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Abstract
Monitoring for errors and behavioral adjustments after errors are essential for daily life. A question that has not been addressed
systematically yet, is whether consciously perceived errors lead to different behavioral adjustments compared to unperceived errors.
Our goal was to develop a task that would enable us to study different commonly observed neural correlates of error processing and
post-error adjustments in their relation to error awareness and accuracy confidence in a single experiment. We assessed performance in
a new number judgement error awareness task in 70 participants. We used multiple, robust, single-trial EEG regressions to investigate
the link between neural correlates of error processing (e.g., error-related negativity (ERN) and error positivity (Pe)) and error awareness.
We found that only aware errors had a slowing effect on reaction times in consecutive trials, but this slowing was not accompanied by
post-error increases in accuracy. On a neural level, error awareness and confidence had a modulating effect on both the ERN and Pe,
whereby the Pewasmost predictive of participants’ error awareness. Additionally, we found partial support for amediating role of error
awareness on the coupling between the ERN and behavioral adjustments in the following trial. Our results corroborate previous
findings that show both an ERN/Pe and a post-error behavioral adaptationmodulation by error awareness. This suggests that conscious
error perception can support meta-control processes balancing the recruitment of proactive and reactive control. Furthermore, this study
strengthens the role of the Pe as a robust neural index of error awareness.
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Introduction

Monitoring for errors is important for successful functioning in
daily life. It enables the initiation of remedial actions when
something goes wrong and prevents making the same errors
over and over again. The ability to monitor and control cogni-

tive processes has been termedmetacognition.Metacognition is
important to guide our behavior and is well-developed in
humans (Fleming, Huijgen and Dolan, 2012; Shea et al.,
2014). Sometimes, however, mistakes remain undetected, es-
pecially when tasks are complex. In this study, we focus on
conscious error perception as a form of metacognition.
Research explictily addressing conscious perception of errors,
or “error awareness,” has been relatively sparse. The literature
concerning the neural signature of error awareness and the role
of error awareness in implementing adaptive behavioral adjust-
ments is not unequivocal. We studied the neural and behavioral
traces of error awareness in a newly developed number judge-
ment error awareness task. In particular, we focused on the
question whether error awareness and its neural correlates mod-
ulate the recruitment of various forms of post-error adjustments.
First, however, we briefly surveyed the literature on neural
correlates of performance monitoring, post error adjustments,
and the assessment of error awareness.

Neural correlates of performance monitoring

The error-related negativity (ERN, or error negativity, Ne)
(Falkenstein, Hohnsbein, Hoormann and Blanke, 1990;
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Gehring, Goss, Coles, Meyer and Donchin, 1993) is a fronto-
central negative voltage deflection, peaking 50 to 100 ms after
an erroneous response, which seems to be generated in the
posterior medial frontal cortex (pMFC) (Debener et al.,
2005; Dehaene, Posner and Tucker, 1994; Gruendler,
Ullsperger and Huster, 2011; Ullsperger and von Cramon,
2001). Functionally, the ERN is thought to reflect activity of
the performance monitoring system after response errors,
which is assumed to be conveyed to other brain regions and
which implement the necessary adjustments aimed at avoiding
errors in the future (Ullsperger, Danielmeier and Jocham,
2014). The underlying mechanisms that give rise to the ERN
are still debated. At least two major accounts have been put
forward that suggest that the ERNmay reflect the detection of
post-response conflicts or prediction error signals (for review,
see Ullsperger, Fischer, Nigbur and Endrass, 2014).

The association between the ERN and error awareness is
not unequivocal. A number of studies found no relationship
between ERN amplitude and conscious error perception
(Endrass, Franke and Kathmann, 2005; Endrass, Reuter and
Kathmann, 2007; Hoonakker, Doignon-Camus and
Bonnefond, 2016; Niessen, Fink, Hoffmann, Weiss and
Stahl, 2017; Nieuwenhuis, Ridderinkhof, Blom, Band and
Kok, 2001; O'Connell et al., 2007; Shalgi, Barkan and
Deouell, 2009). Other studies, however, did find the ERN to
be dependent on conscious error perception (Maier,
Steinhauser and Hübner, 2008; Steinhauser and Yeung,
2010; Wessel, Danielmeier and Ullsperger, 2011), backing
up the initial error awareness finding of Scheffers and Coles,
who found that the ERN covaried with the perceived inaccu-
racy of the behavior (Scheffers and Coles, 2000; for a review,
see Wessel, 2012).

Similarly, whereas some neuroimaging studies reported
that the pMFC was unrelated to error awareness (Hester,
Foxe, Molholm, Shpaner and Garavan, 2005; Klein et al.,
2007), other studies did find greater pMFC activation when
participants were aware of their errors than when they were
not aware of an error (Hester et al., 2012; Hester, Nestor and
Garavan, 2009; Klein, Ullsperger and Danielmeier, 2013; Orr
and Hester, 2012).

The picture is clearer concerning the error positivity (Pe), a
positive deflection with centro-parietal scalp distribution fol-
lowing the ERN approximately 200 to 500 ms after the incor-
rect response (Falkenstein et al., 1990). The Pe is present only
when participants were aware of their error (Endrass et al.,
2005; Endrass et al., 2007; Nieuwenhuis et al., 2001;
O'Connell et al., 2007; Overbeek, Nieuwenhuis and
Ridderinkhof, 2005). Murphy, Robertson, Allen, Hester and
O'Connell (2012) demonstrated that not only amplitude but
also onset of the Pe correlates with the timing of error aware-
ness (i.e., a signaling response of the individual to indicate that
the error has been perceived), further promoting the role of the
Pe in the emergence of error awareness. Moreover, Boldt and

Yeung (2015) showed that, in addition to error detection, the
amplitude of the Pe also is associated with the confidence in
the error judgment, indicating that these two metacognitive
evaluations reflect similar underlying mechanisms (for a
theoretical discussion, see Yeung and Summerfield, 2012).

Error awareness and post-error adjustments

A question that has not been addressed systematically yet is
whether consciously perceived errors lead to different behav-
ioral adjustments compared with unperceived errors.
Behaviorally, post-error adaptations are reflected for example
in post-error slowing (PES), first described in the 1960s by
Rabbitt (1966), post-error reduction of interference (PERI),
first described by Ridderinkhof et al. (2002), and post-error
improvement in accuracy (PIA) (Danielmeier, Eichele,
Forstmann, Tittgemeyer and Ullsperger, 2011; Laming,
1968). Post-error slowing, as the name suggests, describes
the phenomenon of prolonged reaction time (RT) in trials
following an error compared with trials following a correct
response (Rabbitt, 1966). It can be observed in different tasks,
but there also are some studies that failed to demonstrate a
PES effect (Fiehler, Ullsperger and Von Cramon, 2005).
Post-error slowing has been shown to be correlated with
pMFC activity as reflected in fMRI studies (Danielmeier
et al., 2011; Kerns et al., 2004) and ERN amplitude
(Debener et al., 2005; Fischer, Danielmeier, Villringer, Klein
and Ullsperger, 2016) during the preceding error trial. Post-
error reduction of interference can be observed in interference
tasks (e.g., flanker or Simon tasks) and describes a reduction
of the interference effect in trials following errors compared to
trials following correct responses (King, Korb, von Cramon
and Ullsperger, 2010; Ridderinkhof, 2002). The interference
effect is the difference in RTs between compatible and incom-
patible trials. Post-error improvement in accuracy quantifies
the improvement of performance after errors, comparing ac-
curacy in trials after errors and after correct responses.

The described post-error adjustments can be classified into
reactive and proactive forms of cognitive control (Braver,
Gray and Burgess, 2007; Ridderinkhof, Forstmann, Wylie,
Burle and van den Wildenberg, 2011). It has been suggested
that post-error slowing is a very general response to the rare
and salient event of making an error—a reactive adjustment
closely associated with the impact of the error that just oc-
curred (Danielmeier and Ullsperger, 2011; King et al.,
2010). In contrast, post-error reduction of interference seems
to index a proactive control mechanism characterized by pre-
paratory task-set maintenance that enables “early selection” of
relevant information, thereby shielding task-relevant informa-
tion, that guide the correct response, from distracting informa-
tion or overlearned prepotent response tendencies (King et al.,
2010; Ridderinkhof, 2002; Ridderinkhof et al., 2002). While
the mechanisms and the adaptivity of different post-error

Cogn Affect Behav Neurosci



adjustments have been debated in the literature (Fischer,
Nigbur, Klein, Danielmeier and Ullsperger, 2018; Purcell
and Kiani, 2016; Steinhauser and Andersen, 2019;
Ullsperger and Danielmeier, 2016; Wessel, 2018), rather little
attention has been paid to how the different modes of control,
reactive and proactive, are arbitrated during post-error adjust-
ments. This arbitration of various forms and parameters of
cognitive control has been called meta-control (Goschke,
2013; Goschke and Bolte, 2017). It is an unresolved question
whether metacognitive functions, such as conscious error per-
ception, have a role in meta-control by balancing the recruit-
ment of proactive and reactive control.

Behavioral post-error adjustments have been less studied
under the influence of error awareness than the event-related
potentials discussed above. Of the few studies that do exist,
some suggest that error awareness is associated with stronger
behavioral adjustments, showing that post error slowing is
larger after consciously perceived compared to unperceived
errors (Cohen, van Gaal, Ridderinkhof and Lamme, 2009;
Endrass et al., 2007; Nieuwenhuis et al., 2001; Wessel et al.,
2011). Others, however, failed to demonstrate post-error
slowing altogether (Klein et al., 2007), or even report post-
error speeding (Hester et al., 2005; Hester et al., 2012; Orr &
Hester, 2012), but see Danielmeier and Ullsperger (2011) for a
more detailed discussion of these seemingly contradicting
findings. Klein et al. (2007) reported post-error improvement
in accuracy after aware but not after unaware errors, but
Endrass et al. (Endrass, Klawohn, Preuss and Kathmann,
2012) found that post-error accuracy is not modulated by
awareness. Overall, however, to our knowledge, no studies
have addressed all three behavioral post-error adjustments in
relation to conscious error perception in a single task.

Assessment of error awareness

Studies investigating the neural correlates and post-error be-
havioral adjustments of aware and unaware errors differ in the
implemented error signaling procedure and the type of task
they used. As reviewed byWessel (Wessel, 2012), some stud-
ies used forced-choice ratings in which participants have to
rate their performance as either correct or incorrect (in some
studies there also is an additional “don't know” option) after
every trial. Other error awareness studies have used an “error
signaling button” that only has to be pressed when participants
notice an error (Rabbitt, 1968). Such an error signaling button
potentially introduces a response bias towards not signaling
errors (Ullsperger, Harsay, Wessel and Ridderinkhof, 2010),
especially when inter-trial intervals are short. The bin of un-
aware errors might thus be contaminated by error trials that
were not classified as such even though there might have been
some residual error awareness. Moreover, only requesting an
additional response for aware errors makes it harder to com-
pare them to correct trials that do not require an additional

response and unaware errors (i.e., trials which participants
do not rate as error and thus do not require an error-button
press). Error signaling might thus interfere with trial-by-trial
post-error adjustments. Consequently, it is important to keep
the procedure as similar as possible for different error types.
More recently, it has been proposed that error awareness could
be more objectively quantified on the basis of the amplitude of
the error positivity (Pe) time-locked to the error-signaling re-
sponse (Boldt & Yeung, 2015; Murphy et al., 2012).

Finding a task that produces sufficient numbers of both
aware and unaware errors is a common problem of error
awareness studies. So far, three different kinds of tasks have
been used (Klein et al., 2013). First, tasks with degraded
(Scheffers & Coles, 2000) or masked stimuli (Cohen et al.,
2009; M. Maier et al., 2008; Steinhauser & Yeung, 2010). In
such tasks, errors are induced by increased perceptual difficul-
ty and therefore participants are also often uncertain about
their performance. Second, antisaccade tasks (Endrass et al.,
2007; Klein et al., 2007; Nieuwenhuis et al., 2001; Wessel
et al., 2011), in which erroneous prosaccades often are
corrected immediately and not noticed. Third, complex tasks,
in which a number of competing task rules have to be moni-
tored constantly, and a failure to do so leads to (sometimes
unnoticed) errors. The Error Awareness Task (EAT) byHester
and colleagues (Hester et al., 2005) is one example of such a
task and has been implemented in a number of studies (Hester
et al., 2012; Murphy et al., 2012; O'Connell et al., 2007). The
task involves two different Go/NoGo conditions, and partici-
pants often have difficulties monitoring both of them at the
same time.

So far, complex tasks based on response inhibition like the
EAT tended to yield null-findings regarding a relation be-
tween the ERN amplitude and error awareness (but see
Shalgi and Deouell, 2012), whereas studies that did find ef-
fects generally used other tasks (Wessel, 2012). One reason
for this could be the error signaling procedure, because studies
using the EAT have usually used an error signaling button
(Hoonakker et al., 2016; Niessen et al., 2017; O'Connell
et al., 2007; Shani Shalgi et al., 2009). Moreover, in contrast
to errors in classical choice reaction time tasks like the Eriksen
flanker task (Eriksen and Eriksen, 1974), response inhibition
errors cannot be corrected and might lead to different neural
and behavioral adjustments. It thus seems as if specific types
of tasks might lead to specific effects in both electrophysio-
logical and behavioral responses to errors.

Current study

Taken together, the mixed electrophysiological results and the
sparse and somewhat contradictory behavioral results high-
light the need for further research to investigate the possible
interactions and dependencies between the different error pro-
cessing components of the performance monitoring network
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and error awareness. Our goal, therefore, was to develop a task
that would enable us to study different neural correlates of
error processing (ERN and Pe) and post-error adjustments
(PES, PERI, and PIA) in relation to error awareness in a single
experiment. Specifically, we were interested in whether the
ERN, Pe, and post-error behavioral adjustments are modulat-
ed by error awareness and the confidence in this error judg-
ment (quantified by the time participants take to make their
judgment). We investigated these associations in a new type
of a complex task that does not involve degrading/masking of
stimuli or response inhibition and is more similar to classical
choice reaction time tasks. Furthermore, we wanted to explore
which performance monitoring component is most predictive
of error awareness.

Materials and methods

Participants

Seventy healthy participants were recruited into this study.
The data of seven participants were excluded from analysis,
because they either performed the task at chance level (N = 1)
or did not follow the task instruction, leading to less than 50%
valid trials (N = 6). The final sample thus consisted of 63
participants (all right-handed, 11 males) in the age range of
18 to 35 years (22.7 ± 3.34 years; mean ± standard deviation
[SD]). In a subsample of 32 participants, we recorded EEG
data, while participants completed the task (22.7 ± 3.61 years;
mean ± SD; 4 male). All participants were informed about the
experimental procedures and gave written, informed consent.
They were paid by course credits. The study protocol was
approved by the local ethics committee.

Experimental paradigm

Participants performed a combined interference and multi-rule
target detection task. On each trial, a number between 34 and
76 (except 55) was presented centrally on gray background.
Participants were trained to respond by pressing one of three
buttons on each trial: Button 1 for all numbers smaller than 55
except 49 (left thumb), Button 2 for all numbers above 55
except 62 (right thumb), or Button 3 for targets (right thumb).
Targets were trials where the presented number was equal to
the preceding number (repeat target), or where the numbers 49
or 62 appeared (number targets) (Figure 1).

The numbers were presented in different colors (red, yel-
low, green, or blue) and small or large font sizes (vertical
visual angles of 1.9 and 9.5° at a screen distance of 60 cm),
but these features were task-irrelevant. We used different
colors to make it harder to detect repeat-targets, and different
font sizes to manipulate congruency. Trials were congruent
when the physical size (big or small font size) matched the

magnitude (higher or lower than 55) of the number, and in-
congruent if not. Moreover, to make (in)congruency more
salient, we introduced a reference frame (dark grey square
behind the number) at the beginning of the experiment: The
reference number 55 (white on dark reference frame) was
presented once in an intermediate font size so that the number
had exactly the size of the reference frame. During the exper-
iment, the reference frame was presented in the background
behind the stimuli, so that the physical number size was clear-
ly smaller or larger than the reference frame (Figure 1).

After each response, participants had to indicate whether
they thought they responded correctly or not by pressing either
the left button (subjective correct response) or right button
(subjective error). We rated errors followed by a right button
press as aware errors and errors followed by a left button press
as unaware errors.

Depending on a random temporal jitter, stimulus presenta-
tion started at 300, 350, 400 or 450 ms into every trial. Stimuli
were presented up to 1,200 ms. During this time-window, the
motor response had to be made. After participants’ responses,
the screen cleared for 500ms. Then, participants were present-
ed a question mark, indicating that they had to make their
accuracy judgment. There was a 1,200-ms deadline for this
decision. Immediately after participants’ accuracy judgments,
the next trial started. Hence, total trial duration was maximal
3,200 to 3,350 ms. The experiment comprised 1,000 trials
(50% incongruent), consisting of 800 standard trials requiring
a smaller/bigger than 55 judgment, 100 number target trials,
and 100 repeat target trials. Trial order was pseudo-random-
ized, ensuring that two target trials were never presented sub-
sequently and that transitions between congruent and incon-
gruent trials were counterbalanced. Trials were presented in
10 blocks of 100 trials, with a short self-paced break in-
between blocks. Before starting the experiment, participants
performed a practice session comprising 20 trials. Speed and
accuracy of the response were equally emphasized in the task
instruction. Stimuli were presented with Presentation 20.2
(Neurobehavioral Systems, San Francisco, CA) on a 22-inch
monitor with a resolution of 1920 x 1,200 pixels.

This new number judgment error awareness task has sev-
eral advantages to tasks commonly used in the literature (e.g.,
the EAT (Hester et al., 2005)). First, this task is more similar to
classical choice reaction time tasks by introducing interference
effects, which potentially allow us to study post error adapta-
tions, such as post-error reductions of interference. Second,
using a forced-choice error signaling procedure at the end of
every trial ensured that trials after aware errors did not differ
from trials after unaware errors or after correct responses,
therefore making different types of post-error trials more com-
parable to each other and to post-correct trials, enabling post-
error slowing to be calculated in comparable trials. In addition,
not having an error signaling button, as also is used in the
original EAT, prevents us from potentially introducing a
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response bias toward not signaling errors (Ullsperger et al.,
2010). Third, this task does not involve degrading/masking
of stimuli or response inhibition thereby enabling the partici-
pant to adapt behavior after the commission of errors.

EEG acquisition and processing

An elasticated Easycap EEG cap with a montage that placed
61 Ag/AgCl sintered electrodes on five concentric rings equi-
distantly spaced aroundCz and BrainAmpMRplus amplifiers
(Brain Products) were used to record EEG. The positions of
the electrodes on each ring also were equidistant from each
other, and the vertical and horizontal central lines were

identical to the positions of the 10% system. Data were re-
corded at a sampling rate of 500 Hz. Impedances were restrict-
ed to below 5 kΩ. Vertical and horizontal eye movements
were recorded with channels placed above and below the left
eye and on the outer right and left canthi, respectively. The
ground electrode was located between Fz and AFz and the
reference electrode at CPz. We analyzed all data under
Matlab 2017b (The MathWorks, Natick, MA) and the
EEGlab 13 toolbox (Delorme and Makeig, 2004) using cus-
tom routines.

After data acquisition, the EEG data were filtered with a
0.5 Hz high- and 42 Hz low-pass filter and re-referenced
offline to the common average (i.e., finding the arithmetic

Fig. 1 Stimulus layout and trial timing of the number judgment error awareness task. Top row depicts the reference number and frame that was presented
once at the beginning of the experiment. Middle row shows an example trial. Bottom row illustrates the other trial options within the task
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mean across all electrodes sites and then subtracting this value
from each site). The continuous data were then segmented into
stimulus-locked epochs from 500ms pre-stimulus to 2,500 ms
post-stimulus. Epochs that contained artifacts were automati-
cally rejected based on joint probabilities (e.g., epochs con-
taining deviations greater than a specified threshold of the
mean probability distribution of trials were rejected, the
starting threshold was 4.5 SD), yet no more of 10% of the
trials were excluded as otherwise the rejection threshold was
increased (in this sample the threshold remained the starting
threshold of 4.5 SD). On average 48.03 (SE = 3.19; min = 15;
max = 81) epochs have been removed from the data set. Data
were then demeaned and decomposed into independent
components with the extended runica infomax ICA
algorithm of Bell and Sejnowski (1995) implemented in
EEGLab. The time courses and topographies of the indepen-
dent components of each dataset were visually inspected for
components reflecting eye blinks, horizontal eye movements
or electrode artifacts, and those components were removed
from the data (mean [M] = 5.72; standard error [SE] = 0.34;
Min = 2, Max = 12). Thereafter, data were re-segmented into
response-locked epochs from 500 ms pre-response to
1,000 ms post-response. Following baseline correction
(−200 to −50 ms relative to response onset), the data were
then used for multiple robust single-trial regression analyses
(Fischer et al., 2016; Fischer and Ullsperger, 2013).

Data analysis

Behavioral analyses

Trials with reaction times below 80 ms were removed from
the datasets (standard trials: M = 0.59 (SE = 0.19; Min = 0,
Max = 11); target trials: M = 0.10 (SE = 0.04; Min = 0, Max:
1)). Moreover, trials with or following invalid responses (e.g.,
multiple responses and misses; standard trials: M = 55.25 (SE
= 5.95; Min = 4, Max = 244); target trials: M = 12.24 (SE =
1.37; Min= 0, Max = 47)) or accuracy judgments were also
excluded (standard trials: M = 20.22 (SE: 3.41; Min = 1, Max
= 165); target trials: M = 10.62 (SE = 3.0287; Min = 0, Max =
162)). Next, we determined critical factors that influence RT
and accuracy in the task in two multiple robust regression
models using each participant’s single-trial log-scaled RT
and accuracy to evaluate participants task performance.

The RT model consisted of the following regressors:

log RTð Þ ¼ b0 þ Trial Type� b1 þ Congruency� b2

þ Jitter � b3 þ Distance� b4 þ Confidence

� b5 þ Trial Nr � b6 þ e
RT GLM

The logistic accuracy model was defined by:

Accuracy ¼ b0 þ Trial Type� b1 þ Congruency� b2

þ Jitter � b3 þ Distance� b4 þ Confidence

� b5 þ log RTð Þ � b6 þ Trial Nr � b7 þ e
Accuracy GLM

The individual factors of these models were defined as
follows: Trial Type (−1 standard, 1 = target), Congruency
(−1 = congruent, 1 = incongruent), Jitter (−1 = short (300
and 350 ms), 1 = long (400 and 450 ms)), Distance = the
absolute numerical distance between the presented number
and the reference number, Confidence = the log-scaled time
participants took to make their subjective error judgment in
the previous trial, TrialNr = the log-scaled current trial num-
ber (reflecting the time in the task). TrialNr served mainly to
control for unspecific effects of task duration, like changes in
motivation, fatigue, or response caution.

To investigate post-error adjustments and their modulation
by error awareness within the task, while controlling for pos-
sible confounds, we included the regressor previous accuracy
(previous correct = −1, previous incorrect = 1) to the RT and
accuracy models. The models investigating post-error adapta-
tions after aware errors comprised trials that either followed
correct responses or consciously perceived errors. Whereas
the models investigating post-error adaptations after unaware
errors were run on trials following correct responses and post
unaware errors trials. Post-error slowing and post-error in-
creases in accuracy were investigated by comparing trails that
followed correct responses to trials that either followed aware
or unaware errors within the previous accuracy regressor in
the respective model. Post-error reductions in interference
were investigated within the interaction-term between the pre-
vious accuracy and congruency regressor of the respective
model. To explore, whether post-error slowing was depending
on the temporal jitter (e.g. the time to prepare for the primary
task after the accuracy judgment), we included the interaction
term previous accuracy x jitter to the respective model.
Moreover, given that interference in the task could also be
induced by the numerical distance between the presented
number and the reference number on a given trial, we inves-
tigated whether this effect is modulated by the previous accu-
racy within the previous accuracy x distance regressor in the
respective model. Note that the RT GLMs were calculated on
both current correct and current error trials.

Within-participant regression weights were tested for sig-
nificance using two-sided t-tests. Individual participants’ t-
values per regressor were then tested on group level via two-
sided t-tests against zero corrected for multiple comparisons
(0.05/number of regressors). We followed up regression ef-
fects by binning the data according to significant factors.
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Single-trial EEG analyses

For the EEG analyses, we applied a multiple robust
single-trial regressions approach to identify trial-by-trial
fluctuations in the EEG signal in response to specific
factors in our task (Fischer et al., 2016; Fischer &
Ullsperger, 2013). These analyses were conducted using
custom code written in Matlab 2017b (The MathWorks,
Natick, MA) and the EEGlab 13 toolbox (Delorme &
Makeig, 2004). We focused on two components that are
typically seen after erroneous responses, the ERN and
Pe (Ullsperger, Fischer, et al., 2014).

In the first generalized linear model (EEG GLM 1), we
investigated whether general error processing is reflected in
the neural data. Apart from the regressor Accuracy, this model
included the following regressors to account for possible con-
founds: Current log-scaled RT; Congruency (congruent/in-
congruent); Distance of the current number to the reference
number; log-scaled Trial Number.

EEG ¼ b0 þ Error � b1 þ Distance� b2 þ log RTð Þ � b3

þ Congruency� b4 þ Distance� b5 þ Trial Nr

� b6 þ e
EEG GLM 1

In a second model (EEG GLM 2), we investigated
whether the ERN and Pe on error trials was modulated by
error awareness and the confidence in the subjective error
judgment. Therefore, we included the following factors:
Error Awareness (aware/unaware error), Confidence, and
the interaction between Error Awareness and Confidence.
Moreover, this model included as regressors to account for
possible confounds: Current log scaled RT; Congruency
(congruent/incongruent); Distance of the current number
to the reference number; Trial Number. We chose the elec-
trode site with the maximal effect of EEG GLM 1 as target
for this analysis.

EEG ¼ b0 þ Error Awareness� b1 þ Confidence� b2

þ Error Awareness Confidence� b3 þ Distance

� b4 þ log RTð Þ � b5 þ Congruency� b6

þ Trial Nr � b7 þ e

EEG GLM 2

These analyses resulted in regression coefficients for every
time point and electrode, revealing the time course and scalp
topographies of the relationship between each predictor and
neural activity. We corrected for the number of regressors in

these analyses and report p values with this correction applied.
Please note, that trials excluded from the behavioral analyses
due to too fast responses and invalid responses also were
removed from the EEG analyses.

Multivariate pattern analyses

We used single-trial neural activity (epochs spanning from
−100 ms to 500 ms after erroneous responses) of the whole
scalp to train a support vector machine to classify if a
participant consciously perceived an error on a given trial.
Therefore, we applied the support vector machine func-
tions implemented in MATLAB 2017b (fitcsvm, predict).
The neural data was averaged −10 ms to +10 ms around
each datapoint with a step size of 10 ms throughout each
epoch. All input data was z-scored across and within elec-
trodes and time. A 50-fold cross-validation using 90% of
the trials as training and 10% of the trials (but at least 10
trials) as prediction set was applied. Accuracy was calcu-
lated as the percentage of overlap between predicted labels
and the ground truth (i.e., participants error awareness) at
each datapoint and for each participant. Available trials for
aware and unaware errors were matched with a reduction
to the smaller data size via random subsampling. To local-
ize the information for the classification, we applied a
searchlight analysis approach (Fischer et al., 2016) using
the same settings as described above. This resulted in an
average accuracy per electrode and time point. We report
the average peak accuracy and topography of these results.
To establish if the peak accuracy was statistically above
chance level, we applied a permutation test with 50,000
iterations.

Intertrial phase clustering

To explore, whether latency variability could potentially
contribute to the differences seen in EEG analyses, we
calculated the intertrial phase clustering (ITPC) as a
measure of the consistency of time-frequency phase an-
gles over trials (Cohen, 2014). We applied the following
formula to calculate ITPC and followed the procedures
described in Cohen (2014). The description is adapted
from therein.

ITPC ¼ n−1 ∑
n

r¼1
eiktfr

�
�
�
�

�
�
�
�

Here, n is the number of trials; n-1 combined with the
summation operator indicates an average. Eik is from Euler’s
formula and provides the complex polar representation of a
phase angle k on trial r, at time-frequency point tf.
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To control for differences in trial count between aware and
unaware errors we Rayleigh’s Z transformed the intertrial
phase clustering with the following formula:

ITPCz ¼ n*ITPC2

Here, n is the number of trials. Higher values indicate
higher phase clustering.

Results

Behavioral results

On average, participants performed the task with an er-
ror rate of 12.74% (standard error [SE] = 0.74; N =
115.60 ± 6.72 trials). Of these error trials, 57.83% (SE
= 2.14) were consciously perceived as errors, whereas
42.16% (SE = 4.05) of the errors remained unnoticed.
This difference was significant (t(62) = 2.84, p = 0.006,
99% confidence interval [CI] [4.48, 25.71]). Moreover,
we found a difference in RT between reported errors
versus unreported errors (332.39 (SE = 13.10) ms vs.
293.32 (SE = 14.02) ms, t(62) = 3.79, p < 0.001, 99%
CI [18.17, 59.65]). In addition, participants classified
92.69% (SE = 2.81) of their correct responses and
7.31% (SE = 2.80) of their erroneous responses as cor-
rect. Taken together, these results indicate that the task
is suited to study error awareness, because it yielded
both a sufficient amount of aware and unaware errors,
and that the accuracy judgments were above chance
level.

To disentangle specific task-related effects and to in-
vestigate post-error adjustments in their relation to error
awareness, we determined critical factors influencing RT
and accuracy in multiple robust regression models,
using each participant’s single-trial RT and accuracy.
Results are presented in the following sections and in
Figures 2 and 3.

Evaluation of participants behaviour in the task

An overview of the results of the RT and accuracy GLM are
depicted in Figures 2A and 3A. First, regression analyses re-
vealed that on target trials, there was a trend for participants to
respond slower (ΔRT = 28 ms, t(57) = 2.56, p(corrected) =
0.078, 99% CI [0.33, 2.73]) and a strong effect to commit
more errors (ΔAccuracy = 32%, t(56) = -20.73, p(corrected)
= 4.24 x 10-27, 99% CI [−9.95, −8.19). Second, we confirm
that incongruence increases RT (ΔRT = 5 ms, t(57) = 4.97,
p(corrected) = 3.867 x 10-5, 99% CI [0.38, 0.89]) and de-
creases accuracy (ΔAccuracy = 1%, t(56) = −3.36,

p(corrected) = 0.01, 99% CI [−0.67, −0.17]), demonstrating
the expected congruency effect. In addition, the duration of
the jitter influenced RT, with longer RT for a shorter Jitter
(ΔRT = 27 ms, t(57) = −14.01, p(corrected) = 2.49 x 10-19,
99% CI [−3.44, −2.58]). Moreover, RT and accuracy were
influenced by the numerical distance of the presented number
to the reference number, with longer RT (t(57) = −24.74, p-
(corrected) = 2.1499 x 10-31, 99% CI [−10.40, −8.85]) and
lower accuracy (t(56)= 14.18, p(corrected) = 2.42 x 10-19,
99% CI [3.14, 4.17]) on trials where the presented number
was closer to the reference number. Further, confidence in
the previous accuracy judgment, operationalized as the time
a participant took to decide whether or not they made a mis-
take in the last trial, modulated RT in the consecutive trial,
whereby less confidence (i.e., longer accuracy judgment
times) was associated with prolonged RTs in the following
trial (t(57) = 7.8951, p(corrected) = 6.16 x 10-10, 99% CI
[1.54, 2.58]). Finally, shorter RTs were associated with lower
accuracy, reflecting a speed-accuracy trade-off (t(56) = 8.14,
p(corrected) = 3.17 x 10-10, 99% CI [2.34, 3.87]).

Taken together, the results in our number judgment error
awareness task are typical for classical choice reaction time
tasks and reflect effects of interference and the interval be-
tween the last response and the next stimulus on participants’
behavior. Moreover, trial type (standard vs. target) had an
influence on accuracy and RT. This suggests that the task is
suitable to investigate post-error adaptions. A detailed visual-
isation of the results of the RT and accuracy model can be
found in the supplementary materials.

Behavioral post-error adjustments

Post-error slowing (PES) To investigate whether error
awareness had an effect on post-error slowing over
and above other factors influencing RT on a given trial,
we included previous accuracy into the RT model and
compared trials following correct responses with trials
either following aware and unaware errors. The results
of these models are depicted in Figure 2 and revealed
that, while controlling for possible confounds, PES is
only present after aware errors (ΔRT = 11.5 ms, t(57)
= 3.63, p(corrected) = 0.004, 99% CI [0.23, 0.79], see
Figures 2B & C), but not after unaware errors (t(57) =
0.55, p(corrected) = 1, 99% CI [−0.20, 0.36];
Figure 2E). The post-error slowing effect was not de-
pending on the jitter (e.g., the time to prepare for the
primary task after the accuracy judgment; Figures 2B
and E).

Post-error reduction of interference (PERI) A significant inter-
action between previous accuracy and incongruence con-
firmed that the incongruence effect is modulated by previous
accuracy and that this effect is only present on trials following
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aware errors (t(57) = −2.97, p(corrected) = 0.029, 99% CI
[−0.64, −0.12]; Figures 2B and D), but not after unaware
errors (t(57) = 0.85, p(corrected) = 1, 99% CI [−0.16, 0.41];
Figure 2E). However, our data suggest an increase in interfer-
ence, which was reflected by a larger difference between con-
gruent and incongruent trials after aware errors (ΔRT = 12.5
ms) compared with trials following correct responses (ΔRT =
−4.2 ms). There was no modulation of the distance regressor
by previous accuracy (Figures 2B and E).

Post-error increases in accuracy (PIA) Participants displayed a
descriptive increase in accuracy on trials following both aware
(3.31%; Figure 3B) and unaware errors (5.34%; Figure 3C).
However, when controlling for possible confounds, this effect
did not reach significance (corrected p = 1 for both error types;
Figures 3B and C).

Because the same effectors were used for task responses
and error awareness judgment, we investigated whether there
was a systematic relationship between the task response, the
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Fig. 2 Results of the RT regression model.AMultiple single-trial regres-
sion onRTwas used to evaluate general task behaviour. The results in our
number judgment error awareness task are typical for classical choice
reaction time tasks and reflected effects of interference and the interval
between the last response and next on participants. Results suggested PES
was only observed after aware errors (B, C). Additionally, we found a

modulation of the interference effect after aware errors (D). A, B, and E
display averaged within subject t-values. *Significant regressor (derived
from t-tests of the individual regression t-values against zero). Boxes =
interquartile range (IQR), − = median, o = mean, whiskers =1.5 × IQR. N
= 5 participants were excluded, because no model fit was found
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response related to error awareness (right: error, left: correct),
and error awareness RT, that could potentially have biased our
behavioral results. We did not see any systematic relationship
(all r < 0.2, see Supplementary Materials). Moreover, the be-
havioral results could have been biased, because the accuracy
judgment responses (right: error, left: correct) were not
counterbalanced across participants. However, there was no
RT difference between left and right responses in the primary
task responses (t(62) = 1.38, p = 0.17, 99%CI [−2.43, 15.60]),
making a systematic response bias in accuracy judgment less
likely.

Electrophysiological results

Error-related EEG activity

First, we established whether general error processing is
reflected in the EEG signal by submitting response-locked
EEG epochs to multiple robust regression (Fischer et al.,
2016; Fischer & Ullsperger, 2013). Scalp topographies of
response-locked regression weights of the error regressor of

EEG GLM 1 confirmed the typical ERN (Cz, peak at 70 ms, b
= −1.30, 99% CI [−2.02, −0.60], p(corrected) = 9.87 x 10-6)
and Pe succession (Cz, peak at 220 ms, b = −2.54, 99% CI
[1.66, 3.42], p(corrected) = 1.87 x 10-10) after objective errors
with maxima found at electrode Cz (Figure 4).

Modulation of error-related EEG activity by error awareness
and confidence in subjective accuracy judgment

Second, we investigated if the ERN and Pe succession
was modulated by error awareness and participants' con-
fidence in their subjective accuracy evaluations (i.e., la-
tency of the subjective error judgment). Regression anal-
yses on response-locked error trials revealed that aware
errors were associated with more negative EEG activity
in the time range of the ERN, however this effect did not
pass the correction for multiple comparisons (Cz, peak at
60 ms, b = −2.03, 99% CI [−4.29, 0.23], p(corrected) =
0.057). In addition, the error awareness regressor indicat-
ed that aware errors were associated with more positive
activity in the time range of the Pe (Cz, peak at 250 ms,

a

b c

Fig. 3 Results of the logistic Accuracy regression model. A) logistic
regression on accuracy. Although, descriptively there was an increase in
accuracy after both aware (B) and unaware errors (C), when controlling
for other factors influencing accuracy on a given trial these effects did not

reach significance. *Significant regressor (derived from t-tests of the
individual regression t-values against zero). Boxes = interquartile range
(IQR), − = median, o = mean, whiskers =1.5 × IQR. N = 6 participants
were excluded because no model fit was found

Cogn Affect Behav Neurosci



b = 3.05, 99% CI [−0.09, 6.19], p(corrected) = 0.006;
Figure 5A). The confidence regressor revealed a negative
covariance with the EEG signal in the time window of
the Pe (Cz, peak at 220 ms, b = −2.31, 99% CI [−3.80,
−0.82], p(corrected) < 0.001; Figure 5B). The effect rep-
resented smaller Pe amplitudes in trials in which partic-
ipants took longer to make their accuracy judgment.
Importantly, the error awareness effect depended on the
factor confidence (Figure 5C). In the time window of the
ERN, the error awareness x confidence interaction re-
gressors covaried positively with the neural activity
(Cz, peak at 50 ms, b = 3.37, 99% CI [0.53, 6.22], p-
(corrected) < .001). In addition, there was a negative
covariation between the awareness x confidence interac-
tion and the EEG signal in the time range of the Pe with
a slightly earlier peak at Cz (peak at 220 ms, b = -4.34,
99% CI [-8.65, -0.04], p(corrected) = 0.005). These re-
sults indicate, that on error trials that were consciously
perceived and where the accuracy judgment was made
quickly, both the ERN and Pe were enhanced. A possible
confound of these effects is that the trial type may influ-
ence ERN and Pe variations across aware and unaware
errors. We ensured that all the effects from EEG GLM 2
could not be explained by this confound via the inclusion
of the regressor Trial Type into the regression model (see
supplementary Figure 4). Moreover, the time to prepare
for the stimulus (i.e., the jitter) also may have influenced
the crucial regressors in EEG GLM 2. When including
the jitter regressor in the model, we did not see any
systematic temporal or special influence of the jitter on
the ERN or Pe amplitudes (see supplementary Figure 6).
Interestingly, controlling for the jitter appears to have
pushed the ERN effect within the error awareness

regressor over the multiple comparison significance
threshold (Cz, peak at 60 ms, b = −2.25, 99% CI
−3.95, −0.53], p(corrected) = 0.036).

Error awareness prediction based on EEG signal

Next, we investigated the relationship between single-
trial EEG activity and the subsequent accuracy judgment.
For this, we used multivariate pattern analyses on single
trial neural activity of the whole scalp to train a support
vector machine to predict if a participant consciously
perceived an error on a given trial. We found that the
neural responses to errors were sufficient to predict
whether or not a participant consciously perceived an
error with an accuracy of 63.83% (peak at 258.42 ms,
chance = 50%, permutation test p = 2x10-5). A search-
light analysis of the scalp distribution of this information
was in accordance with the Pe topography (Figure 6).

Coupling between error-related EEG activity and post-error
adjustments

We first sought to investigate a possible relationship between
single-trial neural activity and subsequent behavioural post-
error adjustments seen in the behavioral analyses. To this end,
we again regressed error-related EEG activity on a given trial
onto reaction times of the following trial, while controlling for
possible confounds (RT of the accuracy judgment, the consecu-
tive trial’s type, congruence, and jitter). The results of this anal-
ysis revealed no significant covariance between the EEG signal
and consecutive RT for either aware or unaware errors (all
corrected p > 0.05). Next, we looked at a possible relationship
between post-error slowing and the neural correlates of error

Fig. 4 Error-related EEG activity.A) Regression weight topographies for
the response-logged error regressor. Topographies show beta coefficients
thresholded at critical p-value from FDR correction. B) Regression
weights at electrode Cz. Gray shaded areas mark the significant time-

points after FDR correction (Benjamini and Yekutieli, 2001). C)
Regular ERPs at Cz, which do not account for error-unspecific task
effects
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awareness on a group level. Therefore, we correlated the regres-
sion weights of the ERN and Pe peak of the error awareness
regressor for each participant with the respective regression
weights of post-error slowing (PES) factor after aware errors.
There was a significant negative correlation between the regres-
sion weights of the ERN and the PES factor (r = −0.39, p =
0.045; Figure 7), indicating a stronger coupling between the
ERN and PES in individuals with higher ERNs after aware er-
rors. There was no such relationship between PES and the re-
gression weights of the Pe peak (r = 0.001, p = 0.97).

Differences in intertrial phase clustering between aware
and unaware errors

To investigate whether latency variability could poten-
tially contribute to the amplitude differences seen in the
EEG analyses, we calculated the intertrial phase cluster-
ing (ITPC) as a measure of the consistency of time-
frequency phase angles over trials (Cohen, 2014). The

results of this analysis are depicted in Figure 8 and
show that in the time window of the Pe, compared with
unaware errors, aware errors induce stronger intertrial
phase clustering in the theta to alpha frequency range.
This indicates that in the time range of the Pe, this
specific frequency-band activity is taking on a similar
temporal configuration after the commission of aware
errors. This seems to indicate that the larger Pe ampli-
tude on aware errors may, in part, result from stronger
time-locking of the underlying neuronal activity to the
erroneous response. This argument is supported by a
significant correlation between the regression weight
time course of the error awareness regressor from EEG
GLM 3 and the time course of the difference between
ITPC for aware and unaware errors at 9 Hz1 (r = 0.34,
p < 0.001).

1 9Hz was the frequency with the highest difference between aware an un-
aware errors.

Fig. 5 Modulation of error related EEG activity by error awareness and
confidence in accuracy judgment. Regression weight time course and
topographies for error awareness (A), confidence (B), and error

awareness x confidence interaction (C). Topographies thresholded at
0.05/3 (alpha/number of regressors). Gray shades highlight the
significant time points after correction for multiple comparisons
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Discussion

In this study, we developed a number judgment error aware-
ness task, which represents a new error awareness task based
on complex rule representations similar to the error awareness
task by Hester et al. (2005). With this task, we aimed at study-
ing electrophysiological correlates of performance monitoring
(ERN and Pe) and post-error behavioral adjustments (PES,
PIA, and PERI) in relation to conscious error perception and
participant’s confidence in the accuracy judgment. First, we
showed that the task is well suited to study error awareness,
because it yielded both a sufficient amount of aware and un-
aware errors. In contrast to a similar error awareness task
developed by Hester et al. (2005), this new task has the ad-
vantage that it is not a Go/NoGo task, but individuals have to
respond in every trial; therefore, comparing trials with and
without a motor response can be avoided. In the following,
we will first discuss the electrophysiological and behavioral
results in the context of the current literature. We will then
discuss the coupling between error-related EEG activity and
post-error adjustments. Finally, we will conclude with a dis-
cussion on how error awareness relates to meta-control and
outline avenues for future research on this topic.

Neural traces of error awareness

Our electrophysiological results showed a modulation of both
ERN and Pe by error awareness and confidence. The Pe was
larger after aware errors as compared to unaware errors, which
is in line with previous studies reporting the same effect (Dhar,
Wiersema and Pourtois, 2011; Endrass et al., 2005; Murphy
et al., 2012; Nieuwenhuis et al., 2001; O'Connell et al., 2007;

Overbeek et al., 2005; Shalgi et al., 2009). For a long time, the
dominant view has been that the ERN is not modulated by
error awareness (Nieuwenhuis et al., 2001). However, in the
present study, there was a tendency for a higher amplitude of
the ERN for aware than for unaware errors. This error aware-
ness influence on the ERN has been shown in other studies in
an oculomotor task (Wessel et al., 2011), in a working mem-
ory task (Hewig, Coles, Trippe, Hecht andMiltner, 2011), and
in paradigms that evoke unperceived errors by increasing the
difficulty of detecting stimuli, either by employing degraded
visibility of stimuli (Scheffers & Coles, 2000) or by
metacontrast masking (Steinhauser & Yeung, 2010). Our re-
sults corroborate the findings by Shalgi and Deouell (2012), in
that the ERN amplitude is also modulated by error awareness

Classification accuracy topography - peak time = 256 ms
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in complex task sets. Importantly, however, the effect of error
awareness on both the ERN and Pe was dependent on partic-
ipants' confidence in the accuracy judgment (i.e., the latency
of the subjective accuracy judgment). Our data suggest, that
on consciously perceived error trials where the accuracy judg-
ment was made quickly, both the ERN and Pe were enhanced.
These results are consistent with the findings of Boldt and
Yeung (Boldt & Yeung, 2015), suggesting that the ERN and
especially the Pe are correlates of error awareness and at the
same time serve as a neural index associated with confidence
in subjective accuracy judgments. Therefore, our results pro-
vide further evidence that error detection and decision confi-
dence share neural markers. It should be noted that we only
indirectly assessed confidence via RT of the accuracy judg-
ment. Although RT has been suggested as a proxy for decision
confidence (Kiani, Corthell and Shadlen, 2014), our results
should be replicated in tasks that use more traditional confi-
dence measurements, like wagering approaches (Persaud,
McLeod and Cowey, 2007), or more fine graded decision
confidence measurements similar to the Boldt and Yeung
(2015) study, where participants expressed their decision con-
fidence on a 6-point scale ranging from certainly wrong to
certainly correct.

Error awareness prediction based on EEG signal

The modulation of both the ERN and Pe amplitudes by error
awareness and confidence, gives rise to the important ques-
tion, which of these two neural error processing correlates
serves as a more reliable precursor of error awareness. To this
end, we used multivariate pattern analyses on single trial neu-
ral activity of the whole scalp to train a support vector machine
to predict whether a participant consciously perceived an error
on a given trial. A peak classification accuracy of ~63% in the

time range of the Pe with a matching central topography sug-
gests this component to be most predictive of error awareness.
These results replicate previous work suggesting the Pe to be
reliably predictive of error awareness (Boldt & Yeung, 2015;
Steinhauser & Yeung, 2010).

Interestingly, an exploratory analysis of differences in in-
tertrial phase clustering between aware and unaware errors
suggest that in the time range of the Pe, neural activity in the
theta to alpha band is taking on a more similar temporal con-
figuration after the commission of aware errors. This seems to
indicate that the larger Pe amplitude on aware errors may, in
part, result from stronger time-locking of the underlying neu-
ronal activity to the erroneous response. This increased con-
sistency of time-frequency phase angles may contribute to the
different neural correlates seen between aware and unaware
errors.

A global network may be responsible for conscious
error detection

Taken together, our electrophysiological results are in line
with Wessel (Wessel, 2012), who suggested that the ERN
and possibly also the early Pe serve as feed-forward input
signals into a more general system responsible for error aware-
ness. Interestingly, recent research showed that the ERN is not
always necessary for emergence of the Pe and error awareness
(Charles, Van Opstal, Marti and Dehaene, 2013; Di Gregorio,
Maier and Steinhauser, 2018; M. E. Maier, Di Gregorio,
Muricchio and Di Pellegrino, 2015). This is seen for example
in situations, where one detects an error without knowing the
correct response (Charles et al., 2013; Di Gregorio et al.,
2018), or in patients with compromised ERN (Maier et al.,
2015). Thus, in line with Wessel (2012), the ERN may be
one of many input signals to a global neural network to

a ITPC aware errors b ITPC unaware errors

Fig. 8 Intertrial Phase Clustering (ITPC) from electrode Cz over time-frequency space for aware (A) and unaware (B) errors. Higher values indicate
higher phase clustering
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responsible for conscious error detection. The modulating ef-
fect of confidence in the accuracy judgment on the error
awareness effect on both the ERN and Pe found in our study
support the idea that these signals reflect a cumulative input of
error evidence into this system (Murphy, Robertson, Harty
and O'Connell, 2015).

Behavioral traces of error awareness

On a behavioral level, the results in our number judgment
error awareness task are typical for classical choice reaction
time tasks and reflect effects of interference (incongruency,
numerical distance to the reference number) and the interval
between the last response and next on participants behavior.
Moreover, trial type (standard vs. target) had an influence on
accuracy and RT. Importantly, while controlling for these
influencing variables, we investigated possible post-error ad-
justments in their relation to error awareness.

In the present study, post-error slowing (PES) appeared to
be modulated by error awareness. While controlling for con-
founds and the interdependence of effects, we only found PES
after aware errors. Previous studies investigating whether PES
is modulated by error awareness showed mixed results: while
some studies did not find such effects or even reported post-
error speeding following aware errors (Hester et al., 2005;
Hester et al., 2012; Logan and Crump, 2010; Orr & Hester,
2012), other studies reported greater PES following aware
errors compared to unaware errors (Cohen et al., 2009;
Endrass et al., 2007; Nieuwenhuis et al., 2001; Wessel et al.,
2011). Our results suggest that conscious error perception is
necessary to elicit PES. With respect to other post-error ad-
justments, we found no post-error reduction of interference
(PERI) after both aware and unaware errors. Instead, our data
suggests a general increase of the interference effect that is
present only after aware errors. Given the small overall inter-
ference effect in our task, this finding is difficult to interpret.
This effect might reflect a general slowing after aware errors,
which is further enhanced by interference on the current trial.
Moreover, while controlling for confounds on accuracy in the
task, we did not find post-error increases of accuracy (PIA),
neither after aware nor after unaware errors. This is in contrast
to Klein et al. (2007), who reported PIA after aware but not
after unaware errors. Notably, descriptively we do see in-
creases in accuracy both after aware and unaware errors (~3-
5%) but this effect might be better accounted for by the current
trial type (i.e., most errors occurred on target trials, which are
widely spaced in time during the experiment and most of the
time were followed by standard trials). These results highlight
the need to account for possible confounds in paradigms
where post-error trials can require different cognitive process-
es as the trial before, where the error has been committed.
Importantly, it should be noted, that we do not find differences
in post error adaptations, when directly comparing behavior

following aware and unaware errors (see additional GLM in
Supplementary Figure S4). Hence, our conclusion about be-
havioral traces of error awareness should interpreted with cau-
tion and followed up in larger sample.

Coupling between error-related EEG activity and post-
error adjustments

Finally, we sought to investigate a possible relationship be-
tween single-trial neural activity on aware versus unaware
errors trials and subsequent behavioral post-error adjustments,
seen in the behavioral analyses. Here, we were not able to
predict RT on the consecutive trial based on the error-related
EEG activity in the current trial. However, on a group level,
we found a stronger coupling between the ERN and post-error
slowing (PES) in individuals with higher ERNs after aware
errors that was not seen for the Pe. This across-participants
correlation suggests that the better an individual’s perfor-
mance monitoring system is in consciously detecting errors,
the more likely they are to slow down after these aware errors.
While the latter finding in general fits well with previous work
showing that the ERN amplitude co-varied with PES (Di
Gregorio, Steinhauser and Maier, 2016; Fischer et al., 2016;
Gehring et al., 1993), the lack of a coupling between single-
trial ERN and PES are at odds with studies showing this as-
sociation on a single-trial level (Debener et al., 2005; Fu et al.,
2019). This discrepancy might be explained by the prolonged
response-stimulus interval caused by the secondary task (i.e.,
the accuracy judgment) in the current paradigm. Moreover,
the fact that we used the same response modality for the error
judgment also may have influenced post-error reaction times.
Still, the global association between the larger ERN ampli-
tudes and PES on aware error trials support the notion that
behavioral adjustments are triggered by the ERN amplitudes
and that the MFC consequently signals necessity for behav-
ioral adjustments (Kerns et al., 2004; Ullsperger, Danielmeier
and Jocham, 2014). Interestingly, our data indicate that error
awareness may play a mediating role in this process.
Critically, future studies should attempt to replicate our find-
ings in a task with closer temporal proximity between re-
sponses. For example, the reliable link between error aware-
ness, decision confidence, and the Pe in our study and previ-
ous work (Boldt &Yeung, 2015; Steinhauser & Yeung, 2010)
suggest that this neural marker might be a promising index of
error awareness and confidence, which could potentially re-
place disruptive secondary tasks, assessing error awareness in
the task at hand. Another possibility would be to use a differ-
ent response modality for indicating errors compared with the
main task responses. One could for example consider using a
verbal forced-choice error signaling procedure. Such an error
signaling procedure would be less likely to influence manual
post-error reaction times and measures of post-error behavior-
al adjustments.
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How does error awareness relate to meta-control?

Does our study provide insights into the putative role of con-
scious representations of performance errors and meta-con-
trol? In an ever-changing world, it is important to adjust con-
trol parameters, such as exploration versus exploitation, goal
shielding and shifting, and short-term versus long-term goals
to optimize goal-directed behavior (Goschke, 2013; Goschke
& Bolte, 2017). When cognitive control is recruited by an
adaptation signal from the performance monitoring system
(Shenhav, Botvinick and Cohen, 2013; Ullsperger,
Danielmeier and Jocham, 2014), two control modes can be
distinguished, depending on whether it is “reactive” in nature,
directed at resolving performance problems ex post facto in a
transient manner, or “pro-active,” focused on preventing in-
terference ex ante facto in a preparatory fashion (Braver et al.,
2007; Ridderinkhof, 2002; Ridderinkhof et al., 2011). Post-
error slowing, particularly in the absence of attentional focus-
ing and performance improvement, has been suggested to rep-
resent reactive control (King et al., 2010; Notebaert et al.,
2009; Ullsperger and King, 2010). As discussed earlier, our
data support previous findings that post-error slowing is more
likely and stronger after errors that reached conscious aware-
ness than errors that remained unnoticed. This suggests that
reactive control is implemented more strongly when the per-
formance problem is consciously detected. It remains to be
shown whether conscious error perception and reactive con-
trol are linked causally or whether both are induced in parallel
and more strongly, when the objective evidence for errors
(reflected, e.g., in the amplitude of the ERN) is stronger.
Post-error reduction of interference and, more generally,
post-error improvement in accuracy result from top-down
control mechanisms (Botvinick, Cohen and Carter, 2004;
Danielmeier et al., 2015; Danielmeier & Ullsperger, 2011)
and are considered examples of proactive control (King
et al., 2010). Unfortunately, similar to other tasks previously
used to study error awareness, the number judgment error
awareness task used here failed to reveal proactive post-error
adjustments and, therefore, cannot address the role of con-
scious error perception for strategic implementation of proac-
tive control. To further investigate proactive post-error adjust-
ments and their modulation by conscious error perception,
tasks with robust interference effects, that can be modulated
after errors, are needed.

Conclusions and avenues for future research

In conclusion, the results of this number judgment error
awareness task corroborate previous findings that show a de-
pendence of the size of both the ERN and Pe on error aware-
ness and confidence in the accuracy rating. In line with previ-
ous work, our data suggest that the Pe is most predictive of
error awareness, strengthening its role as a robust neural index

of error awareness. Therefore, it could be used in the future as
nondisruptive index of error awareness to avoid asking partic-
ipants for an accuracy judgement after each trial. Additionally,
we found partial support for a mediating role of error aware-
ness on the coupling between the ERN and behavioral adjust-
ments in the following trial, potentially highlighting error
awareness as an important mechanism of meta-control pro-
cesses. Furthermore, our data highlight the need to account
for confounds and interdependence of effects in complex
tasks, which can require different cognitive processes from
trial to trial and that single-trial regression techniques on both
behavioral and neural data (Fischer et al., 2016; Fischer &
Ullsperger, 2013) are well suited for this demand. Finally,
we hope that our suggestions for modifications and amend-
ments of the current task will help to optimize future para-
digms designed to investigate the link between error aware-
ness and post-error adjustments.

Acknowledgements The authors thank Adrian G. Fischer for providing
some of the analysis scripts and valuable discussions on the single-trial
regression and MVPA approach used in this work. Moreover, we would
like to thank Christina Becker, Kathleen Rödger, Johannes Sterling,
Fana-Lamielle Samatin, and Isabelle Rathke for their help with data
acquisition.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability The data and materials of this study can be downloaded
on the Open Science Framework at https://osf.io/327pz/. All processing
and analysis scripts are available from the authors upon reasonable
request.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes weremade. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization
approach to blind separation and blind deconvolution. Neural
Computation, 7(6), 1129-1159.

Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery
rate in multiple testing under dependency. Annals of Statistics,
29(4), 1165-1188.

Boldt, A., & Yeung, N. (2015). Shared Neural Markers of Decision
Confidence and Error Detection. Journal of Neuroscience, 35(8),
3478-3484. doi:https://doi.org/10.1523/jneurosci.0797-14.2015

Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict moni-
toring and anterior cingulate cortex: an update. Trends in Cognitive

Cogn Affect Behav Neurosci

https://osf.io/327pz/
https://doi.org/
https://doi.org/10.1523/jneurosci.0797-14.2015


Sciences, 8(12), 539-546. doi:https://doi.org/10.1016/j.tics.2004.10.
003

Braver, T., Gray, J., & Burgess, G. (2007). Explaining the many varieties
of working memory variation: dual mechanisms of cognitive con-
trol. In A. Conway, C. Jarrold, M. Kane, A. Miyake, & J. Towse
(Eds.), Variation in working memory (pp. 76-106). Oxford: Oxford
UP.

Charles, L., Van Opstal, F., Marti, S., & Dehaene, S. (2013). Distinct
brain mechanisms for conscious versus subliminal error detection.
Neuroimage, 73, 80-94. doi:https://doi.org/10.1016/j.neuroimage.
2013.01.054

Cohen, M. (2014). Analyzing neural time series data. Cambridge, MA:
MIT.

Cohen, M. X., van Gaal, S., Ridderinkhof, K. R., & Lamme, V. A.
(2009). Unconscious errors enhance prefrontal-occipital oscillatory
synchrony. Frontiers in Human Neuroscience, 3, 54.

Danielmeier, C., Allen, E. A., Jocham, G., Onur, O. A., Eichele, T., &
Ullsperger, M. (2015). Acetylcholine Mediates Behavioral and
Neural Post-Error Control. Current Biology, 25(11), 1461-1468.
doi:https://doi.org/10.1016/j.cub.2015.04.022

Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M., &
Ullsperger, M. (2011). Posterior medial frontal cortex activity pre-
dicts post-error adaptations in task-related visual and motor areas.
The Journal of Neuroscience, 31(5), 1780-1789.

Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments.
Frontiers in Psychology, 2, 233. doi:https://doi.org/10.3389/fpsyg.
2011.00233

Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y.,
& Engel, A. K. (2005). Trial-by-trial coupling of concurrent elec-
troencephalogram and functional magnetic resonance imaging iden-
tifies the dynamics of performance monitoring. The Journal of
Neuroscience, 25(50), 11730-11737.

Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a
neural system for error detection and compensation. Psychological
Science, 5(5), 303-305.

Delorme, A., &Makeig, S. (2004). EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent com-
ponent analysis. Journal of Neuroscience Methods, 134(1), 9-21.

Dhar, M., Wiersema, J. R., & Pourtois, G. (2011). Cascade of neural
events leading from error commission to subsequent awareness re-
vealed using EEG source imaging. PLoS One, 6(5), e19578.

Di Gregorio, F., Maier, M. E., & Steinhauser, M. (2018). Errors can elicit
an error positivity in the absence of an error negativity: Evidence for
independent systems of human error monitoring. Neuroimage, 172,
427-436. doi:https://doi.org/10.1016/j.neuroimage.2018.01.081

Di Gregorio, F., Steinhauser, M., & Maier, M. E. (2016). Error-related
brain activity and error awareness in an error classification para-
digm. Neuroimage, 139, 202-210. doi:https://doi.org/10.1016/j.
neuroimage.2016.05.074

Endrass, T., Franke, C., & Kathmann, N. (2005). Error awareness in a
saccade countermanding task. Journal of Psychophysiology, 19(4),
275-280.

Endrass, T., Klawohn, J., Preuss, J., & Kathmann, N. (2012).
Temporospatial dissociation of Pe subcomponents for perceived
and unperceived errors. Frontiers in Human Neuroscience, 6, 178.
doi:https://doi.org/10.3389/fnhum.2012.00178

Endrass, T., Reuter, B., & Kathmann, N. (2007). ERP correlates of con-
scious error recognition: aware and unaware errors in an antisaccade
task. The European Journal of Neuroscience, 26(6), 1714-1720.

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the
identification of a target letter in a nonsearch task. Attention,
Perception, & Psychophysics, 16(1), 143-149.

Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1990).
Effects of errors in choice reaction tasks on the ERP under focused
and divided attention. Psychophysiological Brain Research, 1, 192-
195.

Fiehler, K., Ullsperger, M., & Von Cramon, D. Y. (2005).
Elec t rophys io log ica l cor re la tes of e r ro r cor rec t ion .
Psychophysiology, 42(1), 72-82.

Fischer, A. G., Danielmeier, C., Villringer, A., Klein, T. A., &Ullsperger,
M. (2016). Gender Influences on Brain Responses to Errors and
Post-Error Adjustments. Scientific Reports, 6, 24435. doi:https://
doi.org/10.1038/srep24435

Fischer, A. G., Nigbur, R., Klein, T. A., Danielmeier, C., & Ullsperger,
M. (2018). Cortical beta power reflects decision dynamics and un-
covers multiple facets of post-error adaptation. Nature
Communications, 9. doi:https://doi.org/10.1038/s41467-018-
07456-8

Fischer, A. G., & Ullsperger, M. (2013). Real and fictive outcomes are
processed differently but converge on a common adaptive mecha-
nism. Neuron, 79(6), 1243-1255. doi:https://doi.org/10.1016/j.
neuron.2013.07.006

Fleming, S. M., Huijgen, J., & Dolan, R. J. (2012). Prefrontal
Contributions to Metacognition in Perceptual Decision Making.
Journal of Neuroscience, 32(18), 6117-6125. doi:https://doi.org/
10.1523/jneurosci.6489-11.2012

Fu, Z., Wu, D. J., Ross, I., Chung, J. M., Mamelak, A. N., Adolphs, R., &
Rutishauser, U. (2019). Single-Neuron Correlates of Error
Monitoring and Post-Error Adjustments in Human Medial Frontal
Cortex. Neuron, 101(1), 165-177 e165. doi:https://doi.org/10.1016/
j.neuron.2018.11.016

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E.
(1993). A neural system for error detection and compensation.
Psychological Science, 4(6), 385-390.

Goschke, T. (2013). Volition in action: Intentions, control dilemmas and
the dynamic regulation of cognitive control In W. Prinz, A. Beisert,
& A. Herwig (Eds.), Action science: Foundations of an emerging
discipline (pp. 409-434). Cambridge, MA: MIT Press.

Goschke, T., & Bolte, A. (2017). A dynamic perspective on intention,
conflict, and volition: Adaptive regulation and emotional modula-
tion of cognitive control dilemmas In N. Baumann, M. Kazén, M.
Quirin, & S. Koole (Eds.), Why people do the things they do:
Building on Julius Kuhl’s contribution to motivation and volition
psychology (pp. 111-129). Göttingen: Hogrefe.

Gruendler, T. O., Ullsperger, M., & Huster, R. J. (2011). Event-related
potential correlates of performance-monitoring in a lateralized time-
estimation task. PLoS ONE, 6(10), e25591. doi:https://doi.org/10.
1371/journal.pone.0025591

Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., & Garavan, H. (2005).
Neural mechanisms involved in error processing: A comparison of
errors made with and without awareness. Neuroimage, 27(3), 602-
608. doi:https://doi.org/10.1016/j.neuroimage.2005.04.035

Hester, R., Nandam, L. S., O'Connell, R. G., Wagner, J., Strudwick, M.,
Nathan, P. J., … Bellgrove, M. A. (2012). Neurochemical
Enhancement of Conscious Error Awareness. The Journal of
Neuroscience, 32(8), 2619-2627. doi: https://doi.org/10.1523/
JNEUROSCI.4052-11.2012

Hester, R., Nestor, L., & Garavan, H. (2009). Impaired error awareness
and anterior cingulate cortex hypoactivity in chronic cannabis users.
Neuropsychopharmacology, 34(11), 2450-2458. https://doi.org/10.
1038/npp.2009.67

Hewig, J., Coles, M. G., Trippe, R. H., Hecht, H., & Miltner, W. H.
(2011). Dissociation of Pe and ERN/Ne in the conscious recognition
of an error. Psychophysiology, 48(10), 1390-1396. doi:https://doi.
org/10.1111/j.1469-8986.2011.01209.x

Hoonakker, M., Doignon-Camus, N., & Bonnefond, A. (2016).
Performance monitoring mechanisms activated before and after a
response: A comparison of aware and unaware errors. Biological
Psychology, 120, 53-60. doi:https://doi.org/10.1016/j.biopsycho.
2016.08.009

Cogn Affect Behav Neurosci

https://doi.org/10.1016/j.tics.2004.10.003
https://doi.org/10.1016/j.tics.2004.10.003
https://doi.org/10.1016/j.neuroimage.2013.01.054
https://doi.org/10.1016/j.neuroimage.2013.01.054
https://doi.org/10.1016/j.cub.2015.04.022
https://doi.org/10.3389/fpsyg.2011.00233
https://doi.org/10.3389/fpsyg.2011.00233
https://doi.org/10.1016/j.neuroimage.2018.01.081
https://doi.org/10.1016/j.neuroimage.2016.05.074
https://doi.org/10.1016/j.neuroimage.2016.05.074
https://doi.org/10.3389/fnhum.2012.00178
https://doi.org/10.1038/srep24435
https://doi.org/10.1038/srep24435
https://doi.org/10.1038/s41467-018-07456-8
https://doi.org/10.1038/s41467-018-07456-8
https://doi.org/10.1016/j.neuron.2013.07.006
https://doi.org/10.1016/j.neuron.2013.07.006
https://doi.org/10.1523/jneurosci.6489-11.2012
https://doi.org/10.1523/jneurosci.6489-11.2012
https://doi.org/10.1016/j.neuron.2018.11.016
https://doi.org/10.1016/j.neuron.2018.11.016
https://doi.org/10.1371/journal.pone.0025591
https://doi.org/10.1371/journal.pone.0025591
https://doi.org/10.1016/j.neuroimage.2005.04.035
https://doi.org/10.1523/JNEUROSCI.4052-11.2012
https://doi.org/10.1523/JNEUROSCI.4052-11.2012
https://doi.org/10.1038/npp.2009.67
https://doi.org/10.1038/npp.2009.67
https://doi.org/10.1111/j.1469-8986.2011.01209.x
https://doi.org/10.1111/j.1469-8986.2011.01209.x
https://doi.org/10.1016/j.biopsycho.2016.08.009
https://doi.org/10.1016/j.biopsycho.2016.08.009


Kerns, J. G., Cohen, J. D., MacDonald III, A.W., Cho, R. Y., Stenger, V.
A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring
and adjustments in control. Science, 303(5660), 1023-1026.

Kiani, R., Corthell, L., & Shadlen, M. N. (2014). Choice certainty is
informed by both evidence and decision time. Neuron, 84(6),
1329-1342. doi:https://doi.org/10.1016/j.neuron.2014.12.015

King, J. A., Korb, F. M., von Cramon, D. Y., & Ullsperger, M. (2010).
Post-error behavioral adjustments are facilitated by activation and
suppression of task-relevant and task-irrelevant information process-
ing. The Journal of Neuroscience, 30(38), 12759-12769. doi:https://
doi.org/10.1523/JNEUROSCI.3274-10.2010

Klein, T. A., Endrass, T., Kathmann, N., Neumann, J., Von Cramon, D.
Y., & Ullsperger, M. (2007). Neural correlates of error awareness.
Neuroimage, 34(4), 1774-1781.

Klein, T. A., Ullsperger, M., & Danielmeier, C. (2013). Error awareness
and the insula: links to neurological and psychiatric diseases.
Frontiers in Human Neuroscience, 7, 14. doi:https://doi.org/10.
3389/fnhum.2013.00014

Laming, D. R. J. (1968). Information theory of choice-reaction times.
Logan, G. D., & Crump, M. J. C. (2010). Cognitive Illusions of

Authorship Reveal Hierarchical Error Detection in Skilled Typists.
Science, 330(6004), 683-686. doi:https://doi.org/10.1126/science.
1190483

Maier, M., Steinhauser, M., & Hübner, R. (2008). Is the error-related
negativity amplitude related to error detectability? Evidence from
effects of different error types. Journal of Cognitive Neuroscience,
20(12), 2263-2273.

Maier, M. E., Di Gregorio, F., Muricchio, T., & Di Pellegrino, G. (2015).
Impaired rapid error monitoring but intact error signaling following
rostral anterior cingulate cortex lesions in humans. Frontiers in
Human Neuroscience, 9, 339. doi:https://doi.org/10.3389/fnhum.
2015.00339

Murphy, P. R., Robertson, I. H., Allen, D., Hester, R., & O'Connell, R. G.
(2012). An electrophysiological signal that precisely tracks the
emergence of error awareness. Frontiers in HumanNeuroscience, 6.

Murphy, P. R., Robertson, I. H., Harty, S., & O'Connell, R. G. (2015).
Neural evidence accumulation persists after choice to inform
metacognitive judgments. Elife, 4. doi:https://doi.org/10.7554/
eLife.11946

Niessen, E., Fink, G. R., Hoffmann, H. E. M., Weiss, P. H., & Stahl, J.
( 2017 ) . E r ro r de t e c t i on ac ro s s t he adu l t l i f e span :
Electrophysiological evidence for age-related deficits.
Neuroimage, 152, 517-529. doi:https://doi.org/10.1016/j.
neuroimage.2017.03.015

Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., & Kok, A.
(2001). Error-related brain potentials are differentially related to
awareness of response errors: evidence from an antisaccade task.
Psychophysiology, 38(5), 752-760.

Notebaert, W., Houtman, F., Van Opstal, F., Gevers, W., Fias, W., &
Verguts, T. (2009). Post-error slowing: An orienting account.
Cognition, 111(2), 275-279. doi:https://doi.org/10.1016/j.
cognition.2009.02.002

O'Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., Hester,
R., Garavan, H.,… Foxe, J. J. (2007). The role of cingulate cortex in
the detection of errors with and without awareness: a high-density
electrical mapping study. European Journal of Neuroscience, 25(8),
2571-2579.

Orr, C., & Hester, R. (2012). Error-related anterior cingulate cortex ac-
tivity and the prediction of conscious error awareness. Frontiers in
Human Neuroscience, 6, 177. doi:https://doi.org/10.3389/fnhum.
2012.00177

Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005).
Dissociable components of error processing: On the functional sig-
nificance of the Pe vis-à-vis the ERN/Ne. Journal of
Psychophysiology, 19(4), 319.

Persaud, N., McLeod, P., & Cowey, A. (2007). Post-decision wagering
objectively measures awareness. Nature Neuroscience, 10(2), 257-
261. https://doi.org/10.1038/nn1840

Purcell, B. A., & Kiani, R. (2016). Neural Mechanisms of Post-error
Adjustments of Decision Policy in Parietal Cortex. Neuron, 89(3),
658-671. doi:https://doi.org/10.1016/j.neuron.2015.12.027

Rabbitt, P. (1966). Errors and error correction in choice-response tasks.
Journal of Experimental Psychology; Journal of Experimental
Psychology, 71(2), 264.

Rabbitt, P. M. A. (1968). Three kinds of error-signalling responses in a
serial choice task. The Quarterly Journal of Experimental
Psychology, 20(2), 179-188.

Ridderinkhof, R. K. (2002). Micro-and macro-adjustments of task set:
Activation and suppression in conflict tasks. Psychological
Research, 66(4), 312-323.

Ridderinkhof, K. R., Forstmann, B. U.,Wylie, S. A., Burle, B., & van den
Wildenberg, W. P. M. (2011). Neurocognitive mechanisms of ac-
tion control: resisting the call of the Sirens. Wiley Interdisciplinary
Reviews: Cognitive Science, 2(2), 174-192. doi:https://doi.org/10.
1002/wcs.99

Ridderinkhof, K. R., de Vlugt, Y., Bramlage, A., Spaan, M., Elton, M.,
Snel, J., & Band, G. P. H. (2002). Alcohol consumption impairs
detection of performance errors in mediofrontal cortex. Science,
298(5601), 2209-2211. doi:https://doi.org/10.1126/science.
1076929

Scheffers, M. K., & Coles, M. G. (2000). Performance monitoring in a
confusing world: error-related brain activity, judgments of response
accuracy, and types of errors. Journal of Experimental Psychology.
Human Perception and Performance, 26(1), 141-151.

Shalgi, S., Barkan, I., & Deouell, L. Y. (2009). On the positive side of
error processing: error-awareness positivity revisited. European
Journal of Neuroscience, 29(7), 1522-1532.

Shalgi, S., & Deouell, L. Y. (2012). Is any awareness necessary for an
Ne? Frontiers in Human Neuroscience, 6. doi: https://doi.org/10.
3389/Fnhum.2012.00124

Shea, N., Boldt, A., Bang, D., Yeung, N., Heyes, C., & Frith, C. D.
(2014). Supra-personal cognitive control and metacognition.
Trends in Cognitive Sciences, 18(4), 186-193. doi:https://doi.org/
10.1016/j.tics.2014.01.006

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The Expected
Value of Control: An Integrative Theory of Anterior Cingulate
Cortex Function. Neuron, 79(2), 217-240. doi:https://doi.org/10.
1016/j.neuron.2013.07.007

Steinhauser, M., & Andersen, S. K. (2019). Rapid adaptive adjustments
of selective attention following errors revealed by the time course of
steady-state visual evoked potentials. Neuroimage, 186, 83-92. doi:
https://doi.org/10.1016/j.neuroimage.2018.10.059

Steinhauser, M., & Yeung, N. (2010). Decision processes in human per-
formance monitoring. The Journal of Neuroscience, 30(46), 15643-
15653. doi: https://doi.org/10.1523/JNEUROSCI.1899-10.2010

Ullsperger, M., & Danielmeier, C. (2016). Reducing Speed and Sight:
How Adaptive Is Post-Error Slowing? Neuron, 89(3), 430-432. doi:
https://doi.org/10.1016/j.neuron.2016.01.035

Ullsperger , M. , Danie lmeier , C. , & Jocham, G. (2014) .
NEUROPHYSIOLOGY OF PERFORMANCE MONITORING
AND ADAPTIVE BEHAVIOR. Physiological Reviews, 94(1),
35-79. doi:https://doi.org/10.1152/physrev.00041.2012

Ullsperger, M., Fischer, A. G., Nigbur, R., & Endrass, T. (2014). Neural
mechanisms and temporal dynamics of performance monitoring.
Trends in Cognitive Sciences, 18(5), 259-267. doi:https://doi.org/
10.1016/j.tics.2014.02.009

Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R.
(2010). Conscious perception of errors and its relation to the anterior
insula. Brain Structure and Function, 214(5), 629-643.

Ullsperger, M., & King, J. A. (2010). Proactive and reactive recruitment
of cognitive control: Comment on Hikosaka and Isoda. Trends in

Cogn Affect Behav Neurosci

https://doi.org/10.1016/j.neuron.2014.12.015
https://doi.org/10.1523/JNEUROSCI.3274-10.2010
https://doi.org/10.1523/JNEUROSCI.3274-10.2010
https://doi.org/10.3389/fnhum.2013.00014
https://doi.org/10.3389/fnhum.2013.00014
https://doi.org/10.1126/science.1190483
https://doi.org/10.1126/science.1190483
https://doi.org/10.3389/fnhum.2015.00339
https://doi.org/10.3389/fnhum.2015.00339
https://doi.org/10.7554/eLife.11946
https://doi.org/10.7554/eLife.11946
https://doi.org/10.1016/j.neuroimage.2017.03.015
https://doi.org/10.1016/j.neuroimage.2017.03.015
https://doi.org/10.1016/j.cognition.2009.02.002
https://doi.org/10.1016/j.cognition.2009.02.002
https://doi.org/10.3389/fnhum.2012.00177
https://doi.org/10.3389/fnhum.2012.00177
https://doi.org/10.1038/nn1840
https://doi.org/10.1016/j.neuron.2015.12.027
https://doi.org/10.1002/wcs.99
https://doi.org/10.1002/wcs.99
https://doi.org/10.1126/science.1076929
https://doi.org/10.1126/science.1076929
https://doi.org/10.3389/Fnhum.2012.00124
https://doi.org/10.3389/Fnhum.2012.00124
https://doi.org/10.1016/j.tics.2014.01.006
https://doi.org/10.1016/j.tics.2014.01.006
https://doi.org/10.1016/j.neuron.2013.07.007
https://doi.org/10.1016/j.neuron.2013.07.007
https://doi.org/10.1016/j.neuroimage.2018.10.059
https://doi.org/10.1523/JNEUROSCI.1899-10.2010
https://doi.org/10.1016/j.neuron.2016.01.035
https://doi.org/10.1152/physrev.00041.2012
https://doi.org/10.1016/j.tics.2014.02.009
https://doi.org/10.1016/j.tics.2014.02.009


Cognitive Sciences, 14(5), 191-192. doi:https://doi.org/10.1016/j.
tics.2010.02.006

Ullsperger, M., & von Cramon, D. Y. (2001). Subprocesses of perfor-
mance monitoring: a dissociation of error processing and response
competition revealed by event-related fMRI and ERPs.
Neuroimage, 14(6), 1387-1401.

Wessel, J. R. (2012). Error awareness and the error-related negativity:
evaluating the first decade of evidence. Frontiers in Human
Neuroscience, 6, 88. doi:https://doi.org/10.3389/fnhum.2012.00088

Wessel, J. R. (2018). An adaptive orienting theory of error processing.
Psychophysiology, 55(3). doi:https://doi.org/10.1111/psyp.13041

Wessel, J. R., Danielmeier, C., & Ullsperger, M. (2011). Error awareness
revisited: accumulation of multimodal evidence from central and
autonomic nervous systems. Journal of Cognitive Neuroscience,
23(10), 3021-3036. doi:https://doi.org/10.1162/jocn.2011.21635

Yeung, N., & Summerfield, C. (2012).Metacognition in human decision-
making: confidence and error monitoring. Philosophical
Transactions of the Royal Society, B: Biological Sciences,
367(1594), 1310-1321. doi:https://doi.org/10.1098/rstb.2011.0416

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Cogn Affect Behav Neurosci

https://doi.org/10.1016/j.tics.2010.02.006
https://doi.org/10.1016/j.tics.2010.02.006
https://doi.org/10.3389/fnhum.2012.00088
https://doi.org/10.1111/psyp.13041
https://doi.org/10.1162/jocn.2011.21635
https://doi.org/10.1098/rstb.2011.0416

	Neural and behavioral traces of error awareness
	Abstract
	Introduction
	Neural correlates of performance monitoring
	Error awareness and post-error adjustments

	Assessment of error awareness
	Current study

	Materials and methods
	Participants
	Experimental paradigm
	EEG acquisition and processing
	Data analysis
	Behavioral analyses
	Single-trial EEG analyses
	Multivariate pattern analyses
	Intertrial phase clustering


	Results
	Behavioral results
	Evaluation of participants behaviour in the task
	Behavioral post-error adjustments

	Electrophysiological results
	Error-related EEG activity
	Modulation of error-related EEG activity by error awareness and confidence in subjective accuracy judgment
	Error awareness prediction based on EEG signal
	Coupling between error-related EEG activity and post-error adjustments
	Differences in intertrial phase clustering between aware and unaware errors


	Discussion
	Neural traces of error awareness
	Error awareness prediction based on EEG signal
	A global network may be responsible for conscious error detection
	Behavioral traces of error awareness
	Coupling between error-related EEG activity and post-error adjustments
	How does error awareness relate to meta-control?
	Conclusions and avenues for future research

	References


