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We present a new class of two-field inflationary attractor models, known as ‘shift-symmetric
orbital inflation’, whose behaviour is strongly multi-field but whose predictions are remarkably close
to those of single-field inflation. In these models, the field space metric and potential are such
that the inflaton trajectory is along an ‘angular’ isometry direction whose ‘radius’ is constant but
arbitrary. As a result, the radial (isocurvature) perturbations away from the trajectory are exactly
massless and they freeze on superhorizon scales. These models are the first exact realization of
the ‘ultra-light isocurvature’ scenario, previously described in the literature, where a combined shift
symmetry emerges between the curvature and isocurvature perturbations and results in primordial
perturbation spectra that are entirely consistent with current observations. Due to the turning
trajectory, the radial perturbation sources the tangential (curvature) perturbation and makes it
grow linearly in time. As a result, only one degree of freedom (i.e. the one from isocurvature
modes) is responsible for the primordial observables at the end of inflation, which yields the same
phenomenology as in single-field inflation. In particular, isocurvature perturbations and local non-
Gaussianity are highly suppressed here, even if the inflationary dynamics is truly multi-field. We
comment on the generalization to models with more than two fields.

I. INTRODUCTION

Single field slow roll inflation is the leading explanation
for the observations through the CMB [1] that primordial
perturbations are very close to Gaussian and adiabatic,
yet embedding it in an ultraviolet complete theory such
as string theory is notoriously difficult. Moduli fields
arising from string compactifications require stabilizing
to realize single field inflation [2], and large field excur-
sions test the validity of using four dimensional effective
theories1.

In the usual understanding, light fields during inflation
may lead to isocurvature perturbations and local non-
Gaussianity tightly constrained by current observations.
However, it has been suggested recently that inflation
with non-stabilized light fields on an axion-dilaton sys-
tem can be compatible with the latest CMB data [6–12].
In particular, it was pointed out in [11] that, when the
perturbations orthogonal to the trajectory are massless
but efficiently coupled to the inflaton, the isocurvature
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1 The recent swampland debate highlights the importance of find-

ing viable scenarios for inflation that are not strictly single-field.
See, for instance, the discussion in [3] as compared to [4, 5]

modes are dynamically suppressed2. This is the “ultra-
light isocurvature” scenario.

In this paper we provide for the first time a family of
exact models of inflation in which the multi-field effects
are significant, but the phenomenology remains similar
to single field inflation. The models combine two ingre-
dients: First, the inflaton trajectory proceeds along an
isometry direction of the field space, so it is Orbital In-
flation in the sense of [13, 14]. This ensures time indepen-
dence of the coupling between the radial and tangential
inflationary perturbations. Second, the trajectory can
have an arbitrary radius (within some range described
below), and a constant radius is proven to be a neu-
trally stable attractor (see Appendix B in Supplemen-
tary Material). Hence, isocurvature perturbations be-
come exactly massless. The two ingredients, combined,
guarantee that the sourcing of the curvature perturbation
is sustained over many e-folds of inflationary expansion.
The action for the perturbations inherits a symmetry be-
tween background solutions that is not manifest in the
potential or in the Lagrangian. We show that, at the end

2 Observational constraints on isocurvature perturbations do not
directly constrain the generation of primordial isocurvature fluc-
tuations during inflation. The existence of isocurvature pertur-
bations in the CMB depends on how inflationary isocurvature
fluctuations decayed during reheating, hence, while inflation-
ary isocurvature perturbations are necessary for the existence
of isocurvature perturbations in the CMB, the absence of the
latter cannot be used to rule out multi-field inflation.
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of inflation, only the isocurvature degree of freedom is
responsible for the generation of primordial observables,
but perturbations still remain adiabatic and Gaussian.
We call this scenario shift-symmetric orbital inflation.

Crucially this scenario provides a new direction to ex-
plore inflation and a potential resolution to some of the
problems faced by the embedding of inflation in string
theory. That is, in the construction of inflationary mod-
els wherein every modulus is stabilized except for the
inflaton, one could be missing less restrictive realizations
of inflation compatible with current observational con-
straints. We set ~ = c = 1 and the reduced Planck mass
Mp ≡ (8πG)−1/2 = 1, where G is Newton’s contant.

II. A TOY MODEL

To illustrate the idea, we first consider the following
Lagrangian in flat field space with polar coordinates (il-
lustrated in Fig. 1)

L =
1

2

[
ρ2(∂θ)2 + (∂ρ)2

]
− 1

2
m2

(
θ2 − 2

3ρ2

)
. (1)

The potential has a monodromy in the angular coordi-
nate, and although it is unbounded at ρ → 0, inflation
only takes place in the physically consistent regime where
V (ρ, θ) > 0. Moreover, as shown in the perturbation
analysis below, our study is restricted to radii that can-
not be too small. Therefore, we only care about the local
form of the potential close to the inflationary trajectory,
which we assume is captured well by (1). In general, it
is difficult to solve the background equations analytically
in such a system. However, this model has the following
exact neutrally stable solutions at any radius (see Fig. 1)

ρ = ρ0, θ̇ = ±
√

2

3

m

ρ20
. (2)

The Friedmann equation becomes H2 = m2θ2/6 on the
attractor, where H is the Hubble parameter, and the first
slow-roll parameter is ε ≡ −Ḣ/H2 = 2

ρ20θ
2 . This trajec-

tory is nongeodesic in field space, with turning effects
that depend on the radius κ of the trajectory. Note that
here κ = ρ0 but, if the field space geometry is curved, κ
will be a more general function of ρ0.

The situation is reminiscent of circular orbits in a
spherically symmetric gravitational field, where the cen-
tripetal force stabilizes the radial direction, and the in-
flaton can circle at any radius with the corresponding
angular velocity. For the field system on the cosmologi-
cal background, only the isometric circular orbits appear,
and we need to break the shift symmetry of θ in the po-
tential to overcome the Hubble friction. We can label
each solution by a continuous parameter c with the cor-
responding map

ρc = ρ0 + c,
(
θ2c
)′

=

(
θ20
)′

(1 + c/κ)2
, (3)

FIG. 1. The toy model potential V (ρ, θ) given in (1) together
with a typical inflationary trajectory indicated with the solid
black line.

where the prime ′ denotes a derivative with respect to
efolds d/dN = d/(Hdt). This transformation identifies
all the trajectories in (2) and hints at the existence of a
shift symmetry for the perturbations. In flat gauge, the
isocurvature perturbation σ is associated with δρ and
the curvature perturbation R with ρ√

2ε
δθ, which equals

1
4ρ

2δ
(
θ2
)

in this toy model. To find the effect of the
transformation on the perturbations, we split ρ = ρ0 + σ

and
(
θ2
)′

=
(
θ20
)′

(1−R′). This allows us to determine
how a small c changes σ and R′. In the long wavelength
limit every transformed set of perturbations (σc,R′c) pro-
vide a new solution to the equations of motion. This is
because homogeneous perturbations map background so-
lutions onto each other. Therefore, we expect the follow-
ing symmetry for linearized perturbations

σ → σ + c, R′ → R′ + 2

κ
c. (4)

Given the shift symmetry of σ, the isocurvature pertur-
bation is expected to be massless and freeze after horizon-
exit. Meanwhile, the symmetry also indicates that R has
a growing solution that is dictated by the constant σ on
superhorizon scales.

To get an intuitive notion of the perturbations behav-
ior, we employ the δN formalism [15–19]. From the Fried-
mann equation and the exact solution (2), the number of
efolds until the end of inflation is N = ρ2θ2/4−1/2. The
curvature perturbation at the end of inflation is

R(k∗) = δN ' 1√
2ε∗

(ρδθ)∗ +
2N∗
κ
δρ∗, (5)

where (ρδθ)∗ and δρ∗ are field fluctuations with typical
amplitude H∗

2π at horizon-exit of the k∗ mode. This yields
the following power spectrum of curvature perturbations

PR(k∗) '
H2
∗

4π2

(
1

2ε∗
+

4N2
∗

κ2

)
. (6)

Here the first contribution has an adiabatic origin, just
like in the single-field models, and the second term corre-
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sponds to the conversion from isocurvature to curvature
modes on superhorizon scales. When the radius of the
trajectory is small enough, namely 8ε∗ � κ2 � 8ε∗N

2
∗ ≈

4N∗, the second term in (6) dominates. Then the fi-
nal power spectrum becomes PR(k∗) ' H2

∗N
2
∗/(π

2κ2),
which is generated by one single degree of freedom – the
isocurvature mode.

III. SHIFT-SYMMETRIC ORBITAL INFLATION

To construct generic models with the above proper-
ties, we begin with an axion-dilaton system in a non-
trivial field manifold (θ, ρ) with kinetic term K =
− 1

2 (f(ρ)∂µθ∂
µθ + ∂µρ∂

µρ). This field space, of curva-

ture R = f2ρ/2f
2 − fρρ/f , arises generically from UV

completions of inflation in quantum gravity or from an
effective field theory (EFT) viewpoint. To realize shift-
symmetric orbital inflation, we assume the inflationary
trajectory to be isometric, i.e. along the θ direction at
any (constant) radius in field space. The potential can
be derived by generalizing the Hamilton-Jacobi formal-
ism [16, 20–22] to a two-field system (See Appendix A in
Supplementary Material). It has the general form

V = 3H2 − 2
H2
θ

f(ρ)
, (7)

where H is a function of θ only, Hθ ≡ dH/dθ and f(ρ) >
0. The model (1) is recovered for H ∝ θ and f(ρ) =
ρ2, corresponding to a flat field space parametrized by
polar coordinates. This non-linear system admits exact
solutions

θ̇ = −2
Hθ

f
, ρ = ρ0. (8)

Thus the inflaton moves in an orbit of constant radius,
as ensured by the Hamilton-Jacobi formalism. As in
the toy model, this trajectory is not along a geodesic.
Here the tangent and normal vectors to the trajectory
are T a = 1/

√
f(1, 0) and N a = (0, 1), and the radius of

the turning trajectory is a constant given by κ = 2f/fρ.
It follows that all these trajectories are neutrally stable:
a small perturbation orthogonal to a given orbital tra-
jectory will bring us to one of the neighbouring trajecto-
ries. The attractor behaviour is explicitly demonstrated
in Appendix B in Supplementary Material.

IV. ANALYSIS OF PERTURBATIONS

In flat gauge, the comoving curvature perturbation
R is defined as the projection of the field perturbation
along the inflationary trajectory R = 1√

2ε
Taδφa, and the

isocurvature perturbation σ corresponds to the orthogo-
nal projection σ = Naδφa. Then for generic multi-field
models, the quadratic action of perturbations takes the

following form [11]

S(2) =
1

2

∫
d4xa3

[
2ε

(
Ṙ − 2H

κ
σ

)2

+ σ̇2 − µ2σ2 + . . .

]
,

(9)

where ellipses stand for the gradient terms −(∂iσ)2 −
2ε(∂iR)2. The interaction between curvature and isocur-

vature modes is given by the term a3(8εH/κ)Ṙσ. To

guarantee perturbative analysis we require that
√

8ε/κ�
1 [11, 23]. The mass of entropy perturbations is defined
as µ2 ≡ VNN + εH2

(
R + 6/κ2

)
, where the first term

is obtained from the standard Hessian of the potential
VNN ≡ N aN b (Vab − ΓcabVc), the second and third terms
correspond to the field space curvature and turning con-
tributions respectively.

For shift-symmetric orbital inflation, we expect the
isocurvature perturbations to be exactly massless, as in
the toy model, and this is confirmed by using (8) to show
µ2 = 0. This implies that the quadratic action (9) has
the combined shift symmetry (4), as in the toy model.
The power spectra of perturbations in the massless limit
can be directly estimated from the coupled evolution of
perturbations [11]. When µ = 0, the linearized system
simplifies in the superhorizon limit, yielding

R′k =
2

κ
σk, σk =

H∗
2π

, (10)

where ∗ denotes evaluation at the time of horizon cross-
ing. That is, on superhorizon scales the isocurvature
perturbation quickly becomes a constant, and it sources
the growth of R. At the end of inflation, the primor-
dial curvature perturbation can be expressed as Rk =
R∗+ 2N∗σk/κ, where the first term is the curvature per-
turbation amplitude at horizon-exit, and the second term
comes from the isocurvature source. Thus these two con-
tributions are uncorrelated with each other, and the di-
mensionless power spectrum for R is given by

PR =
H2
∗

8π2ε∗
(1 + C) , (11)

where C = 8ε∗N
2
∗/κ

2 represents the contribution from
isocurvature modes. This result agrees with the δN cal-
culation for the toy model given in (6). The full calcu-
lation via the in-in formalism gives the same answer up
to subleading corrections [11]. Note that the power spec-
trum is completely determined by the isocurvature per-
turbations if C � 1, which corresponds to trajectories
with a small radius κ or, equivalently, significant turn-
ing effects with 8ε∗ � κ2 � 8ε∗N

2
∗ . Thus at the end

of inflation, curvature perturbations are highly enhanced
compared to the ones at horizon-exit. Meanwhile, the
isocurvature power spectrum for S ≡ σ/

√
2ε remains un-

changed as PS =
H2
∗

8π2ε∗
. Therefore, the amplitude of the

isocurvature perturbation is dynamically suppressed, i.e.
PS/PR ' 1/C � 1. The details of how PS 6= 0 can gen-
erate isocurvature components in the CMB are rather
model-dependent, and one cannot automatically claim
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that a suppressed ratio PS/PR is compatible with obser-
vations. However, if R and S contributed similarly to
the curvature and isocurvature components in the CMB,
the result is compatible with current constraints.

V. PHENOMENOLOGY

We now turn to the observational predictions of shift-
symmetric orbital inflation. For any positive C, from
(11), the tensor-to-scalar ratio can be expressed as r =
16ε∗/(1 + C), and the scalar spectral index is ns − 1 ≡
d lnPR
d ln k = −2ε∗ − η∗ + (dC/dN)/(1 + C), where we used

d ln k = dN . Note that ∂N∗
∂N = −1, since N∗ counts

the number of efolds backwards. These predictions de-
pend on the function H(θ). As in single field inflation,
this function determines how slow-roll parameters ε and
η ≡ ε′/ε scale with N∗.

For concreteness, we consider models with H ∼ θp.
Solving (8) for θ(N) yields3 ε∗ ' p/(2N∗) and η∗ ' 1/N∗.
The predictions for ns and r are therefore well approxi-
mated by

ns−1 ' −p+ 1

N∗
− 4p

κ2 + 4pN∗
, r ' 8pκ2

N∗κ2 + 4pN2
∗
. (12)

We plot these results against the Planck 1σ and 2σ con-
tours [1] in Fig. 2. N∗ is taken to be between 50 and 60,
and the radius κ2 varies between 1 and 105. The purple
region is for p = 1, corresponding to the toy model (1),
and we also show the predictions for p = 0.5 (red region),
p = 0.2 (yellow region) and p = 0.1 (green region).

3 We note that for 0 < p < 1 this toy model is not well defined
as θ → 0, as can be seen in (7). This is not a problem as
the inflationary period we are interested in occurs before that
point is reached. The true underlying potential would have to
be completed in some way. This is similar to the case with say
axion monodromy.
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0.00
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0.20

FIG. 2. The analytical predictions (12) for (ns, r) com-
pared to the Planck 1σ and 2σ contours [1]. We show
the predictions for wavenumbers which cross the horizon
50 − 60 efolds before the end of inflation. The predictions
for ns− r depend on the value of κ ∈ [1, 1000], where the val-
ues (1, 2, 4, 8, 16, 32, 64, 128, 256) are depicted with thick lines
(from bottom to top).

Notice that ns and r only depend on the value of κ and
are therefore insensitive to the details of the field met-
ric. When κ→∞ one recovers the predictions of chaotic
inflation with V ∝ φ2p. Meanwhile as κ decreases, pre-
dictions are pushed downwards and to the left in this
ns − r diagram. Therefore, in the case of power-law po-
tentials only for small p do the predictions remain within
the Planck contours. The interesting regime here is still
the case with significant turning (small κ or C � 1),

where the final power spectrum PR ' H2
∗N

2
∗

π2κ2 mainly has
an isocurvature origin. Then the tensor-to-scalar ratio is
given by r = 2κ2/N2

∗ = 16ε∗/C, which is suppressed. The
spectral index reduces to ns − 1 = −(p + 2)/N∗ which,
for small p, lies in the sweet spot ns = 0.9649± 0.0042.

Another important observable is primordial non-
Gaussianity, which is currently bounded by Planck
through f locNL = 0.8 ± 5 [24]. There are examples in the
literature of how O(1) local non-Gaussianity can arise in
multi-field models, especially when the coupling between
isocurvature and curvature modes is large [25–28] - see
[29] for a review. There are also examples of how small
levels of non-Gaussianity can arise in multifield models
[30–32]. However, in most cases a detailed analytic un-
derstanding of the size of the non-Gaussianity is lacking
because the associated dynamics is non-linear and com-
plicated. This is not the case in shift-symmetric orbital
inflation, where we find that we can both easily satisfy
the Planck constraint and crucially understand its ori-
gin analytically. The amplitude of local non-Gaussianity
can be determined using the δN formalism. In a generic
multi-field inflation model with curved field manifold,
we have f locNL = 5

6G
abGcdNaNcNbd/(G

abNaNb)
2 [25, 33],

where Gab = diag{f(ρ), 1} is the field space metric, Na
and Nab are derivatives of N with respect to the fields
(θ, ρ). To gain some analytical understanding, here we
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still focus on models with H ∼ θp, where N can be ex-
pressed as N = f(ρ)θ2/4p− p/2. The amplitude of local
non-Gaussianity then follows

f locNL =
5

12
η∗

[
1− C2

(1 + C)2
κ2R

2

]
, (13)

where we used the relation C = 2p2/(ε∗κ
2). When κ →

∞, we have C → 0 and C2κ2 → 0. Thus the second term
in (13) vanishes, which leads to the single field result
f locNL = 5η∗/12 as expected. The enhancement of non-
Gaussianity is possible in the intermediate regime C ∼
O(1), where the transfer from isocurvature to adiabatic
modes is inefficient. In that case, f locNL ∼ −5pR/12 can
be large if the field space is highly curved.

For the interesting regime with C � 1, the δN ex-
pansion is dominated by Nρ and Nρρ. This then leads to
what, at first sight, appears as the counterintuitive result
that f locNL is negligible and slow-roll suppressed

f locNL '
5

6

Nρρ
N2
ρ

=
5

12
η∗

(
1− κ2R

2

)
. (14)

This is the same as happened in the calculation of the
power spectrum: the contribution to the curvature per-
turbation sourced by the isocurvature modes dominates
the final result. The bispectrum is found to be slow-roll
suppressed, just like in single field inflation, but there are
small corrections from the field space curvature, which vi-
olates Maldacena’s consistency relation [34, 35]. We have
recently confirmed this result via a scaling symmetry ap-
proach in [36].

VI. DISCUSSIONS

We have proposed a class of multi-field inflationary
models that demonstrate a new type of attractor trajec-
tory along the isometry direction in field space. Here the
isocurvature modes become massless and freeze on super-
horizon scales. Moreover, when the turning effects be-
come significant, the curvature perturbations keep grow-
ing after horizon-exit and thus isocurvature modes are
dynamically suppressed. As a consequence, these multi-
field models yield the single-field-like phenomenology fa-
vored by observations.

Additional isocurvature perturbations will either decay
if they are massive or freeze if they are light. Therefore,
although our computations were done in a simple two-
field setting, we expect the conclusions will continue to
hold in multi-field extensions with more than two fields,
provided that the number of additional light isocurvature
fields is not too large.

We have shown and explained how in shift-symmetric
orbital inflation, a negligible amount of local non-
Gaussianity is produced. Here the isocurvature degree
of freedom can be the dominant contribution to the bis-
pectrum, but in such cases fNL is slow-roll suppressed.
This result teaches us a generic lesson: that in multi-
field models, even if the isocurvature-to-adiabatic con-
version is very efficient, the resulting non-Gaussianity can
still be suppressed. A large coupling between curvature
and isocurvature modes enhances the transfer of non-
Gaussianity, but for this transfer to generate large non-
Gaussianity, one needs sizable self-interactions affecting
the isocurvature field during horizon crossing [23, 28].
In this class of scenarios, however, the shift symmetry
along the radial direction (4) has a role in suppressing
the self-interactions of the isocurvature field (see [36]).
Therefore, it is perfectly fine to study multi-field models
with significant and sustained turning trajectories, with-
out worrying about generating large non-Gaussianity.

Our model has important implications on the realiza-
tion of inflation in UV-complete theories. Contrary to
what is usually assumed, and as emphasized in [11], it
is not always necessary to stabilize all compactification
moduli, or to have a large mass hierarchy between the
inflaton and other fields. The suppression of isocurva-
ture perturbations and non-Gaussianity has the common
origin in shift-symmetric orbital inflation. From an EFT
point of view this can be traced back to the effect of
derivative interactions among the curvature and isocur-
vature perturbations that are absent in single-field infla-
tion. These are unavoidable on curved trajectories and
curved field spaces and, therefore, ubiquitous in string
compactifications.
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