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ABSTRACT 
Modern network traffic classification puts much attention toward producing a granular classification of the traffic, such as at the application 

service level. However, the classification process is often impaired by the lack of granular network traffic ground truth. Granular network 

traffic ground truth is critical to provide a benchmark for a fair evaluation of modern network traffic classification. Nevertheless, in modern 

network traffic classification, existing ground truth tools only managed to build the ground truth at the application name level at most. 

Application name level granularity is quickly becoming insufficient to address the current needs of network traffic classification and 

therefore; this paper presents the design, development and experimental evaluation of Grano-GT, a tool to build a reliable and highly granular 

network traffic ground truth for encrypted browser-based traffic at the application name and service levels. Grano-GT builds on four main 

engines which are packet capture, browser, application and service isolator engines. These engines work together to intercept the application 

requests and combine them with the support of temporal features and cascading filters to produce reliable and highly granular ground truth. 

Preliminary experimental results show that Grano-GT can classify the Internet traffic into respective application names with high reliability. 

Grano-GT achieved an average accuracy of more than 95% when validated using nDPI at the application name level. The remaining 5% loss 

of accuracy was primarily due to the unavailability of signatures in nDPI. In addition, Grano-GT managed to classify application service 

traffic with significant reliability and validated using the Kolmogorov-Smirnov Test. 
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1. INTRODUCTION 

 Network traffic classification is a fundamental process that has a wide implementation in various domains [1]. For example, traffic 

classification is important for network administrators to analyze the type of traffic in their networks, such as HTTP or mail traffic. It helps 

network administrators to optimize and prioritize their network resources based on the type of traffic classified. Besides optimizing network 

resources, traffic classification is also critical for network security. Network security benefits from traffic classification by having the ability 

to apply security policies on targeted traffic. However, in order to evaluate the accuracy of a network traffic classification model, we need a 

reliable network traffic ground truth. The evaluation process using the network traffic ground truth is critical to justify the performance of a 

proposed technique. There are a few existing tools that can build network traffic ground truth such as Traffic Labeller [2]  and GT [3]. Despite 

that, the tools provide a rather limited level of classification granularity such as at the application protocol (e.g., HTTP and FTP) and 

application category levels (e.g., P2P and Mail). In modern networks, there is a demand for higher classification granularity than this sort of 

high-level protocol or category. Higher classification granularity such as at the application name and service level is highly valuable in 

modern networks. Most applications in modern networks offer various user interactions such as posting comments, liking a photo or streaming 

a video. Hence, the ability to classify traffic at these levels allows network administrators to be more precise when applying their network 

policies. Generally, we can divide the classification granularity into the 3 categories, a) coarse-grained,  b) fine-grained and c) binary as 

shown in Figure 1. 

 



 

 

 
Figure 1: Classification granularity 

 

 The coarse-grained category includes application protocol (e.g., HTTP, SSH, SMTP) and type (e.g., Video, Multimedia, Games) which 

only provide a high-level classification. It is useful for lightweight use cases such as the traditional packet filtering firewall. On the other 

hand, fine-grained category classifies at application name (e.g. Facebook, Twitter) and service (e.g., Facebook-chat, Twitter-post) which 

gives more visibility into the network. For instance, Palo Alto’s Next-Generation Firewall can classify traffic down to its application service 

level (e.g. Facebook-chat, Facebook-Audio) by using signature-based techniques [4]. Finally, another category of granularity is the binary 

category. The binary category focuses on differentiating one major traffic class from another or one-versus-one as we defined it in this paper. 

For example, [5] distinguished between encrypted and non-encrypted traffic while [6] applied the same classification granularity by 

discriminating malicious traffic from non-malicious traffic. The various levels of granularity also map to diverse classification techniques 

using port, deep packet inspection (DPI), statistical, machine learning and behavioral-based. Despite that, there exist several critical problems 

when validating classification techniques. 

  

 Among the problems when validating classification techniques is the lack of reliable and highly granular network traffic ground truth. 

Most network traffic traces such as from [7] and [8] only managed to build the ground truth down to the application name level at most. 

Therefore, it is challenging to validate the performance of classification techniques without proper ground truth which is publicly available. 

Consequently, researchers tend to validate their techniques using private ground truth. Using private ground truth for validation leads to 

another problem which is that the reliability of the technique used to collect the private ground truth is often arguable. Some of the common 

techniques used are port-based, DPI or manual classification. Manual classification takes place in a controlled lab environment. For example, 

[9] generated their ground truth by running the target application in an isolated machine. Although this approach can potentially provide the 

ground truth, we need to acknowledge that there is also background traffic running on the machine such as by daemons. Hence, it can 

contaminate the ground truth traffic thus decreasing its reliability. As a workaround, it is a common approach to apply DPI on the captured 

traffic. DPI operates by inspecting packet payloads to find a match of predefined signature strings. For example, HTTP traffic is easily 

identifiable by the signature string in its methods like GET and POST. However, DPI is less effective when dealing with encrypted traffic 

and applications having similar traffic signatures. 

 

 Therefore, this paper introduces Grano-GT which is a ground truth collection tool that aims to collect reliable and highly granular 

ground truth for encrypted browser-based traffic at the application name and service level. There are four main engines that power Grano-

GT which are packet capture, browser, application and service isolator engines. These engines take advantage of Python and the Chrome 

DevTools Protocol [10] to isolate traffic coming from a target tab in the Chrome browser. By using this approach, Grano-GT can reliably 

label the application name without any contamination from background traffic. In addition, Grano-GT inspects the application layer header 

inside the Chrome environment for unique signatures and passes the signatures to a series of cascading filters to discriminate the application 

into its services. Grano-GT intelligently takes advantage of time-related features to effectively complement the process of segregating the 

traffic into its application services in the event of traffic encryption.  

 

 The ability to address encrypted traffic for network traffic ground truth collection demonstrates the reliability of our work. To 

demonstrate the reliability of Grano-GT, we evaluate it in two network environments; a) a wired campus network: UM-Net and b) a wireless 

home network: HOME-Net. Our experiments show that Grano-GT achieves optimum reliability at the application-name level due to the 

ability to intercept and isolate the IP addresses used during the browsing session. As a result, we eliminate the existence of background traffic 

belonging to other unrelated applications regardless of the encryption state of the traffic. Therefore, Grano-GT removes any possible 

contamination in the traffic capture, which was one of the problems highlighted in earlier works. We validate our claim by using nDPI which 

is a well-known DPI engine [11] and achieve 95% average accuracy mainly due to the unavailability of signatures in nDPI. Grano-GT 

addresses the remaining 5% loss of accuracy when using nDPI by using the IP isolation technique mentioned earlier. On the other hand, to 



  

 

 

strengthen our finding at the application service level, we take advantage of the Kolmogorov-Smirnov Test to validate the distinction between 

the packet size distributions of different application services. The Kolmogorov-Smirnov Test is a statistical test to verify whether a sample 

belongs to a reference probability distribution. We adopt the Kolmogorov Smirnov Test due to its ability to ingest our packet size distribution 

values and conclude whether they are from the same application service. Our application of the Kolmogorov-Smirnov Test is similar to 

studies done by [12] and [13] in the Physics and Big Data domains. As a summary, the contributions of this paper are as follows: 

 

a) A new approach and design for a ground truth collection tool called Grano-GT to collect reliable and highly granular network 

traffic ground truth for encrypted browser-based traffic at the application name and service levels. 

b) A technique using IP address isolation to achieve the most optimum collection reliability at the application name level. 

c) An approach using time-related features to complement the traffic segregation process at the application service level to remove 

the dependency on packet payload inspection, thus addressing the issue of traffic encryption and privacy concerns. 

 

 We organize the remainder of the paper as follows. Section 2 discusses the related work in the domain. We present the architecture of 

Grano-GT in Section 3 and provide comprehensive interpretations for each component of the architecture. Section 4 outlines our experimental 

setup and in Section 5, we present the experimental analysis of this paper which includes elaborating on the evaluation and validation 

processes of our experiments. In Section 6, we discuss key issues in the domain and the ways to move forward. Finally, Section 7 concludes 

the paper. 

 

2.  RELATED WORK 

 Reliable ground truth for network traffic classification remains as an open problem in the research community [14, 15]. It hinders 

proper comparison and validation between the proposed solutions. This is because most solutions utilized a private ground truth dataset for 

validation [16]. These private ground truths are commonly collected and labelled using less reliable techniques as described in the previous 

section such as port-based, DPI or manual isolation as shown in Figure 2.  

 

 
Figure 2 Ground truth techniques 

  

 Port-based is the most straightforward approach to acquire ground truth. It matches the port number of the targeted traffic against the 

list of registered port numbers of standard applications and protocols as published by the Internet Assigned Numbers Authority (IANA) [17]. 

For example, network traffic destined for port 80 matches the HTTP tag as described by IANA. However, considering the current dynamic 

port allocations and obfuscation technique [18], port-based is quickly becoming obsolete if used as a standalone technique. This is because 

modern applications tend to move away from using standard and well-known port numbers. A study by [19] proved that using the port-based 

as a standalone technique only achieved 70% accuracy at most. As a result of the low accuracy, researchers often reserve the port-based 

technique as a last resort such as during the event of unavailability of the payload information. For instance, [20] and [21] utilized the port-

based technique to create their ground truths due to such an event. [20] assumed in their work that the port-based technique was largely 

accurate because their dataset was collected before the widespread use of dynamic port numbers. 

 

 In order to address the issue of dynamic port numbers, it is relatively common to use DPI to label the ground truth. DPI inspects the 

packet payload for unique application string signatures. An application string signature may be in the form of common strings such as the 

HTTP methods (e.g. GET and POST) that can uniquely identify an application. Due to the ability to inspect down to the packet payload, DPI 

emerges as a popular technique to create ground truth. [22] developed a DPI tool to match regular expression patterns against the packet 

payload. In [16], the authors compared the performance of multiple DPI tools and concluded that nDPI [11] and Libprotoident [23] as the 

most reliable open source DPI. As an example, [24] utilized nDPI to label the ground truth dataset. However, the effectiveness of DPI starts 

to diminish with encrypted traffic. Besides that, DPI requires frequent updates to the signature library to keep up with new applications. [25] 

proved this issue in their work when they were unable to label the ground truth of packets coming from new applications in one of their 

datasets. Hence, coupling the ineffectiveness of DPI on encrypted traffic together with the inconsistent performance among different DPI 

techniques, the reliability of DPI in producing ground truth is arguable. 



 

 

  

 As an alternative technique to combat the decreasing reliability of DPI, researchers consider the possibility of manually isolating the 

traffic. Manual isolation involves preparing machines (e.g., personal computers, virtual machines) with exclusive access only to the target 

application. This technique carries the assumption that all traffic captured through the machine belongs to the target application. [9] and [26] 

created the ground truth by manually isolating the application traffic. [9] used Docker as a virtual container to sterilize the network capture 

environment. Despite that, it is also worth noting that there still exists some background traffic such as from the system daemons in the 

machine that might contaminate the captured ground truth [3].  

 

 To lower the risk of contaminating the ground truth with background traffic, researchers introduced agent-based ground truth collection. 

The agents monitor the socket calls on the client machine. Sockets are endpoints in a communication flow between two applications running 

over a network. Therefore, monitoring the socket calls allows the extraction and association of the information on the running application 

process with the captured traffic thus producing accurate ground truths. For example, [8] introduced MIRAGE which tags mobile traffic with 

its process information through socket monitoring. Meanwhile, [3] proposed a tool named GT, which also tracks the socket activities and 

tags the traffic based on the information gathered from the sockets. Using this technique, GT managed to label the ground truth down to its 

application name (e.g., Safari, Apple Mail). A tool named Flowsing further improved GT by having the ability to label ground truth at 

multiple levels (i.e., application type and name) [27]. On the other hand, [2] proposed Traffic Labeller (TL) that captures all user socket calls 

and corresponding application process information. Then, TL tags the traffic by inserting application information into the TOS field of 

matching IP packets. Although it ensures high accuracy, it modifies the size of the IP packet, thus risking inaccurate capture.  

 

 As a countermeasure to inaccurate capture problems, there are also hybrid techniques that provide multiple layers of classification 

mechanism to increase the reliability of the network traffic ground truth. [28] introduced the Ground Truth Verification System (GTVS) 

which is a multi-layered hybrid framework to build ground truth datasets. It combines multiple techniques in the form of heuristics rules such 

as DPI and port-based classification. GTVS runs the heuristics rules in five iterations, with each iteration focusing on the remaining 

unclassified network traffic flow. The final iteration of GTVS involves manual human inspection to label the ground truth. Although GTVS 

managed to increase the reliability of the ground truth, it is not fully automated thus presenting some concerns on the scalability of the tool.  

 

 Table 1 lists the advantages and disadvantages of existing ground truth techniques while Table 2 summarizes the ground truth tools 

discussed in this section. All the tools offer different advantages over one another. However, they share the same limitation where the 

classification granularity is limited to the application name (i.e., Safari, Apple Mail). While application name granularity may have been 

more than sufficient in the past, [29] mentioned the need for a more granular classification, particularly at the application service level (i.e., 

Facebook-chat, Skype-voice) in modern networks. Besides that, existing tools put little attention to encrypted traffic because majority of the 

tools only deal with lower granularity levels and utilize socket monitoring through agent-based technique. Socket monitoring ignores the 

content of the packet hence is unaffected by the encryption state. Therefore, socket monitoring is less effective in collecting highly granular 

ground truth such as at the application service level as proposed by this paper. 

 

 As such, considering the current limitations of existing tools, this paper aims to pioneer the effort to build a reliable and highly granular 

ground truth collection tool for encrypted browser-based traffic at the application name and service levels through Grano-GT.  

 

Table 1 Advantages and disadvantages of existing ground truth techniques 

Technique Advantages Disadvantages 

Port-based 

A simple and straightforward technique by 

comparing the port number against a list of 

predefined port numbers by IANA. 

Dynamic port allocation drives down the accuracy of 

this technique as applications move away from 

standard port assignments. 

DPI 
A very accurate technique by inspecting the contents 

of the network packet for matching signature strings. 

Traffic encryption diminishes the effectiveness of 

DPI as it is unable to inspect the encrypted packet 

contents. 

Manual isolation 

The technique is easily set up by running 

applications in an isolated machine and network 

environment. 

There is still a possibility for a contaminated traffic 

capture from the background daemon traffic. 

Agent-based 
A highly accurate and reliable technique by using 

agents to monitor network socket activities. 

The classification granularity is limited to 

application name level at most as application service 

traffic rarely spawns unique socket activities. 

Hybrid 
Increases reliability of network traffic ground truth 

by using multiple levels of classification. 

It involves manual human effort thus reduces the 

scalability of the technique for large datasets. 



  

 

 

 

3.  GRANO-GT ARCHITECTURE 

 The architecture of Grano-GT operates to build a reliable and highly granular network traffic ground truth. It sources the ground truth 

from live network traffic coming from a Google Chrome browser. The live network traffic goes through a series of processing engines before 

producing a collection of network traffic ground truth at the application name and service levels as the final output. Grano-GT works with 

both unencrypted and encrypted traffic as it is independent of the packet payload. As a result, Grano-GT removes the risk of tampering with 

user privacy. 

 

 
Figure 3: Grano-GT architecture 

 

 Figure 3 shows the architecture of Grano-GT, which builds on four main elements: a browser isolator engine which utilizes Chrome 

DevTools Protocol and PyChrome to isolate network responses from a target tab; a packet capture engine running on tshark [30], which is 

the command-line version of Wireshark to capture all network traffic simultaneously; an application isolator engine built on Python which 

filters only the specific target application traffic; and a service isolator engine to separate the target application service from the entire 

application traffic.  The distinct components of the approach, and the main contributing technologies, are discussed in the sub-sections that 

follow 

 

3.1 Browser Isolator Engine 

 The browser isolator engine runs on two main tools which are the Chrome Devtools Protocol and PyChrome. These tools ensure that 

the engine can effectively isolate the application traffic and remove all unrelated traffic from the capture. 

 

3.1.1 Chrome Devtools Protocol 

 One of the main challenges of building a highly granular ground truth is distinguishing the raw traffic at the application service level. 

Application service traffic rarely spins up an entirely new network socket or uses a unique IP address that allows more straightforward 

Table 2 Summary of existing ground truth tools 

Tool Name Technique Granularity level Application type Performance 

MIRAGE [8] Agent-based Application name Mobile applications Not mentioned 

GT [3] Agent-based 
Application protocol 

and name 
Desktop applications 

Able to tag up to 99% of 

the bytes and 95% of the 

flows 

Flowsing [27] Agent-based 
Application type and 

name 
Desktop applications 

Able to classify traffic into 

three different aggregation 

levels 

Traffic Labeller [2] Agent-based Application type Desktop applications 
100% accuracy using port-

based validation 

GTVS [28] Hybrid Application type Desktop applications 

Outperformed L7-filter in 

terms of false negatives and 

false positives. 



 

 

classification if compared to the application name traffic which sits at a lower granularity level. Therefore, we tackle this problem by 

intercepting the traffic in the browser itself which gives visibility to all browser interactions. Additionally, we selected Google Chrome as it 

is the most popular browser with a 67% market share according to a recent study [31]. Google Chrome also comes with the Chrome Devtools 

Protocol (CDP). CDP is unlike a typical network protocol (e.g. TCP). Instead, it is a set of tools or interface functions that allow rapid 

debugging of Chromium, Chrome and other Blink-based browsers programmatically [10]. CDP maintains a publicly available set of API. 

The API covers various domains such as performance, browser and network. Grano-GT mainly takes advantage of the browser and network 

API to profile the network activity from a specific target tab accurately. 

 

3.1.2 PyChrome 

 Grano-GT builds on Python programming language. It is helpful to have a Python driver for CDP to simplify its implementation. Hence, 

Grano-GT utilizes PyChrome which is a Python driver for CDP [32]. It is an open-source driver that allows developers to access CDP’s API 

using Python. For example, in this paper, PyChrome is responsible for executing all browser-based tasks such as launching the target 

application and intercepting network events through callback functions.  

 

 
Figure 4 Workflow of browser isolator engine 

 

 Another challenge of collecting network traffic ground truth is the existence of background traffic that can contaminate the capture. To 

remove the risk of contamination, we separate the network responses from a specific browser tab using the API from CDP through the 

browser isolator engine. The browser isolator engine: 1) spawns a new tab in the Chrome browser. 2) launches a request to the target 

application in the new tab. These two processes make use of PyChrome to achieve the objectives programmatically. 

  

 As shown in Figure 4, the engine implements a callback function that triggers on Network.responseReceived event. In other words, the 

callback function executes when it receives response packets from the application server. Then, it inspects all the packet headers and logs the 

remote IP addresses. Consequently, it produces a list of IP addresses purely from the application running on the target tab. This is critical 

because modern applications typically serve their resources from multiple IP addresses. 

 

 Besides that, the browser isolator engine is also responsible for detecting the target application service. It implements a callback 

function that triggers on Network.requestWillBeSent event. The callback function inspects the request header and searches for matching 

signatures for the target application service. If there is a matching signature, the engine logs the epoch time of the match for further processing 

in the service isolator engine later on. It is also worth noting that the signatures used in Grano-GT is only limited to request headers (e.g. 

request URL) and is independent of the packet payload content.  

 

3.2 Packet Capture Engine 

 The packet capture engine sits at the core of Grano-GT as it functions to capture the network traffic during the session. There are 

various packet capture tools available such as tcpdump and Wireshark. Grano-GT mainly utilizes the command-line version of Wireshark, 

called tshark [30]. Tshark retains all the advantages of Wireshark while providing a more effective platform for customizing the output 

programmatically. In Grano-GT, tshark serves as the network traffic capture tool to dump all the network traffic during a user’s browsing 

session. 

 

 Tshark runs simultaneously alongside the browser isolator engine using Python’s subprocess module. During the live capture, tshark 

immediately applies a filter to capture only the network traffic originating and destined to the user’s machine IP address. The filter ensures 

that it captures all network traffic intended for the user’s machine regardless of whether it is from the target application or other applications 

running on the machine at the time of capture (i.e. non-target application). 



  

 

 

3.3 Application Isolator Engine 

 Network traffic captured through the packet capture engine consist of traffic from all applications intended for the user’s machine. 

There is a need to extract only the traffic of the target application for further processing. To extract the traffic of the target application, we 

recall the IP log file generated from the browser isolator engine earlier as well as the captured traffic dump as inputs for the application 

isolator engine. 

 

Algorithm 1: Application isolator engine 

 Input: captured_traffic, CT and IP_log_file, Set(IP_log) 

 Output: application_traffic.pcap 

  

1: for packet in CT: 

2:     if packet.ip.source in IP_log or packet.ip.dest in IP_log: 

3:         write(packet, application_traffic.pcap) 

4:     end if 

5: end for 

6: return application_traffic.pcap 

 

 Algorithm 1 explains the process in further detail. The application isolator engine traverses each packet in the captured traffic. It 

verifies if the source or destination IP address matches any of the IP addresses in the IP log file. If the IP matches, it writes the packet into a 

new file named application_traffic.pcap. The write function is a self-written utility function that is based on the PcapWriter class from the 

Scapy library. The output of Algorithm 1 is a sanitized file containing only the target application traffic. 

 

3.4 Service Isolator Engine 

 The sanitized application traffic contains the entire traffic from the target application. However, we are only interested in the traffic of 

the target application service. In order to extract the service, the service isolator engine implements a series of cascading filters. There are 

three levels of filtering throughout the segregation process: L1, L2 and L3 service filters. 

 

 L1 service filter aims to extract the target application service by using the service_log epoch time from the browser isolator engine. 

The epoch time signifies the exact time that the user executed the target application service. As such, the L1 service filter extracts all packets 

having epoch time more than the time recorded in the service_log, as shown in Algorithm 2. Using this method, the L1 service filter eliminates 

the unrelated packets arriving before the target application service execution. 

 

Algorithm 2: L1 service filter 

 Input: application_traffic, AT and service_log, SL 

 Output: service_traffic, time_delta 

  

1: epoch = SL.epoch 

2: time_delta = list() 

3: for packet in AT: 

4:     if packet.time_epoch > epoch: 

5:         write(packet, service_traffic) 

6:         time_delta.append(packet.time_delta_displayed) 

7:     end if 

8: end for 

9: return  service_traffic, time_delta 

  

 Although the L1 service filter can extract the target application service traffic, there is still a high chance that the traffic contains other 

unrelated packets that arrived after the epoch time recorded in service_log. Therefore, the L2 service filter classifies the traffic further in 

order to increase precision. The process classifies the application service traffic by using the standard deviation of interarrival times as the 

segregation factor. Equation 1 shows the formula for the standard deviation used in this paper. 

𝜎 =  √
∑(𝛿𝑡𝑖 − 𝜇)2

𝑁
+ 𝜖  (1) 

 

where 𝛿𝑡𝑖 = element in the time_delta list from L1 service filter, 



 

 

𝜇 = mean of time_delta, 

N = length of time_delta, 

𝜖 = compensating value for time_delta 

 

Algorithm 3: L2 service filter 

 Input: service_traffic, ST and time_delta, TD 

 Output: Multiple PCAP files 

  

1:  = 0.05 

2: interarrival_std = std(time_delta) +  

3: cnt = 1 

4: while True: 

5:     packet = ST.load_packet() 

6:     while packet.time_delta_displayed < interarrival_std: 

7:         write(packet, service_traffic_cnt) 

8:         packet = ST.load_packet() 

9:     end while 

10:     cnt = cnt + 1 

11: end while 

12: return  service_traffic_cnt 

 

 Based on our study, application service traffic occurs in a burst that is recognizable within the standard deviation of its interarrival 

times. This is also in line with a recent study that identified application traffic through its burstiness [33]. However, it is also worth noting 

that there is a micro delay between exact service execution and packet capture time. Therefore, we introduced the value 𝝐, epsilon, which is 

an arbitrary small subsecond value to compensate for the delay. We selected the epsilon value of 0.05 as shown in Algorithm 3 after cross-

validating the value against a set of values, namely 0.010, 0.025, 0.1, 0.125 and 0.15. Algorithm 3 also shows how it classifies the service 

traffic from the L1 service filter into multiple PCAP files. Each PCAP file consists of packets that are within the standard deviation threshold. 

 

Algorithm 4: L3 service filter 

 Input: Multiple PCAP files and signature, S, and interarrival 

standard deviation, interarrival_std 

 Output: Pure application service PCAP files 

  

1: for each PCAP file, f: 

2:     keyword_cnt = 0 

3:     for packet in f: 

4:         time_diff = packet.time_epoch - epoch 

5:         if S in packet.header or time_diff < interarrival_std: 

6:             keyword_cnt = keyword_cnt + 1 

7:             break 

8:         end if 

9:     end for 

10:     if keyword_cnt == 0: 

11:         remove(f) 

12:     else: 

13:         return f 

  

 Lastly, each of the PCAP files from the L2 service filter goes through the final stage of filtering which is the L3 service filter shown in 

Algorithm 4. The L3 service filter narrows down the segregation and checks each of the PCAP files for matching signatures. In the event of 

traffic encryption or none of the signature matches, the filter checks if the difference between the packet arrival time and the logged 

application service time is lower than the standard deviation of interarrival times. If none of the conditions matches, the filter drops the PCAP 

file, assuming that it is unrelated to the target application service. The final output of the L3 service filter is a collection of PCAP files purely 

of the target application service. In addition, the use of time-related features allows Grano-GT to operate in both unencrypted and encrypted 

environment without tampering with user privacy. Table 3 summarizes the three service filters discussed previously. 

 



  

 

 

Table 3 Summary of service filters 

Service filter Objective Output 

L1 

Extract related target 

application traffic starting 

from the execution of 

application service. 

Target application 

traffic beginning 

from the time user 

executed 

application service. 

L2 

Partition the target 

application traffic into 

multiple smaller PCAP 

files containing possible 

target application service 

traffic. 

Multiple PCAP files 

containing traffic 

partitioned from L1. 

L3 

Remove unrelated traffic 

from L2 and return only 

the target application 

service traffic. 

PCAP files of target 

application service 

traffic. 

 

4.  TESTBED SETUP 

 We evaluated Grano-GT on two network environments: UM-Net which is a wired campus network at Universiti Malaya (UM) in Kuala 

Lumpur, Malaysia and HOME-Net which is a wireless home network provided by Telekom Malaysia, also in Kuala Lumpur, Malaysia 

between November 2019 to April 2020. Using two distinct network environments provides a better evaluation of the robustness of Grano-

GT on different network settings.   

 

 At UM, we ran Grano-GT on a 3.4 GHz quad-core machine running Windows 10. We ran the tool and collected a total of 56 GB of 

network ground truth traffic for ten common and popular browser-based applications in our region [34-36]. On the other hand, we ran Grano-

GT in a wireless home network to diversify the network conditions. We utilized a mid-range 2.0 GHz quad-core machine and collected a 

total of 36 GB of ground truth traffic for the same number of applications. Table 4 shows the complete list of applications involved in this 

paper. It shows the application name such as Facebook and its corresponding category which is Social Media for easier reference. In addition, 

Table 4 also lists the related application services for each respective application. Besides that, the Total Bytes column indicates the total size 

in bytes of the captured traffic for each application name and service in both network environments, UM-Net and HOME-Net. We accessed 

all the applications from a Google Chrome browser version 81.0.4044.92, which is the latest version at the time of writing.  

 

 



 

 

5.  EXPERIMENTAL ANALYSIS 

 We conducted two sets of experiments to evaluate Grano-GT. The first set of experiments aims to evaluate the reliability of our traffic 

traces at the application name level, such as Facebook and Twitter. Although we are confident that our traffic traces are highly reliable at the 

application name level due to the nature of Algorithm 1 described previously, we ran our traffic traces through nDPI which served as the DPI 

engine to provide further validation. We chose nDPI because it can be seen as the defacto standard of DPI based on its performance described 

in [16].  However, nDPI only works on a finite list of application names and put less coverage on the majority of application services. 

Therefore, nDPI fails to recognize the application services in this paper. 

  

 Hence, our second set of experiments looks into how statistical testing can act as an alternative technique and verify the consistency of 

traffic traces at the application service level. As far as we are concerned, we are among the pioneer works that attempt to provide ground 

truth at the application service level which explains the lack of techniques for validation at this granularity level. For example, authors of 

MIRAGE created the ground truth for mobile application traffic, but put very little attention to the validation process of their ground truths 

[8]. Similarly, authors of Traffic Labeller used only the port-based method which is known to be highly restrictive to validate their ground 

truths [2]. 

 

5.1 VALIDATING THE APPLICATION NAME RELIABILITY USING NDPI 

 The algorithm running at the core of the application isolator engine ensures that Grano-GT produces a reliable ground truth at the 

application level. This is because the application isolator engine logs all the IP addresses coming from the target application server thus 

guaranteeing the extraction of pure traffic traces at the application name level. In this experiment, we validated the reliability of the traffic 

traces further by running them through nDPI and compared the results. 

 

Table 4 Complete list of applications 

Application name Application category 
Total Bytes Application 

service 

Total Bytes 

UM-Net HOME-Net UM-Net HOME-Net 

Facebook Social media 308593461 265613399 

comment 724882 200872 

post 1753208 219833 

react 14148 211124 

receive 697369 11226681 

send 232276 227342 

stream 239856017 7023755 

Youtube Video streaming 89032398 182437673 

comment 7461 1475863 

react 10977588 9127 

stream 13727747 21328426 

Twitter Social media 400246136 377565909 

tweet 60959014 448088 

retweet 4883487 3008042 

like 11018017 1016249 

Spotify Music streaming 7925388 21417369 

view 50213 748038 

react 9595 313938 

stream 3877304 5825032 

Web-Whatsapp Instant messaging 20283379 18295343 

send 3904 8604 

send-document 233149 3672268 

send-image 630462 1258854 

Medium Online articles 56968024 53287806 
read 1548183 5259445 

react 288752 3895247 

Lazada E-commerce 91392976 173227857 

view 45502056 4986109 

buy 2488849 1238459 

react 5087580 2104486 

Shopee E-commerce 49595474 65065681 

view 4125964 1625425 

buy 2154626 209157 

react 4317924 204972 

Reddit Online forum 46048171 98659909 

read 536632 491146 

react 61310 919485 

comment 18526 55008 

Netflix Video streaming 783922987 285698311 
react 133953416 6290817 

stream 323175742 129265572 



  

 

 

 We compiled and set up nDPI (version 3.3.0-2232-942a71c7) on a Linux machine running Ubuntu 18.04 LTS before creating a script 

to pass traffic traces from all applications through nDPI. nDPI is an open-source DPI engine that detects various protocols and application 

names from traffic traces using multiple approaches such as payload based signatures, IP address blocks and host-based matching. Table 5 

shows the bytes accuracies of nDPI calculated using Equation 2 for five application names. 

 

𝐵𝑦𝑡𝑒𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦𝑡𝑒𝑠 𝑏𝑦 𝑛𝐷𝑃𝐼

𝑇𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐺𝑟𝑎𝑛𝑜𝐺𝑇
 (2) 

 

Table 5 Bytes accuracy of application name based on nDPI 

Application name UM-Net HOME-Net 

Facebook 94.4% 91.1% 

Youtube 90.4% 1% 

Twitter 96.2% 98.2% 

Web-Whatsapp 100% 99.8% 

Netflix 97.6% 99.3% 

  

 We had to exclude five of our applications which are Spotify, Medium, Lazada, Shopee and Reddit because their bytes accuracies were 

at 0% due to unavailability or outdated signatures in nDPI. For instance, signatures for Lazada and Shopee are unavailable because they are 

online shopping sites which are more common in South-East Asian countries and less known globally. Similarly, nDPI has yet to put coverage 

on Medium and Reddit while Spotify’s signature is outdated. 

  

 Apart from outdated signatures, encrypted traffic also has an impact on the effectiveness of nDPI. nDPI labels encrypted traffic with 

its respective encryption protocols like TLS or utilizes other approaches, as mentioned previously. Based on Table 5, nDPI fails to achieve 

100% accuracy, mostly due to its inability to detect the encrypted portion of the traffic. On the other hand, Youtube recorded only 1% 

accuracy in HOME-Net because it changed to using UDP protocol entirely for its video streaming service very recently and nDPI has yet to 

capture that change. 

 

 Hence, we can observe that the traffic traces captured by Grano-GT are reliable at the application name level. It also shows that using 

a DPI engine alone for building the ground truth presents its disadvantages such as unavailable and outdated signatures. Grano-GT managed 

to overcome these disadvantages by introducing the application isolator engine. 

 

5.2 VERIFYING THE APPLICATION SERVICE USING THE KOLMOGOROV-SMIRNOV TEST 

 Validating the reliability of the application name is a straightforward process because there exist DPI tools that allow a particular 

benchmark for us to compare. However, the same process carries a slight problem when dealing with application service. Unlike nDPI which 

is commonly accepted as a benchmark, there is a severe lack of benchmarks for application service traces to compare. 

 

 To eliminate any research bias when using our ground truths, we need a technique that can compare our ground truths against some 

benchmark. We can perform a manual inspection of each packet to confirm the accuracy. The downside of manually inspecting each packet 

is that it is time-consuming and still introduces research bias. To tackle this problem, we look at the packet size distribution of the application 

service traffic. The findings in [37] showed that packets belonging to the same application protocol exhibit a similar profile in terms of packet 

size distribution.  Using the same principle, we infer that the size distribution of the same application service should display similarities which 

leads us to the alternative technique to evaluate our ground truth at the application service level, which is the Kolmogorov-Smirnov (KS) 

Test [38]. 

 

 The KS Test is a test for goodness of fit. It is a non-parametric and distribution-free test where it makes no assumption about the 

underlying distribution of data. It is useful in comparing whether a sample belongs to a reference probability distribution. Besides that, the 

KS Test has a two-sample variation where it can test whether two samples have the same distribution. 

  

 In essence, the KS Test calculates the maximum distance between the empirical distribution function of two samples. Equation 3 shows 

the definition of the empirical distribution function. 

 

𝐹(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 ≤ 𝑡

𝑛
 (3) 

  



 

 

 Then, it compares the calculated maximum distance to a critical value before deciding on whether to reject or accept the null hypothesis. 

The critical value is defined in the table of critical values as noted in [38] where for a significance level of 0.05, the critical value, D is defined 

as follows: 

 

𝐷𝑐𝑟𝑖𝑡,0.05 =  
1.358

√𝑛
  (4) 

 

 As such, the Two-sample KS Test is a practical technique to verify our traffic traces at the application service level. The intuition of 

this experiment is that traffic traces from the same type of application service should portray similar packet size distribution. In other words, 

the maximum distance calculated should be lower than the critical value. For example, we calculated the KS values for 465 samples of 

Reddit-react traffic traces. Of these, 387 samples, or 83% recorded KS values lower than the critical value which indicates that the samples 

have similar packet size distribution. In contrast, traffic traces from different application services, regardless of its application names, should 

reflect a noticeable difference in its distribution.  

 

 
Figure 5a Comparison of cumulative distribution function values of different services within the same application 

 

 To illustrate, based on Figure 5a, we can observe that traffic traces from the same application service (i.e., Facebook-comment) show 

a small difference between the values of their empirical distribution function. However, Facebook-comment traffic shows a significant 

contrast when compared to other services although from the same Facebook application. For example, Facebook-react and Facebook-video 

displayed the most substantial difference between the function values. Meanwhile, Facebook-comment and Facebook-post traffic exhibit 

smaller differences because the nature of the service (i.e., commenting and posting on Facebook) is somewhat similar. 

 

 
Figure 5b Comparison of cumulative distribution function values of similar services from different applications 

 

 On the other hand, Figure 5b shows a comparison of the function values between similar application services but from different 

applications. Intuitively, the graph of Reddit-react traffic displays a small difference between the function values as they represent the same 

type of application service. However, the function values of Reddit-react traffic are distinct when compared to the same service (i.e., react) 

from different applications. Although the KS Test only validates the goodness of fit instead of the absolute accuracy, which is of more interest, 

it reduces the risk of research bias by providing a technique to prove the distinction between traffic traces at the application service level. 

 

6.  DISCUSSION 

 

In this paper, we presented Grano-GT which is a tool to build highly granular network traffic ground truth. Network traffic ground truth is 

critical to ensure a fair evaluation of network traffic classifiers as well as setting a performance benchmark. There are very few publicly 

available tools to build the ground truth as mentioned earlier in this paper. In addition, the majority of these tools put little attention on 

building the ground truth at the application service level.  

 



  

 

 

Grano-GT attempts to address that issue by experimenting with collecting reliable and granular network traffic ground truth at the application 

name and service levels. However, since Grano-GT is among the pioneers in this area, there are a few fundamental issues and challenges that 

are worth noting. In this section, we discuss the current challenges and future works for guidance to researchers and interested parties. 

 

 6.1 Evaluating reliability at the application service level 

 One of the most crucial phases of any research works is evaluation. Evaluating the ground truth traffic at the application service level 

remains a challenge. This is because there is a severe lack of datasets at the application service level for benchmarking purposes. Hence, 

researchers need to come up with a reliable technique to evaluate the reliability of the traffic traces at the application service level. 

Nonetheless, researchers can consider a few existing techniques such as manual inspection by experts and DPI. 

 

 Manually inspecting the traffic traces will highly likely increase the chance of getting the correct evaluation. Even so, it is often the 

case that the manual inspection involves thousands of network packets, if not more. As a consequence, this technique becomes impractical 

as it takes a tremendous amount of time and effort. To overcome this issue, an automated technique like DPI is preferable. 

 

 DPI is widely used to evaluate the originating application of traffic traces. It compares the packet against a set of predefined signatures. 

It is highly accurate but presents one significant issue. The issue is that DPI requires constant updates to its signature bank. Moreover, 

application service signatures are unavailable in most DPI engines. For instance, in this paper, we are unable to use nDPI to evaluate the 

traffic traces at the application service level due to the unavailability of signatures. In the future, we should put more effort into creating 

signatures at the application service level to cope with the evolving trend of network traffic classification. 

 

6.2 Collecting reliable ground truth with encrypted traffic 

 According to the recent Google Transparency Report [39], more than 90% of the traffic across Google is now encrypted. Encryption 

has quickly become a necessity due to rising concerns over user privacy. As such, encrypting the traffic helps in hiding user data from the 

public eye. Although hiding user data is an excellent move to protect user privacy, it poses a challenge to collect the network traffic ground 

truth because the encryption diminishes the effectiveness of the signature matching process. There are a few solutions that researchers can 

consider to work around the issue of traffic encryption. 

 

 
Figure 6 Grano-GT's approach to collect reliable ground truth with encrypted traffic 

 

 One of the most commonly used approaches is to introduce multiple techniques to detect the traffic besides signature matching alone. 

For example, based on Figure 6, we observe that the traffic remains unencrypted within the Chrome browser environment. As Grano-GT 

utilizes CDP in the Chrome browser environment, Grano-GT can view the traffic without any encryption and log the exact execution time of 

the application service upon detecting a matching signature. However, once the traffic exits the Chrome environment, the traffic gets 

encrypted. Hence, Grano-GT implements two techniques which are decrypting the traffic using the secret keys or using time-based matching. 

Grano-GT logs the secret keys from Chrome during the browsing session. Then, it utilizes the feature in tshark to decrypt the SSL/TLS traffic 

using the logged secret keys. If the secret keys are unable to decrypt the traffic due to limitations such as the type of protocols or ciphers 

used, Grano-GT switches to time-based matching. Grano-GT compares the difference between packet arrival times and the logged application 

service time to identify the targeted traffic without tampering with user privacy. 

 

 On the other hand, commercial solutions such as the Palo Alto Next-Generation Firewall offers traffic decryption to solve the problem. 

The firewall acts as a man-in-the-middle and intercepts the SSL request. Then, it returns the copy of the signed server certificate to the client 

thus allowing it to decrypt the traffic between the client and the server. Although this can potentially be seen as a breach in user privacy, Palo 

Alto claims to re-encrypt the traffic before pushing it back into the network [40]. Therefore, researchers need to put more consideration on 



 

 

this issue because the portion of encrypted traffic will only keep on increasing in the future. The process of collecting network traffic ground 

truth should be able to maintain its reliability regardless of the state of encryption. 

 

6.3 Publishing ground truth data without compromising privacy 

 Network traffic ground truth datasets are highly valuable for analysis and research. They allow researchers to evaluate and benchmark 

the performance of their proposed techniques, yet publicly available network ground truth datasets are scarce. Among the available datasets 

are by the Canadian Institute for Cybersecurity [41], WAND Network Research Group [7] and University of Brescia [42]. Despite that, the 

datasets are relatively outdated, with most of them being more than five years old. 

 

 The scarcity of publicly available network traffic ground truth datasets is primarily due to privacy concerns. Network traffic traces 

contain sensitive user data that can compromise privacy. The magnitude of privacy leaks can be devastating. For example, attackers can 

rebuild the network topology by using traffic traces [43]. This critical information exposes the network infrastructure to adversarial attacks. 

Besides that, attackers can also infer host behavior from the traffic which increases the risk of attacks.  

  

 As a result, most researchers are unable to publish their datasets without going through some anonymization process. Anonymizing 

network traffic traces is the process of removing identifiable relationships between two endpoints while ensuring data availability [44]. 

Authors in [44] presented a brief review of the typical traffic anonymity methods. For example, we can replace the IP addresses in the traffic 

traces with synthetic values. Besides that, we can also encrypt the IP address prefix [45]. There are also other common fields of a network 

packet that can undergo anonymization such as the MAC address, port number and timestamp. 

  

 Therefore, researchers should take all possible measures and considerations before releasing their datasets for public use. Future 

network traffic classification research may even consider moving the classification models to the traffic traces to overcome the need to make 

the data publicly available. As an example, Kaggle which is an online community for data scientists and machine learning practitioners [46], 

allows its participants to upload their machine learning models to a privately hosted data repository in a competition. As a result, participants 

in Kaggle competitions can evaluate their models without having full access to the data. This approach also takes inspiration from the trend 

in big data technology where moving data to a compute machine is computationally expensive. Instead, big data researchers move their 

portable compute models to the data to achieve their goals. Similarly, researchers in the network traffic classification domain can submit their 

classification models to the data owner and receive the results in return. 

 

6.4 Extending usage beyond browser-based applications  

 In this paper, we proposed Grano-GT which is a browser-based tool to build highly granular network traffic ground truth. Grano-GT 

focuses on browser-based applications because it takes advantage of the Chrome Devtools Protocol to intercept application signatures. This 

is possible because the interception occurs at the application layer of the OSI model, thus making the traffic visible with minimal encryption. 

However, Grano-GT holds a limitation where it is currently unable to collect network traffic ground truth beyond browser-based applications 

(e.g. desktop and mobile applications). This is because discriminating network traffic between different application services from a single 

application beyond the browser is challenging without the appropriate traffic visibility. 

  

 Maintaining traffic visibility beyond the browser is a long-standing challenge. One of the commonly used techniques to gain traffic 

visibility for building ground truth is socket monitoring. The majority of ground truth tools utilize socket monitoring in their design [2, 3, 8]. 

While it is a reliable technique to build network traffic ground truth at the application-name level, it presents a challenge to implement it at 

the application-service level. The challenge is due to applications using the same socket to communicate throughout the session, thus making 

it difficult to distinguish between application services. 

  

 Another feasible technique is tagging the target packets with a special flag for identification. Szabo et al. proposed a tool to build 

network ground truth by marking the target packets with the first two characters of the application name in the IP Router Alert option field 

[47]. Similarly, Lizhi et al. embedded the application information into the TOS field of the IP packets [2]. This is a viable technique but it 

requires proper consideration to avoid degrading the performance of the network due to the increased size of the packets and as such, 

extending Grano-GT beyond browser-based applications remains as future work. 

 

7.  CONCLUSION 

 This paper presents the design, development and experimental evaluation of Grano-GT. Grano-GT reinvents the way researchers build 

network traffic ground truth by focusing on building highly granular ground truth. Grano-GT achieves this objective by implementing a series 

of cascading filters. The final output of Grano-GT is a collection of traffic traces at the application-name and service levels. 

  

 Experimental tests demonstrate the effectiveness of Grano-GT. At the application-name level, Grano-GT guarantees optimum 

reliability due to the application isolator engine that filters the application traffic based on logged IP addresses. We validated this claim by 

running the traffic traces through nDPI and recorded more than 95% average accuracy on both tested networks. Additionally, we used the 



  

 

 

Kolmogorov-Smirnov Test to evaluate the reliability of the traffic traces captured at the application-service level. The results showed that 

Grano-GT managed to build network traffic ground truth with reliability. Besides that, Grano-GT achieved higher granularity levels (i.e. 

application-name and service) if compared to prior works such as mentioned in Section 2 of this paper.  

  

 We are currently working to extend Grano-GT beyond browser-based applications which will allow Grano-GT to build network traffic 

ground truth for other desktop applications such as Skype, Telegram and desktop games and even mobile applications. We believe Grano-

GT can be useful for researchers to build their network traffic ground truth which is highly granular and reliable. 
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