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Abstract 21 

Projections of future climate change impacts suggest an increase of wildfire 22 

activity in Mediterranean ecosystems, such as southern California. This region 23 

is a wildfire hotspot and fire managers are under increasingly high pressures to 24 

minimize socio-economic impacts. In this context, predictions of high-risk fire 25 

seasons are essential to achieve adequate preventive planning. Regional-scale 26 

weather patterns and climatic teleconnections play a key role in modulating fire-27 
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conducive conditions across the globe, yet an analysis of the coupled effects of 28 

these systems onto the spread of large fires is lacking for the region. We 29 

analyzed seven decades (1953-2018) of documentary wildfire records from 30 

southern California to assess the linkages between weather patterns and 31 

climate modes using various statistical techniques, including Redundancy 32 

Analysis, Superposed Epoch Analysis and Wavelet Coherence. We found that 33 

high area burned is significantly associated with the occurrence of adverse 34 

weather patterns, such as severe droughts and Santa Ana winds. Further, we 35 

document how these fire-promoting events are mediated by climate 36 

teleconnections, particularly by the coupled effects of ENSO and AMO.  37 

 38 

Keywords: SPEI, western USA, adverse weather, climate modes, wildfires 39 

1. Introduction 40 

The interannual variability in both large wildland fire occurrence and burned 41 

area is usually high in most ecosystems around the globe (Giglio et al., 2010). 42 

This phenomenon can be partially explained by the interaction between fire and 43 

annually-variable modes of sea surface temperature (SST) and related climate 44 

teleconnections (CTs; i.e. statistically significant climate remote responses far 45 

away from the forcing region, either concurrent with or time lagged; Kitzberger 46 

et al., 2007; Mariani et al., 2018, 2016; Schoennagel et al., 2005). However, 47 

these associations are not straightforward (Keeley, 2004) and underlying 48 

interactions among CTs may lead to specific modulations or amplifications 49 

(Ascoli et al., 2020; Wang et al., 2014) with varying effects on fire-prone 50 

weather patterns at subcontinental scales, subsequently influencing fire activity 51 

(Harris and Lucas, 2019). Under a climate change scenario projecting many 52 
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regions on Earth towards an increase in wildfire activity (Moritz et al., 2012), 53 

understanding the effect of climate variability on large-wildfire occurrence is 54 

essential for an efficient long-term environmental resources planning, wildfire 55 

management and to properly forecast fire danger and risk during the fire season 56 

(Schoennagel et al., 2005).  57 

The occurrence of drought, heat waves, high wind speed events and their 58 

combined effects are well-known contributing factors boosting fire danger in 59 

most fire-prone areas worldwide (Bowman et al., 2017; Cardil et al., 2015). 60 

Such events may be mediated by SST modes such as El Niño Southern 61 

Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), or the Atlantic 62 

Multidecadal Oscillation (AMO) and associated CTs, from interannual to 63 

multidecadal time scales (Kitzberger et al., 2006; Li et al., 2016). CTs influence 64 

the atmosphere inducing cascading effects on local weather patterns across the 65 

globe (Chiodi and Harrison, 2015; Maleski and Martinez, 2018) and indirectly 66 

affect interannual variation in biomass production, vegetation phenological 67 

cycles and fuel moisture (Dannenberg et al., 2018; Kitzberger et al., 2017; Li et 68 

al., 2016). 69 

To date, much research has been analyzing the links between CTs and 70 

seasonal weather conditions including effects coupled with temperature, 71 

precipitation, evapotranspiration, soil moisture and drought (Abatzoglou and 72 

Kolden, 2013; Johnson and Wowchuk, 1993; O’Brien et al., 2019; Skinner et al., 73 

2002; Turco et al., 2017; Westerling et al., 2006). The association between CTs 74 

and fire disturbance has also recently drawn considerable attention, especially 75 

in fire-prone regions (e.g. Australia, western United States), and strong 76 

evidence supports the existence of a link between CTs and burned area in 77 
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many regions across the world (Aragão et al., 2018; Kitzberger et al., 2007; 78 

Mariani et al., 2018, 2016; Schoennagel et al., 2005). However, the interaction 79 

between CTs and their influence on burned area variability is difficult to unravel, 80 

since it depends on underlying modulations of the frequency, intensity and 81 

duration of specific weather events (Li et al., 2016). Moreover, the influence of 82 

CTs on burned area is non-stationary since the variability of the CT modes 83 

changes from interannual (ENSO) to multidecadal time periods (AMO and PDO) 84 

(Ascoli et al., 2020; Levine et al., 2017; Zanchettin et al., 2016).  85 

Southern California is  a wildfire hotspot in the western United States (Bowman 86 

et al., 2017), where the most destructive fires in its recorded history occurred in 87 

the 21st century, despite the increased wildland fire suppression expenditures 88 

(Liang et al., 2008). It is well known that increases in wildfire activity in this 89 

region have been associated to high fuel dryness due to global warming 90 

exacerbation of evaporative demand (Williams et al., 2019), drought frequency 91 

and severity (Dettinger et al., 2011, Bond et al., 2015; Seager et al., 2015) and 92 

extreme winds in Autumn (Goss et al., 2020). The conjunction of 93 

subcontinental-scale patterns of drought spells and Santa Ana Winds (SAWs) 94 

affecting burned area variability might be modulated by CTs and their 95 

interactions. However, little is known about coupled effects of major climate 96 

modes influencing burned area in southern California (Chikamoto et al., 2017; 97 

Keeley, 2004),and particularly in relationship to the local weather patterns 98 

promoting the largest fires in the region.  99 

In this study, we aimed at disentangling the coupled effects of CTs and adverse 100 

weather conditions driving large wildfires across southern California during the 101 

last seven decades. Specifically, we address the following research objectives: 102 
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(1) To understand the effect of CTs in modulating long-term drought and SAWs; 103 

(2) To identify CTs patterns influencing the combined effect of drought and 104 

SAWs on large fire activity; and (3) To analyze seasonal fire-weather patterns 105 

throughout the year as influenced by CTs. 106 

 107 

2. Methods 108 

2.1. Study Area 109 

The study area was the Southern Coast Bioregion in California, USA, where 110 

forest fires have dramatically affected both forested lands and urban 111 

settlements in the past decades (Figure 1). The region was defined based on 112 

the 9 bioregions outlined by Sugihara and Barbour (2006) who coalesced the 19 113 

sections described by Miles and Goudey (1997) considering consistent patterns 114 

of vegetation and fire regime for whole California. The region is dominated by 115 

Mediterranean climatic conditions, known to foster recurrent large fires (Pyne et 116 

al., 1998). Fire-prone weather situations such as long and dry summers with 117 

thunderstorms episodes, low relative humidity and strong winds are typical of 118 

this region (Sugihara and Barbour, 2006).  119 
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 120 

Figure 1. Geographic location of the 9 bioregions delineated by Sugihara 121 

and Barbour (2006) including the fire-prone Southern Coast Bioregion in 122 

California with the times the landscape was burned across the study area in 123 

the study period (1953-2018) after superimposing all fire perimeters from CAL 124 

FIRE (2019) used in this analysis. 125 

 126 

2.2. Data 127 

2.2.1. Wildfires 128 

We used the Fire and Resource Assessment Program (FRAP) fire geodatabase 129 

from CAL FIRE which includes historical fire perimeters since 1878 (CAL FIRE, 130 

2019) and represents the most complete record of medium and large fire data in 131 
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California (Butry and Thomas, 2017). FRAP is developed by the US Forest 132 

Service Region 5, the Bureau of Land Management, the National Park Service, 133 

and CAL FIRE. The database includes timber fires greater than 0.04 km2, shrub 134 

fires greater than 0.20 km2, grass fires greater than 1.21 km2, and those 135 

wildland fires that destroyed at least three structures or caused more than US$ 136 

300,000 in damage. Fires larger than 1.21 km2 in all vegetation types in the 137 

period 1953-2018 were selected for further analysis in this study. The selected 138 

sample guarantees homogenous and complete fire event records for statistical 139 

analysis. 140 

2.2.2. Climate teleconnections 141 

In this paper, we addressed the effects of ENSO, AMO and PDO climate 142 

teleconnection signals on fire weather and activity in southern California from 143 

1953 to 2018. One of the most prominent CTs having impact on California is the 144 

ENSO with a 3- to 7-year cycle between warm (El Niño) and cold (La Niña) 145 

phases (Yoon et al., 2015). We used the Oceanic Niño Index (ONI) [ERSST.v5 146 

SST anomalies in the Niño 3.4 region (5° N to 5° S, 170° W to 120° W)], based 147 

on centered 30-year base periods updated every 5 years. The AMO is a long-148 

term warming and cooling of North Atlantic SSTs with a cycle expanding over 149 

several decades (Enfield et al., 2001). The PDO is a Pacific climate 150 

teleconnection associated to changes in SST, sea level pressure, and wind 151 

patterns occurring in the northern Pacific Ocean causing widespread climatic 152 

variation over large areas of North America. 153 

Data on all three CTs indexes was retrieved from the Climate Prediction Centre 154 

and the Earth System Research Laboratory of the National Oceanic and 155 

Atmospheric Administration (NOAA, 2019). The CT indexes were computed by 156 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml
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averaging monthly values (6-month running average) from December to May, 157 

after testing all possible running averaging windows and month combinations, 158 

such as the widely used 3-month running mean for December, January and 159 

February. According to the literature, ENSO index may have the strongest 160 

relationships with fire activity in winter-spring months since it accounts for 161 

potential lagged effects on spring and summer drought (Shabbar and Skinner, 162 

2004). This is especially relevant in a region where the window of storminess is 163 

narrow (typically between November and March), period during which most of 164 

the annual precipitation occurs (Cayan et al., 2016). To facilitate the analyses 165 

and interpretation of the findings, CTs were classified according to their positive 166 

and negative phases. Warm (ENSO>0.5; El Niño), neutral (ENSO between -0.5 167 

and 0.5) and cold (ENSO < -0.5; La Niña) periods for ENSO were classified 168 

based on a threshold of +/- 0.5ºC. A warm or cold PDO/AMO phase 169 

corresponds to above or below zero values of the computed indexes, 170 

respectively. The temporal trend of the aforementioned indexes is shown in the 171 

supplementary materials (Figure S1 and S2). 172 

2.2.3. Drought data 173 

To account for drought conditions, we used the Standardized Precipitation 174 

Evapotranspiration Index (SPEI), a multiscale drought index that represents a 175 

climatic water balance by combining precipitation and potential 176 

evapotranspiration. SPEI data were retrieved from the global SPEI database 177 

(v2.5), based on the FAO-56 Penman-Monteith estimation of potential 178 

evapotranspiration (Vicente-Serrano et al., 2017). The database compiles SPEI 179 

data spanning from 1 to 48 months at a spatial resolution of 0.5 degrees (1950-180 

2015) and 1.0 degrees (2016-2018). Previous work has found SPEI12 as the 181 
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best overall drought hazard indicator (Blauhut et al., 2016). Accordingly, a 12-182 

month accumulation period (SPEI12) was considered to depict yearly drought 183 

anomalies (SPEI12 < -0.85), considering December as reference month. 184 

2.2.4. Santa Ana wind data 185 

We used the Santa Ana Wind (SAW) dataset compiled by (Abatzoglou et al., 186 

2013) available at http://nimbus.cos.uidaho.edu/JFSP/pages/publications.html 187 

from 1950 to present. Days with SAW conditions (SAD) were classified 188 

considering the criteria of a northeast–southwest sea level pressure gradient 189 

across southern California, and a strong cold air advection from the desert into 190 

the Transverse Range through daily data from the NCEP/NCAR Reanalysis 191 

dataset (Kalnay et al., 1996). We chose this dataset because it is representative 192 

for the study area, covers a longer period compared to other SAW datasets and 193 

has been validated with actual SAW events in the National Climatic Data Center 194 

storm database (Li et al., 2016). 195 

 196 

2.3. Statistical analysis  197 

We performed several statistical analyses to (i) assess the relationships 198 

between CTs, weather patterns (SPEI and SAD) and fire incidence (burned 199 

area and fire size), and test the significance and magnitude of the observed 200 

relationships, (ii) and explore time-dependent associations between the 201 

aforementioned variables at inter-annual and seasonal levels. All statistical 202 

analyses and tests were conducted using the R software (R core development 203 

team, 2017). 204 

http://nimbus.cos.uidaho.edu/JFSP/pages/publications.html
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2.3.1. Redundancy analysis 205 

A redundancy analysis (RDA) was used to investigate potential associations 206 

between CTs, weather conditions (SPEI12 and annual number of SAD) and 207 

burned area. Redundancy analysis is a multivariate approach widely used to 208 

model the association of a set of response variables to different factors. Similar 209 

to Principal Component Analysis (PCA), RDA decomposes the information into 210 

several dimensions depicting independent association patterns. Contrary to 211 

PCA, RDA allows specifying multiple variables as response, so that new 212 

dimensions portray the degree of association between the input driving factors 213 

and the targeted responses. More details about the technique can be found in 214 

(Legendre and Legendre, 2012). Two separate RDA models were fitted: firstly, 215 

to assess the association between burned area and CTs and, secondly, to 216 

gauge the association between burned area and seasonal weather conditions. 217 

The significance of the effect of constraints was analyzed through an ANOVA 218 

permutation test. RDA was conducted using the vegan R package (Oksanen et 219 

al., 2019).   220 

2.3.2. Superposed Epoch Analysis 221 

A Superposed Epoch Analysis (SEA) (dplR package (Bunn et al., 2019)) was 222 

used to determine the significance of the departure from the mean and lagged 223 

years in terms of burned area for the different phases of the studied CTs 224 

through bootstrapped confidence intervals (Lough and Fritts, 1987) for a given 225 

set of key event years during the 1953–2018 period. We analyzed the effect of 226 

ENSO on lagged burned area considering both La Niña and El Niño years as 227 

events. Also, we tested its interaction with cold and hot phases of AMO and 228 

PDO. Given that both PDO and AMO show decadal oscillations, and SEA 229 
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requires annually-resolved data, we only included these modes in the SEA 230 

analysis in combination with ENSO (i.e., selecting as events those years with La 231 

Niña / El Niño and positive / negative AMO or PDO phases). 232 

2.3.3. Multigroup comparison tests 233 

The final step of our analysis aimed at detecting differences in fire size 234 

distribution and annual burned area among the different phases of CTs. We 235 

applied the multiple comparison test with unequal sample sizes by Kruskal and 236 

Wallis (Kruskal and Wallis, 1952) and a posteriori Dunn´s test (Dunn, 1964) with 237 

Bonferroni correction. The H1 > H0 hypothesis, indicates whether there is a 238 

statistical significance in fire size and annual burned area between any specific 239 

coupled CTs. Fire events were split among different coupled combinations of 240 

CTs phases (ENSO+/ENSO-, AMO+/AMO- and PDO+/PDO-), dry versus wet 241 

conditions and the presence/absence of SAW (fire activity during SAD and fire 242 

activity in no SAD). The resulting groups were submitted to the Dunn’s test 243 

using fire size and burned area. 244 

 245 

2.3.4. Wavelet coherence analysis 246 

We used a wavelet coherence analysis to measure the intensity of the 247 

covariance of CTs and burned area patterns in the time-frequency space 248 

throughout the study period (Ascoli et al., 2020; Mariani et al., 2016). The test 249 

allows the detection of time‐localized common oscillatory behavior of 250 

non‐stationary signals through a cross‐correlation between two time series as a 251 

function of time and frequency. In particular, to account for the coupled effect of 252 

CTs, we computed a combined index by running a Principal Component 253 

Analysis of AMO and ENSO. The PCA-eigenvector indicative of the alignment 254 
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of AMO+ and ENSO- phases was selected and yearly scores of the component 255 

used to test the wavelet coherence with the yearly burned area in spring-256 

summer. The analysis was carried out using the R package biwavelet (Gouhier 257 

et al., 2016) using a Morlet continuous wavelet transform and considering the 258 

lag−1 autocorrelation of each series. The data were padded with zeros at each 259 

end to reduce wraparound effects. Significance of coherence at all frequencies 260 

lower than two years was tested using a time-average test with 2000 Monte 261 

Carlo randomizations.   262 

 263 

3. Results 264 

3.1. Climate teleconnections, drought and Santa Ana winds 265 

The RDA analysis revealed interesting associations between CTs and fire-266 

prone weather patterns (drought and annual number of SAD; Figure 2). 267 

Drought, represented by the SPEI12 index, was positively correlated with ENSO 268 

(P < 0.01), with higher drought conditions during La Niña phases than during El 269 

Niño events. The positive phase of AMO tended to be related with a higher 270 

annual number of SAD, but the relationship was not statistically significant (P = 271 

0.11). PDO was not significantly correlated to either SPEI12 or SAD.  272 

We detected synchrony between drought conditions and the annual number of 273 

SAD (Figure 2, S1 and S2), so that larger annual burned areas occurred in 274 

those periods with coincident drought and SAW conditions (average annual 275 

burned area of 54,489 ha considering the 1983-1993 and 2002-2018 periods vs 276 

39,030 ha for the rest of years; P < 0.01; see Figure S1).  277 

 278 
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 279 

Figure 2. Redundancy analysis (RDA) bi-plot (1953-2018). Points show 280 

annual scores, vectors show climate teleconnection parameters (AMO, PDO 281 

and ENSO) and red marks represent the response variables: drought (SPEI12) 282 

and the annual number of Santa Ana winds (SAD).  283 

 284 

3.2. Burned area, fire size and climate teleconnections 285 

A total of 1,412 unplanned fires larger than 1.21 km2 burned a total area of 286 

2,995,092 ha in the study area during the period 1953–2018, with an average 287 

fire size of 2,121 ± 182 ha. The annual burned area was significantly larger 288 
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under the positive phase of AMO (P = 0.049; Figure 3A). A similar trend was 289 

found with PDO-, though statistically non-significant (P = 0.075; Figure 3C). The 290 

SEA analysis revealed non-significant temporal relationships between annual 291 

burned area and the cold (La Niña) and warm (El Niño) phases of ENSO at any 292 

annual time lag, even though the SPEI12 index was significantly correlated with 293 

ENSO as shown by the RDA analysis. However, based on the SEA analysis we 294 

found a significant synchronous effect between AMO+ and El Niño, resulting in 295 

larger annual burned area (time lag = 0 years; P = 0.04), as shown in Figure 3A. 296 

The combined influence of SPEI12 and SAW on both total burned area and 297 

median fire size was significant (P < 0.01), being their effects modulated by 298 

certain CTs modes. A large fraction area (80%) was burned under drought or 299 

SAWs episodes. The portion of area burned under drought and SAWs was 300 

meaningfully dissimilar depending on the CTs phases. The largest fraction of 301 

burned area occurred under the conjunction of ENSO+, AMO+, drought and 302 

SAW conditions (Figure 3), with almost no influence of PDO. During El Niño 303 

period, the differences in burned area under SAW and non-SAW conditions 304 

were small, whereas during La Niña most of the burned area occurred under 305 

non-SAW conditions (75%). The burned area under La Niña was more closely 306 

associated with drought conditions (83.4%) compared to El Niño period 307 

(64.2%). Also, the distribution of burned area was asymmetrically negative for 308 

ENSO, with most fires occurring when ENSO was lower than 1 (Figure 3). The 309 

percentage of burned area in SAD and under drought conditions was higher for 310 

AMO+ than AMO-. The PDO followed a different pattern, with higher proportion 311 

of burned area under PDO- in those fires occurring under SAW and PDO+ 312 

under drought conditions.  313 
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Fires were usually larger under SAW (P < 0.001) or drought conditions (P < 314 

0.01), particularly in coincident drought and SAW situations (P < 0.01; Figure 315 

3B and 3D). The median fire size was significantly larger during the positive 316 

phase of AMO compared to its negative phase (P = 0.011). Also, those fires 317 

that occurred under AMO+ and SAD were larger than those occurring under 318 

AMO- or non-SAD (P < 0.01). These relationships between CT phases and fire 319 

size did not occur under PDO and ENSO.  320 

  

  

  

Figure 3. Sum of burned area (pannels A and C) and median fire size (log-321 

transformed; pannels B and D) for each combination of CTs (AMO, PDO 322 
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and ENSO), SAW and drought (SPEI12). The highlighted pannel in red 323 

represents larger median fire size during La Niña, AMO+, SAW and drought 324 

conditions compared to other combinations.  325 

 326 

3.3. Seasonal burned area variability 327 

We found noteworthy seasonal differences in burned area modulated by CT 328 

modes and weather patterns (Figure 4). The area burned in autumn was 329 

significantly linked to SAW conditions (P < 0.01) while the burned area in 330 

summer, and especially in spring, was significantly linked to drought (P = 0.03). 331 

RDA outputs suggested an association between ENSO and SPEI. This finding 332 

was consistent with the results presented in Section 3.1 that showed a 333 

significant association between drought and ENSO. Nonetheless, despite the 334 

significant link between SPEI and ENSO, the association between ENSO and 335 

burned area was not significant in any season, as obtained from the SEA 336 

analysis. 337 

The association between AMO and annual burned area was close to the 338 

chosen significance threshold in the RDA analysis (P = 0.059, threshold: 339 

P<0.05), attaining similar p-values to the SEA analysis. Most of the burned area 340 

during autumn occurred under AMO+, SAW and mainly in combination with El 341 

Niño (Figure S3). The effect of PDO was non-significant (P = 0.11).  342 
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 343 

Figure 4. Redundancy analysis (RDA) bi-plot (1953-2018). Points show 344 

annual scores, vectors show climate teleconnection (AMO, PDO and ENSO), 345 

drought (SPEI12) and Santa Ana wind (SAW) parameters and red marks 346 

represent the response variables: burned area (BA) in autumn, summer, spring 347 

and annual.  348 

 349 

The Wavelet coherence analysis between the combined CTs index 350 

(AMO+/ENSO-) and burned area in summer and spring from 1953 to 2018 351 

showed a significant coherence (Figure 5), which shifted from a period domain 352 
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of 8 years between 1960 and 1980 to a frequency of 2–6 years in more recent 353 

decades (red regions with black contours in the graph). In these periods, 354 

wavelet coherence showed an in‐phase fluctuation (i.e., the two time series 355 

move in the same direction) between the CTs coupled index and burnt area 356 

(arrows pointing right) with AMO+/ENSO- mostly leading the oscillation (arrows 357 

pointing down). 358 

 359 

 360 

Figure 5. Wavelet coherence between the combined teleconnection index 361 

(AMO+/ENSO-) and burned area (spring and summer) in Southern 362 

California. The test analyzes the coupled effect of positive AMO and the cool 363 

ENSO phase (La Niña) on the burnt area. Areas of strong coherence in time 364 

between series are shown in red. Black contours designate frequencies of 365 

significant coherence (p < .05, two‐sided test) against red noise. Lighter 366 

shading shows the cone of influence where edge effects are important. Arrows 367 
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pointing right show an in‐phase behavior and arrows pointing down indicate a 368 

lead of the combined teleconnection index over the burned area. 369 

 370 

4. Discussion and conclusions 371 

This study contributes to disentangling the effect of the main CTs and their 372 

synergies with local weather events such as drought and SAW in driving fire 373 

incidence (i.e., fire size and annual burned area) in southern California, by 374 

analyzing historical wildfires over the last 70 years. Our work confirms the 375 

importance of adverse weather conditions (i.e., drought and SAW) to explain 376 

burned area seasonally in southern California (Goss et al., 2020), and reveals 377 

that these relationships are mediated by CTs. The SPEI index was significantly 378 

correlated to ENSO positively, with wetter conditions found during El Niño years 379 

(Gergis and Fowler, 2009) due to increased precipitation in southern California 380 

(Allen and Anderson, 2018). This pattern may explain the seasonal burned area 381 

variability shown in this paper between the two phases of ENSO. While wildfires 382 

tended to occur during La Niña events under drought conditions, especially in 383 

spring and summer (Kitzberger et al., (2007) , during El Niño phases a 384 

substantial number of large fires burned during SADs in autumn. This finding is 385 

probably related to plant growth and fuel accumulation with higher development 386 

of biomass under wetter conditions in the preceding spring (Westerling et al., 387 

2003).  388 

The warm phase of AMO is associated with decreased precipitation and 389 

increased mean temperature in western United States. These conditions 390 

probably boosted larger annual burned area as showed the SEA and RDA 391 

analysis. Also, the patterns of interannual rainfall variability associated with 392 
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ENSO are significantly modulated between AMO phases. Enfield et al. (2001) 393 

found an increased positive correlation between ENSO and rainfall in southern 394 

California during the negative phase of AMO (1965–1994) as compared to its 395 

positive phase (1930–1959). This effect may explain the interaction found 396 

between AMO+, El Niño and annual burned area in the SEA analysis. In 397 

addition, the wavelet coherence analysis showed that the coupled 398 

AMO+/ENSO- index displayed a common non-stationary oscillation with the 399 

burnt area in spring and summer in southern California with periods ranging 400 

from 8 to 4 years, indicative of an amplification of La Niña during AMO+ phases 401 

with cascading effects on the fire regime. 402 

Although we did not find any significant relationship between PDO, weather and 403 

fire activity, PDO may have a modulating effect on the climate patterns resulting 404 

from ENSO based on recent literature (Abiy et al., 2019; Margolis and 405 

Swetnam, 2013; Schoennagel et al., 2005; Wang et al., 2014). Wang et al., 406 

2014 found that the climate signal of La Niña is likely to be stronger when PDO 407 

is highly negative, resulting in dry conditions in southern California; and, 408 

oppositely, highly positive PDO values would lead to El Niño-like wet conditions. 409 

Margolis and Swetnam (2013) found that ENSO influenced variability in 410 

moisture and upper elevation fire occurrence in the southwestern United States, 411 

and that such relationship could be potentially modulated by phases of PDO.  412 

The RDA analysis suggests that the response of burned area to drought and 413 

SAW conditions is stronger in the 21st century compared to the second half of 414 

the 20th century, for fires occurring in the autumn under SADs and in summer 415 

with severe drought. This could be explained by the higher frequency of drought 416 

and SAW events in the 2000-2018 period, with AMO in its warm phase and 417 



21 
 

PDO in its cool phase (Figure S1 and S2), coupled with improved fire 418 

suppression capabilities (Liang et al., 2008) where only a few fires under 419 

extreme circumstances exceeded the initial attack and become large.  420 

In the current context facing the impending effects of climate change, fire 421 

activity is projected to increase in Mediterranean biomes, such as in southern 422 

California (Moritz et al., 2012). On top of this, ENSO activity is projected to 423 

amplify due to anthropogenic climate change (Cai et al., 2015, 2014; Power et 424 

al., 2013), heralding a serious threat the ever expanding flammable rural-urban 425 

interface in this wildfire hotspot (Bowman et al., 2017). Our results highlight the 426 

coupled impacts of CTs on weather and burned area, revealing the need for 427 

considering the effects of AMO, which is projected to enter a negative phase 428 

during the next decades (Krokos et al., 2019), and PDO when using 429 

ENSO‐based forecasts at seasonal scale. In light of future climate change 430 

pressures, we suggest that proper drought monitoring and SAD forecasting 431 

(through indexes such as SPEI) is needed to gauge the very beginning of dry 432 

periods, and by extent, the prediction of high-risk fire seasons to further assist 433 

decision makers. 434 
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