence, or complex 

correlation, between the images, can be a good indication of change. A coherence analysis has already 

been used to good effect to identify changes relating to illegal open-pit mining over a relatively arid, 

sparsely vegetated site [50]. However, rural areas of the DRC’s Copperbelt are dominated by thick 

vegetation, which, because of its association with very low coherence, would likely preclude a similar 

type of analysis for cobalt mining. Land subsidence is a clear indicator of underground and surface 

mining activity and, therefore, high-resolution monitoring of surface motion through satellite EO 

data has the potential to provide key insights into cobalt ASM dynamics. The aim of this study is thus 

to investigate the feasibility of using the ISBAS method, already proven to work in challenging 

environments, teamed with high temporal frequency Sentinel-1 imagery, for monitoring ASM 

activity in rural and remote locations of the Copperbelt in the DRC using subsidence as the indicator. 

To the best of our knowledge, this is the first peer-reviewed study regarding the application of the 

ISBAS (or any related InSAR) method to a cobalt mining environment. The complex surface 

movements and subsidence patterns produced from different types of cobalt mining—industrial 

mining (LSM), surface mining (ASM) and tunneling (ASM)—combined with the humanitarian issues 

associated with DRC’s ASM sector, create a novel and indeed worthy landscape to investigate the 

application of the ISBAS method. In this study, we ask the question: can the ISBAS approach be used 

to identify active areas of ASM in a rural landscape? Data resources, such as reliable ASM monitoring 

systems, are required to inform and support positive reforms to workers’ rights [51] and work 

towards meeting SDG targets [52]. However, past experience of the DRC’s fragile governance and 

grand corruption suggests there is no guarantee that the data will not be used nefariously. As a result, 

we will not publish specific geographical information (i.e., coordinates) of the study area to protect 

vulnerable people and communities at risk of further harm. 

2. Materials and Methods 

2.1. Study Area 

The study focuses on a large rural area (>6000 km2) in the heart of the Copperbelt: between the 

cities Kolwezi and Lubumbashi, the respective capitals of Lualaba and Haut-Katanga provinces, DRC 

(Figure 1). The region's subtropical climate is characterised by two distinct seasons, rainy 

(November–April) and dry (May–October). With a mean annual temperature of 20 °C and a mean 

annual rainfall of 1300 mm (the majority (1200 mm) of which falls during the rainy season). The 

dominant natural vegetation is open deciduous Miombo woodland, with herbaceous vegetation 

covering the prominent steep copper/cobalt hills [53]. Miombo woodland has a rich fauna and flora 

and is essential in providing goods and services to support local rural livelihoods [54]. Local 

employment centres on mining (Figure 2 and Figure 3) and subsistence farming activities. 
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Figure 1. Map of the “Copperbelt” with the location of the major cities and townships. Yellow line 

represents the road network. 

 

Figure 2. Cobalt mining site near Kasulo. Photograph: Siddharth Kara. 

 

Figure 3. Cobalt tunnel mine. Photograph: Siddharth Kara. 
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Copper/cobalt concentrations vary across the study area, with large clusters of mining activity 

featured around established deposits, as well as isolated examples of mineral exploration and 

extraction. Cobalt mining in the DRC forms two distinct sectors: LSM and ASM (Table 1 and Table 

2). 

Table 1. Summary of the defining features of large-scale (LSM) and artisanal and small-scale (ASM) 

cobalt mining, including the mining operations and negative associations. 

LSM/ASM 
Mine 

Type 
Mining Operations Negative Associations 

LSM Industrial 

• long-term operations 

• high capital investment 

• uniform, terraced platform pit structure 

• use large machinery and a high degree of 

mechanisation and automation (surface 

scrapers, bulldozers, and diggers) 

• often operator, processor, and refiner sit in 

the same mining complex (high proportion of 

industrial buildings and infrastructure) 

• bribery and corruption 

• money laundering 

• tax evasion 

ASM Surface 

• low capital investment 

• open pit, irregular surface texture (lunar) 

• labour intensive, rudimentary tools (shovels, 

chisels, and mallets) and handpicking (mineral 

sorting) 

• varying levels of formalisation (permits) 

• hazardous working 

conditions 

• alcohol abuse 

• child labour 

• child trafficking 

• debt bondage (high 

degree of dependency on 

sponsors) 

• violence and extortion by 

security forces 

ASM Tunnel 

• seasonal work (calendar year and cobalt 

price) 

• low capital investment 

• underground tunnels up to 30 m deep 

• dug with shovels, chisels, and mallets 

• tunnel structure supported by wooden 

stakes 

• vary in number from 10s to 100s in one 

location 

• hazardous working 

conditions 

• alcohol abuse 

• child labour 

• child trafficking 

• debt bondage (high 

degree of dependency on 

sponsors) 

• violence and extortion by 

security forces 

Table 2. Surface motion characteristics (subsidence and uplift) of large-scale (LSM) and artisanal and 

small-scale (ASM) cobalt mining. 

LSM/ASM 
Mine 

Type 

Surface Motion Characteristics: 

Subsidence Uplift 

LSM Industrial 

• a high volume of rock material 

removal 

• creation of terrace structure 

• exploration of new deposits 

• exploration of deeper deposits 

• rock material pilling 

• halt in activity or abandonment of 

pit 

• development of infrastructure 

ASM Surface 

• landslides 

• mineral extraction 

• exploration of new deposits 

• removal of vegetation 

• rock material pilling 

• seasonality  

• halt in activity or abandonment of 

pit 

ASM Tunnel 

• tunnel collapse 

• vertical and horizontal digging 

• groundwater level movement 

• mineral extraction 

• rock material pilling 

• seasonality  

• halt in activity or abandonment of 

tunnel 
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• exploration of new deposits 

• removal of vegetation 

2.2. Sentinel-1 ISBAS Processing:  

Eighty-two Sentinel-1 Interferometric Wide Swath Single Look Complex (Level 1) images along 

descending track 94 were used over our area of interest (AOI). All images were downloaded from 

the Copernicus Open Access Hub (https://scihub.copernicus.eu/). Our AOI was divided into two 

tiles, hereby know as North tile and South tile. SAR images were acquired for the time frame 6/3/2017 

to 26/1/2020. This time frame marks a dynamic period in the DRC’s cobalt mining sector, with 

demand and price skyrocketing up to a peak in 2018 and steadily falling to present levels by mid-

2019. Additionally, this longer time frame was selected to provide sufficient frames for ISBAS 

processing [47]. 

Images were processed using the modified ISBAS processing chain for Sentinel-1, as outlined by 

Sowter et al. [36,38], to produce vertical surface motion mapping. This method maximises coverage 

in rural and vegetated areas compared with alternative DInSAR processing techniques [55] by 

permitting pixels of variable coherence to be considered alongside those with consistently high 

coherence [38,47]. This advantage was critical, as our AOI is highly vegetated (forest and agriculture) 

and experiences intense seasonal variability (rainy and dry seasons). ISBAS processing sets a 

threshold of average coherence at 0.45 to identify coherent pixels. From the coherent pixels identified, 

1651 interferograms were produced from the Sentinel-1 images, with a temporal baseline of 365 days 

and a geometric baseline set to 100 m. Topographic phase was removed from the interferograms with 

the aid of the 90 m Shuttle Radar Topography Mission (SRTM) digital elevation model [56]. The 

resulting differential interferograms were subsequently subjected to multi-looking to reduce the 

correlation coefficient used in the calculation of coherence. Each coherent pixel was unwrapped in 

relation to a reference pixel using a statistical-cost network-flow algorithm [57], and the line-of-sight 

(LOS) velocity and error calculated by regression analysis. Vertical velocity was calculated for each 

pixel through a simple trigonometric transformation from the LOS to generate a deformation (surface 

motion) map with a 20 m spatial resolution. The percentage of “NA” pixels (i.e., missing data) was 

calculated for the North and South tile outputs. 

2.3. Mine Identification 

Mines were visually identified in very high resolution (VHR) satellite imagery within the Google 

Earth platform. Identification was guided by expert knowledge gained from extensive fieldwork in 

the DRC’s Copperbelt. A database of all mines identified within the boundaries of the North and 

South tile was created, with mines categorised as Industrial, Surface, or Tunnel (Table 3). Data 

collected for each mine included: identification number, coordinates, digitised polygon, polygon area 

(m2), mine type, and date of the first appearance in the VHR imagery held in Google Earth. 

Table 3. Summary of the visual features used to identify the different mine types on Google Earth. 

Visual Features 

Industrial Surface Tunnel 

 uniform, terraced platform pit 

structure 

 steep slopes 

 large industrial complexes 

 a high proportion of industrial 

buildings and infrastructure  

 often walled off from 

surrounding areas 

 open pit, irregular surface 

texture (lunar) 

 crevasse and craters created 

from the constant removal 

and scraping of rock 

 vary in size  

 often found adjacent to 

industrial LSM complexes 

 often found near bodies of 

water for washing and 

sorting purposes 

 tunnel hole between 1-2 m in 

diameter 

 pink tarp tents (covering tunnel 

hole) 

 vary in numbers from 10s to 

100s in one location 

 often found adjacent to 

industrial LSM complexes 
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This approach might be limited by the availability of VHR data in Google Earth. The spatial and 

temporal availability of satellite data in Google Earth varies globally [58], as this is based on satellite 

coverage and agreements with data providers. Throughout our search of the Google Earth archives, 

areas with little VHR data available were noted and referred back to in data interpretation. 

2.4. Statistical Analysis: 

The ‘sp’ and ‘rgdal’ packages for R (version 3.6.3) were used to generate a random sample set of 

non-mine locations within the North and South tile boundary, thus creating a non-mine dataset. The 

non-mine dataset matched the mine dataset by sample number and polygon area (m2) distribution. 

Polygons from the mine and non-mine datasets were used to extract descriptive variables—mean, 

standard deviation, minimum, and maximum—from the ISBAS outputs for statistical analysis. 

The Wilcoxon test was used to determine if there were statically significant differences in the 

ISBAS descriptive variables (mean, standard deviation, minimum, and maximum) between mine and 

non-mine polygons. The Kruskal test and Pairwise Wilcoxon test (with Bonferroni adjustment to 

correct for familywise error in the Kruskal-Wallis tests) were used to determine if there were statically 

significant differences (p-value = ≤ 0.05) in the ISBAS descriptive variables (mean, standard deviation, 

minimum, and maximum) between the different mine types (industrial, surface, and tunnels). All 

statistical analysis was conducted in R software (version 3.5.2). 

2.5. ASM Activity: 

Based on the results from the statistical analysis of the ISBAS descriptive variables (mean, 

standard deviation, minimum, and maximum) between mine and non-mine polygons, an activity 

threshold was set to identify active ASM (surface and tunnel) sites during the study time period, 

6/3/2017 to 26/1/2020. A conservative activity threshold was set as a trail for exploring this approach, 

with the hope that future ground data collection and development of this technique will produce a 

more tailored and nuanced understanding of ASM surface motion patterns. 

3. Results 

3.1. ISBAS Surface Motion Outputs: 

The Sentinel-1 derived ISBAS surface motion outputs attained good spatial coverage across the 

study area (over land), given the rural landscape and mountainous terrain. The ISBAS results cover 

more than 91% of the pixels in the North tile and more than 95% of the pixels in the South tile (Table 

4). 

Table 4. A comparison of missing data (NA pixels) for the Sentinel-1 derived ISBAS surface motion 

North and South tile outputs. 

Tile Total Number of Pixels Number of NA Pixels Percentage of NA Pixels 

North 12,792,848 1,066,479 8.3% 

South 6,466,246 313,431 4.8% 

Surface motion maps and histograms for the North and South tile (Figure 4) illustrate the spatial 

distribution of surface motion for the time period 6/3/2017 to 26/1/2020. Negative values indicate 

subsidence and positive values uplift. ISBAS values range from -17.69 mm/yr to + 8.31 mm/yr with 

an average pixel value of -1.87 mm/yr across the North tile, and -7.91 mm/yr to + 4.55 mm/yr with an 

average pixel value of -0.61 mm/yr across the South tile. Several notable areas of localised subsidence 

were identified in the North tile that translated directly to several LSM sites registered in the Google 

Earth reference data. Areas of uplift generally fell over large stretches of Miombo woodland, 

recognised in the Google Earth reference data. The respective standard errors range from 0.35 mm/yr 

to 1.54 mm/yr with an average of 0.96 mm/yr across the North tile, and 0.36 mm/yr to 1.64 mm/yr 

with an average of 1.05 mm/yr across the South tile. Over large mining areas, the standard error is 

very low due to the high number of coherent pixels per point over the bare/rocky land cover. 
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Figure 4. Sentinel-1 derived ISBAS surface motion (mm/yr) map outputs and histogram for North 

and South tile. Negative values indicate subsidence and positive values uplift. 

3.2. Mine Identification: 

Within the defined study area, 215 mining locations were identified, digitised (polygon created), 

and categorised by mine type (industrial, surface, and tunnel) in the Google Earth platform (Table 5). 

Table 5. Results from the Google Earth mine identification and polygon digitisation. 

Mine Type Number Mean Area (m2) 
Minimum Area 

(m2) 

Maximum Area 

(m2) 

Industrial 48 512,309.02 5002 2,213,418 

Surface 100 374,595.02 1166 17,658,728 

Tunnel 67 59,514.82 411 458,686 

A limitation of this approach is the availability of VHR data on the Google Earth platform, both 

in terms of area and temporal coverage. It was noted during the visual search that a higher volume 

of VHR data was found in areas where LSM was located. Additionally, error might be introduced 

from the researcher’s bias in the visual interpretation of a mining site and/or type. However, expertise 

and guidance from extensive fieldwork in the DRC’s Copperbelt reduces the potential error in mine 

identification and provides confidence in our results. 
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3.3. Statistical Analysis: 

A significant difference between mine and non-mine polygons was found for all descriptive 

variables derived from the ISBAS outputs: mean (W= 3361, d.f. = 1, p-value = <0.001), standard 

deviation (W= 15792, d.f. = 1, p-value = <0.001), minimum (W= 4025, d.f. = 1, p-value = <0.001), and 

maximum (W= 7238, d.f. = 1, p-value = <0.001) (Table 6, Figure 5). 

Table 6. Median and interquartile range (IQR) values for the mine and non-mine ISBAS descriptive 

variables (mean, standard deviation, minimum, and maximum). 

Mine/Non-

Mine 

Mean Standard Deviation Minimum Maximum 

Median IQR Median IQR Median IQR Median IQR 

Mine −2.33 1.72 0.93 0.49 −4.64 3.20 −0.05 1.63 

Non-Mine −1.13 0.81 0.79 0.16 −2.67 1.59 0.65 0.90 

 

Figure 5. Wilcoxon test results and boxplots for mine and non-mine descriptive variables (mean, 

standard deviation, minimum, and maximum). 

A significant difference between mine type (industrial, surface, and tunnels) was found for the 

descriptive variables mean (Kruskal-Wallis: Chi-square = 29.93, df = 2, p-value = <0.001), standard 

deviation (Kruskal-Wallis: Chi-square = 41.68, df = 2, p-value = <0.001) and minimum (Kruskal-Wallis: 

Chi-square = 64.74, df = 2, p-value = <0.001) (Table 7, Figure 6). No significant difference was found 

between mine type (industrial, surface, and tunnels) for maximum polygon value (Kruskal-Wallis: 

Chi-square = 2.97, df = 2, p-value = 0.23) (Table 7, Figure 6). 
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Table 7. Median and interquartile range (IQR) values for the different mine type ISBAS descriptive 

variables (mean, standard deviation, minimum, and maximum).  

Mine 

Type 

Mean Standard Deviation Minimum Maximum 

Median IQR Median IQR Median IQR Median IQR 

Industrial −3.02ab 2.35 1.41de 0.88 −7.16gh 4.52 0.26 2.11 

Surface −2.52ac 1.50 0.92df 0.42 −4.94gi 2.54 −0.12 1.58 

Tunnel −1.75bc 1.19 0.83ef 0.31 −3.27hi 1.62 −0.07 1.45 

Significant pairwise Wilcoxon tests with Bonferroni adjustments share the same subscript letter. 

 

Figure 6. Kruskal-Wallis test results and boxplots for the different mine type descriptive variables 

(mean, standard deviation, minimum, and maximum). I = Industrial mines, S = Surface mines, and T 

= Tunnel mines. 

3.4. ASM Activity 

Given a significant difference was found between mine and non-mine locations for the 

descriptive variables, indicators of ASM activity were explored. Subsidence measured by ISBAS (i.e., 

a negative ISBAS pixel value) is a clear marker of mining activity [46], the descriptive variables mean 

and minimum were selected to trial further analysis as they present clear information on subsidence 

levels within the polygons. Conservative activity thresholds were set at the minimum recorded value 



Sustainability 2020, 12, 9834 12 of 20 

of non-mining polygons for the descriptive variables mean and minimum (Figure 7). Under these 

conditions, an activity threshold was set at -2.43 mm/yr for mean ISBAS polygon values and -5.36 

mm/yr for minimum ISBAS polygon values. 

 

Figure 7. Boxplots presenting data on the descriptive variables mean and minimum for mine and non-

mine polygons. The red line indicates activity threshold set as the minimum recorded value for non-

mine polygons. 

The activity threshold set for mean ISBAS polygon values registered 54 surface mine and 14 

tunnel mine sites as active. The activity threshold set for minimum ISBAS polygon values registered 

40 surface mine and 10 tunnel mine sites as active. A total of 32 surface mine and 6 tunnel mine 

locations were registered as active in both the mean and minimum ISBAS polygon scenarios. Figure 

8 presents an example of a surface mine site registered as active, and Figure 9 shows an example of a 

tunnel mine site registered as active. No ground data was available to validate the results. Google 

Earth was used as a reference data source to compare with the active ASM identification results. 

Comparison of the datasets found that the large, long-standing ASM sites were identified as active 

within the study time frame 6/3/2017 to 26/1/2020. The results suggest that smaller, more exploratory 

mining was not accounted for under the strict activity thresholds. 
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Figure 8. Sentinel-1 ISBAS surface motion (mm/yr) map output over an area identified as an active 

surface mine (black pixel = NA values). Corresponding Google Earth very high resolution (VHR) 

imagery over the same area presented to aid in the interpretation of the results. 

 

Figure 9. Sentinel-1 ISBAS surface motion (mm/yr) map output over an area identified as an active 

tunnel mine (black pixel = NA values). Corresponding Google Earth VHR imagery over the same area 

presented to aid in the interpretation of the results. 

4. Discussion  

Rechargeable, lithium-ion batteries are a key component in global efforts to move towards green 

technology and reduce fossil fuel dependency (SDG 7: Affordable and Clean Energy and SDG 13: 

Climate Action) [59]. However, cobalt miners in the DRC, who extract the cobalt needed for these 

batteries, do not benefit from this positive environmental movement in green technology. Instead, 

vulnerable mining communities are faced with increasing human rights violations, child labour 

exploitation, hazardous working conditions, environmental degradation, and health risks. EO 

provides a practical and affordable approach to mapping ASM in rural settings, supplying data that 

is urgently required to build confidence in ASM figures and estimations, and support the 

development of rigorous monitoring systems. 
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This study sought to answer the question, can the ISBAS approach be used to identify active 

areas of ASM in a rural landscape? To the best of our knowledge, this is the first use of the ISBAS 

method for tracking activity in cobalt mining and the first example of surface motion outputs over 

the Copperbelt region. Statistical analyses of surface motion outputs explored the feasibility of the 

ISBAS approach for identifying active ASM in rural locations, and thus demonstrated its potential in 

future ASM monitoring systems. A significant difference was found for the ISBAS descriptive 

variables between mine and non-mine polygons (Table 6, Figure 5). These are encouraging results 

given the low coherence issues associated with a mountainous rural landscape. Land surface motion 

can be highly variable as a result of rural vegetation change, by both natural and human processes 

[60]. This is further heightened by the intense seasonality of the DRC’s tropical climate, especially in 

rainfall. The influence of rural vegetation in this setting can create noisy data and limit meaningful 

visual interpretation of outputs. Figure 5 presents data for the ISBAS descriptive variables for mine 

and non-mine polygons. In general, descriptive variables for mine polygons have a larger range of 

values between the highest and lowest observations, and in the interquartile range, compared with 

non-mine polygons. Standard deviation (mm/yr) values for mine polygons vary widely, which 

indicates that pixel values within the polygons are not uniform. This could be reflective of mining 

locations where pixels relating to subsidence from material extraction and pixels relating to uplift 

from waste material pilling, sit within the same polygon area, or of large mining complexes where 

not all pixels in the polygon are being actively mined (for example infrastructure development in 

LSM). The mean (mm/yr) and minimum (mm/yr) descriptive variables both reported low median 

and lowest observed values for mine polygons, presenting clear evidence of subsidence. 

As well as areas of mining and non-mining reporting significantly different values for the 

descriptive variables, the ISBAS data could be further separated into mine type (industrial, surface, 

and tunnels). A significant difference was found for the ISBAS descriptive variables mean, standard 

deviation, and minimum between the different mine types (industrial, surface, and tunnels) (Table 7, 

Figure 6). No significant difference was found for the maximum ISBAS polygon values between the 

different mine types (industrial, surface, and tunnels) (Table 7, Figure 6). Mine type is determined by 

the cobalt deposit. The DRC features two distinct deposit types: weathered oxide deposits, which are 

aboveground, near-surface deposits; and un-weathered sulphide deposits, which are underground 

deposits [61]. ASM practices can be found in both deposit types, surface mining in weathered oxide, 

and tunnel mining in weathered oxide and un-weathered sulphide. Surface mining practices in the 

Copperbelt are fairly unusual in that they can operate in both natural and artificial deposits created 

by industrial mining waste or tailings. This duality has led to increased tension and violence from 

the authorities and neighbouring LSM operators [62]. Tunneling is a high-risk, high-reward activity. 

Tunnel exploration of deep cobalt deposits are attached to the greatest safety risks (and fatalities), for 

example, underground explosions, tunnel collapse, and suffocation due to poor ventilation [63,64]. 

Tunnel mining reported the highest median values for the descriptive variables that indicate 

subsidence (mean and minimum) for mine polygons (Table 7, Figure 6). The following discussion 

will try to understand these results in the context of the Copperbelt mining landscape and the time 

frame of the study. The tunnel mine polygons identified and digitised in Google Earth were notably 

smaller in size compared with the industrial and surface (Table 5), with a mean area size of 59514.82 

m2 (6x smaller than mean surface mine area and 8x smaller than mean industrial mine area). The 

smallest area reported for a tunnel polygon was 411 m2. This small area size could cause low feature 

spatial accuracies when extracting polygon data from the ISBAS outputs, as a result of pixel and 

feature size similarities. The ISBAS outputs have a 20 m spatial resolution which equates to a pixel 

area of 400 m2. The smaller size of the tunnel polygons is linked to the exploratory nature of this 

cobalt mining type. Single tunnels are dug with the goal to discover a mineral deposit; if a cobalt vein 

is not hit or profitable, the tunnel is abandoned. Where viable mineral deposits are found, hundreds 

of tunnel mines can be excavating simultaneously at one location, often with no coordination or 

knowledge of previous operations. High volumes of tunnel activity can produce complex surface 

motion patterns, with vertical and horizontal digging, and alterations in the water table (via water 

pumps) impacting the results we see in the ISBAS outputs. Seasonality adds another layer of 
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complexity when interpreting ISBAS results for tunnel mines over the study time period (6/3/2017 to 

26/1/2020). Tunnel flooding and increased risk of rock instability in the rainy season means the 

closure of many mines [65], particularly in cases with minimal structural support or the use of a water 

pump [10]. 

Additionally, the resumption of subsistence agriculture activities (based on seasons) can 

dramatically alter the monthly activity of tunnel mines over the course of a year. Seasonal fluctuations 

will impact the interpretation of ISBAS outputs; further work needs to be made to understand the 

magnitude of short-term seasonal effects relative to long term trends in ASM activity. For example, 

future work could focus on processing SAR data captured in the dry season (May-October) only. 

Under these processing conditions, we expect subsidence levels to be greater (i.e., a lower median 

value for the mean and minimum descriptive variables) in tunnel mine polygons; this approach could 

potentially produce more accurate and reliable data to build an ASM monitoring system from. 

The ISBAS method is an effective means of monitoring land subsidence at landscape scales. By 

setting activity thresholds the concept of using ISBAS outputs to identify active ASM was explored. 

This trial set two activity thresholds, one at -2.43 mm/yr for mean ISBAS polygon values, and one at 

-5.36 mm/yr for minimum ISBAS polygon values. The number of surface and tunnel mines identified 

as active under the two different thresholds varied, with 32 surface mine and 6 tunnel mine polygons 

registered as active under both restrictions. The activity thresholds were set at very strict values as 

no ground data was collected to support or validate the results. As a result, the strict thresholds likely 

underreport the actual number of active surface and tunnel mines present in the study area during 

the time period 6/3/2017 to 26/1/2020. This underrepresentation is further heightened by the 

seasonality of ASM, as previously discussed. Future research should re-evaluate these thresholds 

with further ISBAS processing in dry-season months only, teamed with accurate ground data of 

active and non-active ASM locations. In answer to the study’s overall question, the ISBAS method 

has real potential as an approach to identify active areas of ASM in a rural landscape. However, the 

method needs to be further developed and educated with a greater understanding of the complex 

physical processes and interactions of ASM and the wider rural Copperbelt landscape before a 

definitive conclusion can be made. 

Advocacy for the application of the ISBAS method for ASM activity monitoring is supported by 

the recent expansion of satellite SAR imaging sensor technology. Satellite SAR sensors, such as that 

on-board the Sentinel-1 constellation, are the only spaceborne technology able to record high-

resolution imagery, on a global scale, independent of light or weather conditions [66]. The short 

repeat cycle of the Sentinel-1 constellation—12-day repeat over most of the world’s land surface—

provides the high volume of SAR data required for ISBAS processing. The twin satellite constellation 

was launched in part, Sentinel-1A in 2014 and Sentinel-1B in 2016, access to archived Sentinel-1 data 

means it is possible to investigate past ASM activity. Exploring surface motion patterns before the 

boom in cobalt demand (2016) or narrowing down timelines to peak production years can all be 

explored with this rich data reserve. 

The SDGs were created to remove people from poverty, protect the environment, and ensure 

equality, peace, and prosperity for all. The 17 SDGs, by their very nature, are interconnected [67]. 

Actions designed to meet one goal should not directly or indirectly jeopardise the achievement of 

another. Responsible and sustainable sourcing of cobalt relies on end-user companies engaging with 

and challenging human rights and corruption risks throughout their supply chains [9,68,69]. Only 

sourcing cobalt from LSM is not a viable means to remove risk from supply chains, due to links with 

corruption and the illicit blending of ASM outputs with those of LSM. Companies who decide to 

disengage with ASM should also take into account the adverse consequences to the local livelihoods 

of vulnerable communities. Resources, such as those outlined in this study, are required to better 

understand the influence and future role of ASM in the DRC’s cobalt mining sector. 
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5. Conclusions 

This study examined the feasibility of the ISBAS method, teamed with high-frequency Sentinel-

1 SAR imagery, for monitoring ASM activity in rural locations of the “Copperbelt”, the DRC. ISBAS 

surface motion values were found to be significantly different between mining and non-mining areas, 

and could be used to further distinguish the different mine types (industrial, surface, and tunnel). A 

high level of subsidence (i.e., negative ISBAS pixel value) is a clear indicator of mine activity. With 

this in mind, activity thresholds were set for the descriptive variables mean (-2.43 mm/yr) and 

minimum (-5.36 mm/yr) to trial an ISBAS approach to active mine identification. Lack of ground data 

limited our ability to validate results; however, it was recognised that the large, long-standing ASM 

sites, registered in the Google Earth reference data, were identified as active within the study time 

frame. Ground data collection and further development of ISBAS analysis need to be made to fully 

understand the value of an ISBAS-based ASM monitoring system. In particular, there needs to be a 

greater awareness of the impact of seasonality relative to longer-term trends in ASM activity.  

Sentinel-1’s global coverage and frequent repeat cycle represents an opportunity to develop the 

concepts presented in this study further. Such developments could see the upscale of ISBAS surface 

motion mapping across the entire Copperbelt region, providing strategic resources to help support 

the regulation and monitoring of cobalt ASM activity. Beyond this, since the use of radar 

interferometry is established in the mining sector, the ISBAS method has considerable potential in 

supporting ASM research of other “green conflict minerals”. Global efforts to transition into more 

sustainable and resilient societies require an approach that recognises the interconnections between 

the SDGs. Responsible and sustainable sourcing of cobalt is an essential component for successfully 

meeting SDG 7: Affordable and Clean Energy and SDG 13: Climate Action, while simultaneously 

benefiting SDG 8: Decent Work and Economic Growth and SDG 16: Peace, Justice and Strong Institutions. 
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