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Abstract—This study uses necrosis, a technique from the
domain of artificial immune systems, to control the evolution of
apoptotic cellular automata. These automata generate complex
images that require a very small amount of initial data. The
genes that yield these images are embedded in an extremely
complex adaptive landscape. The process of controlling the type
of images located by applying necrosis is found to be a simple
and efficient technique, in comparison to writing more complex
fitness functions for the original evolutionary computation
system. Two kinds of necrosis are tested, a soft shape based
system and a crisp entropy based system. Both sorts of necrosis
are found to be able to steer evolution effectively, with the
shape based necrosis working well, and the entropy based
necrosis having some problems when more extreme forms of
necrosis driven filtration are employed. Possible generalizations
to steering other evolutionary optimization tasks are outlined.

I. INTRODUCTION

With the advent of Artificial Immune Systems [15] within
the domain of computational intelligence, a number of tech-
niques inspired by natural immune systems have been added
to the techniques available for nature inspired computation.
In this study we add necrosis to an evolutionary algorithm
that located apoptotic cellular automata [3]. Necrosis is the
violent disruption of a cell caused by some form of stress,
leading to its recognition by the immune system as being
associated with foreign material as part of the detection
of non-self entities. In this process the cell itself gives off
biochemical signals that the cell itself represent danger or
damage to tissue cells e.g. heat shock proteins, uric acid.
In this study, necrosis is added to an existing evolutionary
algorithm as a secondary form of selection operator that
zeros out the fitness of population members with undesirable
properties. This is presented as an alternative to trying to
write complex fitness function that bake constraints into a
single feature of the algorithm as was done in [4].

Cellular automata are a type of discrete model of compu-
tation. A cellular automata has three parts,

1) A collection of cells divided into neighborhoods of
each cell. In this study this is a linear array of cells
with neighborhoods consisting of a cell and its four
nearest neighbors.

2) A set of states that cells can have. In this study we use
the numbers 0-7 as states.

3) A rule that maps the set of possible cell states of a
neighborhood to a new state for the neighborhood. This
rule is described subsequently.
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Cellular automata (CA) can be described as discrete
dynamical systems that exhibit self-organizing behaviour.
A cell population evolves according to local transitions
rules. The updating according to the transition rules may be
synchronous or asynchronous. This study uses synchronous
updating. CA can be used as models for complex natural
systems that contain large numbers of identical components
experiencing local interactions [29], [22].

CA have been applied to the study of a diverse range of
topics, such as structure formation[7], heat conduction[8],
language recognition[20], traffic dynamics[17] and
cryptography[2], to name a few. CA have also been
used for more aesthetic purposes, such as image and sound
generation. Serquera and Miranda of the Interdisciplinary
Centre for Computer Music Research, UK, have published
many works on the use of CA for sound synthesis [24],
[1]. Much of their work consists of mapping the histogram
sequence of a CA evolution onto a sound spectrogram,
which produces spectral structures evolving in time. It is
claimed that the mapping produces a “natural” behaviour,
and can replicate acoustic instruments[25].

CA have also been applied to the visual arts. CA have been
used to produce artistic images[5], [19], [4], [13], in the form
of time histories of one-dimensional cellular automata with
states shown as colors. The use of CA has been extended
to the fields of architecture and urban design[26], [11]. An
interesting application has been the use of CA in simulating
the emergence of the complex architectural features found in
ancient Indonesian structures, such as the Borobudur Temple
[27]. Ashlock and Tsang[5] produced evolved art using 1-
dimensional CA rules. CA rules were evolved using a string
representation. The CA either underwent slow persistent
growth, or planned senescence. The resulting fitness land-
scapes were rugged with many local optima. This led to
the production of aesthetically pleasing images. This study
revisits these fitness functions with a more general space of
cellular automata rules.

In this study we return to earlier work that demonstrated
that the fitness landscape of even the relatively simple encod-
ing of CA used in this study has a complex fitness landscape
[3]. In [4] the algorithm for finding CA rules was modified
to restrict the shape of the rendered time-histories. Here we
employ necrosis to eliminate undesirable CA in two different
ways. The necrosis is applied to the rendered images derived
from the CA rules, meaning that the selection criteria related
to necrosis can be specified in a manner directly related to
the desired appearance. Two different selection criteria are
used, the first uses a desired shape for the image while the
second places bounds on the entropy of state usage, both



upper and lower.

A. Incorporating the Danger Theory

The Danger Theory emerged as a complementary idea to
the classical self-nonself dogma of immunology, postulating
that the human immune system requires the detection of dam-
age to the body in order to mount an effector response[18].
Danger Theory states that the detection of nonself matter i.e.
antigen, is insufficient to activate the cells of the immune
system. Full immune activation can only occur when both
nonself antigen and danger are detected. Danger signals
are detected by the antigen presenting cells of the immune
system, including a class of cells termed dendritic cells

Danger signals are released into the body as a conse-
quence of uncontrolled cell death as a result of a process
termed necrosis. Necrosis is caused by one of four triggers:
extreme heat, extreme cold, lack of oxygen and infection by
bacteria or viruses. Despite both being forms of cell death,
apoptosis is the antithesis of necrosis, and can be described
as controlled cell death. The human immune system has
the sensing capability to discriminate between apoptosis and
necrosis through somatically encoded receptors on an antigen
presenting cell.

Necrosis causes activation of T-helper cells through the
maturation and migration of dendritic cells, ultimately lead-
ing to the elimination of the entity responsible for causing
the necrosis in the first instance. Apoptosis causes tolerance
in T-helper cells via suppressing the maturation process of
dendritic cells which leads to tolerance of matter present
during apoptotic processes. Monitoring the balance between
apoptotic and necrotic processes in tissue cells is a funda-
mental process in immunology. In this study we use apoptosis
to regulate the growth of the cellular automata while necrosis
controls which type(s) or automata with controlled growth,
are permitted to survive.

The Danger Theory was first proposed by Matzinger in
1994[18], though it took nearly a further 20 years to amass
sufficient evidence to ground the theory empirically [21]. The
precise molecular signalling pathways and corresponding re-
ceptors have been elucidated, adding weight to the validity of
the theory despite widespread initial criticism of the Danger
Theory. The essential role of antigen presenting cells is
highlighted as the key cell type responsible for the collection
and analysis of Danger Signals and the complementary ‘safe’
signals of apoptosis.

Artificial Immune Systems (AIS) are computational tech-
niques inspired by the function and behaviour of the human
immune system [15]. Necrosis is a feature of AIS which
encompass the Danger Theory, first proposed by Aickelin
and Cayzer (2002)[9]. The use of both apoptosis and necrosis
features heavily in the research towards the development of
the Dendritic Cell Algorithm [14], which uses the balance be-
tween the ‘safe’ signals of apoptosis and the ‘danger’ signals
of necrosis as the basis of classification of anomalies[12].
The majority of Danger Theory inspired approaches use
some version of the DCA to interrogate signals of necrosis or

apoptosis and to perform some form of binary classification,
as reviewed in Chelly and Elouedi (2016)[10].

In AIS literature there are many different interpretations
of the Danger Theory, with applications ranging from man-
agement of wireless sensor networks through to the security
of computer networks[23], or the approach incorporating
algorithms which control the release of danger signals from
metaphors of tissue as in [28] and [6]. At the core of most
danger-based AIS is the detection of some form of danger
signal, mapped to a set of underlying feature vector or stream
data. The related technique, the DCA, uses a categorisation
of underlying data streams into the necrotic ‘danger stream’
or the apoptotic ‘safe stream’[16], where a multi-agent algo-
rithm performs distributed signal processing. This algorithm
centres around the analysis of the behaviour of the cell agents
to reveal anomaly scores. In this research we aim to use
a ‘pure’ Danger Theory approach i.e. focus purely on the
processes of apoptosis and necrosis, in a manner similar to
that used by Bentley et al. (2005)[6], without employing a
population of artificial dendritic cells. Previous research has
included an apoptosis operator into cellular automata. Given
the similarity to the use of the concept of apoptosis in danger-
based AIS we aim to determine how a necrosis operator can
also be integrated.

We explicitly declare two distinct operators for apopto-
sis and necrosis, which have distinct effects on a cellular
automata. In terms of the Danger Theory, each automata in
analogous to an individual cell in biological tissue, which has
the capability to undergo either apoptosis or necrosis. The
former process eliminates cells that undergo uncontrolled
growth while the latter process eliminating members of the
population that exhibit other undesirable properties. This is
a novel approach to using the Danger Theory metaphor,
focusing on the tissue cell aspects instead of models of the
dendritic cell’s processes. This also creates a terminological
conflict as individual cellular automata have ”cells” but the
entire automata is treated as a cell in the metaphor. The usage
should be clear from context.

Upon meeting a set of criteria we can introduce either
type of cell death to individuals in the automata population.
Death by necrosis limits the automata’s growth based on a
metaphor of introducing unexpected ’necrosis’ to individuals,
rendering areas of the landscape unusable. This approach
explicitly encapsulates the metaphor of using distinct necrotic
and apoptotic processes incorporated into the growth of an
evolvable cellular automata, as detailed in the methodology
section of this paper. This study aims to show that the
addition of a necrosis operator produces significantly dif-
ferent automata than whose produce only with the apoptosis
operator introduced previously.

The rest of this study is structured as follows. In Section
II we give the design of experiments, including the repre-
sentation, fitness functions, and analysis tools. In Section III
the results are presented and discussed. Section IV we draw
conclusions and discuss potential next steps.



Fig. 1. Shown are renderings of time histories of 100 evolved apoptotic cellular automata.

II. DESIGN OF EXPERIMENTS

Four sets of experiments are performed. The first performs
a parameter study on the mutation rate for locating apoptotic
cellular automata not constrained by necrosis. This parameter
study had not been performed in earlier studies and locates a
best value for the mutation rate not used in the earlier work.
The second set of experiments uses four shape restrictions
and a soft necrosis selection step to steer the automata rules
into favouring particular parts of the search space. The third
set of experiments used a crisp form of necrosis based on
the Shannon entropy of state usage. This type of necrosis
affects the state usage of the automata, indirectly controlling
shape, and steering the automata in a manner that favors
different portions of the fitness landscape. The fourth set
of experiments verifies that one of the shapes used in the
second set of experiments scales properly. The details of
these experiments and the evolutionary algorithm is given
in the remainder of this section.

The cell states for the automata used in this study are the
numbers {0, 1, 2, 3, 4, 5, 6, 7}. The cell sets of the automata
are one-dimensional arrays of 201 in the first three sets
of experiment and 601 cells in the last set. Automata that
reach the edges of the cell array are awarded zero fitness,

preventing dependence of the auotmata’s rendering on the
width of the drawing arena. The neighborhood of each cell
consists of the cell itself and two cells to the left and right
of it. The rules for the cellular automata are the target of
evolution. They are arrays specifying 36 choices of cell
states. Rules are applied as follows - the numbers in the
five cells are summed, yielding a number in the range 0-
35. This number is used as an index to look up the new
state of the cell in the center of the neighborhood in the
array. State zero is designated at the quiescent state of the
automata and the first entry of the rule, corresponding to
the neighborhood [00000], is forced to be zero so that a
completely quiescent neighborhood yields a quiescent cell.
This permits a natural definition of living (non-quiescent)
and dead (quiescent) cells.

The representation used for evolution is a string represen-
tation, with the string data structure being the array giving the
values of the updating rules. The variation operators used are
two point crossover and k-point mutation in which k values
within the updating rule are changed. Given that the first cell
of the array is forced to be zero, there are 835 ∼= 1.14e+68
rules in the search space. Tens of thousands of different
local optima of the search space have been identified in the



research thus far. The complexity of the fitness landscape for
this space is documented in [3]. The fitness of the cellular
automata in this study are computed using the time history
of the automata. Examples of such histories appear in Figure
1. All the automata in this study use the apoptotic fitness
function, named after the biological process of programmed
cell death.

Definition 1: Apoptotic fitness is zero if the time history
contains any living cells when the time history reaches the
bottom of the rendering array. Otherwise the fitness is the
number of live cells in the time history from time t = 0
until the automata ceases to produce live cells.

Apoptosis in these automata is triggered by hitting the
bottom of the rendering array. This is separate from necro-
sis which is triggered by recognition of other undesirable
qualities in the rendering of the automata.

000464010724242443141663403037656471

024003040131142021346321610133315051

Fig. 2. Shown are renderings of time histories of an automata grown without
necrosis (top) and one with necrosis triggered by leaving the middle quarter
of the rendering area (bottom). The evolved rules for the automata are also
shown. These automata were produced with an evaluation size of 601×601
in the fourth group of experiments.

A. Evolutionary Algorithm Design

The evolutionary algorithm in this study, before adding
necrosis, is a standard one. The cellular automata updating
rules are stored as strings of 36 integers with values in the
range 0-7, corresponding to the cell states. Two variation
operators are used: two point crossover of the string and
k-point mutation that replaces the value at at k positions
selected uniformly at random within the rule. Selection and
replacement are accomplished with generational size-four
tournament selection. The population is shuffled into groups
of four CA-rules. The two more fit are copied over the two

less fit. The copies are subjected to crossover and mutation.
Such an updating is called a generation. In each experiment,
the algorithm is run for 6000 generations with a population
of 200 automata rules. A collection of 100 replicates with
different random number seeds is used in each experiment.

The algorithm is modified as follows to implement
Necrosis. The entire population is passed, one at a time, to
the necrosis test. If they fail this test, they are recognized
as emitting danger signals their fitness is reduced to zero.
Necrosis is applied immediately after reproduction and
fitness evaluation of new structures. Both old and new
structures are tested for by the necrosis filter and the data
needed to perform the necrosis test is recorded in the
same manner that fitness is, in a global array. The necrosis
functions used in the various experiments are given below.

Mutation rate experiments In these experiments the
maximum number of mutations (MNM) is set to 1, 2, 3,
4, and 5. The actual number of mutations performed is
selected uniformly at random in the range one to MNM.
These experiments do not use necrosis.

Soft necrosis shape experiments In these experiments a
shape specification is used to designate positions within the
rendered automata that cause the emission of danger signals.
Four shapes are used:

• Outside of the middle half of the rendering arena, in the
x-coordinate, the middle half restriction.

• Outside of the middle quarter of the rendering arena, in
the x-coordinate, the middle quarter restriction.

• Outside of a square with corners in the center of each
side of the rendering arena, the diamond restriction.

• Positions within the lower quadrant of the drawing
arena, y > x and y > 1−x intersected with the middle
half of the square in the x direction. The limited wedge
restriction.

To apply necrosis, the number of living cells n outside of
the shape was totalled and a CA rule was found to be emitting
danger signals by comparing a uniform random number in
the range [0,1] to the function given in Equation 1.

p(n) =
e(

n
K −r)

e(
n
K −r) + 1

(1)

The value K scales the number of cells, n, that are out
of bounds and r is an offset. Function 1 is the probability
of necrosis, conditioned on the number of cells outside of
the shape. The values K = 1000 and K = 2000 are used
with r = 2 The parameter K controls the sharpness of the
sigmoid probability curve given by equation 1 while r is an
offset that lowers the chance of necrosis as r increases.

Crisp necrosis entropy experiments The number of each
type of living state appearing in a rendering are compiled
an divided by the total number of living cells to create
empirical probabilities pi of use for each living state i.
The Shannon entropy of this distribution, given in Equation



Fig. 3. Shown are the distribution of fitness values for the five experiments
with different mutation rates for the baseline evolutionary algorithm for
evolving apoptotic cellular automata, without necrosis.

2, is used to perform necrosis. Necrosis is not applied to
low fitness (small) rendered automata to prevent necrosis
from operating on automata with a small number of living
cells. The smallness restriction on applying necrosis was
implemented after many runs, with the lowest upper bound
on acceptable entropy values, terminated with all individuals
of zero fitness. An automata rule is found to be emitting
danger signals if their entropy exceeds, or fails to exceed, a
given bound. Three experiments encourage low entropy, three
encourage high entropy. In the experiments in this study we
set the smallness value to avoid necrosis to 200 living cells,
i.e. necrosis is not applied to population members with a
fitness below 201.

The entropy bounds used as the threshold for emitting
danger signals are (greater than) 0.8, 1.0, and 1.2 and (less
than) 1.0, 1.2, and 1.4. The maximum possible entropy for
even use is log2(7) ∼= 2.81. These entropy bounds were
selected by preliminary experimentation, to avoid runs in
which there are few or no automata rules whose with the
desired level of entropy. The low entropy necrosis filters
will encourage pictures that use few non-white colors or
encourages very uneven usage of colors in the renderings.
The high entropy filters encourage the relatively even use of
many colors in the renderings.

E = −
m∑
i=1

pi · log2(pi) (2)

III. RESULTS AND DISCUSSION

The mutation rate study on the algorithm without necrosis
yielded the fitness distributions shown in Figure 3. The
difference between MNM 3, 4, and 5 was not significant,
but MNM = 3 yielded the best upper outliers and so was
chosen for the remaining simulations. This is in contrast with
MSM = 1 used in earlier studies. The example automata
shown in Figure 1 are those found for the MNM = 3
experiment without necrosis and should act as a basis for
comparison with the automata found with the various necro-
sis filters active.

The fitness values for the shape-based and entropy-base
experiments with necrosis active are shown in Figures 4

Fig. 4. Shown are the distribution of fitness values for the eight experiments
performed with soft shape-based necrosis.

Fig. 5. Shown are the distribution of fitness values for the six experiments
performed with crisp entropy-based necrosis.

and 5. The shape based experiments have lower fitness
values than the experiments in the mutation rate study. The
entropy results that recognize high entropy as a trigger for
necrosis yield even lower fitness values. The experiments
that recognize low entropy as a necrosis trigger have fitness
distributions similar to the baseline experiments, and the
automata located in these experiments are most similar to
those in the baseline experiments.

The fitness data provide evidence that the algorithm is
being diverted into different parts of the search space by
the application of necrosis. Examination of the 1900 images
produced located a single repeated image with a fitness over
200. The rules that produced this image were not identical,
but the loci used in those rules during rendering are identical.
This highlights a problem with documenting that necrosis is
producing different results: repeated optima are rare because
the number of optima is huge.

The low fitness of the experiments, those that recognize
high entropy values as triggering danger signals, resulted in
many runs that ended with cellular automata whose render-
ings were inside the safe size bound to avoid application of
necrosis. Examples of such automata with small renderings
are shown in Figure 6. These automata are two-thirds of all
the runs with the experiment with necrosis trigger E > 0.8.



Fig. 6. Shown are renderings of low fitness automata that never managed
to break out of the situation where the minimal size before application of
necrosis preserved them. These are taken from the run that applied necrosis
when the living state-use entropy exceeded 0.8

This result demonstrates the difficulty of locating high-
fitness, low entropy automata.

Evaluating the success, beyond the problem with many
small pictures in some of the experiments encouraging low
living-state entropy, requires examining the renderings of
the evolved automata rules. Exemplary results from the
experiments with soft necrosis based on shapes are shown
in Figure 7. All four shapes used for necrosis are clearly
visible in the example renderings. Two of the shapes, the
last middle quarter and the third limited wedge have a small,
but positive chance of being assigned zero fitness by the
necrosis operator. This shows a feature of using soft necrotic
selection - it tolerates minor violation of the shape restriction.
If a cellular automata has only a small number of cells in
the area that triggers necrosis, there is a good chance it will
survive long enough to reproduce and may end up as the best
organism in its run if it arises near the end of evolution.

Contrasting the renderings of rules located with different
necrosis operators also demonstrates that evolution is being
steered into different parts of the fitness landscape. All four
shapes used in this study had a large impact on the images
produced and, more to the point, they had the intended
impact of causing the cellular automata to growing cells in
the areas that triggered necrosis.

The results from the entropic experiments were not as
strong as the shape based results. Exemplary results from the
experiments with crisp necrosis based on state-use entropy
are shown in Figure 8. In the results shown in Figure 8 the
entropy, and hence diversity, of states used is biased up or
down as intended. The failure is in the runs encouraging low
entropy. The runs with the lowest acceptable upper bound on
the entropy value failed two-thirds of the time, in the sense
that the best-of-run results were those that never exceeded
the fitness bound below which necrosis was not triggered.
The renderings of the failed runs are shown in Figure 6.

The acceptable entropy values in the entropic experiments
are nested – having entropy less than 0.8, for example,
automatically makes the entropy less than 1.2. The nesting
runs in opposite directions for the experiments encouraging

high state-use entropy and low state-use entropy. The results
in this study strongly suggest that renderings with high
entropy of living states are more common than those with
low entropy. This in reflected in the large numbers of failures
to locate automata with large renderings when the entropic
bound for danger signals was set to E > 0.8.

The different restrictions on the use of colors in ren-
derings implemented as entropy restrictions yield pictures
with different appearances. The high entropy images have
similar complexity of shape to the low entropy results,
but greater chromatic complexity. The affects the aesthetics
of the images, color palette and use are important artistic
factors, but the impact of the entropy restrictions in this study
was not particularly predicable. More intentional impact of
necrosis filters on aesthetics is a topic for future work.

IV. CONCLUSIONS AND NEXT STEPS

This study demonstrates that necrosis, based on danger
theory, can be used to exclude portions of the fitness
landscape in an evolutionary algorithm. Necrosis filters can
steer the evolution of automata rules to ones with that
avoid the properties negatively encoded by the definitions
for emission of danger signals. This is a strong positive
result for the technique, which permits us to decompose the
imposition of restrictions on the search space from the fitness
function. Such a decomposition simplifies algorithm design,
in contrast with earlier work in which shape restrictions were
incorporated into the fitness functions [4].

The entropic danger signals, when used to drive necrosis,
are novel to this study. Placing very low upper bounds on the
acceptable entropy values caused a two-thirds failure rate;
higher upper bounds on entropy experienced much lower
failure rates and placing a lower bound on acceptable entropy
values for the distribution of cell states of living cells in
the automata rendering did not cause failure. This tells us
something not previously known about the distribution of
entropy values within the fitness landscape – high entropy
rules are more common.

An unexplored possibility is to stack the necrotic filters.
This would be as simple as calling two distinct filters, one
after the other. If, for example, we filtered for relatively
high entropy and the middle quarter shape, we conjecture the
results would be more even color use in automata that stuck
near the center of the rendering arena. An under-explored
area in this study is the use of soft or hard application of the
necrosis rules. It might, for example, be the case that soft
selection for low-entropy rules might alleviate the failure rate
of low-entropy automata.

This study demonstrates that necrosis driven by danger
signals in the form of detection of undesirable features are
useful in the management of evolution across a challenging
fitness landscape. This technique could be applied in many
other areas of evolutionary computation. The technique could
be respecialized, by recognizing known optima as dangerous,
to permit the enumeration of optima. It might also be
useful for encouraging exploration of the Pareto-frontier in
multi-criteria evolutionary optimization. Exploration of other
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Fig. 7. Shown are representative renderings from each of the eight experiments with different shapes. The left two columns use the softer selection in
which K = 2000 while the right hand pair of columns were evolved with K = 1000.

possible applications of necrotic filtering are an early priority
for future research.
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