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particular, we now apply our method across the brain, not just in the cortex as previously; and have 
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the evaluation of our method is now founded upon results from pure simulations, simulated T1-
weighted MRI images based on a single subject’s anatomy, and finally forty-five subjects with test-
retest data. This has allowed us to more thoroughly investigate the robustness of our proposed 
method to random image noise and scanner field non-uniformity; and to assess the inter-session 
repeatability of our results, a metric clearly of interest for longitudinal functional imaging studies. The 
results of these new analyses are favourable for our method. 
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I hope the aforementioned will be both to your and the reviewer’s satisfaction. 
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Thomas Kirk 
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  Abstract—Partial volume effects (PVE) present a source of 
confound for the analysis of functional imaging data. Correction 
for PVE requires estimates of the partial volumes (PVs) present in 
an image. Conventionally these estimates are obtained via 
volumetric segmentation, but such an approach may not be 
accurate for complex structures such as the cortex. An alternative 
is to use surface-based segmentation, which is well-established 
within the literature. Toblerone is a new method for estimating 
PVs using such surfaces. It uses a purely geometric approach that 
considers the intersection between a surface and the voxels of an 
image. In contrast to existing surface-based techniques, Toblerone 
is not restricted to use with any particular structure or modality.  
Evaluation in a neuroimaging context has been performed on 
simulated surfaces, simulated T1-weighted MRI images and 
finally a Human Connectome Project test-retest dataset. A 
comparison has been made to two existing surface-based methods; 
in all analyses Toblerone’s performance either matched or 
surpassed the comparator methods. Evaluation results also show 
that compared to an existing volumetric method (FSL FAST), a 
surface-based approach with Toblerone offers improved 
robustness to scanner noise and field non-uniformity, and better 
inter-session repeatability in brain volume. A surface-based 
approach negates the need to perform resampling (in contrast to 
volumetric methods) which is particularly advantageous for low-
quality data.  

Index Terms—functional imaging, partial volume effect, partial 
volume correction, segmentation, surface 

I. INTRODUCTION 

ARTIAL volume effects (PVE) arise when an imaging 
matrix has low spatial resolution in relation to the structures 

of interest within the image, as is commonly the case for the 
functional imaging techniques, such as positron emission 
tomography (PET), blood oxygen-level dependent fMRI 
(BOLD) and arterial spin labelling (ASL). For example, ASL 
voxels typically have side lengths of 3-4mm whereas the mean 
thickness of the adult cortex is 2.5mm [1]. As such, voxels 
around the cortex will contain a mixture of cortical and non-
cortical tissues, the proportions of which are termed partial 
volumes (PVs). PVE present a source of confound for 
functional imaging: whilst the objective is to obtain a 
measurement of function across some particular structure, the 
signal actually measured in each voxel is a sum, weighted by 
the partial volumes, of function both within and without said 
structure. This is a mixed-source problem in which the multiple 
tissues in each voxel constitute the sources. Partial volume 
correction (PVEc) uses voxel-wise estimates of PVs to separate 
out the signals arising from each tissue. Various PVEc methods 
have been developed, usually with a specific modality in mind 
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(for example, Muller-Gartner for PET [2] and linear regression 
[3] or spatially-regularised variational Bayes for ASL [4]). 

Estimation of PVs bears considerable similarity to volumetric 
segmentation and the two are typically performed concurrently 
on a structural image, as is demonstrated in [5]. In order to 
estimate PVs within the voxel grid of a functional image, it is 
then necessary to transform the results from the structural voxel 
grid to the functional. As each functional voxel corresponds to 
multiple smaller voxels on the structural image, the PVs of the 
former can be estimated using the results from the latter. The 
efficacy of this approach is limited by the accuracy of the 
volumetric segmentation approach used. For complex 
geometries, such as the thin and highly folded structure of the 
cerebral cortex, the alternative of surface-based segmentation 
has gained widespread support (notably through FreeSurfer 
[6]). The advantage of such a segmentation method is twofold. 
Firstly, whereas volumetric segmentation is necessarily a 
discrete operation in terms of voxels, a surface approach is 
somewhat continuous as the surface vertices are placed with 
subvoxel precision. Secondly, anatomically-informed 
constraints can be enforced anisotropically when surfaces are 
used: for example, the constraint that tissues should be 
homogenous along a surface but heterogeneous across it. This 
is in contrast to a volumetric tool such as FSL FAST [7] which 
does enforce a similar tissue continuity constraint via the use of 
Markov random fields but only isotropically in the 
neighbourhood of each voxel. In principle, it should be possible 
to estimate PVs by considering the geometry of intersection 
between the individual voxels of an image and the surface 
segmentations of individual structures. Being a purely 
geometric construct, namely, given a surface that intersects a 
voxel, what is the volume within the voxel bounded by the 
surface, this is a fundamentally different approach to existing 
methods and it is expected this will be reflected in the estimates 
produced.  

Although surface-based PV estimation tools exist in the 
literature, past efforts have usually been designed with a 
specific modality in mind. Two notable examples for 
neuroimaging are the ribbon-constrained (RC) method used 
within the Human Connectome Project’s (HCP) fMRISurface 
pipeline [8] and PETSurfer [9], [10], a variant of FreeSurfer. 
The former is designed for use with BOLD and so distinguishes 
only between cortex and otherwise, not the grey matter (GM), 
white matter (WM) and non-brain required for ASL and PET; 
whereas the latter is both PET-specific and tightly integrated 
into FreeSurfer such that it is hard to use independently of that 
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workflow. Furthermore, both methods deal exclusively with 
surfaces representing the cortex. The objective of this work was 
to develop an algorithm, named Toblerone1, to estimate partial 
volumes for both cortical and subcortical structures (where such 
surfaces are available, for example via FSL FIRST [11]) for 
neuroimaging applications. The end result is highly general and 
could be used with images from multiple modalities and/or in 
other parts of the body.  

II. THEORY 

Voxelisation is the process of quantifying the volume contained 
within a surface and many algorithmic methods are given in the 
computer graphics literature. The key operational step for this 
is determining if a point lies interior or exterior to a given 
surface; by repeating this test entire volumes can be built up. 
The ray intersection test outlined by Nooruddin and Turk [12] 
is widely used and requires only that the surfaces be contiguous 
(water-tight). The test is performed by projecting an infinite ray 
in any direction from the point under test and counting the 
number of intersections made with the surface. A ray from an 
interior point will make an odd number of intersections as it 
exits the surface (including folds within the surface, there will 
be one more point of exit than entry); conversely an exterior 
point will make an even number of intersections (balanced 
entries and exits), if at all. This test scales badly with increasing 
spatial resolution: for a linear resolution of 𝑛 samples per unit 
distance, 𝑛" tests per unit volume are required. Furthermore, as 
each ray must be tested against each surface element, the test 
also scales with surface complexity (linearly for a naïve 
implementation). For a typical functional image of 10% voxels 
and 2.5	x	10% surface elements in a FreeSurfer cortical surface, 
this is prohibitively computationally intensive. 

 
The method adopted in this work is to only use the portion of 
surface that actually intersects a given voxel (termed the ‘local 
patch’) for ray intersection testing. The local patch is defined as 
all triangles that intersect the voxel or, equivalently, the 
minimal set of triangles that unambiguously divides the voxel 
into two regions. This patch is by definition non-contiguous, so 
it is necessary to modify the ray intersection test accordingly; 
the modified form is referred to as the ‘reduced’ test in contrast 
to the ‘classical’ test. Within each voxel, a ‘root point’ that is 
known to lie within the surface is identified via the classical ray 
test. Any other point within the voxel may then be tested by 
 

1 So-named because an early implementation constructed triangular prisms.   

projecting the finite line segment 𝐫 = 𝐩𝐭 + 𝜆(𝐩𝐫 − 𝐩𝐭), where 
𝐩𝐭 is the point under test, 𝐩𝐫 is the root point and 0 ≤ 𝜆 ≤ 1 is 
a distance multiplier along the line. A parity test is then applied 
to the number of intersections identified between the root and 
test points. The fact that the line terminates at a point interior to 
the surface means that exterior points will lead to one more 
point of entry than exit; conversely interior points will lead to 
either zero or an even number of intersections. It is not 
necessary to test surface elements outside the voxel as the finite 
length of the line segment means it can never leave the voxel.   
Fig. 1 provides an illustration of the test in practice.  

In order to minimise the number of tests required per voxel, 
convex hulls (defined as the smallest possible region enclosing 
a set of points within which any two points can be connected 
without leaving the region) are used to estimate partial volumes 
wherever possible. The rationale for this is that if the extrema 
points of a region can be classified as interior/exterior to a 
surface then, to an approximation, all points lying within the 
convex hull of these points will share the same classification.  

III. ALGORITHM 

The following section addresses PV estimation for structures 
within the brain, for which the tissue classes of interest are GM, 
WM and non-brain. The same principles would apply to 
structures in other areas of the body, though the interpretation 
of tissue classes would differ.  

A. Estimation for a single surface 

The core algorithm within Toblerone estimates the voxel-wise 
interior/exterior PVs arising from the intersection of a single 
surface with an arbitrary voxel grid. Toblerone assumes cuboid 
voxels with a ‘boxcar’ point-spread function (PSF), which is to 
say that it does not allow for any mixing of signal between 
voxels. In reality, different modalities have differing PSFs and 
such effects may be separately accounted for via a convolution 
operation. The first step is to identify and record the local 
patches of surface intersecting each voxel of the reference 
image via Moller’s triangle-box overlap test [13].  

 

 
Fig. 1 Reduced ray intersection test for non-contiguous surfaces. The root point 
(interior) is shown in magenta. A ray from an interior point (green) makes two 
intersections due to the presence of a fold; from an exterior point (yellow) there 
is one intersection.  

 
Fig. 2 Intersection of inner (magenta) and outer (green) surfaces of the cortex 
with a voxel. The outer surface intersects twice with distinct patches of surface; 
this is likely due to the presence of a sulcus. Tissue PVs are labelled.   
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The geometry of a surface within a voxel can frequently be 
complex: using a sulcus of the cortex as an example, the surface 
may intersect the voxel multiple times, with the opposite banks 
of the sulcus appearing as two unconnected patches of surface, 
illustrated in fig. 2. Accounting for the many possible 
surface/voxel configurations requires numerous specific tests 
that rapidly become excessively complex, so the approach taken 
in Toblerone is to divide and conquer each voxel as required. 
As the length scale of a voxel decreases, the complexity of the 
local surface configuration within the voxel will also decrease 
(for example, a sulcus is less likely to intersect the voxel 
multiple times). Each voxel of the reference image is therefore 
divided into a number of subvoxels, each of which is processed 
individually. In the neuroimaging context of this work, the 
subdivision factor was set empirically as ceil(𝐯/0.75) where 𝐯 
is the vector of voxel dimensions and 0.75 represents the lower 
limit of feature size found in the brain (in other contexts this 
parameter could be varied). Note that this subdivision factor 
transforms anisotropic voxels into approximately isotropic 
subvoxels. Subvoxels are then processed according to the 
following framework:  

● If the subvoxel does not intersect the surface, it is assigned 
a single-class volume according to an interior/exterior 
classification of its centre. This is illustrated in fig. 3a.  

● If the subvoxel intersects the surface, then it contains 
interior and exterior PVs. One of these will be estimated 
using a convex hull (via the Qhull implementation [14]) if 
the geometry of the surface is favourable, as follows:   

o If the surface intersects entirely through one face of the 
subvoxel, then it encloses a highly convex volume that 
may be reliably estimated. The other partial volume is 

calculated by subtraction from the total subvoxel 
volume. This is illustrated in fig. 3b.  

o If the surface is folded within the subvoxel (identified 
by multiple intersection of the surface along an edge 
or face diagonal of the subvoxel) then the subvoxel is 
subdivided a second time. This is because it is difficult 
to reliably identify which volume is interior or exterior 
in such a situation. This is illustrated in fig. 3c/d.   

o In all other cases, convex hulls are again used. In order 
to minimise the potential error associated with 
estimation of a non-convex volume via convex hulls, 
it is important to identify which of the two PVs within 
the subvoxel is closer to being convex than the other. 
The proxy measure used in this work is the number of 
subvoxel vertices lying on either side of the surface: 
the side with fewer vertices is assumed to enclose a 
more convex (and at any rate smaller) volume than the 
other. This is illustrated in fig. 3e. 

● If the surface intersects the subvoxel multiple times 
(identified by the successful separation of surface nodes 
lying within the subvoxel into unconnected groups) then 
the voxel is subdivided a second time. This situation 
occurs for example when the opposite banks of a sulcus 
pass through a voxel. Although the reduced ray 
intersection test is accurate in such a situation, forming 
convex hulls is not, so subdivision is the safer option. This 
is illustrated in fig. 3f.  

The second subdivision is performed at a constant factor of 5 to 
yield sub-subvoxels of approximately 0.1 to 0.2mm side length 
isotropic. These are always assigned a single-class volume 
based on a classification of their centre points as their small size 

 
Fig. 3 Various subvoxel/surface configurations. a) no intersection: whole-volume assignment; b) single intersection through one face: a small convex hull will be 
formed; c/d) two examples of single intersection, folded surface: further subdivision will be used; e) single intersection through multiple faces: a convex hull will 
be formed; f) multiple surface intersection (unconnected patches of surface, likely a sulcus): further subdivision will be used.  
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means that any PVE will be negligible. Finally, voxels that do 
not intersect the surface (fully interior or exterior) are given 
single-class volumes according to tests of their centre points. 
Structures defined by a single surface (e.g. the thalamus) 
require no further processing: the estimates produced by the 
aforementioned steps may be used directly for PVEc.  

B. Multiple-surface structures 

Structures that are defined by multiple surfaces require further 
processing to yield PV estimates for all tissues of interest. With 
specific reference to the cortex, PVs within each hemisphere are 
obtained with the relations: 

𝑃𝑉>? = 𝑃@AABC	
𝑃𝑉D? = max(0, 𝑃HIJBC − 𝑃@AABC)	
𝑃𝑉KL = 1 − (𝑃𝑉>? + 𝑃𝑉D?)		

where 𝑃@AABC and 𝑃HIJBC denote the interior/exterior PV 
fractions associated with the inner and outer surfaces of the 
cortex respectively and 𝑃𝑉>?, 𝑃𝑉D? and 𝑃𝑉KL denote the PV 
estimates for WM, GM and non-brain tissue (the latter 
including cerebrospinal fluid, CSF). These equations are 
structured to account for a potential surface defect whereby the 
surfaces of the cortex swap relative position (the inner lying 
exterior to the outer) around the corpus collosum. The structure 
of the above relations (N surfaces leading to N+1 tissue classes) 
could easily be generalised to structures defined by more than 
two surfaces (for example, sublayers of the cortex, as used in 
laminar fMRI). A similar set of equations is used to merge 
hemisphere-specific results to cover the whole cortex, 
accounting for voxels lying on the mid-sagittal plane that 
intersect both hemispheres.  

C. Whole-brain PV estimation  

Toblerone, as outlined above, operates on a structure-by-
structure basis in which the output tissue types are dependent 
on the structure in question. A number of methods utilising the 
core algorithm were implemented:  

1) estimate_structure: estimate the inner and outer PVs 
associated with a structure defined by a single surface 

2) estimate_cortex: estimate the GM, WM and non-brain PVs 
associated with the four surfaces of the cortex (l/r white/pial 
in the FreeSurfer terminology)  

3) estimate_all: a combination of the structure and cortex 
methods above, this estimates PVs for the cortex and all 
subcortical structures identified by FIRST and combines 
them (with the exception of the brain stem) into a single set 
of GM, WM and non-brain PV estimates. The run-time for 
a typical subject was around 25 minutes.  

The combination of FreeSurfer/FIRST and estimate_all 
provides a complete pipeline for obtaining whole-brain PV 
estimates in an arbitrary reference voxel grid from a single T1 
structural image that may be used as a replacement for existing 
volumetric tools such as FAST. There is however a key 

 
2As it is ambiguous as to what tissue lies outside a given subcortical structure 

given only its surface, FAST’s results for the same voxel are used as an estimate 
for the local ratio of WM and CSF. The actual quantity of non-GM tissue is still 

conceptual difference between surface and volumetric methods 
concerning their interpretation of subcortical structures. Due to 
differences in tissue composition around the brain, cortical and 
subcortical GM have different intensities on a normal T1 image 
and are accordingly assigned different GM PVs by volumetric 
tools such as FAST (whereby cortical GM is seen as more 
‘grey’ than subcortical, as illustrated in fig. 12). Surface based 
methods, by contrast, do not take a view on what tissue lies 
within the surface other than simply asserting that it is different 
to that which lies without. When combining the PVs of 
individual structures in Toblerone’s estimate_all function, all 
tissue within the cortex and subcortical structures is interpreted 
as pure GM. The practical implication of this is that Toblerone’s 
estimates for subcortical GM are higher than those produced by 
FAST. For this reason, the conventional GM/WM/CSF tissue 
classes used by volumetric tools may be better thought of within 
Toblerone’s framework as tissue of interest, other tissues and 
non-brain, though for the purposes of this article the familiar 
names GM and WM shall be used alongside non-brain. The 
inherent ambiguity in determining which tissues lie outside 
subcortical structures, which could be either WM or CSF 
depending on their location within the brain, was resolved using 
FAST’s segmentation results2. 

IV. EVALUATION  

Three datasets and three comparator methods were used, as 
summarised in Table I. The two surface-based comparator 
methods were restricted to use in the cortex only. By contrast, 
Toblerone was run on both cortical and subcortical surfaces 
where appropriate to provide whole-brain PV estimates.  

A. Comparator methods 
The first surface-based comparator method, the ribbon-
constrained (RC) algorithm, was developed for use with BOLD 
data in the HCP’s fMRISurface pipeline [8] and is restricted to 
the cortex only. The method assumes vertex correspondence 
between the two surfaces of the cortex and works as follows. 
For each vertex in turn, the outermost edges of the triangles that 
surround said vertex are connected between the two surfaces to 
form a 3D polyhedron representing a small region of cortex. 

calculated from the surface estimate as the remainder 1 – GM, which is then 
shared between the other two classes in this ratio.    

TABLE I 
DATASETS & METHODS USED 

name Simulated 
surfaces BrainWeb HCP test-retest 

type  S V + S V + S 

resolution - 1mm iso. 0.7mm iso. 

size 1 cortical 
hemisphere 

18 simulated 
T1 images 

45 subjects, 
2 sessions each 

ground truth numerical 
method 

volumetric 
segmentation* N/A 

comparator 
methods 

NeuroPVE (S) 
RC (S) 

RC** (S) 
FAST (V) 

RC* (S) 
FAST (V) 

 S surface, V volumetric, RC ribbon-constrained method  
* established via automatic segmentation with manual intervention 
 ** RC can only be run on the cortex for these datasets  
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Nearby voxels are subdivided and the subvoxels centres tested 
to determine if they lie interior to the polyhedron. The 
subdivision factor used in this work was the higher value of 
either ceil(max(𝐯) /	0.4) or 4, where 𝐯 is the vector of voxel 
dimensions. The fraction of subvoxel centres lying within any 
cortical polyhedron gives the cortical GM PV, which, as the 
BOLD signal is predominantly cortical in origin, is the quantity 
of interest for this modality. In order to obtain WM and non-
brain PVs, the following post-processing steps were used. 
Firstly, the unassigned PV of each voxel was calculated as 1 −
𝑃𝑉D?, which was subsequently labelled as either WM or non-
brain according to a signed-distance test of the voxel centre in 
comparison to the cortical mid-surface: for a voxel with centre 
point outside the mid-surface, the unassigned PV was labelled 
as non-brain. A weakness of this approach is that it is unable to 
faithfully capture a voxel in which all three tissues are present; 
only the combinations WM/GM or GM/non-brain are 
permitted. As voxel size increases, the probability of voxels 
containing multiple tissues also increases; testing on a brain 
image of 3mm isotropic resolution showed that around 30% of 
voxels intersecting the cortical ribbon contain three tissues. 
Resampling can be used to mitigate this effect so two variants 
of this method were tested: ‘RC’, direct estimation at each 
resolution, and ‘RC2’, estimation at 1mm followed by 
resampling to other resolutions via the process in section IV.B. 
The run-time for a typical subject was around 15 minutes.  

This second surface method, NeuroPVE [15], uses a 
voxelisation method based on the work of [9,12], applied in a 
brain-specific context and again restricted to the cortex only. 
Multiple expanded and contracted copies of each surface are 
created and the ratio of expanded to contracted surfaces 
intersecting a given voxel is used as a first approximation for 
partial volumes. This ratio is then mapped, along with surface 
orientation information, via trigonometric relations on the unit 
cube into a PV estimate. The estimates produced take discrete 
values according to the number of surfaces used (in this work 
the default of 5). The intended use of this tool was PV 
estimation at structural, not functional, resolution, so two 
variants were tested: ‘Neuro’, direct estimation at arbitrary 
resolutions, and ‘Neuro2’, estimation at structural resolution 
followed by resampling to other resolutions via the process in 
section IV.B. On the basis of NeuroPVE’s results on the 
simulated surfaces, it was excluded from further analysis. As 
the process of surface inflation is slow, the run-time for a typical 
subject was around 12 hours.  

Finally, FSL’s FAST [7] is an established whole-brain 
volumetric segmentation tool that was used as a comparator for 
the surface methods. On both the BrainWeb and HCP test-retest 
datasets, FAST was run on the brain-extracted images at 
structural resolution (1mm and 0.7mm iso. respectively). PVs 
were then obtained at other resolutions via the resampling 
method detailed in section IV.B. The run-time for a typical 
subject was around 5 minutes.  

B. Resampling 

Resampling is an interpolation operation that is used to 
transform volumetric data between voxel grids (in this context, 
from structural to functional resolution). FSL’s applywarp tool 

was used with the -super flag for all resampling operations. This 
works by creating an up-sampled copy of the target voxel grid 
onto which values from the input image are sampled. The 
average is then taken across the voxel neighbourhoods of the 
high-resolution grid (sized according to the up-sampling factor) 
to obtain the result in the target voxel grid. Such an approach is 
appropriate when moving from fine to coarse as each output 
voxel corresponds to multiple input voxels, the individual 
contributions of which should be accounted for to preserve 
overall tissue proportions. When using applywarp a 
transformation matrix between the input and output voxel grids 
must be given as the -premat argument; to denote identity for 
the purposes of this work, the output of the HCP wb_command 
–convert-affine –from-world –to-flirt tool operating on  I4 was 
used as the -premat to correct for a subvoxel shift that arises 
due to FSL coordinate system conventions. Note that for 
perfectly aligned voxel grids with an integer ratio of voxel sizes, 
such as a 1mm and 2mm isotropic grid, this process is 
equivalent to averaging across blocks of the smaller grid (sized 
2x2x2 in this case). 

C. Simulated surfaces 

A pair of concentric surfaces, illustrated fig. 4, were designed 
to capture geometric features relevant to the anatomy of a 
cortical hemisphere. These were produced by modulating the 
radius of a sphere as a function of azimuth 𝜃 and elevation 𝜙 to 
produce sulci and gyri-like features. The radius of the inner 
surface was defined as 

𝑟@A = 60(1 − 0.1max(sinTU 5𝑢 , sinTU 5𝑣)) 

where 60 is the unmodulated radius of the sphere, 0.1 fixes the 
relative depth of sulci, the max function prevents sulci from 
constructively interfering to produce deep wells at points of 
intersection, the power of 20 produces broad gyri and narrow 
sulci, and the substitutions	𝑢 = 𝜙 + 𝜃, 𝑣 = 𝜙 − 𝜃 cause the 
sulci to spiral around the sphere in opposite directions. 
Modulation was restricted to the range −2𝜋/5 ≤ 𝜃 ≤ 2𝜋/5 to 
leave the poles smooth and suppress unrealistic features. The 
outer radius was set at 𝑟HIJ = 1.05 ⋅ 𝑟@A, leading to a peak radial 
distance between surfaces of 3mm. The outermost region was 
taken to represent non-brain tissue, the innermost WM and the 
region in between GM. The use of analytic functions to define 
the surfaces permitted ground truth maps to be calculated using 
a numerical method. Voxels were sampled at 4,096 elements 
per mm3 and the positions of these sample points expressed in 
spherical polar coordinates. By comparing the actual radius of 
each point to the calculated radius of the surface boundaries for 
the same azimuth and elevation, the tissue type of the sample 

 
Fig. 4 a) Simulated surfaces; b) cutaway showing inner (red) and outer (green) 
surfaces. Peak radial distance between the two was 3mm.   
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point within the structure could be determined, and from there 
PVs obtained by aggregating results within voxels. This is 
referred to as the ‘numerical solution’ in the results section. 
Mean surface node spacing was set at 0.85mm, similar to that 
of native FreeSurfer output. Toblerone’s estimate_cortex, 
NeuroPVE and the RC method were used on this dataset. PVs 
were obtained at voxel sizes of 1 to 3mm in steps of 0.2mm 
isotropic.  

D. BrainWeb simulated T1 images  

BrainWeb [16], [17] simulates whole-head T1 images at 1mm 
isotropic resolution with specified levels of random noise and 
field non-uniformity (NU).  Eighteen images were produced to 
cover the available parameter space of noise levels {0, 1, 3, 5, 
7, 9} and NU levels {0, 20, 40} (both quantities in percent). 
These were run through FAST, FIRST and FreeSurfer, after 
which Toblerone’s estimate_all and the RC method (cortex 
only) were used on the output. FAST’s output was also used to 
enable a comparison between surface and volumetric methods. 
PVs were obtained at voxel sizes of 1 to 4mm in steps of 1mm 
isotropic. Although ground truth PV maps exist for this dataset 
(produced by automatic volumetric segmentation of  T1 images 
with manual correction [16]), both surface and volumetric 
methods returned significantly different results to these, raising 
the complicated question of determining which set of results is 
correct. In order to avoid making this judgement, each method 
was instead referenced to its own results on the ideal T1 image 
(0% noise 0% NU) in the 1mm isotropic voxel grid of the 
structural images. The voxel grids associated with each voxel 
size were aligned such that results at 1mm could be used to 
calculate a reference at other sizes (for example, summing 
across 3x3x3 blocks to get a 3mm reference).  

E. Human Connectome Project test-retest data  

This dataset comprises 45 subjects from the main HCP cohort 
who underwent two separate structural scan sessions (mean age 
30.2 years, mean time between sessions 4.8 months). Each 
session was processed using the pipeline in [8] to obtain cortical 
surfaces via FreeSurfer. Separately, the distortion-corrected T1 
images were fed into FAST (brain-extracted) and FIRST 
(whole-head) to produce volumetric segmentations and 
subcortical surfaces. Toblerone’s estimate_all and the RC 
method (for the cortex only) were used on this dataset, as well 
as FAST for a comparison between surface and volumetric 
methods. PVs were obtained at voxel sizes of 1 to 3.8mm in 
steps of 0.4mm isotropic, as well as the native 0.7mm isotropic 
voxel grid of the structural images. Although a ground truth is 
not defined for this dataset, each method’s results from the first 
session were used as a reference for the second session.  

F. Evaluation metrics 

Errors were measured in both a per-voxel (root-mean-square, 
RMS, of individual voxel errors) and aggregate (total tissue 
volume) sense. The former basis is important as PVEc is locally 
sensitive to the PV estimates [18]; the latter basis reflects 
systematic bias at the aggregate level. All error quantities are 
expressed in percent and map directly to PV estimates without 
scaling: for example, a PV estimate of 0.5 against a reference 
value of 0.55 corresponds to an error of -0.05 or -5%. 

A further analysis of voxel-wise differences between Toblerone 
and FAST was performed on the HCP dataset at multiple voxel 
sizes by sorting voxels into 5% width bins according to their 
Toblerone GM PV estimate. The difference (Toblerone – 
FAST) was calculated for each voxel and the mean taken across 
each bin. This quantity was then averaged across subjects and 
sessions (weighted to respect differences in brain volume). 

V. RESULTS 

A. Simulated surfaces 

 
Fig. 5 shows the error in total tissue volume for the simulated 
surfaces. The numerical solution at 1mm was used as the 
reference. Toblerone showed consistency across voxel sizes, 
though with a small negative bias in both tissues. RC estimates 
showed variation in both. The resampling-based methods RC2 
and Neuro2 showed high consistency in WM but less so in GM. 
The numerical solution was stable across voxel sizes. Neuro’s 
results are excluded from this and subsequent graphs for clarity; 
the full results are given in the supplementary material (figs. s5 
and s6). 

 
Fig. 6 shows per-voxel error for the simulated surfaces. Results 
were masked to consider voxels intersecting either surface of 
the cortex as only these contain PVs. Toblerone and RC 
produced the lowest errors at all voxel sizes in GM; in WM only 
Toblerone retained this behaviour. Both resampling-based 

 
Fig. 5 Simulated surfaces: error in total tissue volume. Toblerone showed 
consistency, though with small bias, for both GM and WM. RC1 errors were 
lower for GM than WM. Resampling-based methods (RC2, Neuro2) showed 
particular consistency in WM. [Full results in supplementary, fig. s5] 

 
Fig. 6 Simulated surfaces: per-voxel error. Toblerone and RC produced the 
lowest errors in GM; in WM there was a clear difference to Toblerone. RC2 and 
Neuro2’s errors both decreased with increasing voxel size, with a characteristic 
notch observed at 2mm. [Full results in supplementary, fig. s6] 
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methods (RC2, Neuro2) produced lower errors as voxel size 
increased, and a characteristic notch in their results was 
observed at 2mm. Although RC initially performed better than 
RC2 in WM, the inverse was true above 2mm voxel size.  

B. BrainWeb simulated T1 images 

 
Fig. 7 shows the difference in total tissue volume across the 
brain as a function of noise and NU levels, referenced to each 
method’s results at 0% noise and 0% NU. PV estimates at 1mm 
isotropic voxel size were used for this analysis. RC’s GM result 
was for the cortex only as it cannot process subcortical 
structures. In general, the surface-based methods showed more 
consistency in their estimates across all levels of noise and NU, 
with the notable exception of GM at 40% NU. FAST’s 
consistency was notably better in GM than WM.  

Fig. 8 shows the RMS per-voxel difference in PV estimates at 
3mm voxel size as a function of noise and NU. Each method’s 
1mm results at 0% noise 0% NU were used as the reference. 
Toblerone returned lower RMS voxel differences in both GM 
and WM at all levels of NU and noise except 0% noise 0% NU; 
a pattern that was repeated at other voxel sizes (these are shown 
in supplementary fig. s8).  

 
C. HCP test-retest subjects 

Fig. 9 shows violin plots of inter-session difference (retest 
minus test) in tissue volume across the 45 subjects of the HCP 

dataset. PV estimates at 0.7mm isotropic voxel size were used 
for this analysis. RC’s GM result was for the cortex only. Both 
surface methods gave a tighter distribution than FAST, 
suggesting greater repeatability between sessions. All methods 
showed greater variability in GM than WM. 

 
Fig. 10 shows the mean per-voxel difference between 
Toblerone and FAST’s GM PV estimates as a function of 
Toblerone’s GM PV estimate. Excepting the 0.7mm result, the 
positive slope of each line shows that in voxels with a low 
Toblerone GM PV estimate, FAST was more likely to assign a 
higher value, and vice-versa at high Toblerone GM PV 
estimates. The strength of this relationship decreased with 
increasing voxel size. It should be noted that the 0.7mm result 
is the only one not to make use of resampling (for all others, 
FAST’s 0.7mm estimates were resampled onto the target voxel 
grid).  

 

 
Fig. 7 BrainWeb: difference in total tissue volume referenced to each method’s 
0% noise 0% NU result. Surface-based methods were more consistent at almost 
all noise and NU levels; FAST was more consistent in GM than WM.  
 

 
Fig. 8 BrainWeb: RMS per-voxel differences at 3mm voxel size, referenced to 
each method’s 1mm 0% noise 0% NU results. Toblerone’s differences were 
smaller at almost all levels of noise and NU, as was also the case at other voxel 
sizes. [Results for other voxel sizes are given in supplementary fig. s8] 

 
Fig. 9 HCP test-retest: inter-session (retest minus test) difference in total tissue 
volume. PVs were estimated in the native 0.7mm isotropic space of the 
structural images. RC’s result is for the cortex only. Both surface methods show 
a tighter distribution than FAST.  

 
Fig. 10  HCP test-retest: mean difference between Toblerone and FAST GM 
PVs, sorted into 5% width bins according to Toblerone’s GM PV. As 
Toblerone’s GM PV estimate in a given voxel increases, FAST is more likely 
to assign a smaller value, and vice-versa. The strength of this relationship 
decreases with increasing voxel size. An inverse, but weaker, effect is seen for 
WM (supplementary fig s10). 
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VI. DISCUSSION 

Results from the simulated surfaces showed that Toblerone 
produced estimates with a comparatively low and consistent 
error. Although the RC method was able to perform similarly 
for GM, there was a clear advantage for Toblerone in WM. 
Results from the BrainWeb images suggested that a surface-
based approach (the combination of FreeSurfer/FIRST and 
Toblerone) is more robust to noise and NU than FAST’s 
volumetric approach. Further analysis suggested it is the 
consistency of FAST’s WM estimates that suffers in the 
presence of these scanner imperfections. Finally, results from 
the HCP test-retest dataset showed that the surface-based 
approach provide better inter-session repeatability in total tissue 
volume.  

The use of resampling – unavoidable for all volumetric methods 
that must transform PV estimates from a structural voxel grid 
to a functional voxel grid – degrades data quality in an 
unpredictable and highly localised manner. This chiefly arises 
due to so-called subvoxel effects, which may be illustrated via 
the following 1D example. Consider a row of voxels of size 
1mm that are to be resampled onto 1.4mm voxels. A larger 
voxel overlaps evenly onto two smaller voxels, covering 0.7mm 
of each. The resampled value will be the mean of the two 
smaller, on the implicit and unlikely assumption that the tissues 
within each are evenly distributed. Next, consider a row of 1mm 
voxels that are to be resampled onto 3.4mm voxels, whereby a 
larger voxel overlaps by 0.2, 1, 1, 1 and 0.2mm onto smaller 
voxels. Again, the resampled value will be a weighted mean of 
the smaller voxels, but as the central three voxels are included 
wholly in the new voxel, the spatial distribution of tissues 
within these voxels is irrelevant and the assumption of even 
distribution can safely be made. As the ratio of output voxel size 
to input voxel size increases, the significance of subvoxel 
effects are therefore reduced.  

It is extremely difficult to quantitatively measure the impact of 
resampling, particularly on non-simulated data. To do so would 
require the ability to express some volumetric reference data in 
an arbitrary voxel grid without making use of resampling, 
otherwise a trap of circular reasoning results. Nevertheless, 
such an analysis can be performed using the simulated surfaces 
presented earlier. The key conceptual difference is that the 
ground truth for this dataset is defined by a surface and can 
therefore calculated in any voxel grid without resampling. Fig. 
11 shows the results of resampling ground truth results from the 
numerical method at each resolution to all other resolutions 
above the one in question (for example, the 1.4mm truth was 
resampled to 1.6, 1.8, … etc). At each voxel size, the resampled 
results can be compared to a ground truth that has been 
calculated without the use of resampling. RMS per-voxel error 
was measured using the same mask as before, namely all voxels 
intersecting either surface of the cortex, as only these contain 
PVs. Multiple trends can be seen: firstly, as the input voxel size 
increases, error at all output voxel sizes increases. Secondly, as 
the ratio of output to input voxel size increases, the error 
decreases. Finally, the error falls to zero when this ratio takes 
an integer value. This is due to the use of perfectly aligned voxel 
grids in this work (which would not be the case with patient 

data) and is discussed in section IV.B. This likely explains the 
interesting behaviour observed in various analyses, namely: the 
notches seen in fig. 6, as well as supplementary figs. s5 and s6 
(perfect voxel correspondence means no subvoxel effects); the 
0.7mm result in fig. 10 (for all other sizes, resampling by a non-
integer ratio of voxel size blurs the FAST results, reducing 
image contrast and the number of high GM PV voxels); and the 
lack of error observed in FAST’s GM and WM results at 2, 3 
and 4mm voxel size, 0% noise 0% NU in figs. 8 and s8 (again, 
perfect voxel correspondence with the reference set of 1mm 
estimates). These considerations do not apply to surface-based 
methods as they do not make use of resampling. 

A further advantage of surface-based methods concerns their 
application of transformations. Notwithstanding the fact that 
volumetric methods require resampling to transform data from 
one resolution to another, they also require it to apply a 
registration transformation between the structural voxel grid in 
which PVs are estimated and the functional voxel grid in which 
PVEc is to be performed. Once again, the impact of this upon 
data quality is highly localised and difficult to measure 
quantitatively. It can however be illustrated via the following 
experiment, illustrated in fig. 12. GM PV maps for the 0% noise 
0% NU BrainWeb image were translated by 0.5mm in each of 
the x,y,z axes. For FAST, this translation took the form of an 
affine transformation applied during a resampling operation. 
Significant blurring is seen, particularly around the edges of 
structures where there was previously good edge definition. As 
these edge voxels by definition contain PVs this is a particularly 
undesirable outcome. By contrast, blurring within a structure is 
of little consequence as the tissue is already homogenous. For 
Toblerone, this translation was performed by shifting the 
surfaces into the new reference voxel grid represented by the 
translation and then estimating the PVs afresh with no 
noticeable reduction in edge definition. 

In its native form, the RC method is unable to correctly handle 
voxels in which all three tissue types are present (due to the fact 
that it estimates GM first and then assigns the remainder to 
either WM or non-brain). The impact of this is seen in the 
positive relationship between per-voxel error in WM and voxel 
size in fig. 6. Resampling can help to minimise this error: at 

 
Fig. 11 Simulated surfaces: error induced by resampling the ground truth GM 
PV map, masked to voxels intersecting either surface of the cortex. As the input 
voxel size increases, error increases, but as the ratio output / input voxel size 
increases, error falls. Finally, error falls to zero when the ratio takes an integer 
value.    
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small voxel sizes, the probability of voxels containing three 
tissue types is smaller, so the error is minimised, but this does 
not hold true at larger voxel sizes. Accordingly, as voxel size 
increases, it is increasingly beneficial to obtain PV estimates by 
resampling those from a smaller voxel size. Set against this, 
however, are the aforementioned problems introduced by 
resampling: when the ratio of output to input voxel size is small, 
subvoxel effects are significant and high per-voxel errors result 
(as shown in fig. 6). A threshold voxel value above which 
resampling is beneficial therefore results (at around 2mm in the 
figure). The exact value of this threshold would be difficult to 
predict in the general case (in particular, the use of aligned 
voxel grids in this work is both highly significant and extremely 
unrealistic). By contrast, Toblerone is able to produce 
consistent estimates in all tissue classes at arbitrary voxel sizes 
without the use of resampling.  

We were unable to further analyse the HCP test-retest dataset 
in order to establish where in the brain the differences between 
Toblerone’s and FAST’s estimates arise. As this would require 
extensive use of non-linear registrations and resampling to 
transform all subjects onto a common template, it is likely that 
the artefacts imposed by this process would obscure the true 
methodological differences of interest. Furthermore, an 
analysis on the BrainWeb database would be of limited use as 
this only represents the cortical anatomy of a single subject and 
would therefore ignore population variability. 

VII. CONCLUSION 

Toblerone is a new method for estimating PVs using surface 
segmentations. Unlike existing surface-based tools, it is not 
closely tied to any specific modality or structure and can 
therefore be adapted to multiple use cases (notably, providing 
PV estimates for the whole brain). It is able to operate at 
arbitrary resolutions without recourse to resampling, thereby 
avoiding the highly localised degradation of image quality that 
this process entails. Three datasets have been used to evaluate 
the algorithm. Results from simulated surfaces show 
consistently low errors at both the voxel and aggregate level, 
either matching or surpassing other surface-based methods. 
Results on simulated T1 images from the BrainWeb database 
show that a FreeSurfer/FIRST/Toblerone surface-based 
pipeline used as an alternative to FAST is more robust in the 
presence of random noise and field non-uniformity. Finally, 
results from the HCP test-retest dataset of 45 subjects show that 
the surface-based pipeline produces a tighter distribution of 
inter-session tissue volumes than FAST, suggesting the surface 
approach has greater repeatability. The magnitude of 
methodological differences observed in this work, and related 
conceptual questions concerning the interpretation of 
subcortical tissue between surface and volumetric methods, will 
have implications for the wider process of PVEc.  

 
Fig. 12 Illustration of resampling-induced blurring on the 1mm isotropic GM PV map from the 0% noise 0% NU BrainWeb image. The left column shows the 
original estimates produced by FAST and Toblerone, the right shows the result of a 0.5mm translation along each axis. The left thalamus (red) and right putamen 
(blue) are highlighted in each, showing how surface and volumetric methods differ markedly in their interpretation of subcortical structures (FAST does not regard 
them as pure GM, whereas Toblerone does for the analyses presented in this work).   
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SUPPLEMENTARY MATERIAL 

 

 
 
 
 
 

  

     
Fig. s6 Simulated surfaces: RMS per-voxel error. Neuro’s results are 
significantly worse than all other methods at all other resolutions, though the 
resampled version (Neuro2) performs better.  

 
Fig. s10 HCP test-retest: mean difference between Toblerone and FAST WM 
PVs, sorted into 5% width bins according to Toblerone’s GM PV. This is the 
analogue of fig. 10, showing a weaker and inverse relationship. 

 
Fig. s5 Simulated surfaces: error in total tissue volume, all methods. The notch  
in the Neuro method at 2mm may arise due to an interplay between the number 
of expanded surfaces created (5) and the voxel size.  

 
Fig. s8 BrainWeb: RMS per-voxel differences at voxel sizes of 1 to 4mm 
isotropic, referenced to each method’s 1mm 0% noise 0% NU results. 
Toblerone’s differences were smaller at almost all levels of noise and NU, the 
exception being 0% noise 0% NU.   
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All of the below responses are from the lead author (Thomas Kirk). 

Reviewers' Comments:
Reviewer: 1

Comments to the Author
The article deals with the issue of estimating the partial-volume priors necessary for a PV-correction. A novel method that 
estimates the PV maps from a surface-based segmentation instead of by using volumetric segmentation is presented. This an 
important topic, as PV-maps from volumetric segmentation can contain errors which are then propagated in the partial 
volume correction. The article is well written, clear, and easy to understand in general. The method seems to perform better 
than the reference surface-based segmentations. Intuitively, the surface based segmentation can offer superior results also to 
the volumetric segmentation, but this still needs to be very clearly demonstrated. However, there are certain things unclear to 
me in the validation and results sections. These need to be better explained or fixed before the 
publication of the manuscript (see specific comments below):

MAJOR:
1. I understand that for Toblerone, boxcar point-spread function is assumed when calculating PV at different resolutions. In 
Section IV.D, applywarp is used to resample images to a coarser resolution. What point-spread-function is assumed? Boxcar 
as well to make it comparable to Toblerone, or a more realistic PSF like sinc/Guassian etc.? In case of a difference it would 
be good to discus if this could influence the results. Also, ASL, BOLD, and PET data all have slightly different PSF. Can 
you, please, clarify what voxel shape is assumed for Toblerone, and then mention this in the discussion?

We assume cuboid voxels (they do not need to be isotropic) but do not account for modality specific PSF or mixing of signal 
between voxels. This is because such effects can be accounted for by a separate convolution operation, in a manner 
appropriate to the modality in question. This also applies to applywarp. Please see the first paragraph of section III A and 
section IV B. 

2. Methods IV.E. How exactly was the ground-truth established using the surfaces for the simulations? Please, provide 
details for the numerical method.

The numerical solution is discussed in more detail in section IV C. 

3. Figures 5 and 6 show a voxel-wise error and a total error. From the text and figures, I understand that the mean is shown 
for the total error, and STD for the voxel-wise error. It would help to show either the mean voxel-wise error, or Jaccard or 
Tanimoto's coefficient to show the voxel-wise performance of the methods. Or the graph gives mean voxel-wise error and 
the bars give standard deviation? Then the description in the text, in the figure caption, and in the graph axes needs to be 
improved.

The voxel-wise metric has been changed to RMS. Axes labels have been updated as appropriate. 

4. Large voxels are claimed to be problematic for RC1 and this is addressed with RC2. RC2 looks worse on Figure 5 than 
RC1 and in the discussion, it is claimed that this is due to the resampling issues with non-match voxel-sizes. I understand 
that this could be a problem with e.g. 1mm->1.5mm resampling. But I don't see why there should be a resampling error 
between 1mm->3mm - at least not if the matrix are similarly positioned. Also, I don't understand why the RC method cannot 
be calculated on sub-divided voxels with size ~0.1-0.2mm as is done for Toblerone. Can you comment on the effect of 
matrix positioning, error on resampling for multiples like 1->2mm or 3mm, and on calculating RC on 0.1mm -> otherwise it 
seems that this is the only advantage of using Toblerone.

The discussion section now addresses in resampling in some detail. With regards to the figure referred to by the reviewer, 
the corresponding figure in the revised paper hopefully better illustrates the behaviour mentioned (fig 6). The RC method 
does indeed make use of voxel subdivision and this fact is now mentioned explicitly (section IV A). Where image matrices 
are perfectly aligned this is also mentioned explicitly. 

5. You claim that for Figure 6: "The results for Neuro2 and RC2 are not shown for clarity as they are resampling methods; 
excepting for rounding errors, total class volume will not change between resolutions.". However, for figure 8, the FAST 
results are different across voxel-sizes. Despite that both FAST and RC2 were upsampled in the same way using the 
approach in IV.D. It appears to me as inconsistency both in results and in reasoning. Can you, please, comment on that?

Fig 5 is the corresponding figure in the revised paper to which the reviewer refers. Resampling methods are now shown in 
this and it can be seen there is some small variation between voxel sizes, which logically can only be attributed to numerical 
errors in the resampling process (rounding etc). The greater variability in GM is perhaps explained by the fact that there is 
less GM present in the simulated surfaces, whereas the comparatively larger mass of WM – most of which do not have PVs 
– presumably acts to stabilise the result against numerical errors.

MINOR:
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6. Page 2 - "...non-brain required for ASL..." - you might add PET here as all three modalities (PET, BOLD, ASL) were 
mentioned in the first paragraph.

Done 

7. Page 3. You mention a second subdivision and a further subdivision. First subdivision would give voxels of around 0.5-
1mm, the second division would thus give something between 0.1-0.2mm if I understand everything correctly. Can you, 
please, clarify if 'further subdivison' gives you 0.1-0.2mm and also specify if there are 2 or 3 subdivisions (avoiding the term 
'further subdivision').

The paragraph (end of section II A) has been revised to make it clear that there are at most two levels of subdivision. The 
second level does lead to voxels around 0.1 – 0.2 mm isotropic. 

8. "Toblerone" - it might be useful to explain why this name/acronym was chosen. Is it only per shape resemblance to Fig 1?

My mistake! A footnote has been added at the end of section I 

9. "Corpus collosum" -> "corpus callosum"

Thank you 

10. Methods IV.C. - You mention that FAST has to be restricted to cortex as the surface-based methods can only segment 
cortex. In III.B, thalamus and sub-cortex is mentioned for Toblerone. Can you, please, specify that the cortex limitations 
apply only to "RC" and "Neuro" methods, or clarify this otherwise.

This is addressed via the expanded scope of the paper: as we now use Toblerone across the full brain, masking FAST for 
individual structures is no longer an issue, which enables a much fairer comparison to be made between the two. 

11. Please, include also a figure with at least a single axial slice of the resulting segmented maps to allow visual assessment 
of the differences.

See fig 12. 

12. "The significance of this _is_ increases with voxel size."

Thank you 

Reviewer: 2

Comments to the Author
The authors presented a surface-based method for quantifying partial voluming effect in neuroimaging studies. The method 
adopts graphics algorithms to compute the portion of a voxel intersected by a local surface patch. The method was compared 
with variants of two existing surface-based method and a traditional volume-based method in simulated and HCP 
experiments. Results showed indication of the superiority of the proposed method.

As techniques used in Toblerone for estimating partial voluming are standard, focus should be placed on the validation, 
whether the method has the potential to make real impact on current practices. Regarding this, the manuscript could benefit 
from clarifying the following questions.

1. I believe the authors wanted to plot something like 'mean squared error' rather than std of error. Std of error means first 
taking the average of the error and then computing root of mean square modulated by that average.

We now use the metric of RMS voxel error

2. While methods based on resampling (e.g. Neuro2 an RC2) produce constant metrics, authors could still display them in 
the plots as flat lines, because those metrics still indicate the accuracy of those approaches (being invariant to resolution is 
presumably a better property).

These methods are now displayed in fig 5. 

3. It doesn't really justify to omit Neuro1 and Neuro2 in followup analyses as simulation and real data are totally different 
monsters. Furthermore, if the accuracy results (pattern of the curves) of Neuro1,2 are similar to the simulation study, it 
further validates the correctness of Toblerone.

Although it is undoubtedly the case that simulation data and real data are very different, I believe that the difference referred 
to by the reviewer here concerns the question of ‘how well does the simulation represent the features and challenges found in 
real surfaces’. The decision for omitting Neuro from further analysis was made on the basis that it was unable to produce 
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estimates for the simulated surfaces as accurately as the other methods, regardless of whether those simulated surfaces are a 
realistic representation of anatomy or not. A robust surface estimation method should be able to operate well on any surface, 
including those that are not necessarily anatomical. Good performance on such a surface is a prerequisite for good 
performance on anatomical surfaces. Neuro was least able to meet this first criterion. 

4. As also suggested by the authors, the comparison between Toblerone and FAST is ambiguous because the two methods 
start from different stages. I understand this comparison is challenging in general. In the simulation study, is it a good idea to 
start the comparison from simulated MRI images? That is, simulate 3D volume images (with typical noise and artifacts) 
from ground-truth cortical surfaces, then perform 1) FAST; 2) FIRST+Toblerone. This would support the claim that 
Toblerone works better in real life. 

This is something that has been considered at great length. Ultimately, it was decided that simulating T1 images from 
cortical surfaces would be too methodologically challenging: moving from surface to volume (the inverse of the FreeSurfer 
process) would be complicated and would involve some sort of PV estimation tool – exactly what we are trying to evaluate 
here. We have performed a very similar experiment using the BrainWeb MRI simulator which provides us with a direct 
comparison between FAST and FreeSurfer/FIRST + Toblerone in the presence of scanner imperfections (section IV D)

5. What is the 'numerical method' that the authors mentioned to compute ground truth in the simulation? If it is so accurate, 
why not use it as the final PV estimation tool?

The numerical method is now discussed in section IV C. It relies upon the fact that the simulated surfaces are defined by 
analytic functions so we could not use it for real surfaces!

6. Computation resources should be given with "FSL FIRST is around 20 minutes"

Run time is now included. 

7. The validation on the HCP gives really indirect evidence. Is it possible to use phantom studies or clinical repeatability 
studies as other validation approaches?

We have made two major changes to address this point: the use of simulated T1 MRI images and the use of the HCP test-
retest data to investigate repeatability (sections IV D and IV E). 

Typo: IV C "...surround said vertex are connected..."

Thank you 

Reviewer: 3

Comments to the Author
The paper proposes a novel method for estimation of partial volumes: Toblerone which is a new method for estimating PVs 
using surface segmentation. The problem of accurate tissue classification is of wide interest and therefore the paper could be 
a positive contribution. This is an interesting work and the idea is interesting.

Having said that, I think significantly more effort needs to be spend before the paper becomes journal paper. Some, of the 
issues are pointed below.

* Some important citations are missing. e.g. DW Shattuck - 2001 .

Included 

* My main issue with this paper is that all the methods for surface extraction that I know, first use tissue classification, 
partial volume estimation and then surface generation. These methods have been validated and well established and 
validated. Is there any need for another method? Moreover, the problem of errors in tissue classification is generally bias 
field. The bias field in MRI images tends to have a much significant impact than anything else as far as tissue classification 
in concerned. It tends to be severe in 3T and 7T images. The proposed method should be evaluated against conventional 
methods for different field strength images to show that the proposed method has some advantages.

It is important to note that the PV estimation referred to here is within the space of the structural image being used for 
surface generation, which is not necessarily the space in which we would like to perform PVEc. Furthermore, even if surface 
generation methods saved these PV estimates as an extra output, the fact that they are intrinsically tied to the volumetric grid 
of the structural image means that one would still need to resample them to another space to perform PVEc which entails a 
loss of accuracy. By contrast, Toblerone always estimates in the space in which estimates are required. Regarding field non-
uniformity, we hope that the BrainWeb (section IV D) experiments will satisfy this question. 

* The marching cube algorithm for surface extraction uses surface constraints similar to the ones used in the paper. 
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Many surface generation methods do indeed make use of marching cubes. This is to perform the operation of volume data -> 
surface segmentations, whereas what we aim to do here is the inverse: surface -> volume (though in a different space to the 
original volumetric data). In conjunction with the previous point, marching cubes operates within the voxel grid of the 
structural image, whereas in this work we seek to express PVs in arbitrary grids, not necessarily the original grid.  

* One way to validate the proposed method is to check intersession /scanner test -retest studies. For example, acquire a high 
resolution scan, compute PVC. Then downsample the scan, or change bias field or acquire scan with different field strength 
and then show consistency. The existing simulation results show promise but need more work to show that this will be 
useful in practice.

The HCP test-retest data has provided us with a much better analysis than what we had before. 

* Another issue could be that the assumption that a sharp inner cortex and pial cortex exists may not be valid in the first 
place,. Some citations should be added about this.

This is a very valid point but is more appropriately directed at the entire class of surface segmentation methods. 
This work seeks to answer the question of ‘can PVs be estimated from surface segmentations, and are there any 
benefits to doing so’? It is therefore beyond the scope of this work to second-guess the quality of the surfaces, 
though it is undoubtedly the case that any criticism that may be levelled at surface segmentation methods may 
also be levelled at this work.  
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  Abstract—Partial volume effects (PVE) present a source of 
confound for the analysis of functional imaging data. Correction 
for PVE requires estimates of the partial volumes (PVs) present in 
an image. Conventionally these estimates are obtained via 
volumetric segmentation, but such an approach may not be 
accurate for complex structures such as the cortex. An alternative 
is to use surface-based segmentation, which is well-established 
within the literature. Toblerone is a new method for estimating 
PVs using such surfaces. It uses a purely geometric approach that 
considers the intersection between a surface and the voxels of an 
image. In contrast to existing surface-based techniques, Toblerone 
is not restricted to use with any particular structure or modality.  
Evaluation in a neuroimaging context has been performed on 
simulated surfaces, simulated T1-weighted MRI images and 
finally a Human Connectome Project test-retest dataset. A 
comparison has been made to two existing surface-based methods; 
in all analyses Toblerone’s performance either matched or 
surpassed the comparator methods. Evaluation results also show 
that compared to an existing volumetric method (FSL FAST), a 
surface-based approach with Toblerone offers improved 
robustness to scanner noise and field non-uniformity, and better 
inter-session repeatability in brain volume. A surface-based 
approach negates the need to perform resampling (in contrast to 
volumetric methods) which is particularly advantageous for low-
quality data.  

Index Terms—functional imaging, partial volume effect, partial 
volume correction, segmentation, surface 

I. INTRODUCTION 

ARTIAL volume effects (PVE) arise when an imaging 
matrix has low spatial resolution in relation to the structures 

of interest within the image, as is commonly the case for the 
functional imaging techniques, such as positron emission 
tomography (PET), blood oxygen-level dependent fMRI 
(BOLD) and arterial spin labelling (ASL). For example, ASL 
voxels typically have side lengths of 3-4mm whereas the mean 
thickness of the adult cortex is 2.5mm [1]. As such, voxels 
around the cortex will contain a mixture of cortical and non-
cortical tissues, the proportions of which are termed partial 
volumes (PVs). PVE present a source of confound for 
functional imaging: whilst the objective is to obtain a 
measurement of function across some particular structure, the 
signal actually measured in each voxel is a sum, weighted by 
the partial volumes, of function both within and without said 
structure. This is a mixed-source problem in which the multiple 
tissues in each voxel constitute the sources. Partial volume 
correction (PVEc) uses voxel-wise estimates of PVs to separate 
out the signals arising from each tissue. Various PVEc methods 
have been developed, usually with a specific modality in mind 
 

T. F. Kirk (thomas.kirk@eng.ox.ac.uk), M. S. Craig 
(martin.craig@eng.ox.ac.uk) and M. A. Chappell 
(michael.chappell@eng.ox.ac.uk) are at the Institute of Biomedical 
Engineering, Department of Engineering Science, and the Wellcome Centre for 
Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, 
both at the University of Oxford, UK.  

(for example, Muller-Gartner for PET [2] and linear regression 
[3] or spatially-regularised variational Bayes for ASL [4]). 

Estimation of PVs bears considerable similarity to volumetric 
segmentation and the two are typically performed concurrently 
on a structural image, as is demonstrated in [5]. In order to 
estimate PVs within the voxel grid of a functional image, it is 
then necessary to transform the results from the structural voxel 
grid to the functional. As each functional voxel corresponds to 
multiple smaller voxels on the structural image, the PVs of the 
former can be estimated using the results from the latter. The 
efficacy of this approach is limited by the accuracy of the 
volumetric segmentation approach used. For complex 
geometries, such as the thin and highly folded structure of the 
cerebral cortex, the alternative of surface-based segmentation 
has gained widespread support (notably through FreeSurfer 
[6]). The advantage of such a segmentation method is twofold. 
Firstly, whereas volumetric segmentation is necessarily a 
discrete operation in terms of voxels, a surface approach is 
somewhat continuous as the surface vertices are placed with 
subvoxel precision. Secondly, anatomically-informed 
constraints can be enforced anisotropically when surfaces are 
used: for example, the constraint that tissues should be 
homogenous along a surface but heterogeneous across it. This 
is in contrast to a volumetric tool such as FSL FAST [7] which 
does enforce a similar tissue continuity constraint via the use of 
Markov random fields but only isotropically in the 
neighbourhood of each voxel. In principle, it should be possible 
to estimate PVs by considering the geometry of intersection 
between the individual voxels of an image and the surface 
segmentations of individual structures. Being a purely 
geometric construct, namely, given a surface that intersects a 
voxel, what is the volume within the voxel bounded by the 
surface, this is a fundamentally different approach to existing 
methods and it is expected this will be reflected in the estimates 
produced.  

Although surface-based PV estimation tools exist in the 
literature, past efforts have usually been designed with a 
specific modality in mind. Two notable examples for 
neuroimaging are the ribbon-constrained (RC) method used 
within the Human Connectome Project’s (HCP) fMRISurface 
pipeline [8] and PETSurfer [9], [10], a variant of FreeSurfer. 
The former is designed for use with BOLD and so distinguishes 
only between cortex and otherwise, not the grey matter (GM), 
white matter (WM) and non-brain required for ASL and PET; 
whereas the latter is both PET-specific and tightly integrated 
into FreeSurfer such that it is hard to use independently of that 

T. S. Coalson (tsc5yc@mst.edu) is at the Department of Neuroscience, 
Washington University School of Medicine, St Louis, USA. Funding was 
provided by the EPSRC (EP/P012361/1) and (for T. F. Kirk) the Bellhouse 
scholarship at Magdalen College, Oxford. T. S. Coalson was funded by NIH 
Grant R01 MH-060974 (to D. Van Essen). We intend to provide access to the 
data underlying the figures within this paper via a DOI (as per the EPSRC).  
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workflow. Furthermore, both methods deal exclusively with 
surfaces representing the cortex. The objective of this work was 
to develop an algorithm, named Toblerone1, to estimate partial 
volumes for both cortical and subcortical structures (where such 
surfaces are available, for example via FSL FIRST [11]) for 
neuroimaging applications. The end result is highly general and 
could be used with images from multiple modalities and/or in 
other parts of the body.  

II. THEORY 

Voxelisation is the process of quantifying the volume contained 
within a surface and many algorithmic methods are given in the 
computer graphics literature. The key operational step for this 
is determining if a point lies interior or exterior to a given 
surface; by repeating this test entire volumes can be built up. 
The ray intersection test outlined by Nooruddin and Turk [12] 
is widely used and requires only that the surfaces be contiguous 
(water-tight). The test is performed by projecting an infinite ray 
in any direction from the point under test and counting the 
number of intersections made with the surface. A ray from an 
interior point will make an odd number of intersections as it 
exits the surface (including folds within the surface, there will 
be one more point of exit than entry); conversely an exterior 
point will make an even number of intersections (balanced 
entries and exits), if at all. This test scales badly with increasing 
spatial resolution: for a linear resolution of 𝑛 samples per unit 
distance, 𝑛" tests per unit volume are required. Furthermore, as 
each ray must be tested against each surface element, the test 
also scales with surface complexity (linearly for a naïve 
implementation). For a typical functional image of 10% voxels 
and 2.5	x	10% surface elements in a FreeSurfer cortical surface, 
this is prohibitively computationally intensive. 

 
The method adopted in this work is to only use the portion of 
surface that actually intersects a given voxel (termed the ‘local 
patch’) for ray intersection testing. The local patch is defined as 
all triangles that intersect the voxel or, equivalently, the 
minimal set of triangles that unambiguously divides the voxel 
into two regions. This patch is by definition non-contiguous, so 
it is necessary to modify the ray intersection test accordingly; 
the modified form is referred to as the ‘reduced’ test in contrast 
to the ‘classical’ test. Within each voxel, a ‘root point’ that is 
known to lie within the surface is identified via the classical ray 
test. Any other point within the voxel may then be tested by 
 

1 So-named because an early implementation constructed triangular prisms.   

projecting the finite line segment 𝐫 = 𝐩𝐭 + 𝜆(𝐩𝐫 − 𝐩𝐭), where 
𝐩𝐭 is the point under test, 𝐩𝐫 is the root point and 0 ≤ 𝜆 ≤ 1 is 
a distance multiplier along the line. A parity test is then applied 
to the number of intersections identified between the root and 
test points. The fact that the line terminates at a point interior to 
the surface means that exterior points will lead to one more 
point of entry than exit; conversely interior points will lead to 
either zero or an even number of intersections. It is not 
necessary to test surface elements outside the voxel as the finite 
length of the line segment means it can never leave the voxel.   
Fig. 1 provides an illustration of the test in practice.  

In order to minimise the number of tests required per voxel, 
convex hulls (defined as the smallest possible region enclosing 
a set of points within which any two points can be connected 
without leaving the region) are used to estimate partial volumes 
wherever possible. The rationale for this is that if the extrema 
points of a region can be classified as interior/exterior to a 
surface then, to an approximation, all points lying within the 
convex hull of these points will share the same classification.  

III. ALGORITHM 

The following section addresses PV estimation for structures 
within the brain, for which the tissue classes of interest are GM, 
WM and non-brain. The same principles would apply to 
structures in other areas of the body, though the interpretation 
of tissue classes would differ.  

A. Estimation for a single surface 

The core algorithm within Toblerone estimates the voxel-wise 
interior/exterior PVs arising from the intersection of a single 
surface with an arbitrary voxel grid. Toblerone assumes cuboid 
voxels with a ‘boxcar’ point-spread function (PSF), which is to 
say that it does not allow for any mixing of signal between 
voxels. In reality, different modalities have differing PSFs and 
such effects may be separately accounted for via a convolution 
operation. The first step is to identify and record the local 
patches of surface intersecting each voxel of the reference 
image via Moller’s triangle-box overlap test [13].  

 

 
Fig. 1 Reduced ray intersection test for non-contiguous surfaces. The root point 
(interior) is shown in magenta. A ray from an interior point (green) makes two 
intersections due to the presence of a fold; from an exterior point (yellow) there 
is one intersection.  

 
Fig. 2 Intersection of inner (magenta) and outer (green) surfaces of the cortex 
with a voxel. The outer surface intersects twice with distinct patches of surface; 
this is likely due to the presence of a sulcus. Tissue PVs are labelled.   
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The geometry of a surface within a voxel can frequently be 
complex: using a sulcus of the cortex as an example, the surface 
may intersect the voxel multiple times, with the opposite banks 
of the sulcus appearing as two unconnected patches of surface, 
illustrated in fig. 2. Accounting for the many possible 
surface/voxel configurations requires numerous specific tests 
that rapidly become excessively complex, so the approach taken 
in Toblerone is to divide and conquer each voxel as required. 
As the length scale of a voxel decreases, the complexity of the 
local surface configuration within the voxel will also decrease 
(for example, a sulcus is less likely to intersect the voxel 
multiple times). Each voxel of the reference image is therefore 
divided into a number of subvoxels, each of which is processed 
individually. In the neuroimaging context of this work, the 
subdivision factor was set empirically as ceil(𝐯/0.75) where 𝐯 
is the vector of voxel dimensions and 0.75 represents the lower 
limit of feature size found in the brain (in other contexts this 
parameter could be varied). Note that this subdivision factor 
transforms anisotropic voxels into approximately isotropic 
subvoxels. Subvoxels are then processed according to the 
following framework:  

● If the subvoxel does not intersect the surface, it is assigned 
a single-class volume according to an interior/exterior 
classification of its centre. This is illustrated in fig. 3a.  

● If the subvoxel intersects the surface, then it contains 
interior and exterior PVs. One of these will be estimated 
using a convex hull (via the Qhull implementation [14]) if 
the geometry of the surface is favourable, as follows:   

o If the surface intersects entirely through one face of the 
subvoxel, then it encloses a highly convex volume that 
may be reliably estimated. The other partial volume is 

calculated by subtraction from the total subvoxel 
volume. This is illustrated in fig. 3b.  

o If the surface is folded within the subvoxel (identified 
by multiple intersection of the surface along an edge 
or face diagonal of the subvoxel) then the subvoxel is 
subdivided a second time. This is because it is difficult 
to reliably identify which volume is interior or exterior 
in such a situation. This is illustrated in fig. 3c/d.   

o In all other cases, convex hulls are again used. In order 
to minimise the potential error associated with 
estimation of a non-convex volume via convex hulls, 
it is important to identify which of the two PVs within 
the subvoxel is closer to being convex than the other. 
The proxy measure used in this work is the number of 
subvoxel vertices lying on either side of the surface: 
the side with fewer vertices is assumed to enclose a 
more convex (and at any rate smaller) volume than the 
other. This is illustrated in fig. 3e. 

● If the surface intersects the subvoxel multiple times 
(identified by the successful separation of surface nodes 
lying within the subvoxel into unconnected groups) then 
the voxel is subdivided a second time. This situation 
occurs for example when the opposite banks of a sulcus 
pass through a voxel. Although the reduced ray 
intersection test is accurate in such a situation, forming 
convex hulls is not, so subdivision is the safer option. This 
is illustrated in fig. 3f.  

The second subdivision is performed at a constant factor of 5 to 
yield sub-subvoxels of approximately 0.1 to 0.2mm side length 
isotropic. These are always assigned a single-class volume 
based on a classification of their centre points as their small size 

 
Fig. 3 Various subvoxel/surface configurations. a) no intersection: whole-volume assignment; b) single intersection through one face: a small convex hull will be 
formed; c/d) two examples of single intersection, folded surface: further subdivision will be used; e) single intersection through multiple faces: a convex hull will 
be formed; f) multiple surface intersection (unconnected patches of surface, likely a sulcus): further subdivision will be used.  

Commented [TK9]: Changed value in relation to the last 
submission  

Commented [TK10]: Hopefully less ambiguous than before! 

Page 19 of 27



means that any PVE will be negligible. Finally, voxels that do 
not intersect the surface (fully interior or exterior) are given 
single-class volumes according to tests of their centre points. 
Structures defined by a single surface (e.g. the thalamus) 
require no further processing: the estimates produced by the 
aforementioned steps may be used directly for PVEc.  

B. Multiple-surface structures 

Structures that are defined by multiple surfaces require further 
processing to yield PV estimates for all tissues of interest. With 
specific reference to the cortex, PVs within each hemisphere are 
obtained with the relations: 

𝑃𝑉>? = 𝑃@AABC	
𝑃𝑉D? = max(0, 𝑃HIJBC − 𝑃@AABC)	
𝑃𝑉KL = 1 − (𝑃𝑉>? + 𝑃𝑉D?)		

where 𝑃@AABC and 𝑃HIJBC denote the interior/exterior PV 
fractions associated with the inner and outer surfaces of the 
cortex respectively and 𝑃𝑉>?, 𝑃𝑉D? and 𝑃𝑉KL denote the PV 
estimates for WM, GM and non-brain tissue (the latter 
including cerebrospinal fluid, CSF). These equations are 
structured to account for a potential surface defect whereby the 
surfaces of the cortex swap relative position (the inner lying 
exterior to the outer) around the corpus collosum. The structure 
of the above relations (N surfaces leading to N+1 tissue classes) 
could easily be generalised to structures defined by more than 
two surfaces (for example, sublayers of the cortex, as used in 
laminar fMRI). A similar set of equations is used to merge 
hemisphere-specific results to cover the whole cortex, 
accounting for voxels lying on the mid-sagittal plane that 
intersect both hemispheres.  

C. Whole-brain PV estimation  

Toblerone, as outlined above, operates on a structure-by-
structure basis in which the output tissue types are dependent 
on the structure in question. A number of methods utilising the 
core algorithm were implemented:  

1) estimate_structure: estimate the inner and outer PVs 
associated with a structure defined by a single surface 

2) estimate_cortex: estimate the GM, WM and non-brain PVs 
associated with the four surfaces of the cortex (l/r white/pial 
in the FreeSurfer terminology)  

3) estimate_all: a combination of the structure and cortex 
methods above, this estimates PVs for the cortex and all 
subcortical structures identified by FIRST and combines 
them (with the exception of the brain stem) into a single set 
of GM, WM and non-brain PV estimates. The run-time for 
a typical subject was around 25 minutes.  

The combination of FreeSurfer/FIRST and estimate_all 
provides a complete pipeline for obtaining whole-brain PV 
estimates in an arbitrary reference voxel grid from a single T1 
structural image that may be used as a replacement for existing 
volumetric tools such as FAST. There is however a key 

 
2As it is ambiguous as to what tissue lies outside a given subcortical structure 

given only its surface, FAST’s results for the same voxel are used as an estimate 
for the local ratio of WM and CSF. The actual quantity of non-GM tissue is still 

conceptual difference between surface and volumetric methods 
concerning their interpretation of subcortical structures. Due to 
differences in tissue composition around the brain, cortical and 
subcortical GM have different intensities on a normal T1 image 
and are accordingly assigned different GM PVs by volumetric 
tools such as FAST (whereby cortical GM is seen as more 
‘grey’ than subcortical, as illustrated in fig. 12). Surface based 
methods, by contrast, do not take a view on what tissue lies 
within the surface other than simply asserting that it is different 
to that which lies without. When combining the PVs of 
individual structures in Toblerone’s estimate_all function, all 
tissue within the cortex and subcortical structures is interpreted 
as pure GM. The practical implication of this is that Toblerone’s 
estimates for subcortical GM are higher than those produced by 
FAST. For this reason, the conventional GM/WM/CSF tissue 
classes used by volumetric tools may be better thought of within 
Toblerone’s framework as tissue of interest, other tissues and 
non-brain, though for the purposes of this article the familiar 
names GM and WM shall be used alongside non-brain. The 
inherent ambiguity in determining which tissues lie outside 
subcortical structures, which could be either WM or CSF 
depending on their location within the brain, was resolved using 
FAST’s segmentation results2. 

IV. EVALUATION  

Three datasets and three comparator methods were used, as 
summarised in Table I. The two surface-based comparator 
methods were restricted to use in the cortex only. By contrast, 
Toblerone was run on both cortical and subcortical surfaces 
where appropriate to provide whole-brain PV estimates.  

A. Comparator methods 
The first surface-based comparator method, the ribbon-
constrained (RC) algorithm, was developed for use with BOLD 
data in the HCP’s fMRISurface pipeline [8] and is restricted to 
the cortex only. The method assumes vertex correspondence 
between the two surfaces of the cortex and works as follows. 
For each vertex in turn, the outermost edges of the triangles that 
surround said vertex are connected between the two surfaces to 
form a 3D polyhedron representing a small region of cortex. 

calculated from the surface estimate as the remainder 1 – GM, which is then 
shared between the other two classes in this ratio.    

TABLE I 
DATASETS & METHODS USED 

name Simulated 
surfaces BrainWeb HCP test-retest 

type  S V + S V + S 

resolution - 1mm iso. 0.7mm iso. 

size 1 cortical 
hemisphere 

18 simulated 
T1 images 

45 subjects, 
2 sessions each 

ground truth numerical 
method 

volumetric 
segmentation* N/A 

comparator 
methods 

NeuroPVE (S) 
RC (S) 

RC** (S) 
FAST (V) 

RC* (S) 
FAST (V) 

 S surface, V volumetric, RC ribbon-constrained method  
* established via automatic segmentation with manual intervention 
 ** RC can only be run on the cortex for these datasets  
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Nearby voxels are subdivided and the subvoxels centres tested 
to determine if they lie interior to the polyhedron. The 
subdivision factor used in this work was the higher value of 
either ceil(max(𝐯) /	0.4) or 4, where 𝐯 is the vector of voxel 
dimensions. The fraction of subvoxel centres lying within any 
cortical polyhedron gives the cortical GM PV, which, as the 
BOLD signal is predominantly cortical in origin, is the quantity 
of interest for this modality. In order to obtain WM and non-
brain PVs, the following post-processing steps were used. 
Firstly, the unassigned PV of each voxel was calculated as 1 −
𝑃𝑉D?, which was subsequently labelled as either WM or non-
brain according to a signed-distance test of the voxel centre in 
comparison to the cortical mid-surface: for a voxel with centre 
point outside the mid-surface, the unassigned PV was labelled 
as non-brain. A weakness of this approach is that it is unable to 
faithfully capture a voxel in which all three tissues are present; 
only the combinations WM/GM or GM/non-brain are 
permitted. As voxel size increases, the probability of voxels 
containing multiple tissues also increases; testing on a brain 
image of 3mm isotropic resolution showed that around 30% of 
voxels intersecting the cortical ribbon contain three tissues. 
Resampling can be used to mitigate this effect so two variants 
of this method were tested: ‘RC’, direct estimation at each 
resolution, and ‘RC2’, estimation at 1mm followed by 
resampling to other resolutions via the process in section IV.B. 
The run-time for a typical subject was around 15 minutes.  

This second surface method, NeuroPVE [15], uses a 
voxelisation method based on the work of [9,12], applied in a 
brain-specific context and again restricted to the cortex only. 
Multiple expanded and contracted copies of each surface are 
created and the ratio of expanded to contracted surfaces 
intersecting a given voxel is used as a first approximation for 
partial volumes. This ratio is then mapped, along with surface 
orientation information, via trigonometric relations on the unit 
cube into a PV estimate. The estimates produced take discrete 
values according to the number of surfaces used (in this work 
the default of 5). The intended use of this tool was PV 
estimation at structural, not functional, resolution, so two 
variants were tested: ‘Neuro’, direct estimation at arbitrary 
resolutions, and ‘Neuro2’, estimation at structural resolution 
followed by resampling to other resolutions via the process in 
section IV.B. On the basis of NeuroPVE’s results on the 
simulated surfaces, it was excluded from further analysis. As 
the process of surface inflation is slow, the run-time for a typical 
subject was around 12 hours.  

Finally, FSL’s FAST [7] is an established whole-brain 
volumetric segmentation tool that was used as a comparator for 
the surface methods. On both the BrainWeb and HCP test-retest 
datasets, FAST was run on the brain-extracted images at 
structural resolution (1mm and 0.7mm iso. respectively). PVs 
were then obtained at other resolutions via the resampling 
method detailed in section IV.B. The run-time for a typical 
subject was around 5 minutes.  

B. Resampling 

Resampling is an interpolation operation that is used to 
transform volumetric data between voxel grids (in this context, 
from structural to functional resolution). FSL’s applywarp tool 

was used with the -super flag for all resampling operations. This 
works by creating an up-sampled copy of the target voxel grid 
onto which values from the input image are sampled. The 
average is then taken across the voxel neighbourhoods of the 
high-resolution grid (sized according to the up-sampling factor) 
to obtain the result in the target voxel grid. Such an approach is 
appropriate when moving from fine to coarse as each output 
voxel corresponds to multiple input voxels, the individual 
contributions of which should be accounted for to preserve 
overall tissue proportions. When using applywarp a 
transformation matrix between the input and output voxel grids 
must be given as the -premat argument; to denote identity for 
the purposes of this work, the output of the HCP wb_command 
–convert-affine –from-world –to-flirt tool operating on  I4 was 
used as the -premat to correct for a subvoxel shift that arises 
due to FSL coordinate system conventions. Note that for 
perfectly aligned voxel grids with an integer ratio of voxel sizes, 
such as a 1mm and 2mm isotropic grid, this process is 
equivalent to averaging across blocks of the smaller grid (sized 
2x2x2 in this case). 

C. Simulated surfaces 

A pair of concentric surfaces, illustrated fig. 4, were designed 
to capture geometric features relevant to the anatomy of a 
cortical hemisphere. These were produced by modulating the 
radius of a sphere as a function of azimuth 𝜃 and elevation 𝜙 to 
produce sulci and gyri-like features. The radius of the inner 
surface was defined as 

𝑟@A = 60(1 − 0.1max(sinTU 5𝑢 , sinTU 5𝑣)) 

where 60 is the unmodulated radius of the sphere, 0.1 fixes the 
relative depth of sulci, the max function prevents sulci from 
constructively interfering to produce deep wells at points of 
intersection, the power of 20 produces broad gyri and narrow 
sulci, and the substitutions	𝑢 = 𝜙 + 𝜃, 𝑣 = 𝜙 − 𝜃 cause the 
sulci to spiral around the sphere in opposite directions. 
Modulation was restricted to the range −2𝜋/5 ≤ 𝜃 ≤ 2𝜋/5 to 
leave the poles smooth and suppress unrealistic features. The 
outer radius was set at 𝑟HIJ = 1.05 ⋅ 𝑟@A, leading to a peak radial 
distance between surfaces of 3mm. The outermost region was 
taken to represent non-brain tissue, the innermost WM and the 
region in between GM. The use of analytic functions to define 
the surfaces permitted ground truth maps to be calculated using 
a numerical method. Voxels were sampled at 4,096 elements 
per mm3 and the positions of these sample points expressed in 
spherical polar coordinates. By comparing the actual radius of 
each point to the calculated radius of the surface boundaries for 
the same azimuth and elevation, the tissue type of the sample 

 
Fig. 4 a) Simulated surfaces; b) cutaway showing inner (red) and outer (green) 
surfaces. Peak radial distance between the two was 3mm.   
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point within the structure could be determined, and from there 
PVs obtained by aggregating results within voxels. This is 
referred to as the ‘numerical solution’ in the results section. 
Mean surface node spacing was set at 0.85mm, similar to that 
of native FreeSurfer output. Toblerone’s estimate_cortex, 
NeuroPVE and the RC method were used on this dataset. PVs 
were obtained at voxel sizes of 1 to 3mm in steps of 0.2mm 
isotropic.  

D. BrainWeb simulated T1 images  

BrainWeb [16], [17] simulates whole-head T1 images at 1mm 
isotropic resolution with specified levels of random noise and 
field non-uniformity (NU).  Eighteen images were produced to 
cover the available parameter space of noise levels {0, 1, 3, 5, 
7, 9} and NU levels {0, 20, 40} (both quantities in percent). 
These were run through FAST, FIRST and FreeSurfer, after 
which Toblerone’s estimate_all and the RC method (cortex 
only) were used on the output. FAST’s output was also used to 
enable a comparison between surface and volumetric methods. 
PVs were obtained at voxel sizes of 1 to 4mm in steps of 1mm 
isotropic. Although ground truth PV maps exist for this dataset 
(produced by automatic volumetric segmentation of  T1 images 
with manual correction [16]), both surface and volumetric 
methods returned significantly different results to these, raising 
the complicated question of determining which set of results is 
correct. In order to avoid making this judgement, each method 
was instead referenced to its own results on the ideal T1 image 
(0% noise 0% NU) in the 1mm isotropic voxel grid of the 
structural images. The voxel grids associated with each voxel 
size were aligned such that results at 1mm could be used to 
calculate a reference at other sizes (for example, summing 
across 3x3x3 blocks to get a 3mm reference).  

E. Human Connectome Project test-retest data  

This dataset comprises 45 subjects from the main HCP cohort 
who underwent two separate structural scan sessions (mean age 
30.2 years, mean time between sessions 4.8 months). Each 
session was processed using the pipeline in [8] to obtain cortical 
surfaces via FreeSurfer. Separately, the distortion-corrected T1 
images were fed into FAST (brain-extracted) and FIRST 
(whole-head) to produce volumetric segmentations and 
subcortical surfaces. Toblerone’s estimate_all and the RC 
method (for the cortex only) were used on this dataset, as well 
as FAST for a comparison between surface and volumetric 
methods. PVs were obtained at voxel sizes of 1 to 3.8mm in 
steps of 0.4mm isotropic, as well as the native 0.7mm isotropic 
voxel grid of the structural images. Although a ground truth is 
not defined for this dataset, each method’s results from the first 
session were used as a reference for the second session.  

F. Evaluation metrics 

Errors were measured in both a per-voxel (root-mean-square, 
RMS, of individual voxel errors) and aggregate (total tissue 
volume) sense. The former basis is important as PVEc is locally 
sensitive to the PV estimates [18]; the latter basis reflects 
systematic bias at the aggregate level. All error quantities are 
expressed in percent and map directly to PV estimates without 
scaling: for example, a PV estimate of 0.5 against a reference 
value of 0.55 corresponds to an error of -0.05 or -5%. 

A further analysis of voxel-wise differences between Toblerone 
and FAST was performed on the HCP dataset at multiple voxel 
sizes by sorting voxels into 5% width bins according to their 
Toblerone GM PV estimate. The difference (Toblerone – 
FAST) was calculated for each voxel and the mean taken across 
each bin. This quantity was then averaged across subjects and 
sessions (weighted to respect differences in brain volume). 

V. RESULTS 

A. Simulated surfaces 

 
Fig. 5 shows the error in total tissue volume for the simulated 
surfaces. The numerical solution at 1mm was used as the 
reference. Toblerone showed consistency across voxel sizes, 
though with a small negative bias in both tissues. RC estimates 
showed variation in both. The resampling-based methods RC2 
and Neuro2 showed high consistency in WM but less so in GM. 
The numerical solution was stable across voxel sizes. Neuro’s 
results are excluded from this and subsequent graphs for clarity; 
the full results are given in the supplementary material (figs. s5 
and s6). 

 
Fig. 6 shows per-voxel error for the simulated surfaces. Results 
were masked to consider voxels intersecting either surface of 
the cortex as only these contain PVs. Toblerone and RC 
produced the lowest errors at all voxel sizes in GM; in WM only 
Toblerone retained this behaviour. Both resampling-based 

 
Fig. 5 Simulated surfaces: error in total tissue volume. Toblerone showed 
consistency, though with small bias, for both GM and WM. RC1 errors were 
lower for GM than WM. Resampling-based methods (RC2, Neuro2) showed 
particular consistency in WM. [Full results in supplementary, fig. s5] 

 
Fig. 6 Simulated surfaces: per-voxel error. Toblerone and RC produced the 
lowest errors in GM; in WM there was a clear difference to Toblerone. RC2 and 
Neuro2’s errors both decreased with increasing voxel size, with a characteristic 
notch observed at 2mm. [Full results in supplementary, fig. s6] 
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methods (RC2, Neuro2) produced lower errors as voxel size 
increased, and a characteristic notch in their results was 
observed at 2mm. Although RC initially performed better than 
RC2 in WM, the inverse was true above 2mm voxel size.  

B. BrainWeb simulated T1 images 

 
Fig. 7 shows the difference in total tissue volume across the 
brain as a function of noise and NU levels, referenced to each 
method’s results at 0% noise and 0% NU. PV estimates at 1mm 
isotropic voxel size were used for this analysis. RC’s GM result 
was for the cortex only as it cannot process subcortical 
structures. In general, the surface-based methods showed more 
consistency in their estimates across all levels of noise and NU, 
with the notable exception of GM at 40% NU. FAST’s 
consistency was notably better in GM than WM.  

Fig. 8 shows the RMS per-voxel difference in PV estimates at 
3mm voxel size as a function of noise and NU. Each method’s 
1mm results at 0% noise 0% NU were used as the reference. 
Toblerone returned lower RMS voxel differences in both GM 
and WM at all levels of NU and noise except 0% noise 0% NU; 
a pattern that was repeated at other voxel sizes (these are shown 
in supplementary fig. s8).  

 
C. HCP test-retest subjects 

Fig. 9 shows violin plots of inter-session difference (retest 
minus test) in tissue volume across the 45 subjects of the HCP 

dataset. PV estimates at 0.7mm isotropic voxel size were used 
for this analysis. RC’s GM result was for the cortex only. Both 
surface methods gave a tighter distribution than FAST, 
suggesting greater repeatability between sessions. All methods 
showed greater variability in GM than WM. 

 
Fig. 10 shows the mean per-voxel difference between 
Toblerone and FAST’s GM PV estimates as a function of 
Toblerone’s GM PV estimate. Excepting the 0.7mm result, the 
positive slope of each line shows that in voxels with a low 
Toblerone GM PV estimate, FAST was more likely to assign a 
higher value, and vice-versa at high Toblerone GM PV 
estimates. The strength of this relationship decreased with 
increasing voxel size. It should be noted that the 0.7mm result 
is the only one not to make use of resampling (for all others, 
FAST’s 0.7mm estimates were resampled onto the target voxel 
grid).  

 

 
Fig. 7 BrainWeb: difference in total tissue volume referenced to each method’s 
0% noise 0% NU result. Surface-based methods were more consistent at almost 
all noise and NU levels; FAST was more consistent in GM than WM.  
 

 
Fig. 8 BrainWeb: RMS per-voxel differences at 3mm voxel size, referenced to 
each method’s 1mm 0% noise 0% NU results. Toblerone’s differences were 
smaller at almost all levels of noise and NU, as was also the case at other voxel 
sizes. [Results for other voxel sizes are given in supplementary fig. s8] 

 
Fig. 9 HCP test-retest: inter-session (retest minus test) difference in total tissue 
volume. PVs were estimated in the native 0.7mm isotropic space of the 
structural images. RC’s result is for the cortex only. Both surface methods show 
a tighter distribution than FAST.  

 
Fig. 10  HCP test-retest: mean difference between Toblerone and FAST GM 
PVs, sorted into 5% width bins according to Toblerone’s GM PV. As 
Toblerone’s GM PV estimate in a given voxel increases, FAST is more likely 
to assign a smaller value, and vice-versa. The strength of this relationship 
decreases with increasing voxel size. An inverse, but weaker, effect is seen for 
WM (supplementary fig s10). 
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VI. DISCUSSION 

Results from the simulated surfaces showed that Toblerone 
produced estimates with a comparatively low and consistent 
error. Although the RC method was able to perform similarly 
for GM, there was a clear advantage for Toblerone in WM. 
Results from the BrainWeb images suggested that a surface-
based approach (the combination of FreeSurfer/FIRST and 
Toblerone) is more robust to noise and NU than FAST’s 
volumetric approach. Further analysis suggested it is the 
consistency of FAST’s WM estimates that suffers in the 
presence of these scanner imperfections. Finally, results from 
the HCP test-retest dataset showed that the surface-based 
approach provide better inter-session repeatability in total tissue 
volume.  

The use of resampling – unavoidable for all volumetric methods 
that must transform PV estimates from a structural voxel grid 
to a functional voxel grid – degrades data quality in an 
unpredictable and highly localised manner. This chiefly arises 
due to so-called subvoxel effects, which may be illustrated via 
the following 1D example. Consider a row of voxels of size 
1mm that are to be resampled onto 1.4mm voxels. A larger 
voxel overlaps evenly onto two smaller voxels, covering 0.7mm 
of each. The resampled value will be the mean of the two 
smaller, on the implicit and unlikely assumption that the tissues 
within each are evenly distributed. Next, consider a row of 1mm 
voxels that are to be resampled onto 3.4mm voxels, whereby a 
larger voxel overlaps by 0.2, 1, 1, 1 and 0.2mm onto smaller 
voxels. Again, the resampled value will be a weighted mean of 
the smaller voxels, but as the central three voxels are included 
wholly in the new voxel, the spatial distribution of tissues 
within these voxels is irrelevant and the assumption of even 
distribution can safely be made. As the ratio of output voxel size 
to input voxel size increases, the significance of subvoxel 
effects are therefore reduced.  

It is extremely difficult to quantitatively measure the impact of 
resampling, particularly on non-simulated data. To do so would 
require the ability to express some volumetric reference data in 
an arbitrary voxel grid without making use of resampling, 
otherwise a trap of circular reasoning results. Nevertheless, 
such an analysis can be performed using the simulated surfaces 
presented earlier. The key conceptual difference is that the 
ground truth for this dataset is defined by a surface and can 
therefore calculated in any voxel grid without resampling. Fig. 
11 shows the results of resampling ground truth results from the 
numerical method at each resolution to all other resolutions 
above the one in question (for example, the 1.4mm truth was 
resampled to 1.6, 1.8, … etc). At each voxel size, the resampled 
results can be compared to a ground truth that has been 
calculated without the use of resampling. RMS per-voxel error 
was measured using the same mask as before, namely all voxels 
intersecting either surface of the cortex, as only these contain 
PVs. Multiple trends can be seen: firstly, as the input voxel size 
increases, error at all output voxel sizes increases. Secondly, as 
the ratio of output to input voxel size increases, the error 
decreases. Finally, the error falls to zero when this ratio takes 
an integer value. This is due to the use of perfectly aligned voxel 
grids in this work (which would not be the case with patient 

data) and is discussed in section IV.B. This likely explains the 
interesting behaviour observed in various analyses, namely: the 
notches seen in fig. 6, as well as supplementary figs. s5 and s6 
(perfect voxel correspondence means no subvoxel effects); the 
0.7mm result in fig. 10 (for all other sizes, resampling by a non-
integer ratio of voxel size blurs the FAST results, reducing 
image contrast and the number of high GM PV voxels); and the 
lack of error observed in FAST’s GM and WM results at 2, 3 
and 4mm voxel size, 0% noise 0% NU in figs. 8 and s8 (again, 
perfect voxel correspondence with the reference set of 1mm 
estimates). These considerations do not apply to surface-based 
methods as they do not make use of resampling. 

A further advantage of surface-based methods concerns their 
application of transformations. Notwithstanding the fact that 
volumetric methods require resampling to transform data from 
one resolution to another, they also require it to apply a 
registration transformation between the structural voxel grid in 
which PVs are estimated and the functional voxel grid in which 
PVEc is to be performed. Once again, the impact of this upon 
data quality is highly localised and difficult to measure 
quantitatively. It can however be illustrated via the following 
experiment, illustrated in fig. 12. GM PV maps for the 0% noise 
0% NU BrainWeb image were translated by 0.5mm in each of 
the x,y,z axes. For FAST, this translation took the form of an 
affine transformation applied during a resampling operation. 
Significant blurring is seen, particularly around the edges of 
structures where there was previously good edge definition. As 
these edge voxels by definition contain PVs this is a particularly 
undesirable outcome. By contrast, blurring within a structure is 
of little consequence as the tissue is already homogenous. For 
Toblerone, this translation was performed by shifting the 
surfaces into the new reference voxel grid represented by the 
translation and then estimating the PVs afresh with no 
noticeable reduction in edge definition. 

In its native form, the RC method is unable to correctly handle 
voxels in which all three tissue types are present (due to the fact 
that it estimates GM first and then assigns the remainder to 
either WM or non-brain). The impact of this is seen in the 
positive relationship between per-voxel error in WM and voxel 
size in fig. 6. Resampling can help to minimise this error: at 

 
Fig. 11 Simulated surfaces: error induced by resampling the ground truth GM 
PV map, masked to voxels intersecting either surface of the cortex. As the input 
voxel size increases, error increases, but as the ratio output / input voxel size 
increases, error falls. Finally, error falls to zero when the ratio takes an integer 
value.    
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small voxel sizes, the probability of voxels containing three 
tissue types is smaller, so the error is minimised, but this does 
not hold true at larger voxel sizes. Accordingly, as voxel size 
increases, it is increasingly beneficial to obtain PV estimates by 
resampling those from a smaller voxel size. Set against this, 
however, are the aforementioned problems introduced by 
resampling: when the ratio of output to input voxel size is small, 
subvoxel effects are significant and high per-voxel errors result 
(as shown in fig. 6). A threshold voxel value above which 
resampling is beneficial therefore results (at around 2mm in the 
figure). The exact value of this threshold would be difficult to 
predict in the general case (in particular, the use of aligned 
voxel grids in this work is both highly significant and extremely 
unrealistic). By contrast, Toblerone is able to produce 
consistent estimates in all tissue classes at arbitrary voxel sizes 
without the use of resampling.  

We were unable to further analyse the HCP test-retest dataset 
in order to establish where in the brain the differences between 
Toblerone’s and FAST’s estimates arise. As this would require 
extensive use of non-linear registrations and resampling to 
transform all subjects onto a common template, it is likely that 
the artefacts imposed by this process would obscure the true 
methodological differences of interest. Furthermore, an 
analysis on the BrainWeb database would be of limited use as 
this only represents the cortical anatomy of a single subject and 
would therefore ignore population variability. 

VII. CONCLUSION 

Toblerone is a new method for estimating PVs using surface 
segmentations. Unlike existing surface-based tools, it is not 
closely tied to any specific modality or structure and can 
therefore be adapted to multiple use cases (notably, providing 
PV estimates for the whole brain). It is able to operate at 
arbitrary resolutions without recourse to resampling, thereby 
avoiding the highly localised degradation of image quality that 
this process entails. Three datasets have been used to evaluate 
the algorithm. Results from simulated surfaces show 
consistently low errors at both the voxel and aggregate level, 
either matching or surpassing other surface-based methods. 
Results on simulated T1 images from the BrainWeb database 
show that a FreeSurfer/FIRST/Toblerone surface-based 
pipeline used as an alternative to FAST is more robust in the 
presence of random noise and field non-uniformity. Finally, 
results from the HCP test-retest dataset of 45 subjects show that 
the surface-based pipeline produces a tighter distribution of 
inter-session tissue volumes than FAST, suggesting the surface 
approach has greater repeatability. The magnitude of 
methodological differences observed in this work, and related 
conceptual questions concerning the interpretation of 
subcortical tissue between surface and volumetric methods, will 
have implications for the wider process of PVEc.  

 
Fig. 12 Illustration of resampling-induced blurring on the 1mm isotropic GM PV map from the 0% noise 0% NU BrainWeb image. The left column shows the 
original estimates produced by FAST and Toblerone, the right shows the result of a 0.5mm translation along each axis. The left thalamus (red) and right putamen 
(blue) are highlighted in each, showing how surface and volumetric methods differ markedly in their interpretation of subcortical structures (FAST does not regard 
them as pure GM, whereas Toblerone does for the analyses presented in this work).   
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Fig. s6 Simulated surfaces: RMS per-voxel error. Neuro’s results are 
significantly worse than all other methods at all other resolutions, though the 
resampled version (Neuro2) performs better.  

 
Fig. s10 HCP test-retest: mean difference between Toblerone and FAST WM 
PVs, sorted into 5% width bins according to Toblerone’s GM PV. This is the 
analogue of fig. 10, showing a weaker and inverse relationship. 

 
Fig. s5 Simulated surfaces: error in total tissue volume, all methods. The notch  
in the Neuro method at 2mm may arise due to an interplay between the number 
of expanded surfaces created (5) and the voxel size.  

 
Fig. s8 BrainWeb: RMS per-voxel differences at voxel sizes of 1 to 4mm 
isotropic, referenced to each method’s 1mm 0% noise 0% NU results. 
Toblerone’s differences were smaller at almost all levels of noise and NU, the 
exception being 0% noise 0% NU.   

Commented [TK44]: I appreciate this is a complex figure: the 
high dimensionality of the parameter space (noise, non-uniformity, 
method, tissue type and voxel size) does not lend itself well to a 2D 
representation! It is included for completeness with the full 
awareness that reviewers may object to it in the current form. 
Suggestions gratefully received.  
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