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Abstract. Let A be a (non-unital) commutative Banach algebra. We
consider when A has a variety of factorization properties: we list the (ob-
vious) implications between these properties, and then consider whether
any of these implications can be reversed in various classes of commu-
tative Banach algebras. We summarize the known counter-examples to
these possible reverse implications, and add further counter-examples.
Some results are used to show the existence of a large family of prime
ideals in each non-zero, commutative, radical Banach algebra with a
dense set of products.

1. Introduction

Let A be a (non-unital) commutative Banach algebra. We wish to examine
when A factors in a variety of senses. Our main results are counter-examples
to a number of questions that have been raised. Indeed, we shall list seven
such factorization properties, called (I)�(VII), and note that each of these
immediately implies the next one. We shall also, in §4, discuss two other `lo-
cal' factorization properties, called (A) and (B) (where (A) ⇒ (B)); these
properties are relevant for Esterle's classi�cation of commutative, radical
Banach algebras that is given in [14]. We shall then discuss whether or not
any of these implications can be reversed when we restrict attention to par-
ticular classes of commutative Banach algebras. We shall show that several
cannot be reversed, but we leave open other possible reverse implications.
A summary in §6 describes our knowledge at the present time.

We shall concentrate on two particular classes of commutative Banach
algebras A: �rst, on the case where A is semi-simple (so that A is a Banach
function algebra), and in particular when A is a maximal ideal in a uniform
algebra on a compact space, and, second, on the other extreme case where A
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is a radical Banach algebra. We shall also seek results in the special case that
our commutative Banach algebra is separable, and when it has the special
form of a maximal ideal in a class of uniform algebras that generalize the
uniform algebra R(X) for a compact subset X of the complex plane, C; in
this latter case most of the stated properties are equivalent to each other.

In the remainder of this introduction, we shall �rst recall some basic
properties of the commutative Banach algebras that we shall consider, and
then list our factorization properties (I)�(VII) and note the known implica-
tions and counter-examples between them.

In §2, we shall give some results about factorization for uniform algebras,
mainly related to Gleason parts in the character space of the algebra.

In §3, we shall discuss the theory of extensions of uniform algebras and
prove our main theorem that there is a maximal idealM in a uniform algebra
such that null sequences in M factor, but M does not have a bounded
approximate identity.

In §4, we shall introduce the two `local' factorization properties, called
(A) and (B), and discuss their relation with the factorization properties
already discussed; in particular, we shall exhibit a separable maximal ideal
in a uniform algebra that satis�es condition (B), but not condition (A).

Finally, in §5, various factorization results will extend Esterle's class-
i�cation theory of commutative, radical Banach algebras from [14] and will
lead to a proof that, for a non-zero, commutative, radical Banach algebra R
such that {ab : a, b ∈ R} is dense in R, there is a family F of prime ideals
in R with |F| ≥ c and such that no member of F is contained in any other
member of F .

For background concerning Banach algebras, see the monograph [6]; how-
ever we shall be concerned here only with commutative Banach algebras.
(In fact, versions of the properties that we shall discuss do apply to general
Banach algebras.) As we said, a particular interest will be the class of uni-
form algebras; the classic texts on these algebras are those of Browder [3],
Gamelin [16], and Stout [33]; more recent texts include [19].

1.1. Notation. We make the following standard de�nitions:

I = [0, 1] is the closed unit interval in the real line R;

R+ = {x ∈ R : x ≥ 0} and R+• = {x ∈ R : x > 0};

Q is the set of rational numbers; further, Q+ = {x ∈ Q : x ≥ 0} and
Q+• = {x ∈ Q : x > 0};
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D = {z ∈ C : |z| < 1} is the open unit disc in the complex �eld, C; and
also T = {z ∈ C : |z| = 1}, the unit circle.
For z ∈ C and r > 0, we write D(z, r) for the open disc {ζ ∈ C : |ζ − z| < r}.
For n ∈ N, we set Nn = {1, . . . , n} and Z+

n = {0, 1, . . . , n− 1}.
The cardinality of a set S is |S|; the �rst in�nite ordinal is ω, and the

�rst uncountable ordinal is ω1.
An algebra is always linear and associative and taken over the complex

�eld; the identity of a unital algebra A is eA, and the character space of an
algebra A is denoted by ΦA. The algebra formed by adjoining an identity,
also called eA, to a non-unital algebra A is denoted by A] (and A] = A

when A is unital). For an algebra A, we set A• = A \ {0}.
The (Jacobson) radical of an algebra A, de�ned to be the intersection

of the maximal modular left ideals of A, is denoted by radA; it is an ideal
in A, and the algebra A is semi-simple if radA = {0} and radical if A has
no maximal modular ideals, and so radA = A. Suppose that (A, ‖ · ‖) is a
Banach algebra. Then radA is a closed ideal in A; when A is commutative,

radA = {a ∈ A : lim
n→∞

‖an‖1/n = 0} .

Let A be an algebra. An element a ∈ A is nilpotent if an = 0 for some
n ∈ N. For a subset S of A and n ∈ N, we set

S[n] = {a1 · · · an : a1, . . . , an ∈ S} and Sn = linS[n] ,

so that Sn is the linear span of S[n]. The set S is nil if all of its elements
are nilpotent, and S is nilpotent if S[n] = {0} for some n ∈ N. (In fact, a
Banach algebra that is nil is also nilpotent [6, Theorem 2.6.34].)

The closed unit ball centred at 0 of a normed space E is denoted by
E[1] and the dual space of E is E ′, so that E ′[1] is compact in the weak-∗
topology, σ(E ′, E).

Let E and F be Banach spaces. The projective tensor norm‖ · ‖π on
E ⊗ F is de�ned by

‖z‖π = inf

{
n∑
j=1

‖xj‖ ‖yj‖ : z =
n∑
j=1

xj ⊗ yj, n ∈ N

}
(z ∈ E ⊗ F ) ,

where the in�mum is taken over all representations of z as an element of
E⊗F . Then (E⊗F, ‖ · ‖π) is a normed space; the Banach space which is its
completion is denoted by (E ⊗̂F, ‖ · ‖π); it is the projective tensor product
of E and F .

Let X be a non-empty, locally compact space (always taken to be Haus-
dor�). The function that is constantly equal to 1 onX is 1X . We write C0(X)

and C b(X) for the spaces of all complex-valued, continuous functions on X
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that vanish at in�nity and which are bounded on X, respectively, so that
C b(X) is a unital algebra with respect to the pointwise algebraic operations
and C0(X) is an ideal in C b(X). For f ∈ C b(X), we write

ZX(f) = {x ∈ X : f(x) = 0} ,

the zero set of f on X. We de�ne

|f |X = sup{|f(x)| : x ∈ X} (f ∈ C b(X)) ,

so that | · |X is the uniform norm on X and (C b(X), | · |X) is a commutative,
unital Banach algebra. In the case where the space X is compact, we write
C(X) for C0(X) = C b(X).

Let S be a non-empty set, and let E be a subset of CS. The weakest
topology τ on S such that each f ∈ E is continuous with respect to τ is the
E-topology on S; it is denoted by τE.

A function algebra on a non-empty, locally compact space X is a non-
zero subalgebra A of C b(X) that separates strongly the points of X, in the
sense that, for each x, y ∈ X with x 6= y, there exists f ∈ A with f(x) = 0

and f(y) = 1, and is such that the given topology on X is τA. (In the case
where A is a subalgebra of C0(X) that separates strongly the points of X,
the topology τA is necessarily equal to the given topology [6, Proposition
4.1.2].) A Banach function algebra on X is a function algebra A on X with
a norm ‖ · ‖ such that (A, ‖ · ‖) is a Banach algebra. Suppose that X is
compact. Then a uniform algebra on X is a closed subalgebra of C(X) that
separates the points of X and contains the constant functions, so that a
uniform algebra is a unital Banach function algebra on X; such a uniform
algebra A is trivial if A = C(X).

For each Banach algebra A, the set ΦA ∪ {0} is a weak-∗-closed subset
of A′[1], and so ΦA is locally compact; each Banach function algebra is semi-
simple and, for each non-zero, commutative, semi-simple Banach algebra A,
the space ΦA is non-empty and A is isomorphic (by the Gel'fand transform)
to a Banach function algebra on ΦA, and so we can regard A as a Banach
function algebra on ΦA with A ⊂ C0(ΦA).

Let A be a Banach function algebra on a non-empty, locally compact
space X. The evaluation characters on A are denoted by εx for x ∈ X, so
that

εx(f) = f(x) (f ∈ A) ,

and the map x 7→ εx, X → ΦA, is a homeomorphic embedding; further, we
have ‖f‖ ≥ |f |X (f ∈ A). The algebra A is natural if each character on A
has this form, that is, the above embedding is a surjection, in which case
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A is a subalgebra of C0(X) and each maximal modular ideal of A has the
form

Mx = {f ∈ A : f(x) = 0} = {f ∈ A : εx(f) = 0}
for some x ∈ X; Mx is a Banach function algebra on X \ {x} whenever
|X| ≥ 2. The Banach function algebras that we shall consider will usually
be natural.

For example, let X be a non-empty, compact set in Cn, where n ∈ N.
Then R(X) denotes the space of functions in C(X) that are the uniform
limits on X of the restrictions to X of functions of the form p/q, where
p and q are polynomials and ZX(q | X) = ∅, so that R(X) is a uniform
algebra on X. The character space of R(X) is identi�ed with the compact
subspace of Cn that is the rationally convex hull of X. Further, A(X) de-
notes the uniform algebra of continuous functions on X that are analytic
on the interior of X, so that R(X) ⊂ A(X). In the case where n = 1, R(X)

and A(X) are always natural. See [6, §4.3] and [33, §29], for example.
We shall also consider a class of uniform algebras de�ned by O'Farrell

in [27]. Let X be a non-empty, compact set in C. Then CX is the class of
uniform algebras A on X such that, for each z ∈ X and each f ∈ A, there
is a sequence (gn) in C0(C) such that, for each n ∈ N, gn | X ∈ A and gn
is analytic on a neighbourhood of z and such that limn→∞ gn | X = f in
A. The class CX clearly contains R(X), and it contains A(X) by a theorem
of Arens [6, Lemma 4.3.15]; as in [6, Theorem 4.3.14], each member of CX
is natural on X. We shall see in Theorem 2.4 that properties (I)�(VI) that
we are considering are mutually equivalent for all maximal ideals in the
algebras of this class.

A Banach function algebra A is regular if, for each proper, non-empty,
closed subspace F of ΦA and each x ∈ ΦA \ F , there exists f ∈ A such
that f(x) = 1 and f | F = 0, and A is normal if, for each non-empty,
compact subspace K of ΦA and each non-empty, closed subspace F of ΦA

with K ∩ F = ∅, there exists f ∈ A such that f(x) = 1 (x ∈ K) and
f(x) = 0 (x ∈ F ). In fact, every regular Banach function algebra is normal
(see [6, Proposition 4.1.18(ii)] or [33, Theorem 27.2]).

Let A and B be algebras, and set A = A ⊗ B, the linear space that is
the tensor product of A and B. Then there is a unique product on A with
respect to which A is an algebra and such that

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2 (a1, a2 ∈ A, b1, b2 ∈ B) .

In the case where A and B are Banach algebras, A is a normed alge-
bra with respect to the projective tensor norm ‖ · ‖π, and its completion
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(A ⊗̂B, ‖ · ‖π) is a Banach algebra [6, Theorem 2.1.22]. There is a unique
bounded linear operator

πA : A ⊗̂A→ A

such that πA(a ⊗ b) = ab (a, b ∈ A), and then πA is an algebra homo-
morphism and πA(A ⊗̂A) is a subalgebra of A and a Banach algebra with
respect to the quotient norm from (A ⊗̂A, ‖ · ‖π).

Let (En : n ∈ N) be a sequence of non-empty sets such that, for each
n ∈ N, there is a map θn : En+1 → En. Then ((En, θn) : n ∈ N) is a
projective sequence and the projective limit of the sequence is de�ned to be

lim proj(En, θn) = {(xn) ∈ Πn∈NEn : θn(xn+1) = xn (n ∈ N)} .

The image of the projection from lim proj(En, θn) into E1 is denoted by

lim←−(En, θn) .

We shall use at some future points the following version of the famous
Mittag�Le�er theorem; it is proved by a small variation of the proof given
in [6, Corollary A.1.25].

Theorem 1.1. Let ((En, θn) : n ∈ N) be a projective sequence consisting of
complete metric spaces En and continuous maps θn, and let Xn be a subset
of En for each n ∈ N. Suppose that

Xn ⊂ θn(Xn+1) (n ∈ N) .

Then X1 is contained in the closure of lim←−(En, θn).

1.2. Factorization properties. In this section we shall delineate the fac-
torization properties that we shall consider. The list of properties has some
overlap with a similar list in [6, §2.9, p. 325].

Our �rst property related to factorization in commutative Banach alge-
bras involves approximate identities.

De�nition 1.2. Let A be a commutative Banach algebra. Then an ap-
proximate identity (AI) for A is a net (eν) in A such that limν eva = a

for each a ∈ A; the AI (eν) is a bounded approximate identity (BAI) if
supν ‖ev‖ < ∞, and a contractive approximate identity (CAI) if ‖ev‖ ≤ 1

for each ν.

For example, let V be the Volterra algebra that is discussed in [6, §4.7].
Thus V is the Banach space (L1(I), ‖ · ‖1) with the truncated convolution
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product speci�ed by

(1.1) (f ? g)(t) =

∫ 1

0

f(s− t)g(t) dt (t ∈ I)

for f, g ∈ V . Then V is a separable, commutative, radical Banach algebra
with a contractive approximate identity.

(I) Let A be a commutative Banach algebra. Then A has property (I) if
A has a bounded approximate identity.

Let A be Banach function algebra on a non-empty, locally compact space
X. Then x ∈ X is a peak point for A if there exists f ∈ A such that
f(x) = |f |X = 1 and |f(y)| < 1 (y ∈ X \ {x}), and x is a strong boundary
point for A if, for each open neighbourhood U of x, there exists f ∈ A with
f(x) = |f |X = 1 and |f |X\U < 1. In the case where X is metrizable, every
strong boundary point for A is a peak point for A.

Let A be a uniform algebra on a non-empty, compact space X. Then the
set of strong boundary points for A is called the Choquet boundary of A,
and is denoted by Γ0(A). A closed subset L of X is a closed boundary for A
if |f |L = |f |X (f ∈ A); the intersection of all the closed boundaries for A is
a closed boundary, called the �ilov boundary, Γ(A) [6, De�nition 4.3.1(iv)];
by [6, Corollary 4.3.7(i)], Γ(A) = Γ0(A).

The following characterizations of maximal ideals in uniform algebras
with property (I) (and several other characterizations) are given in [6, The-
orem 4.3.5], save that the implication (b) ⇒ (c) is from [9, Theorem 4.1].

Proposition 1.3. Let A be a uniform algebra on a non-empty, compact
space X, and take x ∈ X such that Mx is non-zero. Then the following
conditions on x are equivalent:

(a) x ∈ Γ0(A) ;

(b) Mx has a bounded approximate identity;

(c) Mx has a contractive approximate identity.

In particular, we can reformulate property (I) for non-zero maximal
ideals in uniform algebras as follows:

(I) Let Mx be a non-zero maximal ideal in a uniform algebra A. Then
Mx has property (I) if x is a strong boundary point with respect to A.

In [9], a Cole algebra was de�ned to be a natural uniform algebra A

on a non-empty, compact space X such that Γ0(A) = X. It was a long-
standing conjecture, called the `peak-point conjecture', that C(X) is the
only Cole algebra on a compact space X. The �rst counter-example was
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due to Cole [4], and is described in [33, §19]; an example of Basener [1],
also described in [33, §19], gives a compact space X in C 2 such that R(X)

is a non-trivial Cole algebra. Further, Feinstein [15] obtained examples of
non-trivial, regular Cole algebras on compact, metrizable spaces.

Let (E, ‖ · ‖) be a Banach space. Then a null sequence in E is a sequence
(xn) in E such that limn→∞ ‖xn‖ = 0; the space of null sequences in E is
denoted by c 0(E), and c 0(E) is itself a Banach space for the norm de�ned
by

‖(xn)‖ = sup{‖xn‖ : n ∈ N} ((xn) ∈ c 0(E)) .

De�nition 1.4. Let A be a commutative Banach algebra. Then null se-
quences in A factor if, for each null sequence (an) in A, there exist a ∈ A
and a null sequence (bn) in c 0(A) such that an = abn (n ∈ N).

The above condition, from [6, De�nition 2.6.11], is important in auto-
matic continuity theory.

(II) Let A be a commutative Banach algebra. Then A has property (II)
if null sequences in A factor.

The following result is one form of the famous Cohen's factorization
theorem; more general forms of this theorem are given in [6, §2.9].

Theorem 1.5. Let A be a commutative Banach algebra. Suppose that A
has a bounded approximate identity. Then null sequences in A factor, and
so (I) ⇒ (II) for A.

Examples of separable Banach function algebras for which null sequences
factor, but which do not have a bounded approximate identity, were given
by Willis in [36, Examples 3, 5, and 6]; see also [6, Example 2.9.47]. However
these examples are not maximal ideals in any uniform algebra. It was shown
by Dixon in [12] that a separable Banach algebra for which null sequences
factor has an approximate identity. The following theorem will be proved
in §3.

Theorem 1.6. There is a non-zero maximal ideal M in a uniform algebra
such that null sequences in M factor, but such that M does not have a
bounded approximate identity.

Thus (II) 6⇒ (I) in the class of maximal ideals of uniform algebras. How-
ever, our example M is not separable. Let M be a separable maximal ideal
in a uniform algebra such that null sequences in M factor. Then we do not
know whether M necessarily has a bounded approximate identity.
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Let A be a commutative Banach algebra, and let R be a non-zero, com-
mutative, radical Banach algebra. Then A ⊗̂R is also a commutative, radical
Banach algebra. Indeed, take elements a ∈ A and x ∈ R. Then

‖(a⊗ x)n‖π = ‖an ⊗ xn‖π = ‖an‖ ‖xn‖ (n ∈ N) ,

and hence a⊗ x ∈ rad (A ⊗̂R); the remark then follows because the linear
span of the set {a⊗ x : a ∈ A, x ∈ R} is dense in A ⊗̂R.

Suppose that null sequences in A factor and that R has a bounded ap-
proximate identity; for example, we could take R to be the Volterra algebra.
Then it is also true that null sequences in the radical Banach algebra A ⊗̂R
factor; this is stated by Willis in [36, p. 619]. We prove this result.

Proposition 1.7. Let A and B be commutative Banach algebras such that
null sequences in A factor and such that B has a bounded approximate
identity. Then null sequences in A ⊗̂B factor.

Proof. We may suppose that A and B are non-zero. Take a null sequence
(xn : n ∈ N) in A ⊗̂B; we may suppose that xn 6= 0 (n ∈ N).

Take n ∈ N, and choose an,i ∈ A and bn,i ∈ B for i ∈ N such that
xn =

∑∞
i=1 an,i ⊗ bn,i and

∞∑
i=1

‖an,i‖ ‖bn,i‖ < ‖xn‖π +
1

n
‖xn‖1/2

π .

We may suppose that ‖an,i‖ = ‖xn‖1/2
π for each i ∈ N, and then

∞∑
i=1

‖bn,i‖ < ‖xn‖1/2
π +

1

n
.

For each n ∈ N, choose a sequence (αn,i : i ∈ N) in the interval [1,∞)

such that limi→∞ αn,i =∞, but such that we still have
∞∑
i=1

αn,i ‖bn,i‖ < ‖xn‖1/2
π +

1

n
.

Next choose a bijection σ : N → N × N. Then (α−1
σ(k)aσ(k) : k ∈ N) is a null

sequence in A, and so there exist a ∈ A and a sequence (un,i : n, i ∈ N) in
A such that an,i = aun,i for n, i ∈ N and such that limk→∞ α

−1
σ(k)uσ(k) = 0.

On the other hand, ((αn,ibn,i : i ∈ N) : n ∈ N) is an element of S := c 0(E),
where

E =

{
(yi) : yi ∈ B (i ∈ N), ‖(yi)‖1 =

∞∑
i=1

‖yi‖ <∞

}
,

so that E is a Banach space and S is a space that is a Banach B-module such
that BS is dense in S. By the version of Cohen's factorization theorem given
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in [6, Theorem 2.9.24], there exist b ∈ B and cn,i ∈ B for n, i ∈ N such that∑∞
i=1 αn,i ‖cn,i‖ <∞ for each n ∈ N, such that limn→∞

∑∞
i=1 αn,i ‖cn,i‖ = 0,

and also such that bn,i = bcn,i (n, i ∈ N).
For each n ∈ N, we see that

∞∑
i=1

‖un,i‖ ‖cn,i‖ =
∞∑
i=1

α−1
n,i ‖un,i‖αn,i ‖cn,i‖

≤
(

sup
k∈N

α−1
σ(k)

∥∥uσ(k)

∥∥) ∞∑
i=1

αn,i ‖cn,i‖ <∞ ,

and so we can set

yn =
∞∑
i=1

un,i ⊗ cn,i (n ∈ N)

to obtain a sequence (yn) in A ⊗̂B. The above calculation also shows that
we have limn→∞ ‖yn‖π = 0, and so (yn) is a null sequence in A ⊗̂B. Since
xn = (a ⊗ b)yn (n ∈ N), it is clear that the null sequence (xn : n ∈ N)

factors in A ⊗̂B, as required.

Let A be a non-zero, separable, commutative Banach algebra such that
null sequences in A factor, but A does not have a bounded approximate
identity, and let R be a non-zero, separable, commutative, radical Banach
algebra with a bounded approximate identity (such as the Volterra algebra).
Assume that A ⊗̂R has a bounded approximate identity. Then, by [13,
Theorem 8.2], A has a bounded approximate identity, a contradiction. Thus,
as in [36], we obtain a separable, commutative, radical Banach algebra in
which null sequences factor, but which does not have a bounded approximate
identity, and hence (II) 6⇒ (I) in the class of separable, commutative, radical
Banach algebras.

De�nition 1.8. Let A be a commutative algebra. Then pairs in A factor if,
for each a1, a2 ∈ A, there exist a, b1, b2 ∈ A such that a1 = ab1 and a2 = ab2.

(III) Let A be a commutative Banach algebra. Then A has property (III)
if all pairs in A factor.

Trivially (II)⇒ (III). However, we do not have an example of a commu-
tative Banach algebra that satis�es (III), but not (II).

De�nition 1.9. Let A be an algebra. Then A factors if A = A[2] and A

factors weakly if A = A2.

(IV) Let A be a commutative Banach algebra. Then A has property (IV)
if A factors.
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Trivially (III) ⇒ (IV).
It was shown by Ouzomgi in [29] that there are maximal ideals Mx in

the (non-separable) algebra H∞(D) of all bounded analytic functions on
the open unit disc D, regarded as a uniform algebra on its character space
M, such that Mx factors, but not all pairs in Mx factor, and so (IV) 6⇒
(III) in the class of maximal ideals of uniform algebras. The point x is
such that {x} is a one-point Gleason part of M, as de�ned below. In fact,
for each f in the maximal ideal Mx, there exist functions g, h ∈ Mx such
that f = gh and |g|D |h|D = |f |D, and so we have `controlled factorization'
without factorization of pairs. See [22, Chapter 10] and [17] for a study of
the character space M of H∞(D).

However, we do not have an example of commutative, radical Banach
algebra or of a separable, commutative Banach algebra that satis�es (IV),
but not (III). Also, we do not know an example of a maximal ideal in
a separable uniform algebra that factors, but does not have a bounded
approximate identity.

(V) Let A be a commutative Banach algebra. Then A has property (V)
if A factors weakly.

Trivially (IV) ⇒ (V).

De�nition 1.10. Let A be a natural Banach function algebra on a locally
compact space X, and take x ∈ X. A linear functional d on A is a point
derivation at x if

d(fg) = f(x)d(g) + g(x)d(f) (f, g ∈ A) .

Since point derivations at x on A correspond to linear functionals onMx

that are zero on M2
x , it is clear that there are no non-zero point derivations

at x if and only if Mx factors weakly.
In [36, p. 622], Willis exhibited a separable Banach function algebra A

such that every element in A is the sum of two products, and so A factors
weakly, but such that A does not factor. Thus (V) 6⇒ (IV) in the class
of separable Banach function algebras. However, we have no example of a
maximal ideal in a uniform algebra or of a commutative, radical Banach
algebra with this property.

Example 1.11. We give another interesting example of Willis. (However,
the relevant results apply mainly to non-commutative algebras.)

Let G be a locally compact group, and let L1(G) be the corresponding
group algebra on G. Take a closed ideal I of �nite codimension in L1(G).
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In the case where G is amenable, the ideal I has a BAI, and so factors. It
is proved in [37] that I always weakly factors, even when it does not have
a BAI. For example, let F2 be the free group on two generators. Then the
augmentation ideal {

f ∈ ` 1(F2) :
∑
s∈F2

f(s) = 0

}
factors weakly, but it seems to be an open question whether it factors.

De�nition 1.12. Let A be a Banach algebra. Then A factors projectively
if the map πA : A ⊗̂A→ A is a surjection.

Thus a Banach algebra A factors projectively if and only if there exists
C > 0 such that each a ∈ A can be written in the form a =

∑∞
n=1 bncn,

where bn, cn ∈ A (n ∈ N) and
∑∞

n=1 ‖bn‖ ‖cn‖ ≤ C ‖a‖. Suppose that A2 is
dense in A. Then A factors projectively if and only if A has the π-property,
as de�ned in [6, De�nition 2.1.26].

(VI) Let A be a commutative Banach algebra. Then A has property (VI)
if A factors projectively.

Trivially (V) ⇒ (VI).
We shall now give easy examples of (separable) Banach function algebras

and commutative, radical Banach algebras that satisfy (VI), but not (V).

Example 1.13. (i) Take p with 1 ≤ p < ∞, and consider the space ` p on
N, taken with the pointwise product, so that ` p is a natural Banach function
algebra on N (and the space ` p is separable). Denote by δn the sequence
(δm,n : m ∈ N). Given α = (αn) ∈ ` 1, we see that α =

∑∞
n=1(αnδn) · δn,

and so ` 1 factors projectively, and hence satis�es (VI).
On the other hand, given β, γ ∈ ` 1, we have

∞∑
i=1

|βiγi|1/2 ≤ ‖β‖1/2
1 ‖γ‖

1/2
1 <∞

by Cauchy�Schwarz, and so (` 1)2 ⊂ ` 1/2 ( ` 1. Thus ` 1 does not factor
weakly. This shows that (VI) does not imply (V) in the class of separable
Banach function algebras.

Similarly, in the case where 1 < p < ∞, the algebra ` p does not factor
projectively, as noted in [6, Example 4.1.42(ii)].

(ii) Now let V be a separable, commutative, radical Banach algebra with
a CAI; for example, take V to be the Volterra algebra V . Set R = ` 1(V ),
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with coordinatewise product. Then R is also a separable, commutative,
radical Banach algebra, and R is a Banach V -module with V · R = R.

We now claim that the Banach algebra R factors projectively. Indeed,
take a sequence u = (un) ∈ R, where un ∈ V (n ∈ N). By the module form
of Cohen's factorization theorem [6, Theorem 2.9.24], there exist a ∈ V

with ‖a‖ = 1 and v = (vn) ∈ R with un = avn (n ∈ N) and ‖v‖ ≤ 2 ‖u‖.
For each n ∈ N, take bn and cn to be the elements of R that have a and
vn, respectively, in the nth-coordinate and 0 in all other coordinates. Then
u =

∑∞
n=1 bncn in R and

∞∑
n=1

‖bn‖ ‖cn‖ = ‖a‖
∞∑
n=1

‖cn‖ = ‖v‖ ≤ 2 ‖u‖ ,

so that R factors projectively.
On the other hand, take elements (un) and (vn) in R. Then, as above,

we have
∑∞

n=1 ‖un‖
1/2 ‖vn‖1/2 <∞, and so R2 ( R, and hence R does not

factor weakly.
This shows that (VI) does not imply (V) in the class of separable, com-

mutative, radical Banach algebras.

However, we do not have an example of a maximal ideal in a uniform
algebra that satis�es (VI), but not (V), or even such an ideal that satis�es
(VI), but not (IV).

Proposition 1.14. Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be Banach algebras such
that there is a continuous algebra epimorphism θ : A→ B. Suppose that A
factors projectively. Then B factors projectively.

Proof. There is a constant C1 > 0 such that, for each b ∈ B, there exists
a ∈ A with θ(a) = b and ‖a‖A ≤ C1 ‖b‖B. Since A factors projectively, there
exists a constant C2 > 0 such that each a ∈ A is of the form a =

∑∞
n=1 rnsn,

where rn, sn ∈ A for n ∈ N and
∞∑
n=1

‖rn‖A ‖sn‖A ≤ C2 ‖a‖A .

Take b ∈ B, choose a ∈ A as above, and set xn = θ(rn) and yn = θ(sn)

in B for each i ∈ N. Then b =
∑∞

n=1 xnyn, and
∞∑
n=1

‖xn‖B ‖yn‖B ≤ C2 ‖θ‖2 ‖a‖A ≤ C1C2 ‖θ‖2 ‖b‖B ,

and so B factors projectively.
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Proposition 1.15. Let A be a Banach algebra. Suppose that there are a
dense subset S of A and C > 0 such that, for each a ∈ S, there exist
b, c ∈ A with a = bc and ‖b‖ ‖c‖ ≤ C ‖a‖. Then A factors projectively.

Proof. Take a0 ∈ A•, say ‖a0‖ < 1. First, choose b1, c1 ∈ A such that
‖a0 − b1c1‖ < 1/2 and ‖b1‖ ‖c1‖ ≤ C, and set a1 = a0 − b1c1, so that
‖a1‖ < 1/2. Now take n ∈ N, and assume inductively that we have chosen
b1, . . . , bn, c1, . . . , cn ∈ A such that∥∥∥∥∥a0 −

n∑
i=1

bici

∥∥∥∥∥ < 1

2n
and ‖bi‖ ‖ci‖ ≤

C

2i−1
(i ∈ Nn) .

Set an = a0−
∑n

i=1 bici, so that ‖an‖ < 1/2n, and then choose bn+1, cn+1 ∈ A
such that

‖an − bn+1cn+1‖ <
1

2n+1
and ‖bn+1‖ ‖cn+1‖ ≤

C

2n
.

The inductive construction continues.
Now a0 =

∑∞
i=1 bici and

∑∞
i=1 ‖bi‖ ‖ci‖ ≤ 2C, and so a0 ∈ πA(A ⊗̂A).

Thus A factors projectively.

Let T be a sub-semigroup of (R+, + ), and take ω to be a weight on T ,
so that ω(t) > 0 (t ∈ T ) and

ω(s+ t) ≤ ω(s)ω(t) (s, t ∈ T ) .

The point mass at t ∈ T is denoted by δt. Then ` 1(T, ω) consists of the
elements

f =
∑
t∈T

αtδt such that ‖f‖ω =
∑
t∈T

|αt|ω(t) <∞ ;

this space is a commutative Banach algebra with respect to convolution
multiplication ? . The weight ω is radical if limn→∞ ‖δnt‖1/n

ω = 0 (t ∈ T ),
in which case (` 1(T, ω), ? ) is a commutative, radical Banach algebra; it is
separable whenever T is countable.

A sub-semigroup T of R+• is a di�erence sub-semigroup if t − s ∈ T

whenever s, t ∈ T and t > s.

Corollary 1.16. Let T be a di�erence sub-semigroup of R+• such that
inf T = 0, and let ω be a continuous weight on R+. Then the semigroup
algebra (` 1(T, ω), ? ) factors projectively.

Proof. Set A = (` 1(T, ω), ? ), and take S be the subalgebra of A consisting
of �nite linear combinations of point masses, so that S is dense in A. For
each f =

∑n
i=1 αiδti ∈ S, choose t ∈ (0, 1) ∩ T such that t < ti, so that

ti − t ∈ T , and such that ω(ti − t) ≤ 2ω(ti) for each i ∈ Nn, and then
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set g = δt and h =
∑n

i=1 αiδti−t. Then g, h ∈ A with f = g ? h, and
‖g‖ ‖h‖ ≤ C ‖f‖, where C = 2 sup{ω(t) : 0 ≤ t ≤ 1}. By Proposition 1.15,
A factors projectively.

Corollary 1.17. Let M be a maximal ideal in a uniform algebra, and sup-
pose that {f 2 : f ∈M} is dense in M . Then M factors projectively.

Proof. Set S = {f 2 : f ∈ M}. Then S satis�es the conditions speci�ed in
Proposition 1.15, and so M factors projectively.

Example 1.18. We claim that there is a separable uniform algebra with a
maximal ideal M such that M factors projectively, but such that there are
pairs in M that do not factor, so that (VI) 6⇒ (III) in the class of maximal
ideals in separable uniform algebras.

Indeed, take N to be a maximal ideal in a uniform algebra on a compact
space X such that N has controlled factorization, but does not have fac-
torization of (some) pairs. Such an example (in H∞(D)) has already been
mentioned on page 11.

We shall give an inductive construction.
First, take f1 and f2 in N such that the pair {f1, f2} does not have

a common factor in N , and set S0 = {f1, f2}, and then take T0 to be the
algebra over the �eld Q+iQ generated by f1 and f2, so that T0 is a countable
set.

Next take n ∈ Z+, and assume that we have constructed a countable set
Sn in N and also the space Tn which is the algebra over Q + iQ generated
by Sn, so that Tn is countable and Tn ⊂ N . For each f ∈ Tn, take g, h ∈ N
with f = gh and |g|X |h|X = |f |X , and let Sn+1 be the union of Tn and all
these new functions g and h, so that Sn+1 is also countable. Again take Tn+1

to be the algebra over Q+ iQ generated by the set Sn+1. This continues the
inductive construction.

De�ne S =
⋃
{Sn : n ∈ N} =

⋃
{Tn : n ∈ N}, a countable subset of N

and an algebra over Q+iQ, and de�neM to be the closure of S in N , so that
M is a closed subalgebra of N and M is separable. We may regard A = M ]

as a uniform algebra on a compact space, say Y , which is a quotient space
of X, and M is a maximal ideal in A. Further, for each f ∈ S, there exist
g, h ∈ S with f = gh and |g|Y |h|Y = |f |Y . Thus S satis�es the conditions
in Proposition 1.15 (with respect to M), and so, by that proposition, M
factors projectively.
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On the other hand, it cannot be that the pair {f1, f2} has a common
factor in M because it does not have a common factor in N .

There is a class of separable, commutative Banach algebras that, at �rst
sight, might give examples that separate the classes satisfying the properties
(I) � (VI), and we describe the algebras in this class.

Indeed, a function ω : R+• → R+• is a weight function if it is Lebesgue
measurable and if

ω(s+ t) ≤ ω(s)ω(t) (s, t ∈ R+•) .

We denote by L1(ω) the set of complex-valued, measurable functions on
R+• such that

‖f‖ω =

∫ ∞
0

|f(t)|ω(t) dt <∞ ,

so that (L1(ω), ‖ · ‖ω) is a commutative Banach algebra with respect to the
convolution product ? .

However the hope of �nding counter-examples in this class is dashed by
the following result of Ouzomgi [28]. In fact, in [28], only the equivalence of
clauses (a) � (d) in the following proposition is stated, but the arguments
given also show that (e) ⇒ (a). Here m denotes Lebesgue measure on R+•.

Proposition 1.19. Let ω be a weight function on R+•. Then the following
conditions on ω are equivalent:

(a) there exists M > 0 such that m({t ∈ [0, δ] : ω(t) < M}) > 0 for each
δ > 0;

(b) L1(ω) has a bounded approximate identity;

(c) L1(ω) factors;

(d) L1(ω) factors weakly;

(e) L1(ω) factors projectively.

Thus properties (I) � (VI) are equivalent for the convolution algebras
L1(ω).

Example 1.20. Take A = ` 1(Q+•, ω) for a continuous weight ω on R+.
Then A satis�es (VI) by Corollary 1.16. However A does not satisfy (III).
To see this, �rst note that it is a consequence of Titchmarsh's convolution
theorem [6, Theorem 4.7.22] that any factorization of δ1 in A has the form

δ1 = (αδs + f) ∗ (βδt + g) ,

where s, t > 0 and s+ t = 1, where α, β ∈ C with αβ = 1, and where f and
g have supports contained in (s,∞) and (t,∞), respectively. On the other



FACTORIZATION IN COMMUTATIVE BANACH ALGEBRAS 17

hand, each element h :=
∑∞

n=1 αnδ1/n in A, where αn 6= 0 (n ∈ N), cannot
have as a factor any element of the form αδs + f , as described, and so the
pair {δ1, h} has no common factor in A.

By taking ω to be a radical weight, we obtain a separable, commutative,
radical Banach algebra R = ` 1(Q+•, ω) that satis�es (VI), but not (III).

It seems unlikely that such a commutative, radical Banach algebra R
factors or factors weakly, but we do not know this.

A further class of Banach function algebras that we consider is the fol-
lowing. Let Γ be a locally compact group, and take p with 1 < p <∞. Then
the Figà-Talamanca�Herz algebra on Γ is Ap(Γ): this algebra is described
in [6, pp. 493�494] and in the book of Derighetti [11]. The Fourier algebra
A(Γ) is the algebra A2(Γ); see the recent book of Kaniuth and Lau [24].
The algebra Ap(Γ) is a natural, self-adjoint, translation-invariant, regular
Banach function algebra on Γ. We enquire when Ap(Γ) has the properties
that we are considering.

The following is taken from [25, Proposition 2]; the equivalence of (a)
and (b) is also given in [32, Theorem 10.4]

Theorem 1.21. Let Γ be a locally compact group, and take p such that
1 < p <∞. Then the following are equivalent:

(a) the group Γ is amenable;

(b) Ap(Γ) has a bounded approximate identity;

(c) Ap(Γ) factors weakly.

Thus properties (I) � (V) are equivalent for the Figà-Talamanca�Herz
algebras, Ap(Γ). It seems likely that property (VI) is also equivalent to these
properties; towards this, we note the following theorem. Here F2 is the free
group on two generators; of course, F2 is not amenable.

Theorem 1.22. Take p such that 1 < p <∞. Then Ap(F2) does not factor
projectively.

Before giving the proof of this theorem, we recall some standard back-
ground that applies to any discrete group Γ, with identity e.

By [11, De�nition 2, §4.1], PMp(Γ), the space of p�pseudo-measures on
Γ, is the closure of ` 1(Γ) in B(` p(Γ)) in the ultraweak topology. In fact,
PMp(Γ) = Ap(Γ)′, and the duality is given by〈

∞∑
i=1

gi ? hi, T

〉
=
∞∑
i=1

〈T ǧi, hi〉 ,
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where ǧ(y) = g(y−1) (y ∈ Γ). By [11, Theorem 6, §4.1], this ultraweak
topology is the same as the weak-∗ topology, σ(Ap(Γ)′, Ap(Γ)). Thus, for
f ∈ Ap(Γ), we have

(1.2) ‖f‖Ap(Γ) = sup{|〈f, Tg〉| : g ∈ ` 1(Γ), ‖Tg‖PMp(Γ) ≤ 1} .

In the above supremum, we can suppose that g has �nite support.
Let E be a Leinert set in Γ. This means that the restriction algebra

A(E) = {f | E : f ∈ A(Γ)}

(with the quotient norm) is isomorphic to ` 2(N) as a Banach algebra. Then
it is shown in clause (b) of the proof of [2, Proposition 1] that, for such a
set E and for each p with 1 < p ≤ 2, there is a constant Cp such that

(1.3) ‖f ? g‖p ≤ Cp ‖f‖p ‖g‖p (f ∈ ` p(E), g ∈ ` p(Γ)) .

Thus, for each f ∈ ` p(E), we have ‖Tf‖PMp(Γ) ≤ Cp ‖f‖p. On the other
hand, we have ‖Tf‖PMp(Γ) ≥ ‖f ? δe‖p = ‖f‖p.

We now claim that, for a Leinert set E in Γ and 1 < p ≤ 2, the restriction
map

R : Ap(Γ)→ `∞(E)

is such that ‖R(f)‖q ≤ Cp ‖f‖Ap(Γ) (f ∈ Ap(Γ)), where q = p′, the con-
jugate index to p. This claim says that the map R : Ap(Γ) → ` q(E) is a
bounded linear operator. For this, take f ∈ Ap(Γ). It follows from equations
(1.2) and (1.3) that

‖f‖Ap(Γ) ≥
1

Cp
sup

{∣∣∣∣∣∑
x∈E

f(x)g(x)

∣∣∣∣∣
}
,

where now the supremum is taken over all functions g with �nite support
in E such that ‖g‖p ≤ 1. This implies that ‖R(f)‖q ≤ Cp ‖f‖Ap(Γ), giving
the claim.

Since ` q(Γ) is a subset of Ap(Γ), the map R : Ap(Γ) → ` q(E) is a
surjection. It now follows that ` q(E) is a quotient of Ap(Γ).

A subset E of Γ satis�es Leinert's condition if, for each n ∈ N and
each x1, . . . , x2n ∈ Γ with xi 6= xi+1 (i = 1, . . . , 2n − 1), necessarily
x1x

−1
2 · · ·x2n−1x

−1
2n 6= e. It was shown by Leinert in [23] that every subset

E of Γ that satis�es this condition is a Leinert set. It follows immediately
that F2 contains a Leinert set.

Proof of Theorem 1.22 First suppose that 1 < p ≤ 2. Let E be a Leinert
set in F2. Then we have shown above that there is a quotient map from
Ap(F2) onto ` q(E), where q = p′. The latter Banach algebra is isomorphic
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to ` q(N), and we have noted in Example 1.13 that ` q(N) does not factor
projectively. Thus, by Proposition 1.14, Ap(F2) does not factor projectively.

Now suppose that 2 ≤ p <∞. Since the map f 7→ f̌ , Ap(Γ)→ Aq(Γ) ,

is an isometric algebra isomorphism, the result again follows.

The following theorem is a slight extension of Theorem 1.22.

Theorem 1.23. Let Γ be a locally compact group that contains F2 as a
closed subgroup, and take p such that 1 < p < ∞. Then Ap(Γ) does not
factor projectively.

Proof. By a theorem of Herz ([21, Theorem 1]; see also [11, Theorem 5 of
§7.9]), the restriction map F 7→ F | F2 is a continuous algebra epimorphism
from Ap(Γ) onto Ap(F2). It follows from Proposition 1.14 and Theorem 1.22
that Ap(Γ) does not factor projectively.

The �nal statement about factorization in commutative Banach algebras
that we shall consider is the following.

De�nition 1.24. Let A be a Banach algebra. Then A factors densely if A2

is dense in A.

(VII) Let A be a commutative Banach algebra. Then A has property (VII)
if A factors densely.

Trivially (VI) ⇒ (VII).
Let A be a natural Banach function algebra on a non-empty, locally

compact space X, and take x ∈ X. It is clear that there are no non-zero,
continuous point derivations at x if and only if Mx factors densely.

There are many non-zero, commutative, radical Banach algebras that do
not factor densely: the extreme case is a non-zero Banach space with the
zero product.

In Example 2.7 below, we shall show that (VII) 6⇒ (VI) in the class of
maximal ideals of separable uniform algebras; we now show that (VII) 6⇒
(VI) in the class of separable, commutative, radical Banach algebra.

Example 1.25. Consider R = C∗,0(I), the algebra of all continuous func-
tions on I that vanish at 0, taken with the truncated convolution product
given in equation (1.1) (see [6, De�nition 4.7.39]), so that R is a radical
Banach algebra. Then R has an approximate identity, and so R[2] = R, and
hence R satis�es (VII). But R fails to satisfy (VI). For suppose that f, g ∈ R.
Then |(f ∗ g)(t)| ≤ |f |I |g|I t (t ∈ I), and so each element f ∈ πR(R ⊗̂R) is
such that f(t) = O(t) as t→ 0+, and this is not true for every f ∈ R.
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2. Gleason parts

Here we shall recall the standard theory of Gleason parts for a uniform
algebra, and give some examples.

Let A be a natural uniform algebra on a non-empty, compact space X,
and take x, y ∈ X. Then the following are equivalent:

(a) ‖εx − εy‖ < 2 ;

(b) there exists c ∈ (0, 1) such that |f(x)| ≤ c |f |X (f ∈My).

See [33, §16], where several other equivalent conditions are given. In the
case where the conditions hold, we de�ne x ∼ y. It is standard that ∼ is an
equivalence relation on X; the equivalence classes are the Gleason parts of
X (with respect to A). These parts form a partition of X, and each part is
a completely regular and σ-compact topological space with respect to the
Gel'fand topology; by a theorem of Garnett, these are the only topological
restrictions on Gleason parts.

For a discussion of Gleason parts, including Garnett's theorem, see [16,
Chapter VI], [17, Chapter X], and [33, §18].

A contractive pointwise approximate identity (CPAI) in a natural Banach
function algebra A on a non-empty, locally compact space X is a net (fν)

in A[1] such that

lim
ν
fν(x) = 1 (x ∈ X) ;

the Banach function algebra A is pointwise contractive if each non-zero,
maximal modular ideal in A has a contractive pointwise approximate iden-
tity. For a classi�cation of pointwise contractive Banach function algebras
that have a `BSE norm', see [9]; further theory of contractive pointwise
approximate identities is given in [10]. The relevance of this for us is the
following result from [9, Theorem 4.6].

Proposition 2.1. Let A be a natural uniform algebra on a compact space X,
and take x ∈ X such that Mx is non-zero. Then {x} is a one-point Gleason
part if and only if Mx has a contractive pointwise approximate identity.

Let A be a natural uniform algebra on a compact space X. Certainly
{x} is a one-point part whenever x ∈ X is a strong boundary point for
A. However, there are several examples where {x} is a one-point Gleason
part with respect to A, but x is not a strong boundary point for A; see
[33, §19]. In particular, this is the case for the big disc algebra, described
below. As noted above, there are maximal ideals Mx in the (non-separable)
uniform algebra H∞(D) that factor when {x} is a one-point part that is
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not a strong boundary point; it is shown in [18] that there can be points x
in the character space X of a (non-separable) uniform algebra A such that
Mx factors, but {x} is not a one-point Gleason part. On the other hand,
it is not true that Mx factors whenever {x} is a one-point part; stronger
versions of this fact will be noted at the end of this section.

The following proof extends ones in [4, Lemma 1.1(i)] and in [33, p. 201].

Proposition 2.2. Let A be a natural uniform algebra on a compact space
X, and take x ∈ X. Suppose that {f 2 : f ∈Mx} is dense in Mx. Then {y}
is a one-point Gleason part for each y ∈ X.

Proof. We may suppose that |X| ≥ 2.
Let Sn = Mx (n ∈ N), and de�ne θn : f 7→ f 2, Sn+1 → Sn, for n ∈ N to

obtain a projective sequence. The maps θn are continuous and have dense
range, and so, by Theorem 1.1, S is dense in Mx, where S = lim←−(Sn, θn).

Clearly, for each f ∈ S and k ∈ N, there exists g ∈ S with g2k = f .
Take y ∈ X \ {x} and ε > 0. Then there exists f ∈ S[1] with |f(y)| 6= 0.

Take k ∈ N with |f(y)| > (1 − ε)2k , and then take g ∈ S[1] with g2k = f .
Thus |g(y)| > 1− ε, and so y 6∼ x.

Now take y, z ∈ X \ {x}, choose f ∈ Mx with f(y) = 0 and f(z) = 1,
and �x ε ∈ (0, 1). Choose n ∈ N with 1 + |f |X < (1 + ε)2n and (1− ε)2n < ε,
and then choose η > 0 with η < ε2n and ε+ η < 1. There exists g ∈ S with∣∣f − g2n

∣∣
X
< η. Then |g|2

n

X < (1 + ε)2n , and so |g|X < 1 + ε. Also |g(y)| < ε.
Assume that |g(z)| < 1−ε. Then |g(z)|2

n

< ε, and so |f(z)| < ε+η < 1,
a contradiction. Thus |g(z)| ≥ 1− ε.

Finally, set h = (g − g(y)1X)/(1 + ε). Then h ∈ My and |h|X ≤ 1, and
we also have |h(z)| ≥ (1− 2ε)/(1 + ε), and so y 6∼ z

It follows that {y} is a one-point part for each y ∈ X.

The following result is essentially [3, Theorem 1.6.2].

Proposition 2.3. Let A be a natural uniform algebra on a non-empty,
compact space X, and take x ∈ X. Suppose that Mx factors projectively.
Then x is an isolated point with respect to the Gleason metric on X.

Proof. We may suppose that |X| ≥ 2.
Set M = Mx. The map πM : M ⊗̂M → M is a surjection, and so, by

the open mapping theorem, there exists m > 0 such that, for each f ∈M[1],
there exist fj, gj ∈M[1] and αj > 0 for j ∈ N such that

(2.1) f − f(x) =
∞∑
j=1

αjfjgj =
∞∑
j=1

αj(fj − fj(x))(gj − gj(x))
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and
∑∞

j=1 αj ≤ m.
Now take y ∈ X \ {x} and ε > 0, and choose f ∈ M[1] such that

|f(y)− f(x)| > ‖εy − εx‖ − ε. Then, using equation (2.1), we have

‖εy − εx‖ − ε ≤ m ‖εy − εx‖2 ,

and so ‖εy − εx‖ ≥ 1/m. This shows that x is an isolated point with respect
to the Gleason metric on X.

We now give a theorem about members of class CX , where X is a non-
empty, compact set in C, as de�ned on page 5; the theorem shows that
properties (I) � (VI) are mutually equivalent for maximal ideals in these al-
gebras. We shall see in Example 2.7 that these properties are not necessarily
equivalent to property (VII) for algebras in the class CX .

Theorem 2.4. Let X be a non-empty, compact plane set with |X| ≥ 2, and
let A be a uniform algebra in the class CX . Then the following conditions
on z ∈ X are equivalent:

(a) z is a peak point for A;

(b) Mz has a bounded approximate identity;

(c) {z} is a one-point Gleason part;

(d) Mz has a contractive pointwise approximate identity;

(e) z is isolated with respect to the Gleason metric;

(f) null sequences in Mz factor;

(g) Mz factors;

(h) Mz factors weakly;

(i) Mz factors projectively.

Proof. The equivalence of (a) and (b) was noted in Proposition 1.3 for gen-
eral uniform algebras on metrizable spaces, and the equivalence of (c) and
(d) is Proposition 2.1. The implications (a) ⇒ (c) ⇒ (e) and (f) ⇒ (g) ⇒
(h)⇒ (i) are trivial. The implications (b) ⇒ (f) and (i)⇒ (e) are Theorem
1.5 and Proposition 2.3, respectively.

As noted by O'Farrell [27, p. 408], the metric density theorem of Browder
[3, Theorem 3.3.9] (see also [33, Theorem 26.12]) applies to each algebra A
in the class CX , and so this implies that (e) ⇒ (a).

Thus all the conditions (a) � (i) are equivalent.
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Geometric conditions on the set X of the above theorem that show when
a point z ∈ X is a peak point with respect to the uniform algebra A are
given in [27].

We shall consider the big disc algebra. To de�ne this algebra, take an
irrational number α with 0 < α < 1, and consider the `open half-plane' Hα

consisting of the points (m,n) ∈ Z× Z with m + nα > 0. Note that Hα

is a sub-semigroup of Z × Z. Then consider monomials on C 2 of the form
ZmW n, where (m,n) ∈ Hα; here Z and W are the coordinate functionals
on C 2. We take M0,α to be the linear span of these monomials, and Mα and
Aα to be the uniform closures of M0,α and M]

0,α, respectively, regarded as
subalgebras of C(T 2). Then Aα is a uniform algebra on its character space
Φα that can be identi�ed with the space T 2× [0, 1], with the subset T 2×{0}
identi�ed to a point, called x0; the corresponding maximal ideal in Aα at
x0 is Mα. The set {x0} is a one-point Gleason part, but x0 6∈ Γ(Aα) and,
in particular, Mα does not have a bounded approximate identity. See [33,
§18] and the discussion in [19].

We shall now show that Mα factors projectively, but we do not know
whether it factors or factors weakly, or whether null sequences in Mα factor.

Proposition 2.5. The maximal ideal Mα of the big disc algebra factors
projectively, and so Mα satis�es (VI), but not (I).

Proof. We shall apply Proposition 1.15, taking S to be the set M0,α, which
is dense in Mα.

Indeed, take f =
∑n

j=1 αjZ
mjW nj in S, where n ∈ N, (mj, nj) ∈ Hα for

j ∈ Nn, and α1, . . . , αn ∈ C, and set

ε = min{mj + njα : j ∈ Nn} ,

so that ε > 0. It follows from Dirichlet's theorem on Diophantine approx-
imation that there exist p, q ∈ N (with q > 2/ε) such that

(2.2) α− ε

q
<
p

q
< α .

Take j ∈ Nn, and consider the two points (−p, q) and (p+mj,−q + nj). It
follows from inequality (2.2) that both these points are in Hα, and clearly
their sum is (mj, nj). Thus the elements ZmjW nj of M have as a common
factor Z−pW q, and so there exists a function g ∈ S with f = Z−pW qg.
Clearly |Z−pW q|T×T = 1 and |f |T×T = |g|T×T. Thus it follows from Prop-
osition 1.15 that the maximal ideal Mα factors projectively.



24 H. G. DALES, J. F. FEINSTEIN, AND H. L. PHAM

Example 2.6. In [8, Theorem 2.3], there is a construction of a separable
uniform algebra on a non-empty, compact space X such that {f 2 : f ∈ A}
is dense in A, but such that Γ(A) ( X. Take x ∈ X. It follows easily that
{f 2 : f ∈ Mx} is dense in Mx, and so, by Proposition 2.2, {x} is a one-
point Gleason part. By Corollary 1.17, Mx factors projectively. Thus every
maximal ideal in A factors projectively, but Mx does not have a bounded
approximate identity when x ∈ X \Γ(A). Again, for each x ∈ X \Γ(A), we
do not know whether Mx satis�es any of the conditions (II)�(V).

Example 2.7. Let X be the compact plane set speci�ed in Wermer's ex-
ample that is given in [35]. For this example, R(X) 6= C(X), and so, by [33,
Theorem 26.8], there are points x ∈ X that are not peak points for R(X).
By Theorem 2.4, Mx does not factor projectively. However, each maximal
ideal in R(X) factors densely because, for this example, there are no non-
zero, continuous point derivations at any point of X, and this shows that
(VII) 6⇒ (VI) in the class of maximal ideals of separable uniform algebras.

For another example, consider the `road-runner' set, de�ned as follows
[16, p. 52]. Let X be the compact space in C obtained by deleting from D
a sequence (Dn = D(xn, rn) : n ∈ N) of open discs, where we ensure that
the closed discs Dn are pairwise-disjoint and that the sequence (xn) in R+•

decreases to 0. Consider the maximal ideal

M0 = {f ∈ R(X) : f(0) = 0} .

It follows from Melnikov's Criterion [16, VIII, Theorem 4.5] thatM0 satis�es
the equivalent properties (I) � (VI) if and only if

∑∞
n=1 rn/xn = ∞, and it

follows from a result of Hallstrom [20, p. 156] that M0 satis�es property
(VII) if and only if the strictly weaker condition that

∑∞
n=1 rn/x

2
n = ∞

holds. Thus again we see that (VII) 6⇒ (VI) in the class of maximal ideals
of separable uniform algebras.

Finally, we note that Sidney in [34] constructed a natural, separable
uniform algebra on a compact space X and a point x ∈ X such that {x} is
a one-point Gleason part, but such that Mx does not factor densely. In this
example, x 6∈ Γ(A). In [18], it is shown that there is a natural, separable
uniform algebra on a compact space X and x ∈ X such that each point of
X is a one-point part, but Mx does not factor densely. In [5, Theorem 1.1],
there is a triply-generated uniform algebra A with a proper �ilov boundary,
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but where every point of ΦA is a one-point part, and there are no non-
zero, continuous point derivations, so that every maximal ideal in A factors
densely.

3. Extensions of uniform algebras

3.1. Introduction. For a main example, we �rst discuss a construction
that shares some properties with one originally due to Cole [4]; an exposi-
tion of Cole's construction is given in [33, §19]. Indeed, we shall describe
certain classes of extensions of uniform algebras that include many stan-
dard extensions that have been discussed in the literature; in particular,
such classes are discussed in [15, Lemmas 2.12 and 2.13 and §5]. For some
similar classes of extensions of uniform algebras, see the paper [26] of Morley.

Let X and Y be compact spaces, and suppose that Π : Y → X is a
continuous surjection. For x ∈ X, we de�ne the �bre above x to be

Fx = {y ∈ Y : Π(y) = x} .

The map Π∗ : C(X)→ C(Y ) is de�ned by the formula

Π∗(f) = f ◦ Π (f ∈ C(X)) ,

so that Π∗ is an isometric isomorphism of C(X) onto a closed subalgebra
of C(Y ). A linear contraction T : C(Y )→ C(X) such that T ◦ Π∗ = IC(X)

is an averaging operator for Π; see [7, De�nition 3.2.5].

For a subset S of C, we denote the closure of the convex hull of S by
coS.

De�nition 3.1. Let X be a compact space, take x0 ∈ X, and let A be
a uniform algebra on X. Then (X, x0, A) is a distinguished-point uniform
algebra. Now suppose that (Y, y0, B) is also a distinguished-point uniform
algebra. Then (Y, y0, B) is a distinguished-point extension of (X, x0, A) with
respect to a continuous surjection Π : Y → X and an averaging operator
T : C(Y )→ C(X) for Π if the following conditions are satis�ed:

(i) Π∗(A) ⊂ B ;

(ii) Fx0 = {y0} ;
(iii) T (B) = A ;

(iv) (Th)(x) ∈ coh(Fx) (x ∈ X, h ∈ C(Y )) .

In fact, clause (iv), above, follows from the other conditions on T : see,
for example, [26, Lemma 2.7]. Further immediate consequences of clauses
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(ii) and (iv) are the following additional properties of T , which we shall use
below:

(v) (Th)(x0) = h(y0) (h ∈ C(Y )) ;

(vi) |(Th)(x)| ≤ |h|Fx
(x ∈ X, h ∈ C(Y )) .

Proposition 3.2. Let (X, x0, A) be a distinguished-point uniform algebra,
and suppose that (Y, y0, B) is a distinguished-point extension of (X, x0, A).
Then x0 is a strong boundary point for A if and only if y0 is a strong
boundary point for B.

Proof. It is immediate that y0 is a strong boundary point with respect to B
whenever x0 is a strong boundary point with respect to A.

Now suppose that y0 is a strong boundary point with respect to B, and
take a neighbourhood U of x0 in X. Set W = Π−1(U), a neighbourhood of
y0 in Y . Then there exists h ∈ B such that h(y0) = |h|Y = 1 and |h|Y \W < 1.
But then (Th)(x0) = |Th|X = 1, and it follows from clause (vi), above, that
|Th|X\U < 1. Thus x0 is a strong boundary point with respect to A.

We shall also need the notion of a system of distinguished-point exten-
sions. See [15, §5] for earlier examples of such systems.

De�nition 3.3. Let (X0, x0, A0) be a distinguished-point uniform algebra,
and take κ to be an ordinal. A system

((Xα, xα, Aα); Πα,β; Tα,β : 0 ≤ α ≤ β ≤ κ)

is a compatible system of distinguished-point extensions if

(Xα,Πα,β : 0 ≤ α ≤ β ≤ κ)

is a projective system of non-empty, compact spaces and continuous surjec-
tions, if each (Xα, xα, Aα) for 0 ≤ α ≤ κ is a distinguished-point uniform
algebra, and if, further:

(i) the maps Πα,α and Tα,α are the identity maps on Xα and C(Xα),
respectively, for each 0 ≤ α ≤ κ;

(ii) (Xβ, yβ, Aβ) is a distinguished-point extension of (Xα, yα, Aα) with
respect to the maps Πα,β : Xβ → Xα and Tα,β : C(Xβ)→ C(Xα) whenever
0 ≤ α < β ≤ κ;

(iii) Tα,γ = Tα,β ◦ Tβ,γ whenever 0 ≤ α ≤ β ≤ γ ≤ κ;

(iv) for each limit ordinal γ with γ ≤ κ, the system

(Xα,Πα,β : 0 ≤ α ≤ β ≤ γ)
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is a directed system, the space Xγ is the inverse limit of this system, and
Πα,γ is the canonical projection of Xγ onto Xα for 0 ≤ α < γ, and, further,
the space ⋃

{Π∗α,γ(Aα) : 0 ≤ α < γ}
is dense in Aγ.

Systems of distinguished-point extensions can be constructed by trans-
�nite induction in a similar way to standard systems of Cole extensions,
as described in [33, §19], for example. We shall sketch one such construc-
tion in §3.2 when proving Theorem 3.4. The key is to explain how to
choose (Xα+1, yα+1, Aα+1) to be a suitable distinguished-point extension of
(Xα, yα, Aα) for the relevant ordinal numbers α, and then the compatibil-
ity conditions given above are essentially su�cient to conclude the proof;
this parallels the usual theory of systems of Cole extensions as given in
[4, 15, 33], and elsewhere.

3.2. Proof of Theorem 1.6. We are seeking a maximal ideal M in a
uniform algebraA such that null sequences inM factor, butM does not have
a bounded approximate identity. In fact, we shall prove a rather stronger
theorem, as follows.

Theorem 3.4. There are a natural uniform algebra A on a compact space
X and a point x ∈ X such that Mx is non-zero and null sequences in Mx

factor, but such that Mx does not have a bounded approximate identity,
equivalently, x is not a strong boundary point for A, and, further, such that
each element in Mx is the square of another element in Mx and {y} is a
one-point Gleason part with respect to A for each y ∈ X.

As a �rst step, we shall show how, given a maximal idealM in a uniform
algebra A, there is a (much) bigger uniform algebra in which (a copy of)
each null sequence in M factors.

Theorem 3.5. Let A be a uniform algebra on a compact space X, and
take x0 ∈ X. Then there are a uniform algebra B on a compact space Y , a
point y0 in Y , a continuous surjection Π : Y → X, and a linear contraction
T : C(Y )→ C(X) with the following properties:

(i) (Y, y0, B) is a distinguished-point extension of (X, x0, A) with respect
to Π and T ;

(ii) for each null sequence (fn) in Mx0, the null sequence (Π∗(fn)) factors
in My0;
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(iii) y0 is a strong boundary point for B if and only if x0 is a strong
boundary point for A.

Proof. To avoid notational complexity, we shall show how, given one �xed
null sequence, say (fn), in Mx0 , we can obtain a uniform algebra B on a
compact space Y , y0 ∈ Y , a continuous surjection Π : Y → X, and a
linear contraction T : C(Y )→ C(X) such that the particular null sequence
(Π∗(fn)) factors in My0 and the other clauses hold; the more general result
follows by a small modi�cation of the following argument.

We may suppose that |fn|X ≤ 1 (n ∈ N). For x ∈ X, set

kx := max{|fn(x)|1/2 : n ∈ N} .

Note that the constant kx is well-de�ned because |fn(x)| → 0 as n→∞ for
each x ∈ X. Moreover, since (fn) is a null sequence, it is easy to see that
the map x 7→ kx, X → R+, is continuous.

The space Y is de�ned to be a subspace of the space X × CN × C that
satis�es certain conditions. To de�ne these conditions, we take a generic
point of X × CN × C to have the form (x, (zn), w), where x ∈ X, where
zn ∈ C (n ∈ N), and where w ∈ C. The conditions on each point (x, (zn), w)

are the following:

(i) znw = fn(x) (n ∈ N);

(ii) |w| = kx;

(iii) |zn|2 ≤ |fn(x)| (n ∈ N).

For each such point (x, (zn), w), we see that |zn| ≤ 1 (n ∈ N) and that
|w| ≤ 1, and so Y is contained in the compact space X ×DN ×D. Further,
Y is closed in this space, and so Y is a compact space. Take n ∈ N. Then
it follows from (ii) and (iii) that |zn| ≤ |w|; if fn(x) = 0, then zn = 0.

We de�ne

(3.1) Π : (x, (zn), w) 7→ x, Y → X ,

so that Π is a continuous surjection.
We also de�ne

pn : (x, (zn), w) 7→ zn, Y → C (n ∈ N) ,

and q : (x, (zn), w) 7→ w, Y → C, so that each map pn and the map q

belongs to C(Y ). Clearly

(3.2) pnq = Π∗(fn) (n ∈ N) .
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The algebra B is de�ned to be the smallest closed subalgebra of C(Y )

containing Π∗(A) and all of the functions pn and q. Since B separates the
points of Y , the algebra B is a uniform algebra on Y .

There is an obvious jointly-continuous action of the circle group T on Y
de�ned by

(ζ, (x, (zn), w)) 7→ (x, (zn/ζ), wζ) (ζ ∈ T, (x, (zn), w) ∈ Y ) .

This action will help us to de�ne a suitable averaging map below.
For x ∈ X, we again de�ne the �bre Fx = Π−1({x}).
First, suppose that kx = 0. Then Fx is the single point (x, 0, 0). In par-

ticular, kx0 = 0, and so Fx0 is a singleton in Y , say Fx0 = {y0}.
Second, suppose that kx > 0. Then an element (x, (zn), w) ∈ Y is such

that w 6= 0, and Fx is the circle

Fx = {(x, (fn(x)/kx) e−iθ, kxe
iθ) : 0 ≤ θ < 2π} .

Clearly pn ∈My0 and |pn|
2
Y ≤ |fn|X for each n ∈ N, and so (pn) is a null

sequence in My0 . Further, q ∈My0 , and so equation (3.2) gives the required
factorization of (Π∗(fn)) inMy0 , thus establishing clause (ii) of the theorem.

We de�ne a map T : C(Y )→ CX as follows. Take h ∈ C(Y ) and x ∈ X.
Suppose that kx = 0. Then (Th)(x) = h(x, 0, 0). Suppose that kx > 0. Then

(3.3) (Th)(x) =
1

2π

∫ 2π

0

h
(
x, (fn(x)/kx) e−iθ, kxe

iθ
)

dθ .

In either case, (Th)(x) is the average of the values in h(Fx) obtained by
using the Haar measure on T and the transitive action of T on the �bre Fx.
Because the action of the compact group T on Y is jointly continuous, it
is not hard to see that Th ∈ C(X) for each h ∈ C(Y ): this is a standard
argument, given, for example, in [4, Theorem 1.3], [33, Theorem 19.1(a)],
and [26, Lemma 5.10]. It is now clear that the map T : C(Y ) → C(X)

is a linear contraction, and also that T (Π∗(f)) = f (f ∈ C(X)), and so
T ◦ Π∗ = IC(X).

We next show that T (B) = A. Clearly we have A = T (Π∗(A)) ⊂ T (B).
To prove that T (B) ⊂ A, �rst consider an element h ∈ C(Y ) of the form

(3.4) h = Π∗(f)pn1
1 · · · p

nk
k q

m ,

where f ∈ A and n1, . . . , nk,m ∈ Z+. We claim that Th ∈ A.
First suppose that n1 + · · ·+nk = m. Then it is immediate that Th ∈ A.

Second, suppose that n1 + · · ·+ nk 6= m. If kx = 0, then (Th)(x) = 0, and,
if kx 6= 0, then (Th)(x) is given by

(Th)(x) = g(x)

∫ 2π

0

exp(i(m− n1 − · · · − nk) θ) dθ
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for some g ∈ C(X), and so again (Th)(x) = 0. Thus Th = 0, giving the
claim in this case

It follows that Th ∈ A whenever h is a linear combination of functions
speci�ed in equation (3.4); this set of linear combinations is dense in B and
T is continuous, and so Th ∈ A for each h ∈ B. Thus T (B) ⊂ A. We have
shown that (Y, y0, B) is a distinguished-point extension of (X, x0, A) with
respect to Π and T , thus giving clause (i) of the theorem.

Clause (iii) of the theorem follows from Proposition 3.2.
This completes the proof.

Remark. In the case where all Jensen measures (see [16, p. 33]) for A are
trivial, the same is true for B, and so B is natural. For this, we �rst note
that B | Fx is dense in (C(Fx), | · |Fx

) for each x ∈ X, and then apply [26,
Theorem 3.6].

In this setting, where A and B are natural, suppose that {x0} is a
one-point part for A, and consider y ∈ Y \ {y0}. Now set x = Π(y), so
that x ∈ X \ {x0} and there exists a sequence (fn) in (Mx0)[1] such that
limn→∞ fn(x) = 1. But now (Π∗(fn)) is a sequence in (My0)[1] such that
limn→∞Π∗(fn)(y) = 1, and so y is in a di�erent part to y0. Hence {y0} is a
one-point part for B.

The following result is standard; it is an extension of the constructions
expounded in [33, §19] and is essentially [15, Lemma 2.5].

Theorem 3.6. Let A be a uniform algebra on a compact space X, and
take x0 ∈ X. Then there are a uniform algebra B on a compact space Y , a
point y0 in Y , a continuous surjection Π : Y → X, and a linear contraction
T : C(Y )→ C(X) with the following properties:

(i) (Y, y0, B) is a distinguished-point extension of (X, x0, A) with respect
to Π and T ;

(ii) for each f ∈Mx0, there exists g ∈My0 such that g2 = Π∗(f) ;

(iii) y0 is a strong boundary point for B if and only if x0 is a strong
boundary point for A.

Proof of Theorem 3.4 We start with a (natural) uniform algebra A0 on a
compact space X0 and a point x0 ∈ X0 that is not a strong boundary point
for A0. For example, we can take A0 to be the disc algebra and x0 = 0. We
shall construct a system

(Xα, xα, Aα,Πα,β : 0 ≤ α ≤ β ≤ ω1} ,

consisting of successive distinguished-point extensions of (X0, x0, A0).
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Take α with 0 ≤ α < ω1, and assume �rst that the system has been
constructed to level α. Set β = α + 1. In the case where α is a non-limit
ordinal of the form γ + n, where γ is a limit ordinal and n ∈ Z+ is an odd
number, the extension (Xβ, xβ, Aβ) is formed from (Xα, xα, Aα) by using
Theorem 3.5. In the similar case where n ∈ Z+ is an even number, the
extension (Xβ, xβ, Aβ) is formed from (Xα, xα, Aα) by using the standard
`addition of square roots', as described in Theorem 3.6. Second, the case
where α is a non-zero limit ordinal and we assume that the system has been
constructed to level γ for each γ < α, the extension (Xα, xα, Aα) is formed
by taking a direct limit, as described above.

The resulting extension (Xω1 , xω1 , Aω1) has all the required properties
of the theorem, where we take X to be the character space of the uniform
algebra A = Aω1 ; we note that {x} is a one-point part for A for each x ∈ X
by Proposition 2.2.

Remark. As indicated in the previous remark, we could require that all
our uniform algebras Aα have unique Jensen measures; in this case, each
algebra Aα, including A, is already natural.

We note again that our example is enormous, and certainly non-separable;
we do not know how to modify the construction to exhibit a separable ex-
ample.

4. Local factorization

4.1. Properties (A) and (B). We now introduce two further `factor-
ization-type' properties related to property (IV); they are `local' in that
they refer to the existence of elements with certain properties in an algebra.

Let A be an algebra (not necessarily commutative), and let E be a left
A-module. Then

A · E = {a · x : a ∈ A, x ∈ E} .

Also, given a sequence (an) in A, we de�ne

lim←− a1 · · · an · E =

{
x ∈ E : there exists (xn) in E such that

x = x1 and xn = an · xn+1 (n ∈ N)

}
,

essentially as in §1.1. With this notation, we specify two properties (A) and
(B):

(A) lim←− a
n · A 6= {0} for some a ∈ A;

(B) lim←− a1 · · · an · A 6= {0} for some sequence (an) in A.



32 H. G. DALES, J. F. FEINSTEIN, AND H. L. PHAM

The two conditions (A) and (B) in the case of commutative, radical
Banach algebras are parts of a classi�cation scheme due to Esterle [14]; this
classi�cation scheme is expounded in [6, �4.9], and properties (A) and (B)
correspond to classes (III) and (IV) in that classi�cation. It is left open in
[6, 14] whether or not the two classes (III) and (IV) of Esterle are distinct
(and we do not resolve this point).

Clearly (A) ⇒ (B) and (IV) ⇒ (B). In fact, Corollary 5.4, below, will
show that a weaker condition than (IV) is su�cient to imply (B).

Proposition 4.1. Let A be a non-zero, commutative Banach algebra satis-
fying property (II). Then A also satis�es property (A).

Proof. Note that A factors. Take any element a ∈ A with a 6= 0, and then
take b1, c1 ∈ A with a = b1c1.

Now we inductively de�ne two sequences (bn) and (cn) in A such that
cn = bn+1cn+1; by scaling, we may suppose that ‖bn‖ ≤ 1/n for each n ∈ N,
and so (bn) is a null sequence. By (II), there exist b ∈ A• and a null sequence
(dn) in A such that bn = bdn (n ∈ N). Set an = cnd1 · · · dn (n ∈ N). Then
an = ban+1 (n ∈ N), and so a ∈ lim←− b

nA 6= {0}, as required.

Example 4.2. Let X be a compact plane set containing the point 0, and
takeM to be the maximal ideal at 0 in R(X), and suppose thatM2 is dense
in M .

We claim that M = ZM , where Z is the coordinate functional. To see
this, take f ∈ M and ε > 0. Then there exists q ∈ M2 with |f − q|X < ε,
say q = g1h1 + · · ·+ gkhk, where gj, hj ∈ M (j ∈ Nk). Since the rational
functions with poles o� X are uniformly dense in R(X), those that vanish
at 0 are uniformly dense in M . Thus, for each j ∈ Nk, the function gj can
be approximated arbitrarily well by a function of the form Zfj, where fj
is a rational function with poles o� X. In particular, there exist functions
f1, . . . , fk ∈ R(X) such that∣∣∣∣∣f −

k∑
j=1

Zfjhj

∣∣∣∣∣
X

< ε .

But
∑k

j=1 fjhj ∈M , and so M = ZM , as claimed.
It again follows from the Mittag-Le�er theorem, Theorem 1.1, that M

satis�es (A), with the element b taken to be Z, and hence M also satis�es
(B).

In particular, takeX to be a road-runner set as described in Example 2.7;
we noted that there are examples of such sets such that M satis�es (VII),
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but does not satisfy the equivalent conditions (I) � (VI). Thus condition
(A) does not imply condition (VI) in the class of maximal ideals in uniform
algebras of the form R(X).

We do not know whether properties (III) or (IV) (for a commutative
Banach algebra) implies property (A).

Note that the maximal idealMx in H∞(D) mentioned on page 11, which
satis�es property (IV), is not a counter-example to the implication that
(IV) ⇒ (A). Indeed, set M := {f ∈ A(D) : f(1) = 0}. Then M has a
bounded approximate identity, and so, by Proposition 4.1, M satis�es (A).
Since there is an isometric embedding ofM intoMx, it follows thatMx also
satis�es property (A).

4.2. An example. We have stated that we do not know an example of a
commutative, radical Banach algebra that satis�es property (B), but does
not satisfy property (A). However we can present an example of a maximal
ideal in a separable uniform algebra that satis�es (B), but not (A).

We �rst give some further notation. For a complex number z, we set
x = <z and y = =z, so that z = x+ iy. The open half-plane Π is de�ned by

Π := {z ∈ C : x > 0} .

Throughout this subsection, we shall take

A := Ab(Π)

to be the algebra of all bounded, continuous functions on Π that are analytic
on Π, so that A is a uniform algebra on its compact character space; recall
[6, A.2.25] that |F |Π is equal to sup{|F (iy)| : y ∈ R} for each F ∈ A.

We shall use the Ahlfors�Heins theorem [6, Theorem A.2.47] in the fol-
lowing form.

Theorem 4.3. Let F ∈ A•. Then there exists c ≥ 0 such that

(4.1) lim
r→∞

1

r
log
∣∣F (reiθ)

∣∣ = −c cos θ for almost all θ ∈ (−π/2, π/2) .

De�nition 4.4. For a > 0, the set Ia consists of functions F ∈ A with
|F (z)| = O(e−ax) as z →∞ in Π. Further, I =

⋃
{Ia : a > 0}.

Clearly Ia is an ideal in A for each a > 0, and I is also an ideal in A.

Lemma 4.5. Suppose that F ∈ I. Then
⋂∞
n=1 F

nA = {0}.
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Proof. Take a > 0 such that F ∈ Ia. Then F n ∈ Ina for each n ∈ N, and so,
for each G ∈

⋂∞
n=1 F

nA, necessarily G ∈ Ia for each a > 0.
Assume towards a contradiction that G 6= 0. Take c ≥ 0 to be the

constant speci�ed in equation (4.1) (with respect to the function G), and
take θ ∈ (−π/2, π/2) such that the the limit in (4.1) exists for this value of
θ. For each a > 0, we have

lim sup
r→∞

1

r
log
∣∣G(reiθ)

∣∣ ≤ −a cos θ ,

and so c ≥ a for each a > 0, a contradiction. Hence G = 0, giving the
result.

The Banach space of all complex-valued, regular Borel measures on R+

is M(R+), so that M(R+) is a commutative, unital, semi-simple Banach
algebra with respect to the convolution product ? ; see [6, §4.7]. The Laplace
transform

L : µ→ Lµ , (M(R+), ? )→ (A, · ) ,

where (Lµ)(z) =
∫
R+ e−zt dµ(t) (z ∈ Π), is an injective linear contraction

and an algebra homomorphism, and so we may regard M(R+) as a Banach
function algebra on Π. De�ne

α(µ) := inf suppµ (µ ∈M(R+)•) ,

as in [6, De�nition 4.7.18]. Then Titchmarsh's convolution theorem [6, The-
orem 4.7.22] shows that

α(µ ? ν) = α(µ) + α(ν) (µ, ν ∈M(R+)•) .

Let µ ∈ M(R+). Then Lµ ∈ Ia if and only if α(µ) ≥ a [6, Proposition
4.7.19].

Consider the semigroup algebra (` 1(R+), ? ), regarded as a closed sub-
algebra of the algebra (M(R+), ? ), and take an element

f =
∑
{αrδr : r ∈ R+} ∈ ` 1(R+) ,

so that

(Lf)(z) =
∑
{αre−zr : r ∈ R+} (z ∈ Π)

and ` 1(R+) is a subalgebra of A. Set Er = L(δr) (r ∈ R+).

De�nition 4.6. Denote byM and B, respectively, the closures in (A, | · |Π)

of the sets {Lf : f ∈ ` 1(Q+•)} and {Lf : f ∈ ` 1(Q+)}.
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Thus B is a separable, unital, closed subalgebra of A, so that B is a
uniform algebra on its compact character space; M is a maximal ideal in
B, and M ∩ I is dense in M . In fact, M is equal to kerϕ, where

ϕ(F ) := lim
x→∞

F (x) (F ∈ B) .

To see this, we write ` 1
00(Q+•) for the dense subalgebra of ` 1(Q+•) that is

equal to lin {δr : r ∈ Q+•}, and L00 for the space of Laplace transforms of
elements of ` 1

00(Q+•). Take F ∈ M and ε > 0. Then there exists H ∈ L00

with |F −H|Π < ε. Clearly, there exists x0 ∈ R+ with |H(x)| < ε (x ≥ x0),
and this implies that |F (x)| < 2ε (x ≥ x0). Thus limx→∞ F (x) = 0, as
required.

Note that the algebra that is the closure in A of {Lf : f ∈ ` 1(R+)} is
not separable because |Er − Es|Π = 2 for r, s ∈ R+ with r 6= s. This implies
that the Banach algebra A is not separable.

Lemma 4.7. The maximal ideal M in the uniform algebra B factors pro-
jectively.

Proof. Consider the dense subset S = ` 1
00(Q+•) of ` 1(Q+•), and regard S as

a dense subset of M . Take f ∈ S, so that f = g ? h, where g = δa for some
a ∈ Q+• and h ∈ S, as in Corollary 1.16. The Laplace transforms of f , g,
and h are F , G, and H, respectively, and clearly |F |Π = |G|Π |H|Π because
|G(iy)| = 1 (y ∈ R).

It again follows from Proposition 1.15 that M factors projectively.

We now establish, in Theorem 4.9, a slight extension of a famous theorem
of H. Bohr [6, Theorem 4.7.55].

Lemma 4.8. Let G ∈ B be such that G(z) 6= 0 (z ∈ Π), and take τ > 0.
Then

inf{|G(τ + iy)| : y ∈ R} > 0 .

Proof. The argument of [6, Lemma 4.7.54] gives this result.

The following proof is close to that of [6, Theorem 4.7.55].

Theorem 4.9. Let F ∈M \ I. Then there exists z ∈ Π such that F (z) = 0.

Proof. Assume toward a contradiction that F (z) 6= 0 (z ∈ Π). Take τ > 0,
and apply the previous lemma to see that

inf{|F (τ + it)| : t ∈ R} ≥ η

for some η > 0. Set G(z) := F (z + τ), so that |G(it)| > η (t ∈ R).
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Since G(z) 6= 0 (z ∈ Π), it follows from Nevanlinna's theorem [6, A.2.46]
that there exists c ∈ R such that

(4.2) log |G(z)| = 1

π

∫ ∞
−∞

x

x2 + (y − t)2
log |G(it)| dt+ cx (z ∈ Π) .

Take a > 0. Since G /∈ Ia, there is a sequence (zk = xk + iyk) in Π such that
xk →∞ as k →∞ and |G(zk)| > e−axk (k ∈ N). It follows from (4.2) that
−a ≤ c ≤ 0. This holds for each a > 0, and so c = 0. It now follows from
(4.2) that |G(z)| ≥ η (z ∈ Π). However limx→∞G(x) = 0 because G ∈ M ,
the required contradiction. Thus there exists z ∈ Π such that F (z) = 0.

Theorem 4.10. The maximal ideal M in the separable uniform algebra B
factors projectively, and so satis�es (VI) and (B), but M does not satisfy
(A).

Proof. By Lemma 4.7, M factors projectively, and so M satis�es (B).
To show that the ideal M does not satisfy (A), it su�ces to show that⋂
F nM = {0} for each F ∈ M . In the case where F ∈ I, this follows from

Lemma 4.5. In the case where F ∈M \ I, it follows from Theorem 4.9 that
there exists z ∈ Π such that F (z) = 0. Thus each G ∈

⋂
F nM is analytic

on a neighbourhood of z and has a zero of in�nite order at z, and so G = 0,
giving the result in this case.

We can transfer the above algebras B and M from the half-plane Π to
the unit disc D. Indeed, take r ∈ R+•, and de�ne

fr(z) = exp

(
r

(
z + 1

z − 1

))
(z ∈ D \ {1}) .

The function f0 is the constant function 1. Thus the functions fr for r ∈ R+

belong to H∞(D). Clearly we can identify B and M with the closed sub-
algebras of the uniform algebra H∞(D) that are generated by {fr : r ∈ Q+}
and {fr : r ∈ Q+•}, respectively. Again denote by M the character space of
H∞(D), as in [22, Chapter 10] and [17, Chapter V, §1], so that D is dense
in M by Carleson's theorem [17, Chapter VIII]. Let M1 be the �bre in M

that sits above the point 1. The restriction of H∞(D) (de�ned on M) to
M1 is called A1 on page 187 of [22], and some properties of A1 are given
there. In particular, A1 is a natural uniform algebra on M1. The subset Z
of M1 that is the common zero set of each of the functions fr for r ∈ Q+•

is non-empty, is the union of Gleason parts for H∞(D), and is disjoint from
the �ilov boundary of H∞(D). Consider the space that we shall call K that
is the quotient of M1 formed by identifying the points of M1 that are not
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separated by B. Then it can be seen that we can regard B as a subalgebra
of A1, that K is exactly the character space ΦB of B, and that B is a
uniform algebra on K; the point x0 ∈ K corresponding to the set Z in
M1 corresponds to the maximal ideal M in B; {x0} is a one-point part o�
the �ilov boundary of B, and so M does not have a bounded approximate
identity. We do not know whether M factors, but we have shown that it
factors projectively.

5. Radical algebras

5.1. Classi�cation of radical algebras. The classi�cation scheme of Es-
terle works in a more general setting than for commutative, radical Banach
algebras, and we now explain this setting. We shall also expand this class-
i�cation of Esterle somewhat, and give an application to a question of how
many prime ideals such an algebra can possess.

In this section, an algebra A is not necessarily commutative, unless this
is stated.

Let A be an algebra with a topology τ , and suppose that (A, τ) is a
(Hausdor�) topological linear space. Then (A, τ) is a topological algebra if
the product map

(a, b) 7→ ab , A× A→ A ,

is continuous; a topological algebra is an (F)-algebra if there is a complete
metric on A that de�nes the topology τ , and we then write (A, d), where d
is a complete metric. Each Banach algebra is obviously an (F)-algebra.

The following lemma extends [14, Proposition 3.1]. Recall that an algebra
A acts continuously on a left A-module E that is an (F)-space if the map
x 7→ a · x, E → E, is continuous for each a ∈ A.

Lemma 5.1. Let A be an algebra, and let E be a left A-module and an
(F)-space with a complete metric d such that A acts continuously on E.
Suppose that S is a subset of E such that S ⊂ A · S. Then, for each x ∈ S
and ε > 0, there are a sequence (an) in A and y ∈ lim←− a1 · · · an · E with
d(x, y) ≤ ε.

Proof. For n ∈ N, set En := An−1 × E equipped with the product metric
(with E1 = E), where A is given the discrete metric, and de�ne a continuous
map θn : En+1 → En by

(a1, . . . , an, x) 7→ (a1, . . . , an−1, anx) ,

so that ((En, θn) : n ∈ N) is a projective sequence. Set Xn := An−1 × S.
Then Xn ⊂ θn(Xn+1), and so, by Theorem 1.1, X1 = S is contained in the
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closure of the set lim←− a1 · · · an · E for some sequence (an) in A, which implies
the lemma.

Lemma 5.2. Let A be an algebra, and let E be a left A-module and an
(F)-space with a complete metric d. Suppose that a ∈ A• is such that a acts
continuously on E, and suppose that S is a subset of E with S ⊂ a · S.
Then, for each x ∈ S and ε > 0, there exists y ∈ lim←− a

n ·E with d(x, y) < ε.

Proof. This is a trivial variation of the above proof.

Proposition 5.3. Let (A, d) be a non-zero (F)-algebra.

(i) Suppose that there exists a non-zero subset S of A such that S ⊂ A · S.
Then property (B) holds for A.

(ii) Suppose that there exist a non-zero subset S and a ∈ A such that
S ⊂ a · S. Then property (A) holds for A.

Proof. (i) Let x0 ∈ S \ {0}. Lemma 5.1 shows that there exist a sequence
(an) in A and y ∈ lim←− a1 · · · an · A with d(x0, y) < d(x0, 0). In particular,
lim←− a1 · · · an · A 6= {0}.

(ii) This follows similarly from Lemma 5.2.

Corollary 5.4. Let A be a non-zero (F)-algebra such that A[2] = A. Then
condition (B) holds for A.

We note here the following curious fact as a consequence of the above
and of Bohr's theorem on almost periodic functions.

Corollary 5.5. Let E be a non-zero subspace of M(R+), and let f be any
element of ` 1(R+•). Then E 6⊂ f ∗ E.

Proof. Assume towards a contradiction that there exist appropriate E and
f such that E ⊂ f ∗ E. Then, by Proposition 5.3(ii), there exists a non-zero
element µ in the set

⋂∞
n=1 f

∗n∗M(R+). Thus α(µ) ≥ nα(f) (n ∈ N), and so
α(f) = 0. By [6, Theorem 4.7.55], there exists z ∈ Π such that (Lf)(z) = 0,
and so Lµ, which is an analytic function on Π, has a zero of in�nite order
at z. This implies that µ = 0, a contradiction.

The result follows.

We now use the above to extend the conditions characterizing class (III)
of Esterle's classi�cation that are given in [6, p. 578]. The existing classi-
�cation in [6] supposes that algebra R is a commutative, radical Banach



FACTORIZATION IN COMMUTATIVE BANACH ALGEBRAS 39

algebra, but the equivalences hold true (with the same proofs) even if the
radical algebra R is not commutative and if it is an (F)-algebra, and so we
state our result in this setting.

Theorem 5.6. Let R be a non-zero, radical (F)-algebra. Then the following
conditions on R are equivalent:

(a) there is a non-zero element a ∈ R such that a ∈ Ra;
(b) there is a sequence (an) in R such that lim←− a1 · · · an ·R 6= {0};
(c) there is a sequence (bn) in R• such that bn ∈ Rbn+1 (n ∈ N);

(d) there is a strictly increasing sequence of principal left ideals in R];

(e) there is a non-zero, left ideal I in R such that I = R · I;
(f) there is a non-zero, left ideal J in R such that J = R · J ;
(g) there is a non-zero subset S in R such that S ⊂ R · S.

Proof. That conditions (a), (b), (c), and (d) on R are equivalent is estab-
lished in [6], albeit in the case where R is commutative. For the implication
(a) ⇒ (e), we can take I = Ra. Clearly (c) ⇔ (f) ⇒ (e) ⇒ (g). The impli-
cation (g) ⇒ (b) follows from Proposition 5.3(i).

We next extend the conditions characterizing class (IV) (of Esterle's
classi�cation) that are given in [6, p. 578].

Theorem 5.7. Let R be a non-zero, commutative, radical (F)-algebra. Then
the following conditions on R are equivalent:

(a) there exist a ∈ R and x ∈ R• with a ∈ Rax;
(b) there exists a ∈ R with lim←− a

n ·R 6= {0};
(c) there exist a ∈ R and a non-zero subspace S of R such that S = aS;

(d) there exist a ∈ R, y ∈ R•, and a sequence (pn) of complex polynomials
such that y = limn→∞ apn(a)y;

(e) there exist a ∈ R and a non-zero ideal I in R such that I = aI;

(f) there exist a ∈ R and a non-zero subset S in R such that S ⊂ aS.

Proof. That conditions (a), (b), (c), and (d) on R are equivalent is estab-
lished in [6]. For the implication (a)⇒ (e), take I = xR]. Clearly (e)⇔ (f).
The implication (f) ⇒ (b) follows from Proposition 5.3(ii).

In fact, all proofs of the implications between clauses (a) � (f) in the
above theorem hold for a general (non-commutative) radical (F)-algebra,
save for the implication (a) ⇒ (e).
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5.2. Non-nilpotent elements in radical (F)-algebras. In this subsec-
tion, we shall give various conditions for a (not necessarily commutative)
radical (F)-algebra R that are equivalent to the condition that R have a
non-nilpotent element a with a ∈ Ra, following the spirit of [14] and [6,
§4.9]. We are interested in this condition because, in the case where R is a
radical Banach algebra, it will imply the existence of an uncountable family
of prime ideals in R such that distinct primes in the family are incomparable
with respect to inclusion; see §5.3, below.

Let (X, d) be a metric space, and take x ∈ X and r > 0. Then we write
B(x, r) for the open ball with centre x and radius r. The following lemma is
essentially [6, Theorem 2.6.34], which also proves Grabiner's theorem that
every nil (F)-algebra is nilpotent.

Lemma 5.8. Let (A, d) be an (F)-algebra, let S be a closed linear subspace
of A, and take n ∈ N. Suppose that there exist an element a0 ∈ S and r > 0

with the property that an = 0 (a ∈ B(a0, r) ∩ S). Then an = 0 for each
a ∈ S.

Proof. For a ∈ S, de�ne F (ζ) = (a0 + ζ(a − a0))n (ζ ∈ C). Then F is a
polynomial with coe�cients in A such that F vanishes on a neighbourhood
of 0 in C, and so F = 0. Thus an = F (1) = 0.

First, we need a technical lemma that is similar to Lemma 5.1.

Lemma 5.9. Let (A, d) be an (F)-algebra, and let S be a closed linear
subspace of A such that S ⊂ A · S. Then, for each non-nilpotent element
x0 ∈ S and ε > 0, there exist a sequence (an) in A and a non-nilpotent
element y ∈ lim←− a1 · · · anA with d(x0, y) < ε.

Proof. For n ∈ N, set Un = {a ∈ A : an 6= 0}, an open subset of A. Then
we may suppose that each Un is dense in A, for otherwise Lemma 5.8 would
imply that A is nilpotent, and the lemma would be vacuous in this case.
De�ne a continuous map θn : An+1 → An by

(a1, . . . , an, an+1) 7→ (a1, . . . , an−1, anan+1) .

The composition µn := θ1 ◦ · · · ◦ θn is nothing but the multiplication map
An+1 → A. Set

En := An ∩ µ−1
n (Un) .

Then En (with the product topology) is metrizable by a complete metric,
and ((En, θn) : n ∈ N) is a projective sequence. Set

Xn := (An−1 × S) ∩ En ,
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so that Xn is closed in En.
We claim that Xn is dense in An−1 × S. Indeed, otherwise, there would

exist a non-empty, open subset W of An−1 × S with W ∩ µ−1
n (Un) = ∅. But

this would then imply that an = 0 for all a ∈ µn(W ), which in turn would
imply that an = 0 for all a ∈ µn(An−1 × S), and again the lemma would be
vacuous in this case.

This claim and the assumption that S ⊆ A · S then imply that

Xn ⊂ θn(An × S) ⊂ θn(Xn+1) (n ∈ N) ,

where the closures are taken in An. Thus Theorem 1.1 shows that X1 is
contained in the closure of lim←−(En, θn), and the claim then shows that S is
contained in the closure of lim←−(En, θn). This implies the result.

We now give our modi�ed version of Theorem 5.6; it is related to [14,
Corollary 3.5].

Theorem 5.10. Let R be a non-zero, radical (F)-algebra. Then the follow-
ing conditions on R are equivalent:

(a) there is a non-nilpotent element a ∈ R such that a ∈ Ra;

(b) there is a sequence (an) in R such that lim←− a1 · · · anR contains a non-
nilpotent element of R;

(c) there is a sequence (bn) in R such that bn ∈ Rbn+1 (n ∈ N) and b1 is
not nilpotent;

(d) there is a strictly increasing sequence of principal left ideals in R],
each of which is not nil;

(e) there is a strictly increasing sequence of principal left ideals in R],
each of which is not nilpotent;

(f) there is a left ideal J in R such that J = R · J and J is not nil;

(g) there is a linear subspace S in R such that S ⊂ R · S and S is not
nilpotent.

Proof. It is obvious that (c)⇔ (f), that (d)⇒ (e), and that (a)⇒ (g) (with
S := R]a). The implications (b) ⇔ (c) and (c) ⇒ (d) are also easy to see.

(e) ⇒ (g) Let (cn) be a sequence in R] such that (R]cn) is a strictly
increasing sequence of principal left ideals in R], each of which is not nil.
Then cn ∈ R and cn ∈ Rcn+1 for each n ∈ N. Set J =

⋃
{R]cn : n ∈ N}, so

that J =
⋃
{Rcn : n ∈ N}. Then J is a left ideal that is not nilpotent, and

J = R · J ⊂ R · J .
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(g)⇒ (b) By replacing S by S, we may suppose that S is a closed linear
subspace of R. Since S is not nilpotent, there is an element x0 ∈ S that is
not nilpotent. Thus (b) follows from Lemma 5.9.

(c)⇒ (a) Take the sequence (bn) as speci�ed, and set J =
⋃
{Rbn : n ∈ N}.

Then J is a closed, left ideal in R and J is not nil. De�ne

S = {x ∈ J : Rx = J} .

By a small variation of [14, Theorem 3.3], we see that S contains a dense,
Gδ-subset of J . For n ∈ N, set Jn = {x ∈ J : xn = 0}. Then each Jn

is a closed subset of J with empty interior, and so, by Baire, there exists
an element a ∈ S \

⋃
Jn. The element a is not nilpotent and is such that

a ∈ Ra.

Corollary 5.11. Let R be a non-zero, radical (F)-algebra with R = R[2].
Then there is a non-nilpotent element a ∈ R such that a ∈ Ra.

Proof. Condition (g) of Theorem 5.11 holds, with S = R, and so condition
(a) holds.

5.3. Prime ideals in radical convolution algebras. The family of prime
ideals in a commutative Banach algebra plays a prominent role in automatic
continuity theory; see [6], and see [31] for a further contribution. It is of
interest to show the existence of `large' families of incomparable primes.

It is easy to construct prime ideals in convolution algebras on R+. In
this section, we shall use the results of the previous section and of [30] to
show that a radical convolution algebra on R+ must even have a continuum
of incomparable prime ideals. We shall also discuss the discrete version of
convolution algebras on sub-semigroups of R+.

A Fréchet algebra is an (F)-algebra whose topology is de�ned by a se-
quence of algebra seminorms [6, De�nition 2.2.4].

Let R be a commutative, radical Fréchet algebra containing a non-
nilpotent element a such that a ∈ Ra. The main result of [30], Corollary 3,
shows that R then contains a continuum of incomparable prime ideals. This
was proved as a consequence of [30, Theorem 2], which was stated for any
(possibly non-commutative) radical Fréchet algebra R that possesses such
an element a. However, that theorem was not stated correctly, and we now
rectify this error. The proof of [30, Theorem 2] does establish the following
theorem. Here, I(m) denotes the m-fold Cartesian product of I with itself
for m ∈ N.
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Theorem 5.12. Let R be a radical Fréchet algebra. Suppose that I is an
ideal in R that is not nilpotent and is such that

I(m) = R · I(m) (m ∈ N) .(5.1)

Then there exists a sequence (an) in I such that, for every Fréchet algebra
A containing R as a topological subalgebra,

ak1j1 · · · a
kn
jn
/∈ ai1A+ · · ·+ aimA

for all �nite sequences i = (i1, . . . , im), j = (j1, . . . , jn), and k = (k1, . . . , kn)

in N such that i and j are disjoint.

The new statement is as follows.

Proposition 5.13. Let R be a radical Fréchet algebra, and suppose that a
is a non-nilpotent, central element of R with a ∈ Ra. Then I := Ra is an
ideal in R that is not nilpotent and such that I satis�es equation (5.1).

Proof. Set I = Ra, so that I is an ideal in R that is not nilpotent.
To prove that I satis�es (5.1), take m ∈ N and open sets Wi in R for

i ∈ Nm such that Wi ∩ I 6= ∅ (i ∈ Nm). Then there exist x1, . . . , xm ∈ R
such that xia ∈ Wi (i ∈ Nm). Since a is in the centre of R, it follows that
axi = xia ∈ Wi (i ∈ Nm). Next, there exists c ∈ R such that

caxi = cxia ∈ Wi (i ∈ Nm) ,

and so
R · I(m) ∩ (W1 × · · · ×Wm) 6= ∅ .

Thus I(m) ⊂ R · I(m), and hence I satis�es (5.1).

Thus [30, Corollary 3], when combined with Corollary 5.11, gives the
following theorem. Here c denotes the continuum.

Theorem 5.14. Let R be a non-zero, commutative, radical Fréchet algebra
such that R = R[2]. Then there exists a family F = {Pα : α ∈ Λ} of prime
ideals in R such that |Λ| = c and such that Pα 6⊂ Pβ whenever α, β ∈ Λ with
α 6= β.

The above theorem applies to any non-zero, commutative, radical Ba-
nach algebra R that has an approximate identity, and in particular to the
Volterra algebra V = (L1(I), ? ) and the algebra (C∗,0(I), ? ). It also applies
to algebras of the form (L1(R+•, ω), ? ), where ω is a radical weight on R+•;
note that ω need not be bounded near the origin, and so this latter algebra
may not have an approximate identity. Finally, we note that the theorem
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applies to Banach algebras (` 1(S, ω), ? ) whenever S is a dense, di�erence
sub-semigroup of R+• and ω is a radical weight on S, and to the algebras
(` 1(S ∩ I), ? ) whenever S is a dense, di�erence sub-semigroup of R+•.

6. Summary

We shall now summarize our attempts to establish counter-examples to a
variety of implications between our speci�ed factorization properties (I)�
(VII). We shall �rst brie�y recall the de�nitions of the properties (I)�(VII);
throughout A is a commutative Banach algebra. Thus:

(I) A has a bounded approximate identity;

(II) null sequences in A factor;

(III) all pairs in A factor;

(IV) A factors;

(V) A factors weakly;

(VI) A factors projectively;

(VII) A factors densely.

In the table, `BFA' means `Banach function algebra'; `uniform' means
`maximal ideal in a uniform algebra'; `CRBA' means `commutative, radical
Banach algebra'; `sep' means `separable'.

Implication BFA sep BFA uniform sep uniform sep CRBA
(II) ⇒ (I) No, [36] No, [36] No, Th. 3.4 ? No, [36]
(III) ⇒ (II) ? ? ? ? ?
(IV) ⇒ (III) No, [29] ? No, [29] ? ?
(IV) ⇒ (I) No, [36] No, [36] No, [18, 29] ? No, [36]
(V) ⇒ (IV) No, [36] No, [36] ? ? ?
(VI) ⇒ (V) No, Ex. 1.13 No, Ex. 1.13 ? ? No, Ex. 1.13
(VI) ⇒ (III) No, Ex. 1.13 No, Ex. 1.13 No, [29] No, Ex. 1.18 No, Ex. 1.13
(VII) ⇒ (VI) No, Ex. 2.7 No, Ex. 2.7 No, Ex. 2.7 No, Ex. 2.7 No, Ex. 1.25
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