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Abstract 1 

Statistical power in cognitive neuroimaging experiments is often very low. Low sample size can reduce 2 

the likelihood of detecting real effects (false negatives) and increase the risk of detecting non-existing 3 

effects by chance (false positives). Here we document our experience of leveraging a relatively 4 

unexplored method of collecting a large sample size for simple electroencephalography (EEG) studies: by 5 

recording EEG in the community during public engagement and outreach events. We collected data 6 

from 346 participants (189 females, age range 6-76 years) over 6 days, totalling 29 hours, at local 7 

science festivals. Alpha activity (6-15 Hz) was filtered from 30 seconds of signal, recorded from a single 8 

electrode placed between the occipital midline (Oz) and inion (Iz) while participants rested with their 9 

eyes closed. A total of 289 good quality datasets were obtained. Using this community-based approach, 10 

we were able to replicate controlled, lab-based findings: IAF increased during childhood, reaching a peak 11 

frequency of 10.28 Hz at 28.1 years old, and slowed again in middle and older age. Total alpha power 12 

decreased linearly, but the aperiodic-adjusted alpha power did not change over the lifespan. Aperiodic 13 

slopes and intercepts were highest in the youngest participants. There were no associations between 14 

these EEG indexes and self-reported fatigue, measured by the Multidimensional Fatigue Inventory. 15 

Finally, we present a set of important considerations for researchers who wish to collect EEG data within 16 

public engagement and outreach environments.  17 
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1. Introduction 18 

Cognitive neuroscience is primarily a laboratory-based endeavour. Although lab-based neuroimaging 19 

experiments are often limited in terms of the ecological validity of the behaviours that are studied 20 

(Ladouce et al., 2017), studying participants within the lab offers numerous benefits to the researcher in 21 

terms of experimental control. For example, environmental and physiological artifact can be minimised 22 

when recording brain activity using electroencephalography (EEG), thereby enhancing the signal-to-23 

noise ratio of the data that is collected. Lab-based studies can also facilitate the application of higher-24 

density electrode arrays, and the completion of long, time-consuming experiments involving many 25 

hundreds, if not thousands, of trials. At a logistical level, much of the hardware used in cognitive 26 

neuroscience is also expensive, fragile, and not portable, and thus researchers may have little choice but 27 

to require participants to visit the lab to answer specific scientific questions. 28 

  29 

However, lab-testing is slower particularly in the case of testing specific populations e.g., children, older 30 

people, or those with certain clinical diagnoses. As a result, the average sample size in EEG experiments 31 

is generally small: Clayson et al., (2019) identified an average sample size of only 21 participants across a 32 

random selection of ERP papers in 5 high-impact cognitive neuroscience journals. This under-33 

recruitment is counterproductive, since small effect sizes are common in cognitive neuroscience and 34 

large numbers of participants are needed to detect them (Ioannidis, 2005). As a result, Button et al. 35 

(2013) estimate that the average statistical power of studies in neuroscience is very low, leading to poor 36 

reliability and reproducibility of the reported findings. Many researchers rely on recruiting from the 37 

locally available pool of undergraduate students, who have low diversity of age, educational attainment, 38 

socio-economic status, race, and ethnicity (Dotson & Duarte, 2020; Henrich et al., 2010). Furthermore, 39 

people with disabilities, neurodiversity, mental health issues and even left-hand dominance are often 40 

excluded as “atypical”, thereby exacerbating the poor representativeness of the research sample 41 

relative to the wider population (Falk et al., 2013). Although many researchers have recently moved 42 

towards collecting data in an online context - either as a conscious choice to improve sample size and 43 

diversity, or as a necessary response to Covid-19 restrictions - this approach is clearly not a feasible 44 

alternative for neuroimaging studies. 45 

  46 

Several initiatives have been implemented over recent years to increase sample size and to improve the 47 

rigour, reproducibility, and representativeness of EEG research. Open databases, such as the NEMAR 48 

gateway (Delorme et al., 2022) and the Healthy Brain Network (Alexander et al., 2017) provide access to 49 
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large, ready-made collections of EEG data that can be re-analysed, thereby reducing or eliminating the 50 

need to record additional data locally. Many journals also now mandate that datasets are made openly 51 

available after a manuscript has been accepted for publication (see White et al., 2020, for a discussion of 52 

the benefits and challenges of data sharing in neuroimaging research). Secondly, large-scale 53 

collaboration networks such as the #EEGManyLabs initiative (Pavlov et al., 2021) and ENIGMA-EEG (Smit 54 

et al., 2021) provide frameworks for multiple, geographically distributed labs to pool participants to 55 

answer scientific questions, including multi-lab replications of seminal studies. Finally, recent 56 

technological advancements in mobile EEG systems have also made it easier to record high quality 57 

electrophysiological data in more ecologically valid environments (Gramann et al., 2011). These mobile 58 

systems should be seen as an important step forward in bringing cognitive neuroscience out of the lab 59 

and into the community, with the potential to also foster improved participant diversity in the data that 60 

is collected. 61 

  62 

One lesser-explored method of collecting large numbers of EEG datasets within the community is via 63 

public engagement and outreach events. In the appropriate environment, a public engagement stall can 64 

engage a considerable number and breadth of people from diverse and often poorly-engaged groups. 65 

The National Co-ordinating Centre for Public Engagement defines public engagement as “the myriad of 66 

ways in which the activity and benefits of higher education and research can be shared with the public”. 67 

In doing so, they rightly emphasise that the main beneficiaries of public engagement activities are the 68 

members of the public and non-researchers who engage with outreach activities. However, the two-way 69 

nature of public engagement is also emphasised in their description: “engagement is by definition a two-70 

way process, involving interaction and listening, with the goal of generating mutual benefit”. One way 71 

that people can engage deeply with research is by being offered the opportunity to take part in real 72 

science experiments. In a commentary in Journal of Neuroscience, Heagerty (2015) discusses the “why, 73 

when and how” of engaging with the public as (cognitive) neuroscientists and emphasises the 74 

importance of sparking dialogue between researchers and non-researchers, rather than seeing the 75 

events purely as knowledge dissemination opportunities. With careful planning, it is possible to achieve 76 

both remits: by engaging the public in discussion with active research scientists, whilst also capitalising 77 

on the opportunity to collect data for scientific projects. 78 

 79 
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Here we present a case study of a recent public engagement project (“Rhythms of the Brain”), where we 80 

aimed to disseminate knowledge about neural oscillations whilst also collecting EEG data to investigate 81 

age-related changes in the individual alpha frequency (IAF) and its possible link to fatigue.  82 

In the healthy brain, groups of neurons fire together rhythmically (“oscillations”), and these oscillations 83 

can be detected using EEG electrodes attached to the scalp. Specific types of oscillations, such as the 84 

alpha rhythm (in the 8-12 Hz range), are strongly associated with vision and attention (Thut et al., 2012). 85 

Both its prominence and relative ease of detection makes the alpha rhythm an ideal candidate within 86 

public engagement contexts. Across the general population, the typical alpha frequency range is around 87 

8-12Hz, although the peak alpha frequency (i.e., the frequency with the highest power) tends to vary 88 

across individuals. Regardless a large variation across participants, individual alpha frequency (IAF) has 89 

been shown in both cross-sectional and longitudinal studies to gradually change throughout the lifespan 90 

(Aurlien et al., 2004; Cellier et al., 2021; Chiang et al., 2011; Cragg et al., 2011; Duffy et al., 1984, 1993; 91 

Freschl et al., 2022; Grandy et al., 2013; Klimesch, 1999; Knyazeva et al., 2018; Marshall et al., 2002).  92 

Peak occipital alpha frequency is typically slower in young children, at around 6 Hz, and peaking at 93 

around 10 Hz in older children and adults (Marshall et al., 2002). The total power of this peak alpha 94 

oscillation has also been shown across many studies to decrease with advancing age, both during 95 

childhood (Tröndle et al., 2022) and into older adulthood (Whitford et al., 2007). This may reflect a 96 

change in white matter integrity and/or loss of grey matter volume throughout the lifespan (Grandy et 97 

al., 2013). However, a more recent analytic approach, of dissociating the periodic from aperiodic EEG 98 

signal, has shown that older adults may simply experience more broadband 1/f ‘noise’ in their visual 99 

systems (Voytek et al., 2015), which may have confounded previous analyses of IAF. In an analysis of 100 

2529 people aged 5-22 years old, Tröndle et al. (2022) found that, after correcting for aperiodic signal, 101 

alpha power may in fact increase rather than decrease during childhood and adolescence, and decrease 102 

between 60-79 years old (Cesnaite et al., 2023). Here we address these questions in a large sample of 103 

participants.   104 

 105 

The second aim of this study was to investigate whether individual alpha frequency, and alpha power, 106 

are linked to self-reported measures of fatigue. It is well established that occipital alpha power increases 107 

dynamically during experiments that involve prolonged time-on-task, probably reflective of reduced 108 

cortical excitability due to the onset of fatigue (Benwell et al., 2019; Craig et al., 2012; Kasten et al., 109 

2016). Identifying an increased alpha power can also be used as a method of detecting (and alerting 110 

individuals to) the onset of transient fatigue in high-risk situations, for example when driving (Schier, 111 
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2000). At present it remains unclear whether alpha power and individual alpha frequency are associated 112 

with more long-term, tonic reports of subjective fatigue. To explore this question, we administered the 113 

Multidimensional Fatigue Inventory (MFI; Smets et al., 1995) to participants as they waited to take part 114 

in the EEG experiment. The MFI questionnaire is used to quantify the subjective ratings of 5 different 115 

fatigue subtypes (general, physical, mental, reduced activity, and reduced motivation) over the 116 

preceding few days, and was analysed by inter-correlating each of the subscales against the EEG 117 

outcome measures.  118 

  119 

In summary, the overarching aim of this study was to replicate well-established findings of age-related 120 

changes in occipital alpha frequency and power during the lifespan within a novel, public engagement 121 

context. Specifically, we aimed to 1) identify whether individual alpha frequency and power change 122 

throughout the lifespan, 2) identify whether individual alpha frequency and power are linked to 123 

subjective ratings of fatigue, and 3) assess the overall feasibility of collecting good-quality data for a 124 

simple EEG experiment within a public engagement setting. An exploratory analysis of the periodic and 125 

aperiodic signal was performed post-hoc, based on the Fitting Oscillations and One-Over-F (FOOOF) 126 

algorithm, which was only available after our first wave of data collection had been completed 127 

(Donoghue et al., 2020).  128 

 129 

  130 

2. Methods 131 

2.1. Participants 132 

A total of 346 participants were recruited (189 female, 156 male, 1 preferred not to say; Figure 1). The 133 

mean age was 29.9 years old (range 6-76 years). We aimed to recruit as many participants as possible 134 

using convenience sampling, but an a priori sample size calculation estimated a minimum sample size of 135 

n = 191 would allow a small Pearson’s correlation of r = 0.2 to be detected between the participant’s age 136 

and their individual alpha frequency, with power = 0.8 and alpha = 0.05. 137 

 138 

Data collection took place over 6 days, totalling 29 hours, as part of 2 organised public engagement 139 

festivals: Explorathon 2019 and Glasgow Science Festival 2022. Four of the six days were spent at the 140 

Riverside Museum, and 2 days at Kelvingrove Art Gallery and Museum in Glasgow, Scotland. Data 141 

collection was expected to be completed in 2020 but was interrupted by the pandemic. The only 142 

inclusion criterion was a minimum age of 6 years old, with no specific exclusion criteria. The study was 143 
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approved by the College of Science & Engineering, and the Medicine, Veterinary and Life Sciences ethics 144 

committees at the University of Glasgow. All participants formally consented using an electronic tick-box 145 

questionnaire, and consent was provided by parents/guardians of children aged under 16 years old.  146 

 147 

Figure 1. Age and gender distribution of all 346 participants. EEG data were collected from 156 males 148 

(indicated by cyan bars) and 189 females (indicated by purple bars) with an average age of 29.9 years.  149 

 150 

2.2. Procedure 151 

Participants approached our public engagement stall (“Rhythms of the Brain”; see photos in 152 

Supplementary Materials) which aimed to engage and educate members of the public on the subject of 153 

neural oscillations. They were also invited to “donate their brain waves” as part of a scientific study 154 

investigating age-related changes in brain waves and consented to having their signal recorded. If 155 

agreed, the EEG electrodes were placed, and they were shown their continuous EEG signal on the laptop 156 

screen, then allowed to explore common artifact e.g., eye blinks, and, finally, shown how their alpha 157 

rhythms change in size when their eyes are closed compared to when they are open.  Each participant 158 

was assigned a unique code, and the data were recorded anonymously, with only age and gender 159 

recorded. At the end of the session, a debrief form was provided with details of how to withdraw their 160 

data if they desired. 161 
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 162 

2.3. Electroencephalography 163 

Two identical BrainVision MR EEG systems were set up, at either end of a table. A single recording 164 

electrode was placed on the scalp at the occipital midline. This was identified visually, as being 165 

approximately 1 cm above the inion, located between electrode locations Iz (inion) and Oz (occipital 166 

midline). SignaGel was used to achieve conductivity between the electrode and the scalp, and the 167 

electrode was held in place using an elasticated fabric headband. The ground and reference electrodes 168 

were attached to the centre midline of the forehead, approximately 2 cm apart, and held in place using 169 

surgical tape. Participants were blindfolded and asked to sit at rest with their eyes closed while the data 170 

were recorded for 30 seconds at a 500 Hz sampling rate with an online filter of 0.3 - 100 Hz. 171 

 172 

The EEG data were analysed offline using MNE-Python. Since the EEG datasets were of varying lengths, 173 

the continuous EEG of all datasets that exceeded 40 seconds were first visually inspected and trimmed 174 

to isolate the cleanest 30 second periods (we had aimed to record around 30 seconds of eyes-closed 175 

data, but some were longer, and these tended to include time periods where the participants were 176 

purposefully eliciting eye blinks etc). The datasets that were between 30-40 seconds were not trimmed 177 

prior to preprocessing. The resultant signals were bandpass filtered between 4-40 Hz then segmented 178 

into 1s epochs. Epochs where the signal exceeded ± 200 µV were removed and the remaining epochs 179 

were recombined into a continuous waveform. The spectra of the recombined epochs were calculated 180 

using the welch function in sciPy (v1.9.3) with a resolution of 0.25 Hz and the following parameters: fs = 181 

500, window = ’hann’, nperseg = 500, nfft= 2000, detrend = false, return_onesided = true, scaling = 182 

’spectrum’, average = ’mean’. The spectra were then decomposed into periodic and aperiodic 183 

components using the FOOOF algorithm (Donoghue et al., 2020). The FOOOF algorithm uses a process 184 

to fit aperiodic and periodic components to measured power spectra by first flattening the spectra with 185 

an initial aperiodic fit, and then identifying peaks in the flattened spectra. The algorithm then uses an 186 

iterative approach to refine the aperiodic and periodic fits to create a full model that represents these 187 

components separately. The parameters that are used by the algorithm to fit the aperiodic component 188 

and identify peaks were set to the following values: peak width limits = [0.5, 12], max number of peaks = 189 

infinite, minimum peak height = 0, peak threshold = 2 standard deviations above the mean, and 190 

aperiodic mode = 'fixed'. A detailed explanation of how each of these parameters are used by the 191 

algorithm, and more comprehensive overview how the FOOOF algorithm works can be found on the 192 

algorithm’s documentation website (https://fooof-tools.github.io/fooof/index.html). Alpha peaks were 193 
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extracted from the range of 6-15 Hz, due to the anticipated slower peak frequency in young children 194 

(Freschl et al., 2022). The total periodic and aperiodic power was obtained by extracting the log(power) 195 

value from the welch-derived spectrum, at the peak alpha frequency that was obtained using the FOOOF 196 

algorithm.  197 

 198 

EEG data was recorded from a total of 329 people (n = 147 in 2019, and n = 182 in 2022). The remaining 199 

17 people who were recruited only completed the MFI questionnaire. Forty participants (12.2%) were 200 

excluded post-hoc for one of two reasons: 1) 30 participants (9.1%) had excessively noisy signal, where 201 

more than 80% of their segments exceeded 200 µV, and 2) 10 participants (3.04%) had no visible peaks 202 

in the 6-15 Hz range. A total of 289 participants (151 female, mean age = 30.1, range = 6-76 years old) 203 

were included in the final EEG analysis. 204 

  205 

2.4. Multidimensional Fatigue Inventory (MFI) 206 

During the first 2 data collection days, participants were also asked to complete the Multidimensional 207 

Fatigue Inventory (MFI; Smets et al., 1995), which is a 20-point questionnaire, taking approximately 5 208 

minutes to complete. Each of the 5 subscales is scored between 4-20 points, with higher scores 209 

indicating higher levels of fatigue. We were interested in correlating trait fatigue levels, as measured by 210 

the MFI, with EEG measures. The MFI was not recorded during the final 4 days of data collection in order 211 

to concentrate our resources around collecting EEG. A total of 101 people (56 female, mean age = 34.91, 212 

range = 7-69) completed both the MFI questionnaire and EEG recording, and a further 17 people 213 

completed only the MFI. Of note, only 3 under 10-year-olds completed the MFI, during which their 214 

parents relayed the questions and confirmed that they were able to understand what was being asked. 215 

                                                                                 216 

3. Results 217 

All of the raw EEG data and analysis scripts that are used in this article are openly available at 218 

https://osf.io/ct2xw/. No withdrawal requests were made following data collection.  219 

 220 

3.1. Electroencephalography 221 

The mean individual alpha frequency was 9.88 Hz (SD = 1.39, range = 6.08 - 14.97 Hz). There was no 222 

linear correlation between age and IAF (r = -.018, 95% CI = [-.1, .13], p = .77; Figure 2A), but the data 223 

were better explained by a loess function which was fit to the data. The peak of the loess curve occurred 224 

at 28.1 years old with an IAF of 10.28 Hz. There was a negative linear relationship between the total 225 
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(unadjusted) alpha power and age, with younger people generally having a higher total alpha power 226 

than older people (Pearson’s r = -.4, 95% CI = [-.49 -.3], p < .0001; Figure 2B). However, there was no 227 

correlation between age and aperiodic-adjusted alpha power (r = -.07, 95% CI = [-.18, .04], p = .23; Figure 228 

2C). Both the aperiodic intercept (r = -.52, 95% CI = [-.61, -.44], p <.0001, Figure 2D) and aperiodic slope 229 

(r = -.39, 95% CI = [-.48, -.28], p < .0001; Figure 2E) were strongly negatively correlated with age. There 230 

were no differences between male and female participants for any of these 5 measures (all p-values > 231 

.078). 232 

 233 

234 

Figure 2. A) Individual alpha peak frequency, B) Total unadjusted alpha power, C) Aperiodic-adjusted 235 

alpha power, D) Intercept of the aperiodic slope, E) Slope of the aperiodic exponent. The shaded 236 

bands represent the standard error.  237 

 238 

The participants were then sorted by age and divided into three bins, each comprising approximately 239 

one third of the total number of participants: Age 6-21 (n = 94), age 22-36 (n = 101) and age 37-76 (n = 240 

94) (Figure 3). Splitting the data into three separate bins allows for further comparisons to be made 241 

between the age groups, beyond the correlations. Specifically, this allows for a direct comparison of the 242 
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periodic and aperiodic parameters in the youngest and oldest participants, and mirrors the analysis 243 

performed in Tröndle et al. (2022). Of note, the age range of the youngest group in our dataset (ages 6-244 

21) is almost identical to the dataset in Tröndle et al. (2022) (5.04-21.9 years old).  245 

Five one-way ANOVAs were then performed, comparing the following 5 EEG outcome measures across 246 

the three age bins:     247 

1) Peak alpha frequency: There was a main effect of age, F(2,286) = 5.85, p = .003. Follow-up t-tests 248 

identified that the middle group (22-36 year olds) had a higher peak frequency than both the 249 

youngest group (6-21 year olds; t(190) = 3.27, p = .0013, d = .47) and the oldest group (37-76 250 

year olds; t(189) = 2.54, p = .012, d = .37).  251 

2) Total (unadjusted) alpha power: There was a main effect of age, F(2,286) = 27.2, p < .0001.  The 252 

youngest group had a higher total alpha power than both the middle group, t(190) = 5.69, p < 253 

.0001, d = .81 and the older adults, t(163) = 7.1, p < .0001, d = 1.04. The middle group also had a 254 

higher power than the older group, t(180) = 2.07, p = .04, d = .3.  255 

3) Aperiodic-adjusted alpha power: There was no effect of age on aperiodic-adjusted alpha power, 256 

F(2,286) = 1.42, p = .24.  257 

4) Aperiodic slope: There was a large main effect of age on the aperiodic slope, F(2,286) = 48.3, p < 258 

.0001. The youngest group had a steeper slope than the middle, t(181) = 8.51, p < .0001, d = 259 

1.23 and the older group, t(185) = 8.14, p < .0001, d = 1.19, but there was no difference in slopes 260 

between the middle and older groups, t(186) = .2, p = .84, d = .03. 261 

5) Aperiodic intercept: There was a large main effect of age on the aperiodic intercept, F(2,286) = 262 

96.5, p < .0001. The youngest group had a larger intercept than the middle group, t(180) = 11.8, 263 

p < .0001, d = 1.7 and the older group, t(186) = 11.9, p < .0001, d = 1.73, but there was no 264 

difference in intercepts between the middle and older groups, t(178) = 1.48, p = .14, d = .21.    265 

 266 
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 267 

 268 

Figure 3. Age-related differences in A) the (aperiodic-adjusted) periodic power spectrum, B) the total 269 

measured power spectrum and C) the aperiodic signal. The dataset was divided into 3 bins 270 

representing the youngest participants in blue (aged 6-21, n = 94), young adults in orange (aged 22-36, 271 

n = 101), and older adults in green (aged 37-76, n = 94). Solid lines represent the mean of each age bin 272 

and shaded areas represent the 95% confidence intervals. 273 

 274 

 3.2. Multidimensional Fatigue Inventory 275 

The mean score for each of the 5 subscales (where no fatigue = 4 and a high degree of fatigue = 20) was: 276 

general fatigue = 11.26, physical fatigue = 9.26, reduced activity = 8.81, reduced motivation = 8.72 and 277 

mental fatigue = 10.46. There were no differences between men and women for any subscale (all t-278 

values < 1.8, p > .074). All 5 subscales were positively correlated with each other, with coefficients 279 

ranging between r = .67 (between general fatigue and physical fatigue) and r = .41 (general fatigue and 280 

reduced activity) (Figure 4). Age was positively correlated only with the physical fatigue subtest (r = .22, 281 

p = .016), but was not correlated with mental fatigue (r = -.07, p = .45), reduced activity (r = -.01, p = .94), 282 

reduced motivation (r = .18, p = .054) or general fatigue (r = .12, p = .18). Neither aperiodic-adjusted 283 

peak alpha power nor IAF were correlated with any of the 5 subscales (all r values < .14 and r < .06, 284 
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respectively). Five separate linear regressions were then performed to assess any interactions between 285 

age and IAF, with one of the five MFI sub-scales as the dependent variable in each model, but no 286 

interaction was identified (minimum p = .35). 287 

                            288 

                                               289 

Figure 4. Correlation matrix of the Pearson’s r coefficients between age, individual alpha frequency, 290 

aperiodic-adjusted alpha power and the 5 MFI subtests. Correlations where p < 0.05 are marked with 291 

an asterisk. The colour spectrum spans from deep blue, representing a strong negative correlation of -292 

1, to deep red, representing a strong positive correlation of 1. 293 

  294 

4. Discussion 295 

We document here our experiences of collecting EEG data, together with questionnaires, within the 296 

context of public engagement events. This approach of bringing cognitive neuroscience research 297 

equipment out of the lab-based environment and into the community, enabled us to recruit a large 298 
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sample of participants (n = 346), across a wide range of ages (6-76 years old) in a remarkably short 299 

period of time (29 hours of testing over 6 days). We confirmed the feasibility of collecting good quality 300 

EEG signals outside of the lab, with data from relatively few participants removed from the final analysis 301 

due to excessive artifact. Importantly, we successfully replicated previous lab-based findings of a non-302 

linear change in peak individual alpha frequency throughout the lifespan (Aurlien et al., 2004; Chiang et 303 

al., 2011; Cragg et al., 2011; Duffy et al., 1984, 1993; Grandy et al., 2013; Klimesch, 1999; Knyazeva et 304 

al., 2018; Marshall et al., 2002). We found that individual alpha frequency reached a peak at 28.1 years 305 

old (10.28 Hz) and was significantly slower in children and in older adults. The power of the peak 306 

individual alpha frequency also appeared to reduce linearly from childhood into older adulthood. 307 

However, this correlation was driven by stronger aperiodic signal in children, and there was no observed 308 

relationship between age and aperiodic-adjusted alpha power. We did not identify any correlations 309 

between the aperiodic-adjusted alpha power and subjective fatigue scores, as measured by the 5 310 

Multidimensional Fatigue Inventory subtests, nor any correlation between the MFI subtests and 311 

individual alpha frequency (performed in a subset of n = 101 participants).   312 

 313 

By decomposing the EEG signal into periodic and aperiodic components (Donoghue et al., 2020), we 314 

were able to dissociate the rhythmic brain activity at the alpha frequency from broad-band non-315 

rhythmic activity within the brain. This is an important distinction, because unadjusted alpha power (i.e., 316 

including aperiodic signal) is likely to reflect a mixture of different physiological processes and may be 317 

misleading when used to link alpha rhythms to specific cognitive states. For example, we were able to 318 

replicate previous findings of a decreased aperiodic slope and intercept with increasing age (Tröndle et 319 

al., 2022; Cellier et al., 2021; Cesnaite et al., 2023; Hill et al., 2022). The markedly steeper slope in our 6-320 

21 year olds (see Fig 3C) relative to both the 22-36 and 37-76 year olds may reflect a higher prevalence 321 

of low-, relative to high-frequency activity in the youngest participants, increased neural “noise” in older 322 

age (McIntosh et al., 2010), and/or developmental changes in skull thickness. Similarly, the decrease in 323 

the aperiodic intercept during the lifespan may also reflect a generalised reduction in neural activity in 324 

older people, although it is important to note that our dataset represents a cross-sectional snapshot of 325 

the population, rather than tracking longitudinal changes at the participant level. We cannot exclude the 326 

possibility that these differences in the slope and intercept may be spurious and related to differences in 327 

drifting eye movements between the groups. We were unable to quantify whether eye movements 328 

were present our datasets due to the lack of EOG channels and a measurement of eye movements 329 

should be an important quality control to include in future studies.  330 
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 331 

These aperiodic changes in the EEG signal are apparently distinct from the age-related non-linear 332 

increase, then decrease, of the peak individual alpha frequency that we observed. The peak alpha 333 

frequency could reflect the speed of sampling of the visual environment (or “temporal resolution”): 334 

Samaha & Postle (2015) found that individuals with higher occipital alpha frequencies were better able 335 

to identify two flashes, presented with short inter-stimulus intervals, as distinct visual stimuli compared 336 

to people with slower individual alpha frequencies. Cecere et al. (2015) present similar results in the 337 

audio-visual domain. It may therefore be that the group-level peak alpha frequency identified at 28.1 338 

years old reflects an optimal functioning of the visual system (although see Buergers & Noppeney (2022) 339 

for evidence against the influence of trait alpha frequency on perceptual sensitivity). Further, in the 340 

absence of repeated, longitudinal recordings to track any shifts in alpha frequency at an individual level 341 

during the lifespan, this hypothesis remains an open issue. 342 

 343 

Our analyses failed to identify a relationship between alpha power and subjective measures of fatigue. 344 

However, this may be related to our choice of questionnaire rather than a lack of relationship between 345 

alpha and fatigue per se. When completing the Multidimensional Fatigue Inventory, participants were 346 

asked to rate their fatigue levels over the preceding few days. In contrast, studies that show a gradual 347 

increase in alpha power during the course of an experiment, by way of reduced alertness and increased 348 

fatigue with prolonged time-on-task, assess changes in arousal on a more granular scale within the order 349 

of minutes (Benwell et al., 2019; Craig et al., 2012; Kasten et al., 2016). The MFI may therefore be an 350 

insensitive measure with which to quantify the type of fatigue that is typically associated with 351 

fluctuations in alpha power, and a measure that is more sensitive to faster fluctuations in alertness may 352 

better reflect the physiological relationship between alpha power and fatigue. Secondly, the overarching 353 

concept of “fatigue” encompasses a range of different physiological states, from physical and mental 354 

sluggishness to a desire to fall asleep. Given its role in alertness and arousal, we anticipated that any 355 

relationship with alpha power would be strongest in the mental fatigue subscale of the MFI (although 356 

this was found to be r = -.07, p = .45), but we also aimed to explore any relationships between alpha 357 

power and the other subscales (general, physical, reduced motivation and reduced activity). We found 358 

no correlations between any of these, with the largest (although small) effect size of r = .18, p = .054 359 

associated with reduced motivation.  360 

 361 
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Given that the recording sessions took place in loud and busy museum environments, we anticipated 362 

that the data would exhibit substantially more noise and artifact than an equivalent dataset recorded in 363 

the lab. However, only a relatively small number of participants were excluded for this reason. To ensure 364 

good quality data, we excluded the participants’ full datasets where the number of noisy segments 365 

exceeded 20% of their total recording and only 30/329 participants (9.1%) were excluded for this 366 

reason. Although this number of exclusions might represent a large proportion, indeed within the range 367 

of the number of the participants who are typically tested within a lab-based experiment (Clayson et al., 368 

2019), in this context where a large sample was tested over a short period of time, it was proportionally 369 

relatively few. We have also shown that it is possible to collect questionnaire data during public 370 

engagement events, alongside electrophysiological data, to investigate relationships between brain-371 

based measures and self-reported outcomes. However, the experimental design must be carefully 372 

considered to fully leverage the opportunities for large-scale data collection that community-based EEG 373 

recording can offer. With restricted time windows for data collection per participant, and an additional 374 

focus on science communication, experiments must be fast, straightforward and simple, possibly using 375 

portable or fully mobile EEG systems.  376 

  377 

In terms of participant recruitment, we used a convenience sampling process for this study, by inviting 378 

everyone who approached our stall to take part. Although we aimed to recruit a representative cross-379 

section of the population aged 6 years and upwards, there were distinct clusters of participants in the 5-380 

12- and 25-35-year-old age ranges, which tended to represent children, accompanied by their parents. 381 

Our stall location within local museums may have contributed to the low number of teenagers taking 382 

part (compared to, for example, within a shopping centre or park), and hosting the stall during the week, 383 

rather than the weekends, might have increased the recruitment of older adults aged 70+. Due to the 384 

constraint of having to sit still with a blindfold for 30 seconds during EEG recording, the minimum age 385 

was set to 6 years old, as it was anticipated that children younger than this would not be able to meet 386 

this requirement. However, a modified experimental design may have enabled us to collect data from 387 

even younger children, assuming that approvals for this had been granted by our local ethics committee. 388 

This would have provided a better estimation of the developmental trajectory of alpha rhythms in the 389 

very youngest children. 390 

  391 

For the sake of simplicity, and to facilitate testing of a large number of people very quickly, we also 392 

decided not to collect additional demographic or clinical information from the participants, other than 393 
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their age and gender.  There was no indication that peak alpha frequency or power differed between 394 

male and female participants in our dataset, although differences between groups in one, or both, of 395 

these measures have been described in previous studies (Cragg et al., 2011; Tröndle et al., 2022). Due to 396 

the open nature of our recruitment process, we may have included participants, by design, whose alpha 397 

oscillations may be classed as “atypical” relative to the healthy population. For example, there are 398 

reports of reduced resting alpha power, resulting in cortical hyperarousal, in people with attention-399 

deficit hyperactivity disorder, schizophrenia and obsessive-compulsive disorder (Newson & Thiagarajan, 400 

2019). Assuming that the appropriate ethical approvals are obtained, more detailed self-reported 401 

clinical information about the individual could be collected within public engagement settings to 402 

quantify these differences and, based on our collection of n = 118 multidimensional fatigue inventory 403 

questionnaires in 2 days of testing, other surveys could be administered to isolate other characteristics 404 

of the participants, such as personality or other mental states. 405 

  406 

Finally, given our experience of collecting data within the community, we have several 407 

recommendations and considerations for researchers who wish to use this approach (see Box): 408 

  409 

Box. Recommendations for community-based EEG recordings 410 

1.    Remember the purpose of public engagement: Good public engagement is as much about the 411 

people, place, methods, aims and impact, as it is about disseminating the results. Its main aim is not 412 

purely to disseminate research findings, nor only to collect data, but is a two-way dialogue between 413 

researchers and non-researchers. Your activity should primarily focus on engaging your audience, 414 

preferably with hands-on tasks (e.g., show them eye blink and muscle artifact from their EEG signal), 415 

and data can be collected around this as a secondary objective. Well-planned activities can 416 

successfully achieve all of these remits. During this study, participants enjoyed seeing their own 417 

brain activity, especially when they could control what appeared on the screen. This generated 418 

further questions and allowed them to connect with our research at a deeper level.  419 

 420 

2.    Ethical approvals and consent: Formal ethical approvals must be granted by a research ethics 421 

committee prior to collecting data from human participants. This extra workload should be factored 422 

into the planning stages of your activity. Each ethics board will provide tailored advice regarding the 423 

level of consent that is required. This may be minimal, depending on the type of data that will be 424 

collected e.g., The British Psychological Society’s Code of Human Research Ethics states that “For de-425 
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identified-at-source, non-sensitive data, consent may usually be considered to have been given by 426 

the act of participation or by ticking a box” (The British Psychological Society, 2021). Specific care 427 

around the issue of informed consent must be taken when collecting data from children and 428 

individuals with communication and/or learning difficulties. Debrief letters can be distributed after 429 

the activity, including the contact details of the researchers, so that the participant’s data can be 430 

rescinded if requested. If any photographs or quotes are recorded from individuals taking part in the 431 

activity, ensure that written consent is obtained and clearly state for what purpose and where these 432 

will be used (e.g., social media, presentations, newsletters etc). 433 

 434 

3.    Where and when will you hold your activity: The time and location of your activity might be 435 

identified by you, or allocated e.g., at a stall during a science fair or festival. These factors are vital in 436 

guiding the activity that you will deliver: Who is your audience at this location? Might there be a 437 

different audience at the weekend compared to weekdays, and in the morning versus the evening? 438 

Is the location loud? Do you have sufficient physical space? Do you need access to power sockets, 439 

chairs, washing facilities to clean electrodes? Might it be so busy that you need extra staff? You may 440 

also be required to carry out a risk assessment of your activity in advance to identify potential 441 

hazards and how you will mitigate them. If working in partnership with a festival, speak with the 442 

event organisers early in their planning cycle about your target audience. Guidance on the delivery 443 

at appropriate events, venues and time slots, should improve the likelihood of engaging with that 444 

group. Data collection over an extended period of time would allow for the identification of under-445 

represented groups and targeting of future activities.   446 

 447 

4.    What is your research question and activity: Simplicity is paramount. Some research questions 448 

clearly cannot be answered by collecting data outside of the lab, but others can be addressed with a 449 

few modifications to the experimental design and setup. Your task should be quick to set up and to 450 

complete, aiming for no more than 5-10 mins per person, or potentially longer if the activity is run 451 

as a workshop-style event. Apply the minimum number of electrodes, and record for the fewest 452 

number of trials and shortest duration needed to inform your research question. At the same time, 453 

bear in mind that reducing the number of electrodes may mean that more care is needed when 454 

planning scalp electrode locations and the location of the ground and reference. With a single 455 

electrode setup, topographical reconstructions are not possible, and eye movement recordings can 456 

be a good compromise to reach a cleaner signal offline. It is best to assume that your participants 457 
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have little to no background knowledge of your research specialty and therefore the instructions for 458 

the task must be easy for your audience to understand, with no scientific jargon. Expect your data to 459 

have substantially more noise and artifact than an equivalent lab-based setup, so ensure that you 460 

have an objective method of quantifying the quality of the data and be prepared to exclude some 461 

participants from analysis. However, the increased availability of participants and the resultant 462 

larger sample size can counteract this.  463 

 464 

5.    What equipment do you need: New-generation mobile recording devices are portable by 465 

design and are well suited for public engagement events. However, standard EEG systems are also 466 

often portable and can be used with care. Research-grade hardware is expensive and fragile, so 467 

ensure that it is secure during transportation, storage and during data collection. Older systems that 468 

have been retired from the lab are ideal for this reason. It is hard to underestimate the impact of 469 

bringing real scientific equipment into a public space as part of the main focus of your activity. 470 

People enjoy ‘playing’ with the equipment that researchers use, since most people have limited (or 471 

no) access to such equipment after leaving school. Therefore, remember to provide a plentiful 472 

supply of consumables e.g., electrodes, connectors, conductive paste, tape, blindfolds etc.  473 

 474 

6.    Who is on your delivery team: Aim to recruit more staff members than you think you need. On 475 

a busy day, capacity can soon be overwhelmed when whole families or groups want to take part. 476 

You may need an additional, fun activity prepared to entertain those who are waiting in the queue, 477 

and someone with good rapport with children can go a long way to easing the pressure. Prior to the 478 

activity, ensure that all team members understand the key messages, they can answer simple 479 

questions about the theme, and/or a team member with more specialist knowledge is available to 480 

continue conversations with interested parties. This is also an excellent opportunity for skill 481 

development and improving employability for students and early career researchers who may not 482 

want to remain in academia.     483 

 484 

7.    Diversity and inclusion: One of the main benefits of bringing cognitive neuroscience out of the 485 

lab and into the “real world” is that it is an opportunity to improve the diversity and 486 

representativeness of your research. Consequently, it is important to ensure that your activity is 487 

accessible to as many people as possible who wish to take part. Consider whether you would be 488 

forced to turn away people wearing a head covering, who use a wheelchair, who have vision or 489 
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hearing impairments, who speak a different language or who are accompanied by small children and 490 

take proactive steps to include everyone who wishes to be involved in your activity. Researchers 491 

should be prepared to demonstrate the activity on another member of the team in these cases, and 492 

should be prepared to provide information in alternative, accessible formats. Demographic data 493 

could also be collected to quantify the improved diversity of your sample.  494 

 495 

8.   Closing the loop: The results of the data collection should be fed back to the participants in 496 

some meaningful way to let them know how their data has been used. This can be done directly, 497 

using a lay summary, if their contact details are retained, indirectly using a social media hashtag or a 498 

dedicated event website, or could form an aspect of your future public engagement activity stall. 499 

We intend to disseminate the results and experiences of this study in a future science festival 500 

engagement stall. Regrettably, people who participate in scientific studies are frequently not 501 

updated on the progress or findings of research studies, although they do feel a sense of ownership 502 

of their data. “Closing the loop” in this way can improve the quality of data that is collected and can 503 

lead to an improved sense of trust between the public and scientific communities (Long et al., 2017; 504 

Purvis et al., 2017). 505 

 506 

9.   Be aware of the limitations: We are keen to emphasise that researchers must carefully reflect 507 

upon the potential limitations of using this approach, and the consequences of these limitations for 508 

the questions that can feasibly be answered. For example, if scalp topographies are important to the 509 

research question, many more electrodes will be required compared to the fast, single-channel 510 

setup that we document here. The inclusion of eye electrodes will also allow for better control of 511 

eye-related artifacts. However, adding more electrodes will increase the preparation time, and will 512 

undoubtedly have a knock-on effect on the number of participants that can be feasibly tested within 513 

the available time frame. In short, although recording data in engagement contexts can potentially 514 

overcome some of the major issues we face in cognitive neuroscience, in terms of low sample size 515 

and poor participant diversity, it is important to be realistic about far this method can go in 516 

improving the field of EEG as a whole.   517 

 518 

[end of box] 519 

 520 
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In conclusion, collecting EEG data during public engagement and outreach events can represent a deep 521 

way of engaging non-scientists by providing an opportunity to become involved in real science 522 

experiments, and meeting researchers who are active in their fields. We have shown that it is feasible to 523 

collect good quality cross-sectional data, with outcomes that are similar to those found in lab-based 524 

studies, and that a large number of people can be tested within a short period of time. We provide 525 

recommendations for other researchers who wish to incorporate EEG data collection into outreach 526 

events regarding the planning and delivery aspects of their public engagement activity. 527 
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