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ABSTRACT: Computer-Assisted Synthesis Programs are increasingly employed by organic chemists. Often, these tools combine
neural networks for policy prediction with heuristic search algorithms. We propose two novel enhancements, which we call eUCT
and dUCT, to the Monte Carlo tree search (MCTS) algorithm. The enhancements were deployed in AiZynthFinder and have been
integrated into the open-source electronic lab notebook, AI4Green, available at https://ai4green.app. A memory-efficient stock file
was used to reduce the computational carbon footprint. Both enhancements significantly reduced, by up to 50%, the computational
clock-time to solve 1500 heavy (500—800 Da) molecules. The dUCT enhancement increased the number of routes found per
molecule for the 1500 heavy molecules and a 50,000-molecule set from ChEMBL. eUCT and dUCT-v2 solved between 600 and 900
more molecules than the unenhanced MCTS algorithm across the 50,000 molecules. When limited to a 150 s time constraint,
dUCT-v1 solved ~5 million more routes to the 50,000 targets than the unenhanced algorithm.

B INTRODUCTION There are clear analogies between synthesis planning and
deterministic games. Machine learning achievements, such as
IBM Deep Blue’s success against World Chess Champion
Garry Kasparov in 1997,° have inspired similar implementa-
tions for synthesis planning.””” MCTS is a heuristic search
algorithm,'® which is built upon the Upper Confidence bounds
applied to Trees (UCT) equation'' and previous work in the
field.">™"* Segler et al’s 3N-MCTS for retrosynthesis®
combines three neural networks with MCTS to produce
reaction routes. One network is a deep learning model, trained
on 12.4 million single-step reactions from the Reaxys
database,'® to predict the outcome of potential reactions. A
filter policy is used as the second network to predict whether
the suggested single-step reactions are feasible. The third
network utilizes symbolic Al to apply predefined chemical rules

Synthesis planning is the process by which either a computer
or chemist advises on how to synthesize a specified compound
or ‘target’ molecule. Retrosynthetic analysis is the reverse of
this process, where a target molecule is iteratively disconnected
into smaller precursors. The sequence of disconnections is
then reversed in order, forming a ‘route’ to the target molecule.
This method was pioneered by Corey et al."? and was
predominantly performed manually by organic chemists.’
Corey also established the Logic and Heuristics Applied to
Synthetic Analysis (LHASA) principles, many of which are still
used by chemists and Computer-Assisted Synthesis Planning
(CASP) programs.4 During the recent machine learning boom,
the use of CASP tools has become increasingly prominent.” As
machine learning becomes more useful for retrosynthesis,
finding more accurate models, databases, and heuristic

algorithms is vital to provide reliability in computer-assisted Received: February 26, 2025
routes. In this paper, we present some algorithmic enhance- Revised: ~ May 30, 2025
ments to one of the more promising approaches to be applied Accepted:  June 4, 2025

to CASP in recent years, namely Monte Carlo Tree Search
(MCTS), motivated by the success that related enhancements
have had in other problem settings.
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derived from retrosynthetic principles to map out viable
synthetic routes. This ensures the suggested synthetic steps are
chemically valid. The 3N-MCTS method was one of the first
that produced routes that were preferred to those found in the
literature. It improved the number of solved molecules (95% of
497 diverse molecules) and the search time (by ~70%)
compared with a Best First Search (BFS) method.

Similar strategies to that of 3N-MCTS have been adopted by
many other models, for example, Ring Breaker” and AiZynth-
Finder.” AiZynthFinder is the basis for our work. It is open
source, utilizes MCTS, and uses an expansion policy similar to
that of 3N-MCTS. AiZynthFinder employs an extended
multilayer perceptron called a deep highway network with
over 100 hidden layers. Rules were extracted from reaction
data from the U.S. Patent and Trademark Office (USPTO).'°
AiZynthTrain comprises two pipelines.'” The reaction data
pipeline involves extracting the data (from USPTO), followed
by cleaning and validatin§ the reaction SMILES. RDKit is used
to sanitize molecules;'° ones which have incorrect or
unrecognized SMILES are discarded. Templates are extracted
using the RDChiral package,'” and specific logic is used to
target ring-forming reactions by augmenting the atoms
involved in the reaction with the atoms in the formed ring,
along with their respective heteroatoms. The extraction step
generates a unique identifler per template, based on its
respective fingerprint. A second pipeline is utilized for
expansion policy preprocessing and training.

One key difference between AiZynthFinder and 3N-MCTS
is the style of the MCTS. 3N-MCTS utilizes 100,000 iterations
per molecule, in contrast to 100 used by AiZynthFinder. This
disparity highlights the importance of the value network in
AiZynthFinder, as the algorithm relies heavily on the network
scores to direct the Monte Carlo sampling. Segler et al’s
approach uses optimized neural network architectures and
advanced parallel processing, enabling a higher number of
iterations by narrowing the search space and focusing on highly
probable transformations. In contrast, AiZynthFinder empha-
sizes robustness and reproducibility, resulting in fewer, more
comprehensive iterations per molecule. Therefore, it will be
crucial to balance computational expenditure between the
value network and MCTS. Our results show that increasing the
iteration count is beneficial in solving more molecules, and our
enhancements display a large increase in the number of
iterations that can be achieved in a given time.

The MCTS algorithm has four main components: Selection,
Expansion, Simulation, and Backpropagation. The algorithm
will be passed an initial ‘state’ as the root-node, which could
refer to a position in a game or any environment that grants a
definable reward from decisions. For retrosynthesis, the initial
state is the target molecule represented by a SMILES string.
This state will be scrutinized such that the tree contains all the
possible decisions or child-nodes that could stem from the
root. Finding an unexplored node and creating all its possible
children is known as expansion. Whenever a node is expanded,
the program will perform the simulation function, which
performs a random simulation from each child-node down to
an end state or finished position. This is achieved by locating
possible moves from a position and randomly selecting one
until the position can be referred to as terminal. These
individual simulations are counted for all nodes and determine
the depth for which an MCTS will be trained. Once a terminal
position is reached from the simulation, the state will be passed
through an evaluation function. The score from the evaluation

is stored in the respective child-node from which the
simulation began. One visit is also added to the child-node,
and the cumulative scores of all children and the total number
of visits is stored within the parent-node iteratively back to the
root-node. This method of updating the scores and visits to
nodes and their respective parents is referred to as back-
propagation. Once the simulation and consequent back-
propagation is complete, the observed node will return to
the root-node. However, as the node has already been
expanded, we now must select which route should be tested
further. We use the retrieved statistics from the previous
random simulations to perform the selection calculation, or the
UCT equation,'" which balances exploration and exploitation
to direct the search (eq 1). Selection keeps occurring until the
observed node has not been expanded before, in which case
expansion, followed by simulation and backpropagation will
occur, after which the observed node will return to the root-
node again, with a slightly updated statistical tree.

UCT, = W oex In(n)

n; n; ( 1)

In eq 1, W; is the score from the child-node i, n; is the
number of visits to the child-node i, n; is the number of visits
to the parent-node k and C is a parameter. This method will
iteratively build statistics for all nodes that produce promising
results. Naturally, if the algorithm is set to run for more
simulations, the tree will converge to a more accurate decision
tree. Once all the simulations are complete, MCTS will return
the sequence of moves which yielded the best result from the
evaluation function. For many domains, including retrosyn-
thesis, the algorithm can also return a defined number of best
solutions.

There is a plethora of enhancements, all targeting specific
attributes of the MCTS algorithm. Enhancements can be
categorized as domain-specific, or domain-independent.
Domain-independent alterations to MCTS should improve
the performance of the algorithm regardless of the application.
Examples include parallelization, All Moves As First,® a
bidirectional variant,”’ and RAVE,* among others.”® In
contrast, domain-specific enhancements are tailored to the
application of the algorithm, and thus often have more
noticeable effects. One domain-specific enhancement is a value
network, which stores information about certain positions or
states and a respective score. Another is heuristic-based action
pruning, which is often used to reduce search spaces by hard-
coding rules to eliminate certain actions.

Five MCTS variants have previously been explored for
retrosynthesis.”* Modified UCT (mUCT), alters the method
to save time on the mandatory ‘ergodic’ step in the method,
referring to the mandatory exploration of all possible moves
from a given state before a deeper or more biased exploration.
mUCT with dynamic ‘C’ (mUCT-dc) introduces dynamic
tuning of the parameter C in the UCT equation. This method
addresses the same problem targeted by the enhancements
proposed in our work. However, mUCT-dc focuses on
adapting the balance between exploitation and exploration
based on how under/overexplored certain areas of the tree are.
Polynomial Upper Confidence Trees (PUCT) incorporates a
policy network term to the selection phase of MCTS,
providing a probability distribution of all possible moves
from a given state. The final two enhancements were the use of
a value network replacing the traditional Monte Carlo rollouts,
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Current iteration = 10/100
Child A exploit term = 0.8
Child A explore term =0.8
Child B exploitterm = 1.0
Child B explore term = 0.65

Observed Node

eUCT, = 2.35
eUCT = 2.18
UCT, = 2.40

@ UCTy = 2.30

eUCT selects Child A
UCT selects Child A

Current iteration =100/100
Child A exploit term = 0.8
Child A explore term =0.8
Child B exploit term = 1.0
Child B explore term = 0.65

Observed Node

eUCT, = 1.60
eUCT, = 1.65

UCT, = 2.40

@ UCT; = 2.30

eUCT selects Child B
UCT selects Child A

Root \‘%—’ Observed Node: Depth=1/5

| Node

Child Depth=2/5

Child A exploitterm = 1.2
Child A explore term = 0.3
Child B exploit term = 0.9
Child B explore term = 0.45

dUCT, = 1.81

dUCTy = 1.80
UCT, = 1.81
UCT, = 1.80

dUCT selects Child A
UCT selects Child A

ducCT I:I:>

Child Depth=5/5

Child A exploit term = 1.2
Child A explore term = 0.3
Child B exploit term = 0.9
Child B explore term = 0.45

Observed Node: Depth =4/5

dUCT, = 1.99
dUCTy = 2.07
UCT, = 181

@ UCTy = 1.80
dUCT selects Child B

UCT selects Child A

Figure 1. Example scenario of MCTS search tree decision made by eUCT (top row) and dUCT (bottom row), against the default UCT,
highlighting the different selection of eUCT at larger iterations, and dUCT at increased depth values.

and bootstrapping which utilizes the outcomes from self-play
in the training of the value network.

In other related work, an Experience Guidance Network has
been proposed to enhance the traditional MCTS search tree.”’
It uses a network trained with synthetic ‘experience’ collected
during the search process. The method required fewer
iterations on average to find a route than the Retro* method,**
and the generated routes were of higher quality in terms of
route lengths and number of successful routes. Another
approach integrated MCTS with A* search for retrosynthetic
planning, to leverage the exploratory strength of MCTS with
the goal-driven efficiency of A*.*’ The method applied the
rollout capabilities of MCTS into A*, allowing more focused
and efficient pathway determination by evaluating future states
more accurately. The study reported significant improvements
in identifying routes, particularly for natural products.

Our study aims to provide novel algorithmic enhancements
to the MCTS used in AiZynthFinder. The metrics used to
define improvement are the proportion of solved molecules,
the number of solving routes per molecule, the computational
clock time to solve a molecule, and the number of iterations
completed within a time limit. We also improve memory usage,
by employing a memory-eflicient stock file.

B METHODS

Enhanced UCT. We propose enhanced UCT (eUCT), a
domain-independent adaptation that manipulates the param-
eter C in the UCT equation. Because each template is scored
solely on single-step reactions, each ‘move’ is considered
independently. Thus, the further the search is from a leaf-node
(a terminal node with no children), the lower the probability of
reaching the predicted node score is. For example, let us
consider a binary search tree, and envisage a shallow node A
which is a direct child of the root-node. We will assume every
node is unvisited and has a predicted score of 0.5 supplied
from a value network. This score indicates that half of the
subsequent nodes will be successful. For a binary tree, there
will be one successful, and one failed node at each decision
point. Therefore, if the tree has a terminal depth, d, and our
current observed node is at depth, n, then the probability of
attaining a successful route through an arbitrary simulation is
0.5, From this, we can deduce that the probability of
reaching successful routes through random simulation will
increase as n approaches d. In the unmodified UCT equation,
there is no consideration of how close the search is to
terminating. The final iteration performs the same UCT
calculation as the first iteration. This often causes the later
iterations to be wasted, while performing exploration of
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unvisited nodes, which have a low probability of yielding a
successful route. eUCT takes this into consideration and
weights the search toward exploitative nodes incrementally, as
the search gets closer toward termination. The adaptations to
the parameter C in the unmodified UCT equation cause the
value of C to vary continuously from C to C/1.5, as the current
iteration progresses from 0% to 100% of the total iteration
count. This alteration reduces the exploration weighting (the
second term in the right-hand side of eq 1) as the search
progresses. The changes required for eUCT are shown in eq 2.

In(n,)

T/V;
eUCT, = — + eC X
n; n; (2)

where eC = C/(S, + 1) and S, is the current iteration number
divided by the maximum number of iterations. An example
selection decision from eUCT is shown in Figure 1.

Depth UCT. Depth UCT (dUCT), a second enhancement
that we propose, is tailored to the problem of retrosynthesis,
and is thus domain-specific. Through analysis of retrosynthetic
tree structures, we noticed a clear trend. As shown in Figure 2,
the branching factor at shallow depths is far larger than when
deeper in the tree. Given the increase in routes to explore at
earlier stages, it could be more efficient to focus on the high
performing routes in shallow depths, as it would be

@, 31, 211, 17

Figure 2. Structure of an example retrosynthesis search tree after 20
iterations for the natural product molecule, C3,H;30g, shown inset
(31-614-CAS-30049885), which was randomly selected from
ChEMBL. The top image is without the enhancement and contains
41 nodes, the bottom image uses the dUCT enhancement and
contains 31 nodes. The numbers inside a node correspond to the
depth of the node and child-number from the parent-node.

computationally expensive to explore all the possible
disconnections of a given molecule when the options are
abundant. Therefore, weighting the search toward exploitation
while shallow, would reduce exploration of worse nodes.
Furthermore, when one gets deeper into the tree, there are
fewer available disconnections at each node. We have
established from eUCT that the probability of success is
higher when deeper in the tree. It would, therefore, be more
effective to explore more available disconnections when closer
to a leaf-node, as there is a greater probability of locating
successful routes.

This method is only beneficial due to the predetermined
value network in AiZynthFinder. All disconnections have a
predicted score, and we utilize this by instantly pruning weak
first steps by trusting predictions of the value network and
focusing the search on the highest performing first steps. Thus,
dUCT is not only domain-specific to retrosynthesis, but reliant
on the accuracy of the value network. We implemented this
enhancement by passing the depth of the observed node to the
dUCT equation (eq 3) and increasing the parameter C by an
increment, incr, multiplied by the current depth, D_,,. The
default UCT value is 2, although it can be altered slightly for
different domains, so we reduce the starting C value to 1.5 in
dUCT.

From our preliminary testing, we saw the average depth of
search is between four and five. We tested two increments of
0.5 and 0.7 with branching factors of 50 and 20. The method
requires manual adaptation of the increment based on the
expected largest depth. For example, it would unbalance the
equation if one incremented the search by 0.5 per unit of depth
if a maximum depth of S0 was expected. Therefore, an
understanding of the structural features of the relevant
problem is required to implement dUCT, which can be
acquired through a program which calculates the average depth
of the tree. An example selection decision by dUCT is shown
in Figure 1.

In(n,)

dUCT}=m+CXinchD X
n n; (3)

We hypothesized that both enhancements would be more
suited to longer multistep syntheses problems, because eUCT
adapts to the probability variation in leaf nodes and dUCT
bases calculations on node depth. Therefore, one might expect
neither enhancement would outperform the default for a
single-step synthesis. However, it is worth considering if either
enhancement drastically improves the number of iterations per
second. Then one can assume more single-step disconnections
would be considered. This increase in search space coverage
could provide a greater variety of candidate disconnections to
the user, although this would not affect finding the algorithm’s
perceived ‘best’ disconnections.

Molecular Data Set. Preliminary testing of the enhance-
ments employed AiZynthFinder version 3.7." Our initial
implementation contained a cutoff number in the config-
uration, allowing a cap on the number of templates suggested
per state, and thus a cap on the branching factor of the search
tree. However, most of our tests used version 4.3, after an
update to the codebase was released in 2024.”° Within this
update, the cutoff number was removed to allow for all
templates to be eligible for selection if suitable. We
reimplemented a branching factor limit, because one of our
proposed enhancements requires a strict branching factor.

https://doi.org/10.1021/acs.jcim.5c00417
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Genhenden and co-workers tested AiZynthFinder on a set of
497 diverse molecules, against the ASKCOS synthesis planning
software.”” Comparisons between the two methods proved
difficult, due to ill-defined metrics for route comparisons. Thus,
our results were initially benchmarked against a 2023
publication that utilized AiZynthFinder to investigate the
effects of varied hyper-parameters for multistep synthesis’’ on
a data set of 50,000 (S0K) randomly sampled molecules from
the ChREMBL database.>' For consistency, we used the same
data set for primary testing of our enhancements.

For proof-of-concept testing, a smaller set of 1500 ‘heavy’
(between 500 and 800 Da) molecules was sampled from
ChEMBL. The performance was analyzed using the following
metrics: the proportion of molecules solved for the test set, the
absolute number of routes found, the average number of routes
found per molecule, and the average computational clock-time
per molecule. Both enhancements were run for 100 iterations,
with a maximum time limit of 150 s, and a branching factor of
50. For primary testing, AiZynthFinder version 4.3 was used.
The literature benchmark for the SOK ChEMBL data set was
73% using the default parameters. We were able to replicate
this with AiZynthFinder 3.7. We also tested version 4.3 with
the same benchmark data set, with two controls: iteration
number and computational clock-time, and we used the ZINC
and eMolecules stock files, which contain 17.4 million and 17.6
million compounds, respectively.”> The proportion of solved
molecules was 76.4%.

As the ZINC™ and eMolecules stock files are stored in
memory, we created a streamlined MolBloom filter that uses
optimized hashing techniques to reduce memory usage and
increase the processing capacity for stock file checks.” The
bloom filter was trained using 34.5 million unique compounds
from eMolecules and ZINC stock. After filtering the stock file,
the resultant bloom file was less than 1 GB, which allowed over
20 times as many molecules to be run in parallel. A bloom file
is a filter which reduces each item into an array. The array
contains # items and employs k hash functions to map each
element to position k in the array. The purpose is to predict
the position of the observed item, instead of storing the
position in memory. This method comes with drawbacks,
namely, the filter contains a false positive rate of ~1%. As our
primary objective was to test the enhancements, false positives
should not present problems. However, we anticipate a
systematic overestimate in the performance metrics for all
the algorithmic variants.

Visualization and Integration within the Al4Green
Electronic Lab Notebook. We have integrated CASP tools
within the free-to-use and open-source AI4Green electronic lab
notebook (ELN).* Embedding a retrosynthesis tool within an
ELN obviates the need for a chemist to enter data more than
once. Version 4.0 of AiZynthFinder has been integrated into a
Flask application. An end point accepts a SMILES string as a
target, uses AiZynthFinder to solve the retrosynthesis and
returns the solved routes in a JavaScript Object Notation
(JSON) format. This method enables the addition of future
arguments from AI4Green to the end point, such as user-
specified stock lists. The code for the Flask application is
stored in a GitHub repository. ASKCOS’s condition prediction
tool is a FastAPI application provided by the Machine
Learning for Pharmaceutical Discovery and Synthesis Con-
sortium (MLPDS) at MIT on GitLab. Both applications are
containerized using Docker. The containers are hosted on
Docker Hub and deployed as Azure Container apps.

The Python package Plotly Dash Cytoscape was used to
visualize the route data. This displays a collection of connected
nodes where each node is a molecule, and the edges linking the
nodes denote a retrosynthetic relationship. The Dagre layout
arranged the nodes as a treelike structure well suited for
retrosynthesis with the target molecule at the top. A
nonterminal node will be connected to one or more nodes
below, and this iteratively continues until terminal nodes are
reached. In chemical terms, a product is connected to one or
more reactants below until molecules designated as building
blocks by the stock file are reached.

Sustainability metrics are presented, using those from the
CHEM21 reaction assessment,”® but excluding those (purifi-
cation method, catalyst recovery, and all yield-based metrics)
that cannot be applied before the experiment is carried out.
The temperature, solvent, stoichiometry, element sustainabil-
ity, atom economy, and safety are all assessed based on the
predicted route and conditions. Each reaction is individually
assessed on these sustainability metrics, and each value is
color-coded. Every reaction in a route can also be color-coded
by taking a weighted median of the sustainability metrics,
where sustainable is equal to 1, problematic 2, hazardous 3,
and highly hazardous 4. Each sustainability metric has a
corresponding slider that the user can assign between zero and
ten; if the weights are all equal, it operates as an ordinary
median. The total sum of weights is calculated, and the median
or 50th percentile weight is found. The cumulative weights are
calculated and the weighted median is the first value where the
cumulative weight is greater than or equal to the median
obtained in the previous step.

B RESULTS

In our proof-of-concept tests (Table 1) on 1500 heavy
molecules, eUCT solved the same number of molecules as

Table 1. Testing of Enhancements Using AiZynthFinder 3.7
with the 1500 Heavy Molecule Dataset®

method solve % total routes avg search time (s)
UCT 9.5 768 48
eUCT 9.5 794 45
dUCT 11 1041 24

“eUCT and dUCT tested against unmodified UCT for 100 iterations
using the ZINC stock.

UCT, and found ~0.2 more routes per solved molecule. The
low percentage of solved molecules across all methods is due
to the complexity of the molecules.

eUCT is predicated on variation in success probability
between explorative nodes and exploitative nodes in the search
tree. If there is a lower probability of reaching a successful leaf-
node in nodes which have been explored infrequently, which is
often the case in MCTS, eUCT should reach successful routes
faster in ‘later’ iterations of a search, particularly as they
approach the maximum number of iterations. However,
AiZynthFinder does not conform to these conditions. The
value network provides predictive scores for nodes, regardless
of whether they have been visited in the search tree or not.
Consequently, if the value network is reliable, there is no
difference in the probability of success between deep and
shallow nodes because the neural network policy has already
predicted the score for each possible disconnection. This could
arise from overfitting of the neural network, a speculation that
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is supported by the repeatability of the results. Repeating a
search on the same molecule resulted in near identical
solutions, often found during the same iteration. Despite not
solving more molecules, eUCT attained a greater number of
successful routes, and consequently a higher average route
count per solved molecule. A 6% decrease in computational
clock-time was observed, which is a statistically significant
improvement (a Wilcoxon signed-rank test gave a p-value of
6.9 X 107°). Despite the decrease in clock-time, there was little
change in the number of iterations required to solve a
molecule. Thus, the speed increase is likely due to fewer nodes
being visited per iteration.

More encouragingly, the dUCT enhancement solved more
instances in the heavy molecule data set than the unmodified
UCT (Table 1). 164 molecules were solved, 15% more than
that achieved by UCT and eUCT. dUCT found nearly 300
more routes to target molecules than UCT, a 35% increase.
Furthermore, the increase in solving routes is not solely from
the increase in the number of solved molecules. dUCT found
the highest number of routes per solved molecule: 6.3
compared to eUCT with 5.6 and UCT with 54. dUCT
improved computational clock-time, by nearly 50% in
comparison to UCT. The factors contributing to such
improvements are primarily the characteristics of the
retrosynthetic search tree. Computational resources are not
wasted on early unexplored nodes and are instead focused on
exploring productive routes at high depths. The Wilcoxon
signed rank test indicated a significant result in favor of dUCT,
with a p-value of 2.1 X 1077,

Our primary tests (Table 2) on the SOK ChEMBL data set
used a combination of the ZINC and eMolecules, and
MolBloom stock files. eUCT and two variants of the dUCT
enhancement were tested. The first dUCT variant consisted of
a 0.7 C increment and branching factor of 20, favoring

Table 2. Primary Testing of Enhancements Using
AiZynthFinder 4.3 with the SOK ChEMBL Dataset”

number routes
of per avg time per
method iterations stock files  solve % molecule molecule (s)
UCT 100 ZINC 76.4 37.8 34.2
EMOL
eUCT 100 ZINC 76.4 38.0 33.1
EMOL
dUCT-vl 100 ZINC 71.8 32.5 14.3
EMOL
dUCT-v2 100 ZINC 76.5 38.6 26.4
EMOL
UCT 100 MolBloom 86.7 31.3 258.5
eUCT 100 MolBloom 86.7 32.5 24.6
dUCT-vl 100 MolBloom 81.6 25.6 11.9
dUCT-v2 100 MolBloom 86.9 32.1 18.6
UCT 1000 MolBloom 97.0 239.2 255.6
eUCT 1000 MolBloom 97.0 242.9 238.7
dUCT-vl 1000 MolBloom 92.7 170.0 99.1
dUCT-v2 1000 MolBloom 97.0 245.1 170.2
UCT 5000 MolBloom 99.1 962.5 1136.2
eUCT 5000 MolBloom 99.1 965.8 1097.9
dUCT-vl 5000 MolBloom 96.5 884.0 643.5
dUCT-v2 5000 MolBloom 99.2 974.4 974.4

“eUCT and two variants of dUCT: vl and v2, were run against the
unmodified UCT for different values of the maximum number of
iterations.

exploration with a lower branching factor. The second used a
0.5 C increment with a branching factor of 50. As Table 2
shows, experiments using an iteration-based control yielded a
consistent pattern. eUCT displayed minimal change from the
unmodified UCT. The solve percentage was identical and a 3%
speed increase was observed. This trend was seen for all
experiments with eUCT. The performance of the two dUCT
variants was different to that seen in the proof-of-concept
testing. Unlike the heavy-molecule data set, dUCT-v1 solved a
lower number of molecules than UCT, and dUCT-v2 solved
~0.1% more molecules. This is likely due to the difference in
complexity between the two data sets. dUCT was developed to
search more at high depths of the tree, to target routes which
are difficult to solve. The increased total solve percentage
(UCT solved 76.4% of the SOK ChEMBL set compared to
9.5% of the heavy molecule set) shows that the heavy-molecule
data set is much more challenging. Thus, a significant
improvement in computational clock-time was observed for
both variants: 57% for dUCT-vl and 20% for dUCT-v2.
dUCT-v2 solved slightly more molecules, in ~20% less
computational clock-time, with on average 0.6 more routes
to a solved molecule than UCT.

Iteration values of 100, 1000, and 5000 were tested using the
MolBloom stock file. Naturally, 5000 iterations gave the
highest solve rates, e.g.,, 99.2% with dUCT-v2. dUCT-v1 had
lower total solve rates, but gave speed improvements for the
three iteration values (100, 1000, 5000) of 52, 61, and 43%,
respectively. dUCT-v2 narrowly improved on UCT for all
iteration counts, while showing speed improvements of 27, 33,
and 14%, respectively. We initially hypothesized that we would
observe increasingly greater speed improvements using dUCT,
as the iteration count escalates. As the tree gets larger, the
number of nodes pruned through dUCT grows exponentially.
However, the 5000 iteration experiments did not yield this
result. This is due to several thousand molecules reaching the
experiment time-limit of 10,000 s, thus removing the iteration
value as the stopping point.

The rate-correct score (RCS) metric’” was used to assess
the speed-accuracy trade-off. RCS is the number of solved
molecules divided by the summed search times, T, dUCT-v1
attained the highest RCS for all iteration values tested (Figure
3). We conclude that 100 iterations are best for RCS.

In time-based control testing (Table 3) both eUCT and
dUCT-v2 achieved higher solve percentages than UCT, with
increases of 1.2, 1.3, and 0.8% for the respective time
constraints (150, 100, and 60 s) for eUCT, and 1.6, 1.5, and
1.8% for dUCT-v2. For the test set of 50,000, this equates to
between 400 and 900 more molecules. All enhancements
found more routes per molecule than did UCT. dUCT-vl
found the most routes per molecule with improvements of
32.1, 41.0, and 40.2% above UCT for 60, 100, and 150 s,
respectively. The latter equates to nearly 5 million more routes
across the 50,000 molecules. All enhancements executed more
iterations than UCT within a fixed time limit (Figure 4).
Increasing the number of iterations provides more opportunity
for improvement. dUCT-vl reached iteration counts over
twice that achieved by UCT. dUCT-v2 and eUCT were
significantly better in solving more molecules than UCT, and
all enhancements found more routes per molecule across all
time constraints.

PaRoutes is a framework designed for benchmarking
retrosynthesis route predictions.”® Our enhancements to
MCTS improve computational efficiency relative to the
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Figure 3. Number of MCTS iterations against the rate correct score (solved molecules per unit of time) for the enhancements eUCT (yellow),
dUCT-v1 (blue), dUCT-v2 (red), and the unmodified UCT (green) on the SOk ChEMBL data set using the MolBloom stock.

Table 3. Primary Testing Using AiZynthFinder 4.3 with the
S0K ChEMBL Dataset”

time limit routes per avg no. of
method (s) solve % molecule iterations
UcCT 150 93.4 304.4 1487.7
eUCT 150 94.6 318.5 1633.8
dUCT-vl 150 91.4 402.1 4076.8
dUCT-v2 150 95.0 352.1 1855.4
UCT 100 91.4 204.2 1000.6
eUCT 100 92.1 210.7 1106.5
dUCT-vl 100 89.7 288.5 3173.3
dUCT-v2 100 92.9 239.8 1260.0
UCT 60 89.2 141.5 691.0
eUCT 60 90.0 148.3 729.8
dUCT-v1 60 87.6 198.4 2387.2
dUCT-v2 60 91.0 165.0 865.1

“eUCT and two variants of dUCT: vl and v2, were run against the
unmodified UCT for different time constraints using the MolBloom
stock.
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Figure 4. Number of MCTS iterations achieved in the three tested
time constraints for the following enhancement types. UCT: pink-
solid, eUCT: blue-stipple, dUCT-v1: green-upward hashing, dUCT-
v2: red-downward hashing. Results obtained on the S0k-ChEMBL
data set using the Molbloom stock.

methods reported in the PaRoutes framework. At 100
iterations, our approach achieves an average search time per
molecule of approximately 25—30 s, substantially lower than
the approximately 300 s reported from PaRoutes. PaRoutes
tested their MCTS using 500 iterations. Scaling the search to
1000 iterations, standard UCT required roughly 255 to 260 s
per molecule, whereas the dUCT variants reduced this to
between 99 and 170 s, allowing nearly twice the number of
iterations within roughly half the computational clock time. At
5000 iterations, while UCT required over 1100 s per molecule,
dUCT maintained a 40 to 50% reduction in search time,
achieving an average of roughly 640 s. This improved efficiency
not only reduces the overall computational cost but also allows
a more thorough exploration of the search space, yielding in a
higher average number of routes per molecule.

The dUCT variants outperform the alternative methods in
the PaRoutes framework, Retro* and DFPN, in terms of
computational clock time, while maintaining or improving the
ratio of solved molecules. For 1000 iterations, dUCT-vl
achieved an average time per-molecule of 100 s, whereas
Retro* typically required around 300 s under similar
conditions. Retro* minimizes one-step model calls to reduce
computational expenditure and memory usage but thus
reduces search space coverage. DFPN converged more slowly
and solved a smaller proportion of the targets.

DFPN casts retrosynthesis to an AND/OR problem using a
graphical representation of molecules (OR-nodes) and
reactions (AND-nodes). For each OR-node, a proof number
is used to estimate how many child reactions must be found for
the molecule to be solvable. Each AND-node’s proof number is
the sum of its precursors’ proof numbers. The leaf node with
the smallest proof number is expanded, followed by a depth-
first traversal. The strength of DFPN stems from its pruning of
unpromising search space through ‘proof metrics’. However, it
typically finds fewer alternative routes, thus limiting route
diversity, and contains no exploration heuristic or rollout,
which can make it slower to converge on more difficult targets.

Retro* adapts the classic A* search by classifying the
problem as an AND/OR graph with a learnt cost heuristic for
each molecule. Child reactions are expanded according to a
fixed template set, and the search is guided by a best-first
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Table 4. Sustainability Metrics for Ten Routes to Almotriptan Using the ZINC Stock File with a Time Limit of 100 s

Route Number 1 2 3 5~ 6* 7* 8* 9%
Steps 3 4 4 7 5 5 4 5
Solvent - 1.75 1.75

Temperature 1.67 1.5 1.5

Stoichiometry 2

Element sustainability
Atom Economy

Safety

Total 11 11 12

11.14 11.8 10 11.25 10.6

“Color-coding from condition prediction implemented in Al4Green. “routes generated solely by UCT, *routes generated solely by dUCT-v2.

traversal of the lowest costing reactions. This allows Retro* to
locate high quality routes to a target in fewer node expansions.
A limitation to Retro* is its reliance on the accuracy of the cost
heuristic. Additionally, Retro* typically returns a single best
solution over an array of alternative routes.

In contrast, AiZynthFinder relies on the balance of
exploration and exploitation through MCTS. The rollout
heuristic gives it an advantage over DFPN as it can balance
depth and breadth more efficiently. Compared with Retro*,
MCTS does not rely on a learnt cost function, and instead uses
neural-guided simulations to estimate a node’s value. This can
be more robust depending on the quality of the heuristic and
will provide more alternative routes to a target. However, a
vanilla. MCTS requires tuning of iteration and exploration
constants, which have a huge impact on the algorithm’s
performance; a weakness of MCTS which is specifically
targeted by our enhancements.

Direct comparisons with other approaches are difficult and
thus the preceding discussion of relative performance is
indicative rather than definitive. Neither 3N-MCTS nor
SYNTHIA® are open-source. They have been previously
evaluated on in-house libraries of compounds. 3N-MCTS
achieved a 95% solve proportion on 497 molecules with an
average of 13 s per molecule. Best First Search (BFS) using a
SMILES policy obtained a 56% solve proportion, taking an
average of 420 s per molecule. SYNTHIA uses an extensive
reaction rule database hand-encoded by expert synthetic
chemists. As a rule-based method, it is template-free and
uses different selection mechanisms than UCT. The
SYNTHIA Full Retro API is available through request and
reports a throughput of 50 molecules per hour.

The preceding discussion gives a statistical analysis of the
value of the enhancements. We now turn to an illustrative
example: almotriptan, a molecule used as a medication for
migraines. It belongs to a class of compounds known as
triptans, which are serotonin receptor agonists. It contains a
sulfonamide group which is essential for its biological activity.
Almotriptan was used as an exemplar in a previous retrosyn-
thesis study”® using Chematica, which is commercially
available as SYNTHIA.> A graph-based algorithm with shared
information across targets was used to generate libraries of
compounds or isotopically labeled molecules. The algorithm
helps to improve the synthesis of multiple targets simulta-
neously. This method was used to design synthetic plans for
isotopically labeled variants of almotriptan.

The dUCT-v2 enhancement was tested against UCT using
the ZINC stock. The number of routes, steps, and several

sustainability metrics were taken for comparison. For each step
in a route, the solvent, temperature, stoichiometry, element
sustainability, atom economy and safety, were assigned scores
between 1 and 3 (1 being the most sustainable) based-on the
predicted reaction conditions.*' For every route, the average
score across all steps was taken for each metric and summed to
a total sustainability score for each route shown in Table 4.
Routes 1 through 4 were found by both UCT and dUCT-v2,
route 5* was found solely by UCT, and routes 6* through 9*
were found solely by dUCT-v2.

Each step in a route was considered in SciFinder* to assess
feasibility. Several common steps have literature precedent,
such as the cyclization reaction to form an indole through the
hydrazine reacting with the carbonyl.” Common starting
materials across the routes include 1,4-dibromobutane, p-
fluorobenzoic acid, nitromethane and 1,2-dichloroethane. We
observed better sustainability scores on the routes generated by
dUCT-v2 compared to UCT. The average route score for all
eight dUCT-v2 routes was 11.2, compared to 11.4 across
UCT’s five routes. The four routes unique to dUCT-v2
averaged a sustainability score of 10.9. dUCT-v2 found the
most sustainable route (7*) with a route score of 10 (Figure
5), and the second-best route (9*) with a score of 10.6. These
were the only two routes which achieved scores below 11, and
both contained five steps.

Bl CONCLUSIONS

In this work, we proposed two MCTS enhancements, eUCT
and dUCT, and tested them on the retrosynthesis program,
AiZynthFinder, against the unmodified UCT. The enhance-
ments were assessed with time-based and iteration-based
controls, with two variations of the latter enhancement
considered. dUCT almost always solved more molecules
than UCT (Table 1), likewise for dUCT-v2 in Table 2. Tables
1 and 2 also show the decrease in computational clock-time
achieved by dUCT-vl. eUCT gave more modest time
reductions than the other enhancements. However, eUCT
did not improve the proportion of solved molecules. Both
dUCT-v2 and eUCT achieved higher solve rates for time-
based testing and all enhancements showed improvements in
the number of routes to a target molecule (Table 3). dUCT-v1
achieved the largest uplift against the default for the number of
routes to the target, with at least a 30% increase across all time
constraints. Therefore, dUCT-v1 yielded the highest RCS for
all enhancements (Figure 3). Furthermore, for a given time, all
enhancements reached larger iteration counts than UCT. The
most impressive iteration increase was once again from dUCT-
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Figure S. Retrosynthesis route for almotriptan, route 7* from Table 4,
taken from https://ai4green.app. Target molecule in black, stock
molecules in green.

v1, which performed more than twice the number of iterations
than UCT (Figure 4). The number of iterations is positively
correlated to the number of solved molecules, and enhance-
ments which allow more iterations will be beneficial for
retrosynthesis. Reducing the clock-time directly reduces the
computational carbon footprint. dUCT-v2 is the most effective
at solving a random molecule for all time constraints and
iteration values, and dUCT-vl is the most useful for finding
routes to a molecule which is solvable, within a given time. For
an exemplar target molecule, almotriptan, dUCT-v2 found
more routes than UCT (Table 4) and only dUCT-v2 found
the two most sustainable routes. We conclude that our MCTS
enhancements significantly improve the number of routes
found per molecule, the computational clock-time to solve a
molecule, and percentage of solved targets.

Future work will involve integrating sustainability metrics
earlier into the process. Our current method estimates
sustainability features post hoc, but it will be useful for the
sustainability metrics to be used as features in the neural
network template generation. This will allow suggested routes
to have sustainable chemistry directly integrated into workflow.
We will explore combining our enhancements with others and
employ data-driven approaches to find how one might do this
optimally.
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Data Availability Statement

Al4Green is open-source and released under the AGPL-3.0
license. Full source code, installation instructions, and links to
our video tutorials and user guides can be found at https://
github.com/AI4Green/Al4Green. Code and associated data
for the MCTS enhancements can be found at https://github.
com/Al4Green/retrosynthesis-api. The full list of molecules
tested in our experiments can be found at 10.6084/m9.
figshare.28751012.v1.
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