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Abstract—To combine the advantages of both model-driven 
and data-driven methods, this paper proposes a model-data-
hybrid-driven (MDHD) method to diagnose open-switch faults in 
power converters. This idea is based on the explicit analytical 
model of converters and the learning capability of artificial neural 
network (ANN). The process of the method is divided into two 
parts: offline model analysis and learning, and online fault 
diagnosis. For both parts, model-driven and data-driven are 
combined. With the model information and data-based learning 
capability,  a fast diagnosis for various operating conditions can be 
achieved without high computation burden, tricky threshold 
selection and complex rulemaking. This can greatly contribute to 
the practical application. The open-switch fault diagnosis in a two-
level three-phase converter is studied for method validation. For 
this converter, an ANN is trained with two input elements, seven 
output elements, and two neurons in the hidden layer. 
Experimental results are given to demonstrate good performance. 

Keywords—artificial neural network (ANN), data-driven, fault 
diagnosis, model-driven, open-switch  

I. INTRODUCTION  

Power converters play key roles as interfaces of controlling 

and transferring power in electrical traction systems, renewable 

energy systems, and other applications.  However, power 

converters are the most vulnerable parts of the integrated power 

systems [1]. To prevent further damage in the systems, fast 

detection and protection of power converters’ faults are of great 

importance and thus have attracted much attention [2].  

In power converters, power switches are most likely to be 

damaged [3]. However, the protection of open-switch faults is 

still far to be a standard feature in applications. Conventional 

methods for diagnosing open-switch faults in converters mainly 

include knowledge-driven and data-driven methods. The 

former is based on the fault analysis of the converter; while in 

the latter, the fault analysis is replaced by machine learning or 

signal processing algorithms because faulty characteristics can 

be extracted from the collected data. 

Knowledge-driven methods can be further divided into 

current signal-based [4,5], voltage signal-based [6,7], and model-

based [8,9]. Voltage signal-based methods can diagnose the fault 

within one switching period; however, extra sampling and 

diagnosis circuits are needed. In contrast, current signal-based 

methods are simple and only require existing signals, however, 

they are more dependent on operation conditions and the 

diagnosis time is long. Model-based methods are based on 
the analytical model, like the average model. The analytical 
model can reflect the fault occurrence in a timely way, 
which is not limited to operating conditions. Therefore, 
model-based methods can achieve fast diagnosis speed and 
apply to various operating conditions, e.g. in both inverter 

mode and rectifier mode. Nevertheless, they are complex in 
rulemaking and threshold selection. 

Data-driven methods are becoming increasingly popular due 

to the development of machine learning (ML) algorithms and 

computing ability. Algorithms such as backpropagation neural 

network [10], support vector machine [11], extreme learning 

machine [12], and random forest [13] have been applied to fault 

diagnosis for power converters. To reduce input elements and 

improve robustness, some statistic algorithms, including fast 

Fourier transformation [14], discrete wavelet transformation [15], 

principal component analysis [16], are adopted to process the 

data and extract features before training. Besides, different 

algorithms can be combined to enhance their capability [17]. 

These data-driven methods do not require modeling, fault 
analysis and rulemaking. However, they usually require 
large amounts of training data and computation. Besides, it 
is difficult to apply these data-driven methods to real-time 
fast fault diagnosis. 

To combine the advantages of both model-driven and data-

driven methods, a model-data-hybrid-driven (MDHD) method 

is proposed. The process of the method is divided into two parts: 

offline model analysis and learning, and online fault diagnosis. 

In the offline part, the fault diagnosis variables, namely the 

ANN inputs, are selected based on the analytical circuit model 

and further optimized by trial-and-error with ANN. Then the 

trained ANN is used online to diagnose the fault. With the 

model information, the ANN can be trained with fewer neurons 

and samples. Besides, fast diagnosis speed can be achieved in 

various operation conditions. On the other hand, complex fault 

analysis, rulemaking and threshold selection are avoided due to 

the learning capability of ANN, which makes the method easy 

to use and suitable for more complicated applications. 

II. PROPOSED MDHD METHOD  

A. Basic Principle 

The process of the proposed MDHD method is depicted in 

Fig.1. The process would be the same for different topology 

applications. The process can be divided into offline model 

analysis and learning (Step1~Step5), and online fault diagnosis 

(Step6~Step7). 

Step 1 (Model-driven): Build analytical models of power 

converters. For different topologies, it is suggested to build the 

circuit model related to the voltages across or connecting power 

devices, because these voltages are directly related to the 

conditions of power devices. Therefore, the models can be 

informative about the faults and react quickly to the fault 

occurrence. 

Step 2 (Model-driven): Get the fault diagnosis variable 

selection pool (x1…xK). All variables in the analytical model are 
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fault diagnosis variable candidates as a selection pool. The final 

diagnosis variables will be optimized in Step 4. 

Step 3 (Data-driven): Get training samples from simulations 

or experiments. 

Step 4 (Data-driven): Optimize diagnosis variables by trial-

and-error. In this step, the fault diagnosis variables are further 

selected by trial-and-error with the collected training samples, 

resulting in the minimum number of required fault diagnosis 

variables. This can help reduce the ANN calculation. It is 

important to note that this step is compounded with Step 5, 

because different kinds of diagnosis variables as the ANN 

inputs chosen from the selection pool should be tried by training 

ANN and the training performances are compared at the end. 

Step 5 (Data-driven): Build the ANN for online fault 

diagnosis. The ANN is trained with collected samples to map 

the relationships between fault diagnosis results and fault 

diagnosis variables.  

Step 6 (Model-driven): Calculate diagnosis variables (x1… xD) 

for ANN inputs. The fault diagnosis variables are calculated 

with analytical models built in Step 1. In this paper, the average 

model is applied. 

Step 7 (Data-driven): Diagnose faults with the trained ANN. 

In this step, the practical real-time values of fault diagnosis 

variables are sent to the ANN. The ANN serves as an online 

expert to diagnose the fault  

 

Fig. 1. Process of the proposed MDHD method. 

The model-driven part of the MDHD method is important 

and beneficial, especially in a more complicated circuit. The 

importance and benefits of the model-driven part can be 

concluded as: 

1) Achieve fast diagnosis speed. The diagnosis variables 

chosen based on the model, eg. ΔVab and ΔVbc in the three-phase 

converter, react quickly to the fault occurrence. Therefore, fast 

diagnosis speed can be achieved. 

2) Reduce inputs of the data-driven part. The model-

driven part can help select the diagnosis variables which are the 

most informative about the fault. Hence the inputs of the data-

driven part can be reduced, thereby reducing the calculation 

burden and training time of ANN. 

3) Simplify the learning process. The fault diagnosis 

variables based on the model are less dependent on operating 

conditions, like load conditions and operating modes. Thus, the 

training samples and the learning process can be simplified. 

The benefits of the data-driven parts are that the rulemaking 

and threshold selection can be automatically made by data 

learning rather than manual complex analysis. This is important 

when circuits are complicated, where the diagnosis rulemaking 

and threshold selection are difficult. 

B. Model-Driven Part 

 

Fig. 2. The grid-tied two-level three-phase converter 

          
(a) PWM modulation                                (b) Simplified circuit. 

Fig. 3. Model analysis of the converter.  

Fig.2 shows a grid-tied two-level three-phase converter. 

Output currents, grid voltages, and DC voltage are sampled for 

control. The driving signal SX (X = A, B, C) is defined as: SX=1, 

the upper switch is on; SX=0, the lower switch is on. 

According to the illustration in Fig.3 and Kirchoff voltage 

law, the continuous model of the converter is given in (1). 
( )

( ) ( ) ( )

( )
( ) ( ) ( )

ab
dc AB f ab

bc
dc BC f bc

di t
V t S t L V t

dt
di t

V t S t L V t
dt


= +


 = +


                        (1) 

Where SAB(t) = SA(t)-SB(t), SBC(t) = SB(t)-SC(t), iab(t) = ia(t)- 
ib(t), ibc(t) = ib(t)- ic(t).   
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However, when open-switch faults occur, the equations in (1) 

are no longer valid. The deviations between the left sides and 

right sides of the equations are defined as 
( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

ab
AB dc AB f ab

bc
BC dc BC f bc

di t
V t V t S t L V t

dt
di t

V t V t S t L V t
dt


 = − −

 = − −


                 (2) 

In practice, signals are normally sampled every switching 

period. The signal x(t) sampled at kth moment tk is marked as x(tk). 

According to the average model introduced in [8], (1) can be 

discretized as 

1 1

1 1

( ) ( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ) ( ( ) ( )) ( )

f
AB k dc k AB k ab k ab k ab k

s

f
BC k dc k BC k bc k bc k bc k

s

L
V t V t d t i t i t V t

T

L
V t V t d t i t i t V t

T

− −

− −


 = − − −


 = − − −



        (3) 

(3) is the analytical model for variable selection in Step 2 and 

calculation in Step 6. 

C.  Data-Driven Part 

a) Fundamentals of ANN 
A particular ML approach used in this study is the 

feedforward ANN. It should be noted other ML algorithms can 

also be applied. ANNs can approximate any given input/output 

data relationship with arbitrary precision [18]. As shown in Fig.4, 

a basic forward ANN comprises an input layer, one or more 

hidden layers, and an output layer. The neuron numbers in input 

and output layers are determined by sample designs while the 

neuron number in hidden layers can be changed [19].   

 

Fig. 4. Feedforward ANN. 

In Layer 1 (input layer), the output of each neuron equals the 

related input data after normalization. Regarding a neuron ℎ𝑖
𝑙 in 

a hidden layer 𝑙, firstly the outputs of all the last-layer neurons 

𝑝𝑗
𝑙−1 (𝑗 = [1. . 𝑁𝑙−1], 𝑁𝑙−1 is the neuron number of Layer 𝑙 − 1) 

are multiplied with given weights 𝜔𝑖𝑗
𝑙  and then the bias 𝑏𝑖

𝑙  is 

added. After that, the result is further processed through an 

activation function 𝑓𝜎  to give the neuron’s output 𝑝𝑖
𝑙  [20]. 

Namely, 

𝑝𝑖
𝑙 = 𝑓𝜎(∑ 𝜔𝑖𝑗

𝑙 𝑝𝑗
𝑙−1𝑁𝑙−1

𝑗=1 + 𝑏𝑖
𝑙), 𝑖 = 1, . . , 𝑁𝑙            (4) 

In the same way, this output becomes one of the inputs for 

the next layer (𝑙 + 1). Finally, the output layer 𝐿 uses the linear 

function to integrate signals of Layer 𝐿 − 1  for the desired 

output 𝑝𝑖
𝐿 . The final output process for the target pattern 

problem will be discussed later. 

TABLE I.  DESIGNED ANN INPUTS AND OUTPUTS 

Input elements ΔVAB(tk), ΔVBC(tk) 

Output elements PFT1, PFT2, PFT3, PFT4, PFT5, PFT6, PNF 

 

b) ANN Training 
Variables in the analytical model in (3), (ΔVAB(tk), 

Vdc(tk)dAB(tk)…Vbc(tk)), are the fault diagnosis variables candidates as 

a selection pool. Inspired by fault analysis in previous literature 

and through trial-and-error with the collected training samples, 

the final fault diagnosis variables (ANN inputs) for the focused 

converter are chosen as in TABLE I. Only two input elements 

(ΔVAB(tk), ΔVBC(tk)) are needed. Six outputs (PFT1~PFT6) stand for 

the conditions of six switches in the two-level converter. The 

7th output (PNF) denotes normal operation. The range of each 

output is set as [0, 1].  

To improve robustness, a counter decision strategy is applied. 

Six counters Ctr1~Ctr6 correspond to six faults FT1~FT6. For 

example, when PFT1>0.8 and PNF<0.2, Ctr1 pluses one. Otherwise, 

Ctr1 resets to zero. Once Ctr1 reaches the threshold Nth, the T1 

fault is confirmed. Selecting threshold Nth is a tradeoff between 

diagnosis speed and robustness. In this paper, Nth is set to 5. 

There are seven patterns: the fault in a sole switch (PFT1~PFT6) 

and normal operation (PNF). Therefore, seven sets of data are 

collected for ANN training. When a switch fault occurs, only 

half period of the operation is affected, during which the faulty 

characteristics are observable. Therefore, the data during the 

affected half period is collected. As shown in Fig.5, 80% of data 

in the affected half period is collected as samples.  

 

Fig. 5. Illustration of training data collection. 

Training samples are collected from simulations in Simulink. 

Specifications of the studied converter are shown in TABLE II. 

For each fault pattern PFT1~PFT6, the samples are collected 

under four operation conditions: inverter mode (IM) 1.8kW, IM 

0.9kW, rectifier mode (RM) 1.8kW, RM 0.9kW. For the normal 

pattern PNF, the collection conditions are: 0kW→IM 

0.9kW→IM 1.8kW→RM 1.8kW→RM 0.9kW→IM 0.2kW. 

The total number of training samples is 2943.  

As the seven ANN outputs are all 0-1 classification, neural 

network pattern recognition (NNPR) application in Matlab is 

used for training which is a dedicated APP for classification 
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learning problems. Different from ANN regression/fitting, 

NNPR training  limits all predictions (𝑝𝑖
𝐿 in the output layer) 

into (0, 1) by the Softmax function for classifications: 

𝜇𝑖 = exp⁡(𝑝𝑖
𝐿) ∑ exp⁡(𝑝𝑖

𝐿)
𝑁𝐿
𝑖=1⁄ .                         (5) 

Therefore, the NNPR generates the probabilities for 7 

elements in the output layer.  

The training can be finished in several seconds due to the 

small number of training samples, which makes it convenient 

for trial-and-error until ANN input elements, structure and 

performance are obtained. Finally, an ANN with a single hidden 

layer is applied using only two neurons as shown in Fig.6. The 

training results are shown in Fig.7. The accuracy is nearly 100%. 

 

Fig. 6. Trained ANN structure in experiments. 

 

  

Fig. 7. Training results. 

TABLE II.  SPECIFICATION OF THE CONVERTER IN EXPERIMENTS 

DC voltage  400V 

Grid Phase voltages(rms) 110V, 50Hz 

Rated power 1.8kW 

Actual filter inductances 9mH, 0.3Ω 

Filter inductances in diagnosis 
11mH, 0.3Ω; 11mH, 

0.3Ω; 7mH, 0.3Ω; 

Switching/Sampling frequency 10kHz 

III. EXPERIMENTAL RESULTS 

Experiments are carried out to validate the proposed method. 

The experiment rig is shown in Fig.8. Particularly, 20% 

variations are added to the filter inductances. This aims to verify 

the robustness of the ANN against parameter variations. 

Experimental results are displayed in Fig.9~Fig.12. It should be 

noted that the voltage and current waveforms are captured from 

oscilloscopes. The ANN output and fault diagnosis waveforms 

are calculated and plotted by MATLAB with signals collected 

from the DSP on the control board. 

 

Fig. 8. Experiment rig. 

Fig.9 shows the experimental result under normal operation 

with random power changes ranging from IM 1.2kW to RM 

1.2kW. The power changes are different from the trained 

conditions. It can be observed that with 20% inductance 

variations and under severe power changes, no false alarm is 

triggered.  

 
Fig. 9. Experimental results under normal operation with power changes. 

Experiments in Fig.10~Fig.12 aim to verify the diagnosis 

performance in various operation conditions. The power is RM 

1.2kW and IM 0.23kW in Fig.10 and Fig.11 respectively. The 

grid voltages in Fig.12 are unbalanced. The faults are triggered 

at t1. Immediately the output PNF changes to 0 and PFT1 to 1. 

Then Ctr1 increases. When Ctr1 reaches Nth, namely 5, the fault 

in T1 is diagnosed.  

The experimental results can be concluded as: 

a) The method is featured with strong robustness against 

power changes and parameter variations, as shown in Fig.9. 
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b) The diagnosis is fast. The fault diagnosis time in Fig.10 

is only  0.5ms (2.5% fundamental period, 5 switching periods). 

c) The method is effective in both inverter and rectifier 

modes, in heavy and light loads, as shown in Fig.10 and Fig.11. 

Besides, it is immune to grid unbalance, as shown in Fig.12. 

 

Fig. 10. Experimental results of T1 fault diagnosis under 1.2kW in rectifier 

mode. 

 

Fig. 11. Experimental results of T1 fault diagnosis under 0.23kW in inverter 

mode. 

IV. COMPARISON WITH UP-TO-DATE METHODS 

The proposed MDHD method is compared briefly with the 

recent model-driven methods [8,9] and data-driven methods [12,17] 

in terms of speed, robustness and complexity. The comparison 

results are given in TABLE III.  

Both the model-driven methods and the proposed MDHD 

method can achieve fast diagnosis speed. The fault can be 

diagnosed within several switching periods. However, the fault 

diagnosis time for the data-driven method can be up to half of 

the fundamental period. All these methods show good 

robustness. The data-driven methods show the highest 

complexity due to heavy training and calculation. The model-

driven methods are more complex in rulemaking and threshold 

selection than the data-driven, especially for more complicated 

circuits. It can be seen the proposed method shows a good 

balance in speed, robustness, and complexity. 

 

TABLE III.  BRIEF COMPARISON WITH UP-TO-DATE METHODS 

Methods Speed Robustness Complexity 

Model-driven [8,9] Fast High Medium 

Data-driven [12,17] Slow High High 

Proposed MDHD Fast High Medium-Low 

 

 

Fig. 12. Experimental results of T1 fault diagnosis under unbalanced grid 

condition in inverter mode. 

 

V. CONCLUSION 

This paper presents a model-data-hybrid-driven open-switch 

faults diagnosis method for two-level three-phase converters. 

Model information and learning capability of ANN are combined 

comprehensively to achieve fast diagnosis with simple 

implementation. For the studied converter, an ANN is designed 

with two input elements, seven output elements, and two 

neurons in the hidden layer. The training samples are collected 

from simulations and the trained ANN is verified by 

experiments. Experimental results show the method is featured 

with strong robustness and fast diagnosis speed (0.5ms, 2.5% 
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fundamental period at the fastest). Fast diagnosis, simple 

computation, and easy training make this method easy to use. 

Moreover, the proposed idea is promising to be applied in more 

complex topologies. The process of the method is the same for 

different topology applications. 
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