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Abstract10

Label Distribution Learning (LDL) is a general learning framework that assigns

an instance to a distribution over a set of labels rather than to a single label or

multiple labels. Current LDL methods have proven their effectiveness in many

real-life machine learning applications. However, LDL is a generalization of the

classification task and as such it is exposed to the same problems as standard15

classification algorithms, including class-imbalanced, noise, overlapping or ir-

regularities. The purpose of this paper is to mitigate these effects by using

decomposition strategies. The technique devised, called Decomposition-Fusion

for LDL (DF-LDL), is based on one of the most renowned strategy in decom-

position: the One-vs-One scheme, which we adapt to be able to deal with LDL20

datasets. In addition, we propose a competent fusion method that allows us

to discard non-competent classifiers when their output is probably not of in-

terest. The effectiveness of the proposed DF-LDL method is verified on several

real-world LDL datasets on which we have carried out two types of experiments.

First, comparing our proposal with the base learners and, second, comparing our25

proposal with the state-of-the-art LDL algorithms. DF-LDL shows significant

improvements in both experiments.
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1. Introduction

A supervised learning process is the machine learning task of training a

predictive model using data points with known outputs. Classification is the

problem of identifying to which of a set of categories a new observation belongs.

Hence, the aim of classification is to obtain a model that will be able to assign35

the correct class to an unknown pattern. However, there is a growing number of

problems in which a pattern can have several labels simultaneously associated.

Examples are found in image classification [1] or genetics [2], etc. Multi-Label

Learning (MLL) [3, 4, 5, 6] is a generalization of the traditional classification

where multiple labels may be assigned to each instance.40

Nevertheless, in many real-world problems we can find cases in which MLL

is still not sufficient since the level of description of each label is not the same.

To name just one example from the datasets used in this paper, the biological

experiments on the yeast genes [7] over a period of time result in different levels

of gene expression in a time series. The precise degree of expression at each45

point in time is of minor significance. What is really crucial is the distribution

of the overall expression over the entire period of time. If the learning task

is to predict that distribution for a given gene, it can hardly fit into the MLL

framework because the role of the individual output in the distribution is crucial,

and there is no partitioning of relevant and irrelevant labels at all.50

The Label Distribution Learning (LDL) concept appeared for first time in

2013 [8] and was formally described in 2016 [9] in order to deal with ambiguity

on the label side of the mapping when one instance is not necessarily mapped to

one single label. The aim of this paradigm is to answer the question “how much

does each label describe the instance?” instead of “which label can describe the55

instance?”.
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From the first formulation of the LDL problem, numerous studies have

been carried out applying the LDL methodology to various real life problem

solving situations, e.g.: sense beauty recognition [10], facial age estimation

[8], personality recognition on social media [11], image emotion classification60

[12], pre-release prediction of crowd opinion on movies [13], crowd counting in

public video surveillance [14], head pose estimation [15], etc. Other studies

have focused more on developing new learners or on adapting existing learners

such as: instance-based algorithms (e.g., AA-kNN [9]), optimization algorithms

(e.g., SA-IIS, SA-BFGS [9] or LDL-SCL [16]), decision trees (e.g., LDL forests65

[17]), deep learning algorithms (e.g., Deep Label Distribution [18]), or ensembles

strategies (e.g., Logistic boosting regression for LDL [19], Structured random

forest for LDL [20]).

LDL is a generalization of the classification task [21] and as a result is vul-

nerable to the same problems as conventional classification algorithms: imbal-70

anced datasets [22], when there is a disproportion in the number of examples of

the different classes; noisy data [23], because of imperfections in data acquisi-

tion, transmission or storage; overlapping [24], when the input features are not

sufficient to correctly differentiate among instances of different classes; or irreg-

ularities [25], situations where the distribution of data points, the sampling of75

the data space to generate the training set, and the characteristics that describe

each data point deviate from what might have been ideal, being biased, skewed,

incomplete and/or misleading.

Over the last years, decomposition strategies for addressing classification

problems have been widely studied in the literature [26]. The same underlying80

idea is behind all proposals for decomposition: to solve a multi-class problem

using binary classifiers. Decomposition strategies have proven to be efficient in

dealing with the difficulties presented above and that is why, in this paper, we

propose a decomposition algorithm adapted to LDL restrictions. The devised

technique is inspired by one of the most renowned strategies in decomposition:85

the One-vs-One (OVO) [27] scheme, where the original problem is divided into

binary problems that distinguish between the different pairs of classes, every
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single division will be trained with a base classifier. This method usually requires

an additional step to fuse the outputs from single classifiers in order to produce

the final result.90

We design a decomposition strategy that can handle label distribution, ca-

pable of dealing with real values instead of multi-class outputs. While OVO

uses a binary classifier as base learner (the learning algorithm used for solving

binary problems), in our proposal we will rather rely on a specific LDL learner.

In addition to these, we also propose a fusion method, capable of providing an95

output according to the LDL constraints, and that also will allow us to discard

non-competent classifiers when their output is probably not of interest.

Decomposition-Fusion for LDL, from now DF-LDL, is our decomposition

proposal for LDL type problems. In order to evaluate the proposal proficiency,

we will carry out two types of experiments: on the one hand we will compare100

the results obtained by the base learners with our DF-LDL algorithm using the

same learner as base classifier and, on the other hand, we will compare our

proposal with the state-of-the-art LDL algorithms, measuring in all cases six

aspects of their performance. We will repeat the experiment over 17 real-world

datasets and validate the results of the empirical comparisons using Wilcoxon,105

Friedman rank and Bayesian Sign tests [28, 29].

In summary, the main contributions of this paper are:

• A decomposition strategy to handle LDL problems.

• A fusion method custom-designed to provide an output compliant with

LDL restrictions and that also allows to exclude non-competent classifiers.110

• From a technical point of view, the proposed solution could be imple-

mented in a very fast way taking advantage of any existing LDL learner.

The rest of the paper is organized as follows. First, a brief review and dis-

cussion of the foundations of LDL and decomposition strategies for classification

are given in Section 2. The proposed Decomposition-Fusion for LDL method is115

described in Section 3. Then the details of the experiments are reported in Sec-
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tion 4. Finally, the results and conclusions are drawn in Section 5 and Section

6, respectively.

2. Preliminaries

In this section, the foundations, as well as the most relevant studies carried120

out on LDL (Section 2.1), are presented. Furthermore, some basic concepts on

decomposition strategies for classification are introduced (Section 2.2), provid-

ing the necessary background required to properly present the study carried out

in this paper. We will conclude this section by explaining the motivations for

applying decomposition strategies to LDL-type problems.125

2.1. Foundations of Label Distribution Learning

We can formalize an LDL problem as a set of m training samples S =

{(x1, D1), ..., (xm, Dm)}, where xi = {xi1, xi2, ..., xiq} is a q-dimensional vector.

For each instance xi, the label distribution is denoted by Di = {dy1
xi
, dy2

xi
, ..., dyc

xi
}

where yi ∈ Y |i ∈ {i, · · · , c}, such that Y = {y1, · · · , yc} denotes the complete130

set of labels. The constant c is the number of possible labels and d
yj
xi is the

description degree of the particular j th label yj for a particular ith instance xi.

According to the definition, each description degree should meet the constraints

dyx ∈ [0, 1] and
∑c

y=1 d
y
x = 1.

Solving an LDL problem can be approached from different perspectives.135

Depending on the approach chosen, the algorithm to be developed will vary

considerably, either a completely new algorithm developed specifically to deal

with LDL constraints, or an adaptation of existing classification algorithms,

reformulated to work with these constraints. The LDL study published in [9]

proposed six algorithms classified in three categories. The first one is Problem140

Transformation (PT), a straightforward way to transform an LDL problem into

a Single-Label Learning or SLL [30] problem is to change the training exam-

ples into weighted single-label examples. In this way, any SLL algorithm can

be applied. Two representative algorithms are PT-Bayes and PT-SVM. The
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second one is Algorithm Adaptation (AA), where algorithms are adapted to145

existing learning algorithms to deal directly with the label distribution. Two

suitable algorithms were presented: AA-kNN, an adaptation of the well-known

k -nearest neighbors method [31], and AA-BP, a tree-layer backpropagation neu-

ral network. Finally, Specialized Algorithms (SAs), unlike the indirect strategy

of problem transformation and algorithm adaptation, match directly the LDL150

problem. SA-IIS and SA-BFGS are two specialized algorithms that learn by

optimizing an energy function based on the maximum entropy model.

Further studies have succeeded in improving the results obtained by these

original algorithms using different strategies. The methods LDLogitBoost and

AOSO-LDLogitBoost proposed in [19], are a combination of the boosting method155

and the logistic regression applied to LDL model. Deep label distribution learn-

ing (DLDL) [18] and Label Distribution Learning Based on ensemble neural

networks [32] are two good examples of success applying neural networks on

LDL. Inspired by differentiable decision trees [33], an end-to-end strategy LDL

forests proposed in [17] which served as the basis for Structured Random For-160

est (StructRF) [20]. BC-LDL [34] and DBC-LDL [35] use the binary coding

techniques to deal with the large-scale LDL problem. Classification with LDL

(LDL4C) [21] is another interesting proposition when learned label distribution

model is generally treated as a classification model. Feature selection on LDL

[36, 37] shows promising results by applying selection of characteristics on label165

distribution problems.

2.2. Decomposition Strategies for Classification

Decomposition strategies for addressing multi-class problems have been widely

studied in the literature [38]. The same underlying idea is behind all proposals

for decomposition: to solve a multi-class problem using binary classifiers. Fol-170

lowing the “divide and rule” paradigm, the problem of multiple classes is divided

into simpler binary classification problems. However, this method needs an ad-

ditional step because of the simplification of the base classifiers: their outputs

must be recombined to obtain the final result. How this aggregation is carried
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out is crucial to the quality of the final result. An exhaustive comparison of175

decomposition strategies and aggregation methods can be found in [38].

The most common decomposition strategies are One-vs-All (OVA) [39] and

One-vs-One (OVO) [27], which can be included within Error Correcting Output

Codes (ECOC) framework [40]. The first learns a binary classifier to discern be-

tween each pair of classes, while the second builds a binary classifier to separate180

each class from all the other classes.

The One-vs-All (OVA) [39] approach consists in dividing the multiple c class

problem into binary c classification problems. Each binary classifier is faced up

by a binary classifier which is responsible of distinguishing one of the classes from

all other classes. The training phase of each classifier is carried out using the185

complete training set, considering as positive the samples of the single class and

as negative all other samples. In the validation phase, the example is classified

using each of the binary classifiers. The classifier that obtains a positive output

will show the output class. Note that the output may not be unique and in these

cases some sort of tiebreaker mechanism must be used. For example, we can190

calculate the confidence of each classifier to decide the final output by predicting

the class from the classifier with the highest confidence.

The One-vs-One (OVO) [27] decomposition scheme divides a problem of c

classes into c(c− 1)/2 binary problems. Each problem is addressed by a binary

classifier that distinguishes between the different pairs of classes. The learning195

phase of each classifier is carried out using a subset of instances containing one

of the two output classes. Instances with a different class are ignored.

In the prediction phase, the sample to be validated is predicted by each of

the classifiers trained previously, thus obtaining a score matrix R:

R =



− rr2 r13 ... r1c

r21 − r23 ... r2c

. . . . .

. . . . .

rc1 rc2 rc3 ... −


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The output of a classifier given by rji ∈ [ 0, 1] is the confidence of the200

binary classifier discriminating classes i and j in favor of the previous class.

The confidence of the classifier for j is calculated as rji = 1− rij if the classifier

does not provide it (the class with the larger confidence is the selected output

class of a classifier).

The final prediction is calculated based on the score matrix using different205

aggregation models. The weighted voting strategy is the most used strategy,

where confidences are aggregated class by class (by rows) and the one with

the highest sum is selected as output. There is a disadvantage, known as the

“non-competent classifier problem” [41] in the OVO system. The classifiers in

the OVO system are not sufficiently competent to classify all the classes in the210

problem, as they are only learned through examples of two classes. However, all

binary classifiers will be triggered for a given test model, because the competence

cannot be known a priori, which can lead to incorrect decisions. To mitigate this

problem there exist dynamic selection techniques that are able to distinguish

between competent sorters directly in the prediction phase. The studies carried215

out in [42] and [43] provide a review of the most popular dynamic selection

techniques to avoid the non-competent classifiers problem. On their side, [44, 45]

are some examples of how to successfully apply the OVO technique.

ECOC [40] provides a suitable matrix framework for modelling the decom-

position of a multi-class classification problem into simpler sub-problems. How220

to perform the decomposition to fit better the data using a small number of clas-

sifiers has been a key point of the research, as well as the decoding step, which

deals with the combination of the sub-problems. The research [46] proposes an

evidential unified framework that handles both the coding and decoding steps.

2.3. Motivation for using decomposition strategies on LDL225

LDL is a generalization of the classification model and as such is exposed

to the same problems as classic classification algorithms: imbalanced datasets,

noisy data, overlapping or irregularities. OVO and OVA strategies have proven

to be efficient in dealing with these kinds of difficulties. In [22, 47] we can
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find a complete review of how to apply decomposition strategies to imbalanced230

datasets that solve the disproportion of the number of examples of the different

classes. The results obtained in [26, 48] show that using the OVO strategy lead

to better performances and more robust classifiers when dealing with noisy data,

especially with the most disruptive noise schemes. Decomposition performed

by OVO in [49] helps to increase the separation between classes, creating more235

regular decision boundaries where there are overlapping samples. Other irregu-

larities, such as the problem of the “difficult classes”, have also been successfully

addressed using the OVO decomposition strategy [50].

Applying a decomposition technique to an LDL-type data set, comparing

output labels and breaking relationships between non-working pairs, could lead240

to better performance of the base LDL algorithms due to the proven improve-

ment achieved by these techniques when they have been applied on datasets

presenting the above problems. However, it should be recalled at this point

that the LDL paradigm differs significantly from a multi-class problem, what

we have is an output label distribution. Therefore, the OVO strategy would245

not serve us as it is. On the one hand, we need a new decomposition strategy

capable of dealing with real values instead of labels and on the other hand, a

new aggregation strategy capable of providing an output according to the LDL

constraints. As base learner we can use any of the LDL-specific learners.

3. DF-LDL: Decomposition-Fusion for Label Distribution Learning250

DF-LDL is our decomposition proposal for LDL type of problems. The main

idea of this method is to decompose the original c-label problem by dividing it

into c(c − 1) problems, that is, comparing one to one all the labels that make

up the output as we will explain in Section 3.1. The next step is to combine the

outputs to obtain the final prediction, for this, we have conceived the competent255

fusion method which will be exposed in Section 3.2. Finally, we will illustrate

how it works in Section 3.3.
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3.1. Decomposition strategy

As opposed to a multi-class classification problem that would decompose

the problem into c(c− 1)/2 problems (one for each possible class pair), in LDL

we need a decomposition mechanism able to carry out a comparison between

the real values of each label. The strategy consists in making an inequality

comparison (a ≥ b) between each pair of output labels, creating subsets of

samples containing only the samples whose label value is greater than the value

of the compared label. The goal is to create subsets that break up relationships

between pairs of labels that do not work. In this way, we will obtain the double

of classifiers that in the original OVO strategy (because we are comparing real

values and not grouping them into pairs of classes), that is c(c− 1) subsets on

which we will start the training phase obtaining a matrix of learners like:

L =



− l12 l13 ... l1c

l21 − l23 ... l2c

l31 l32 − ... l3c

. . . . .

. . . . .

. . . . .

lc1 lc2 lc3 ... −


The detailed process is summarized in Algorithm 1.

Starting from the total set of training samples S (containing m samples in260

total), we classify each sample (xk, Dk) into the subsets SS1 or SS2 depending

on whether the value of label i (represented by dyi
xk

) is greater or lesser than the

value of label j (represented by d
yj
xk). Therefore, the subset SS1 will contain

the samples that maximize the value of the output label i with respect to the

output label j, SS2 is consequently the complementary set to SS1. Each subset265

is trained separately using the base classifier l. This process is repeated c(c−1)/2

times obtaining as result the L learner matrix that will contain a total of c(c−1)

learners. Note that the base learner l can be any LDL-compatible learning

algorithm.
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Algorithm 1: Training stage of DF-LDL

Function Fit(S, m, c, l):

1 input : S ← Training Dataset ;

m← Number of Samples ;

c← Number of Labels ;

l← Base Learner ;

2 output: L← Matrix of learners ;

3 for i=1 to c do

4 for j=i+1 to c do
#Create the subsets of samples

5 SS1 = ∅ ;

6 SS2 = ∅ ;

7 for k=1 to m do

8 if dyi
xk
≥ dyj

xk then

9 Append: (xk, Dk) to SS1 ;

else

10 Append: (xk, Dk) to SS2 ;

end

end

#Fit the base learners using the subsets

11 l.setTrainingSet(SS1);

12 l.fit();

13 Lij = l;

14 l.setTrainingSet(SS2);

15 l.fit();

16 Lji = l;

end

end

End Function
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3.2. Competent Fusion method270

In the prediction phase, the sample to be validated is usually predicted

by each one of the classifiers trained previously but, as we have previously

stated, our aim has been to design a dynamic competent aggregation or fusion

method that allows us to build the final solution using only the learners that can

minimize the error. We have been inspired by the dynamic classifier selection275

for One-vs-One strategy proposed in [43] that tries to avoid the non-competent

classifiers when their output is probably not of interest. We consider an initial

prediction of each instance to decide whether a classifier may be competent or

not. Obviously, this initial prediction must be very run-time efficient in order to

not penalize the total prediction time. For these reasons the technique chosen280

for this initial prediction is the AA-kNN [9] that obtains a prediction with an

appropriate quality/time trade-off.

The competent fusion procedure summarized in Algorithm 2 works as follow:

(1) Predict the example x0 using AA-kNN and obtaining the initial prediction

pknn. Given the instance x0, its k nearest neighbors are first found in the285

training set. Then, the mean of the label distributions of all the k nearest

neighbors is calculated as the label distribution of x0, i.e.,

pknn(yj |x0) =
1

k

∑
i∈Nk(x0)

dyj
xi
, (j = 1, 2, ..., c),

where Nk(x0) is the index set of the k nearest neighbors of x0 in the training

set. (2) Use this initial prediction to compare one by one the output values of

the labels. If the value of the label i, pyi

knn, is greater or equal than the value of290

the label j, p
yj

knn, then we mark as selected the learner Lij , otherwise we select

the opposite learner Lji. (3) Predict the label distribution of the example x0

using the selected learner in previous step and add this prediction to the final

output p. (4) Repeat points 2 and 3 for each pair of labels. (5) The final label

distribution p is calculated as the average of predictions obtained by all selected295

learners:
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p(yj |x0) =
1

c(c− 1)/2

∑
ij∈L(x0)

p
yj

lij
, (j = 1, 2, ..., c),

where L(x0) is the index set of selected learners for x0. In total c(c − 1)/2

learners will participate in the prediction.

Algorithm 2: Predict an example in DF-LDL

Function Predict(S, c, L, x0, k):

1 input : S ← Training Dataset ;

c← Number of Labels ;

L← Matrix of learners ;

x0 ← Example to predict ;

2 output: p← Prediction ;

#Initial prediction using AA-kNN

3 AA-kNN.setTrainingSet(S);

4 pknn = AA-kNN.predict(x0);

#Select learners and predict

5 p = 0;

6 for i=1 to c do

7 for j=i+1 to c do

8 if pyi

knn ≥ p
yj

knn then

9 p = p+ Lij .predict(x0);

else

10 p = p+ Lji.predict(x0);

end

end

end

11 return p/(c ∗ (c− 1)/2) ;

End Function
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3.3. An illustrative example

In order to show how the proposal works, let us take the toy dataset S =

{(x1, D1), (x2, D2), (x3, D3)} illustrated below containing m = 3 samples with

q = 2 features and c = 3 output labels:

S =


x1 D1

x2 D2

x3 D3

 =


(0.4, 0.7) (0.1, 0.85, 0.05)

(0.01, 0.9) (0.75, 0.25, 0)

(0.5, 0.5) (0.05, 0.05, 0.9)

 .

Following the process described in Section 3.1 we need to obtain a 3x3 matrix

of learners. In order to build the first learner l12, we will compare the output

label 1 and 2 of each sample. In our case:
d11 d21

d12 d22

d13 d23

 =


0.1 0.85

0.75 0.25

0.05 0.05

 .

As d12 ≥ d22 and d13 ≥ d23, the subset of samples used for learner l12 will300

be (x2, D2), (x3, D3). Therefore the subset of samples for learner l21 will be

(x1, D1), (x3, D3).

Repeating this procedure for each pairs of labels we obtain the learner matrix

below, for each learner we are showing the subset of samples selected:

L =


− {(x2, D2), (x3, D3)} {(x1, D1), (x2, D2)}

{(x1, D1), (x3, D3)} − {(x1, D1), (x2, D2)}

{(x3, D3)} {(x3, D3)} −


Once we have trained each of the classifiers using the subsets generated, we

will predict the distribution of labels of a test instance, x0 = (0.2, 0.8), according

to the method explained in the Section 3.2. Let us remember that the process

consisted of five steps: (1) we predicted the output values through a AA-kNN

algorithm using the whole training set. The k -NN prediction obtained for x0 is:

pknn = (0.3, 0.38, 0.32)

Then, in step (2), we use that prediction to discard incompetent learners by

comparing each pair of output labels. In order to check if the first learner l12
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will be part of the final prediction, we will compare the output label 1 and 2.305

Value 0.3 is not greater or equal to 0.38, then learner l12 will be discarded and,

consequently, the opposite one l21 will be selected.

In step (3), x0 will be predicted by the selected learner, adding this prediction

to the final output px0 . Repeating this process for each pair of labels, step (4),

the learners that will be considered to obtain the final prediction are:
− ��l12 ��l13

l21 − l23

l31 ��l32 −


Finally, as described in step (5), the final label distribution px0

is divided by 3

(the total of learners that have been involved in building the solution). Assuming

that the values obtained by each of the learners are as follows:

pl21 = (0.2, 0.7, 0.1)

pl23 = (0.4, 0.6, 0)

pl31 = (0.25, 0.5, 0.25)

The final label distribution px0
will be:

px0 = (0.28, 0.6, 0.12)

4. Experimental Framework

This section is devoted to introducing the experimental framework used in310

the different empirical studies of the paper. In our experiments, we have in-

cluded 17 datasets of a wide variety of real-world problems, described in the

following Section 4.1.

In order to evaluate the learners proficiency, we will employ six measures

(described in Section 4.2) for the different aspects of their performance. For315
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each dataset and learner, these measures were computed over a merged set

from the test predictions of a 10-fold cross validation set (10-fcv).

We have run two different kinds of experiments. The first one consists in

comparing the results provided by the base learners with the DF-LDL method

using the same base learner. The selected base learners have been SA-BFGS320

[9] and Structured tree (StructTree), this second one has been extracted from

the Structured random forest (StructRF) [20] proposal but by training a single

tree. The second experiment directly compares the DF-LDL proposal with other

LDL state-of-the-art algorithms, such as: SA-BFGS, label distribution learning

forests (LDLFs) [17] and StructRF.325

The non-parametric statistical Wilcoxon, Friedman rank and Bayesian Sign

tests [29, 28] are used to validate the results of the empirical comparisons. In the

Bayesian Sign test, a distribution of the differences of the results achieved using

methods L (base learner in first experiment) and R (DF-LDL) is computed into

a graphical space divided in 3 regions: left, rope and right. The location of330

most of the distribution in these sectors indicates the final decision: the superi-

ority of algorithm L, statistical equivalence and the superiority of algorithm R,

respectively. KEEL package [51] has been used to compute the Wilcoxon and

Friedman rank tests and the R package rNPBST [52] was used to extract the

graphical representations of the Bayesian Sign tests analyzed in the following335

empirical studies. The Rope limit parameter used to represent the Bayesian

Sign test is 0.0001.

4.1. Datasets

There are a total of 17 real-world datasets employed in the experiments. The

summary of their characteristics is shown in Table 1.340

The first 11 datasets are originally LDL problems. To complete the experi-

ment, we have also added 4 multi-class classification datasets and 2 multi-target

regression datasets, with a double purpose: to see how LDL learners behave on

other types of classification problems and because purely LDL datasets are still

scarce. Note that non-LDL data sets have been adapted to satisfy LDL restric-345
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tions. This transformation is described below along with the description of each

set.

Table 1: Datasets used in experiments

No. Datasets Examples(m) Features(q) Labels(c) Type

1 Yeast alpha 2465 24 18 LDL

2 Yeast cdc 2465 24 15 LDL

3 Yeast diau 2465 24 7 LDL

4 Yeast elu 2465 24 14 LDL

5 Yeast heat 2465 24 6 LDL

6 Yeast spo 2465 24 6 LDL

7 SJAFFE 213 243 6 LDL

8 SBU 3DFE 2500 243 6 LDL

9 Movie 7755 1869 5 LDL

10 Natural Scene 2000 294 9 LDL

11 Human Gene 30542 36 68 LDL

12 Optdigits 5620 64 10 multi-class

13 Semeion 1593 256 10 multi-class

14 Ecoli 327 7 5 multi-class

15 LED7digit 500 7 10 multi-class

16 Wq 1060 16 14 multi-target

17 Jura 359 15 3 multi-target

The first six datasets have been collected from biological experiments on

the budding yeast Saccharomyces cerevisiae [7]. It includes 2,465 yeast genes,

and an associated phylogenetic profile vector with a length of 24 is utilized to350

represent each gene. In a biological experiment, the gene expression level is

usually disparate at each discrete time point, so the labels correspond to the

time point.

Datasets JAFFE [53] and BU 3DFE [54] are two widely used facial expres-
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sion image datasets. There are 213 gray-scale expression images in the JAFFE355

dataset while BU 3DFE contains 2,500 facial expression images. The images

in JAFFE have been scored by 60 people using the six primary emotion labels

with a 5-level scale, i.e., fear, disgust, happiness, anger, sadness, surprise, and

the images in BU 3DFE have been scored by 23 people using the same scale as

used in JAFFE. Each dataset is represented by a 243-dimensional feature vec-360

tor extracted using the Local Binary Patterns method (LBP) [55] . The score

for each emotion is regarded as the description degree, and the description de-

grees (normalized gene expression level) of all the six emotions constitute a label

distribution for a particular facial expression image.

Dataset Movie includes 7,755 movies. There is a total of 54,243,292 ratings365

from 478,656 different users on a scale from 1 to 5 integral stars from ®Netflix.

The percentage of each rating level is regarded as the label distribution. There

are numeric and categorical attributes in the dataset such as genre, director,

country, year, budget and so on. After transforming the categorical attributes

into binary vectors, the final feature vector of each movie is 1,869-dimensional.370

The Natural Scene dataset is collected from 2,000 natural scene images that

have been ranked inconsistently by ten human rankers. A 294- dimensional

feature vector extracted in [1] represents each image and is associated with a

multi-label selected from 9 possible labels, i.e., sun, sky, water, cloud, moun-

tain, snow, desert, building, and plant. Then rankers are required to rank the375

relevant labels in descending order of relevance. As expected, the rankings for

the same image from different rankers are highly inconsistent. So, a nonlinear

programming process [56] is applied to achieve the label distribution.

The Human Gene dataset is much larger than the other datasets used in

this experiment. This dataset is collected from biological research on the rela-380

tionship between human genes and diseases. Each of the 30,542 human genes

is represented by the 36 numerical descriptors for a gene sequence proposed in

[57].

The following 4 datasets correspond to standard multi-class classification

problems, all of them extracted from UCI Machine Learning Repository [58].385
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Therefore we need a pre-processing step to transform them into LDL type

datasets. Since we only have information from the class, we need to transform

the classifier scores into accurate multiclass probability estimates following the

process described in [59]. A base clasifier is fit on the training set of the cross-

validation generator and the test set is used for calibration. The probabilities390

for each of the folds are then averaged for prediction. We have made use of 4

diferent base classifiers: SVC [60], k -NN [31], a decision tree classifier [61] and

Gaussian Naive Bayes classifier [62].

The selected multi-class datasets are: Optidigits (Optical Recognition of

Handwritten Digits), Semeion (Semeion Handwritten Digit Data Set, where395

1593 handwritten digits from around 80 persons were scanned and documented),

Ecoli, an E.Coli bacteria protein classification and LED7digit, a simple domain

containing 7 boolean attributes, one for each light-emitting diode of a 7-segment

display.

Jura and Wq are two multi-target regression datasets collected from the Mu-400

lan website [63]. The Jura dataset consists of measurements of concentrations of

seven heavy metals (cadmium, cobalt, chromium, copper, nickel, lead, and zinc),

recorded at 359 locations in the topsoil of a region of the Swiss Jura. We are

interested in the distribution prediction of the concentration of metals that are

more expensive to measure (primary variables) using measurements of metals405

that are cheaper to sample (secondary variables). The Water Quality dataset

has 14 target attributes that refer to the relative representation of plant and

animal species in Slovenian rivers and 16 input attributes that refer to physical

and chemical water quality parameters. LDL algorithms can deal directly with

multi-target datasets, the only prerequisite is to normalize the output vector in410

such a way that the sum is equal to 1.

4.2. Evaluation Measure Selection

We use a set of six measures when comparing different LDL algorithms:

Chebyshev Distance, Clark Distance, Canberra Metric and Kullback-Leibler

Divergence for distance calculation; Cosine Coefficient and Intersection for Sim-415
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ilarity as shown in Table 2. Each of these measures come from a different

syntactic family summarized in [64] and are relatively widely used in the re-

lated areas. Thus, they can adequately represent the different aspects of the

algorithms.

Table 2: Evaluation measure for LDL learners. ↓ means that the lowest value is the best and

↑ means the opposite.

Name Formula

Chebyshev(Cheby)↓ Dis(D, D̂) = maxj |dj − d̂j |

Clark↓ Dis(D, D̂) =

√∑c
j=1

(dj−d̂j)2

(dj+d̂j)2

Canberra(Can)↓ Dis(D, D̂) =
∑c

j=1
|dj−d̂j |
dj+d̂j

Kullback-Leibler(KL)↓ Dis(D, D̂) =
∑c

j=1 dj ln
dj

d̂j

Cosine(Cos)↑ Sim(D, D̂) =
∑c

j=1 dj d̂j√∑c
j=1 d2

j

√∑c
j=1 d̂2

j

Intersection(Inter)↑ Sim(D, D̂) =
∑c

j=1min(dj , d̂j)

4.3. Parameters420

The DF-LDL proposal itself is parameter-free, but the AA-kNN algorithm

used in the competent fusion method requires a value for k, set to 4 neigh-

bors (we have selected a small value for k in order to provide the most flexible

fit, with a low bias). For the SA-BFGS algorithm, the convergence criterion

ε has been setup to 10−5. Regarding the parameters used for the StructRF425

and LDLFs algorithms we have kept the same values as those used in the orig-

inal proposal papers, for LDLFs the maximum number of iterations has been

adapted to meet the time constraints. Since StructTree starts from the same

base as StructRF, the parameters used are exactly the same except that we use

a single classification tree. An overview of all these parameters can be found in430

Table 3.

20



Table 3: Summary of the parameters

Algorithm Parameter Description Value

AA-kNN k Number of selected neighbors 4

SA-BFGS ε Convergence criterion: must be less than ε 10−5

before successful termination

LDLFs trees Number of trees 5

depth Maximum depth of the tree 7

out. feat. Output unit number of the feature learning function 64

iters. leaf Iteration times to update leaf node predictions 20

batches Number of mini-batches to update leaf node predictions 100

iters Maximum iterations 2500

StructTree max. depth Maximum depth of the tree 20

min. leaf Minimum size of the leaf 5

StructRF trees Number of trees 50

sampling Sampling ratio of data 0.8

max. depth Maximum depth of the tree 20

min. leaf Minimum size of the leaf 5

5. Results and Analysis

This section presents the results of the empirical studies and their analyses.

We have differentiated between two types of experiments: first we will compare

the results obtained by the base learners with the results obtained by DF-LDL435

using the same base learner (Section 5.1), then we will compare our DF-LDL

proposal with other state-of-the-art LDL algorithms, showing their different

strengths (Section 5.2).

In each of the result tables the best outcome is highlighted in bold. The

last column is the mean of each row. The best average is also highlighted in440

bold. As those algorithms have been tested using 10-fcv, the performance is

represented using “mean±standard deviation”.
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5.1. Evaluation of DF-LDL vs. Base Learners

Comparing DF-LDL with the base classifiers SA-BFGS and StructTree we

reach the following conclusions:445

• The results of the different measures shown in Table 4 and Table 5 high-

lights the best ranking of DF-LDL in the large majority of the datasets

and measures.

• The Wilcoxon Signed Ranks test corroborate the significance of the differ-

ences between our approach and the base learners. Table 6 includes the450

outcome of the Wilcoxon test comparing DF-LDL with the base learners.

All the hypotheses of equivalence are rejected with small p-values.

• With regard to the Bayesian Sign test, Figure 1 and Figure 2 graphi-

cally represent the difference between using DF-LDL or directly the base

learner and its statistical significance in terms of precision. The following455

heat-maps clearly indicate the significant superiority of DF-LDL, as the

computed distributions are always located in the right region.

Special mention about the excellent results obtained with our proposal for

the SJAFFE dataset, for which we obtained an outstanding improvement over

the base algorithms.460

Nevertheless the outcomes obtained for the Clark and Canberra measures

on the StructTree method deserve special attention. We note that the values

obtained when using these two measures differ greatly from those obtained for

the others. To understand this peculiarity we must look previously at the label

distribution of each dataset, when this distribution has many zeros in its com-465

position and we train this set with the StructTree algorithm the probability of

obtaining label values equal to zero increases, falsifying the total computation

of the distances. Therefore these measures are not representative of the quality

of the algorithm for the specific case of the StructTree method and the datasets

that present this peculiarity.470
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(a) Chebyshev Dis-

tance

(b) Clark Distance (c) Canberra Metric

(d) Kullback-Leibler

Divergence

(e) Cosine Coefficient (f) Intersection Simi-

larity

Figure 1: Bayesian Sign test comparing StructTree(L) vs. DF-LDL(R)

(a) Chebyshev Dis-

tance

(b) Clark Distance (c) Canberra Metric

(d) Kullback-Leibler

Divergence

(e) Cosine Coefficient (f) Intersection Simi-

larity

Figure 2: Bayesian Sign test comparing BFGS(L) vs. DF-LDL(R)
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Table 4: Experimental Results DF-LDL (using StructTree as base learner) vs. StructTree

(mean ± std)

Measure Method
Datasets

Yeast alpha Yeast cdc Yeast diau Yeast elu Yeast heat Yeast spo

Cheby↓
StructTree 0.0168±0.0005 0.0204±0.0009 0.0459±0.0015 0.0201±0.0007 0.0518±0.0008 0.0734±0.0032

DF-LDL 0.0133±0.0008 0.0162±0.0009 0.0367±0.0013 0.0161±0.0005 0.0418±0.0008 0.0609±0.0024

Clark↓
StructTree 0.2615±0.0082 0.2729±0.0123 0.2474±0.0076 0.2476±0.0082 0.2239±0.0035 0.3078±0.0135

DF-LDL 0.2084±0.0125 0.2158±0.0134 0.1990±0.0062 0.1977±0.0053 0.1813±0.0028 0.2575±0.0124

Can↓
StructTree 0.8506±0.0298 0.8216±0.0380 0.5321±0.0181 0.7302±0.0221 0.4481±0.0058 0.6369±0.0280

DF-LDL 0.6772±0.043 0.6472±0.0406 0.4279±0.0155 0.5804±0.0153 0.3629±0.0057 0.5295±0.0251

KL↓
StructTree 0.0086±0.0006 0.0113±0.0009 0.0209±0.0015 0.0087 ±0.0004 0.0200±0.0004 0.0310±0.0030

DF-LDL 0.0054±0.0006 0.0070±0.0009 0.0132±0.0010 0.0061±0.0004 0.0126±0.0005 0.0270±0.0023

Cos↑
StructTree 0.9916±0.0006 0.9894±0.0008 0.9811±0.0013 0.9907±0.0006 0.9817±0.0005 0.9627±0.0029

DF-LDL 0.9947±0.0006 0.9934±0.0008 0.9878±0.0009 0.9941±0.0003 0.9880±0.0005 0.9746±0.0019

Inter↑
StructTree 0.9530±0.0016 0.9460±0.0025 0.9262±0.0026 0.9485±0.0015 0.9265±0.0009 0.8948±0.0043

DF-LDL 0.9626±0.0024 0.9574±0.0026 0.9406±0.0023 0.9591±0.0011 0.9405±0.0010 0.9126±0.0038

Measure Method
Datasets

SJAFFE SBU 3DFE Movie Natural Scene Human Gene Optdigits

Cheby↓
StructTree 0.1392±0.0263 0.1520±0.0062 0.1294±0.0053 0.3581±0.0216 0.0828±0.0143 0.1214±0.0073

DF-LDL 0.1044±0.0160 0.1198±0.0064 0.1123±0.0050 0.2672±0.0117 0.0499±0.0039 0.0874±0.0040

Clark↓
StructTree 0.4759±0.0691 0.4515±0.0160 0.5649±0.0222 1.6344±0.0350 2.5795±0.1732 0.7966±0.0170

DF-LDL 0.3792±0.0527 0.3783±0.0188 0.5081±0.0267 2.3719±0.0221 2.0755±0.0433 1.0088±0.0199

Can↓
StructTree 0.9775±0.1426 0.9084±0.0314 1.0954±0.0456 3.7282±0.1147 17.9475±1.3568 1.7797±0.0344

DF-LDL 0.7839±0.1088 0.7881±0.0378 0.9737±0.0515 6.3743±0.0934 14.0834±0.7432 2.5748±0.0573

KL↓
StructTree 0.1084±0.0330 0.1157±0.0080 0.1322±0.0098 2.1534±0.1533 0.3896±0.0646 0.3063±0.0255

DF-LDL 0.0589±0.0145 0.0705±0.0064 0.0961±0.0072 0.6300±0.0265 0.2289±0.0239 0.0827±0.0053

Cos↑
StructTree 0.8973±0.0311 0.8857±0.0075 0.9154±0.0063 0.6487±0.0222 0.7342±0.0374 0.9166±0.0086

DF-LDL 0.9438±0.0139 0.9298±0.0065 0.9367±0.0043 0.7889±0.0098 0.8497±0.0167 0.9837±0.0021

Inter↑
StructTree 0.8254±0.0286 0.8268±0.0065 0.8157±0.0075 0.5409±0.0203 0.7143±0.0267 0.8698±0.0073

DF-LDL 0.8660±0.0192 0.8568±0.0072 0.8397±0.0069 0.6061±0.0102 0.8009 ±0.0123 0.9035±0.0042

Measure Method
Datasets

Semeion Ecoli LED7digit Wq Jura Average

Cheby↓
StructTree 0.2355±0.0193 0.0953±0.0378 0.0568±0.0141 0.3465±0.0230 0.0886±0.0162 0.1196±0.0117

DF-LDL 0.1799±0.0079 0.0749±0.0272 0.0503±0.0087 0.2840±0.0171 0.0791±0.0144 0.0938±0.0076

Clark↓
StructTree 1.0923±0.0463 0.4596±0.0879 0.3028±0.0577 2.6063±0.0596 0.2998±0.0353 0.7544±0.0396

DF-LDL 1.2406±0.0286 0.4245±0.069 0.3040±0.0477 3.1031±0.0425 0.2768±0.0255 0.7842±0.0264

Can↓
StructTree 2.5888±0.1278 0.7740±0.1648 0.6971±0.1468 7.6999±0.2775 0.4280±0.0529 2.5085±0.1551

DF-LDL 3.3518±0.0929 0.7230±0.1348 0.7093±0.1240 10.6209±0.2191 0.3829±0.0399 2.6230±0.1087

KL↓
StructTree 0.5342±0.0542 0.1022±0.0692 0.0555±0.0272 1.0220±0.0500 0.0336±0.0101 0.2973±0.0301

DF-LDL 0.1756±0.0125 0.0502±0.0336 0.0305±0.0075 0.9255±0.0413 0.0266±0.0063 0.1439±0.0112

Cos↑
StructTree 0.8091±0.0177 0.9572±0.0331 0.9760±0.0109 0.5178±0.0230 0.9809±0.0070 0.8904±0.0124

DF-LDL 0.9468±0.0077 0.9785±0.0181 0.9844±0.0052 0.6672±0.0091 0.9848±0.0053 0.9369±0.0061

Inter↑
StructTree 0.7344±0.0206 0.9013±0.0403 0.9343±0.0157 0.4081±0.0180 0.9114±0.0162 0.8281±0.0130

DF-LDL 0.7948±0.0095 0.9220±0.0292 0.9423±0.0102 0.4828±0.0134 0.9209±0.0144 0.8593±0.0088
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Table 5: Experimental Results DF-LDL (using SA-BFGS as base learner) vs. SA-BFGS

(mean ± std)

Measure Method
Datasets

Yeast alpha Yeast cdc Yeast diau Yeast elu Yeast heat Yeast spo

Cheby↓
SA-BFGS 0.0135±0.0008 0.0163±0.0009 0.0370±0.0014 0.0163±0.0006 0.0423±0.0008 0.0584±0.0037

DF-LDL 0.0134±0.0008 0.0162±0.0009 0.0369±0.0012 0.0163±0.0005 0.0421±0.0007 0.0603±0.0028

Clark↓
SA-BFGS 0.2107±0.0126 0.2165±0.0129 0.2008±0.0079 0.1992±0.0055 0.1828±0.0027 0.2500±0.0164

DF-LDL 0.2103±0.0127 0.2166±0.0129 0.2001±0.0067 0.1989±0.0053 0.1819±0.0025 0.2552±0.0132

Can↓
SA-BFGS 0.6847±0.0432 0.6493±0.0394 0.4310±0.0186 0.5838±0.0159 0.3647±0.0058 0.5137±0.0335

DF-LDL 0.6832±0.0435 0.6501±0.0393 0.4298±0.0166 0.5831±0.0157 0.3631±0.0057 0.5246±0.0269

KL↓
SA-BFGS 0.0055±0.0006 0.0070±0.0008 0.0131±0.0011 0.0062±0.0004 0.0126±0.0004 0.0246±0.0029

DF-LDL 0.0055±0.0006 0.0070±0.0008 0.0131±0.0011 0.0062±0.0004 0.0126±0.0004 0.0260±0.0025

Cos↑
SA-BFGS 0.9946±0.0006 0.9933±0.0007 0.9879±0.0010 0.9940±0.0004 0.9880±0.0004 0.9769±0.0026

DF-LDL 0.9946±0.0006 0.9933±0.0007 0.9879±0.0010 0.9940±0.0004 0.9881±0.0004 0.9755±0.0021

Inter↑
SA-BFGS 0.9622±0.0024 0.9573±0.0026 0.9403±0.0027 0.9588±0.0011 0.9401±0.0010 0.9154±0.0053

DF-LDL 0.9623±0.0024 0.9572±0.0025 0.9404±0.0024 0.9589±0.0011 0.9404±0.0010 0.9135±0.0041

Measure Method
Datasets

SJAFFE SBU 3DFE Movie Natural Scene Human Gene Optdigits

Cheby↓
SA-BFGS 0.1603±0.0160 0.1100±0.0039 0.1398±0.0161 0.3549±0.0159 0.0533±0.0036 0.0744±0.0032

DF-LDL 0.1007±0.0126 0.1110±0.0004 0.1309±0.0101 0.3359±0.0159 0.0523±0.0041 0.0675±0.0028

Clark↓
SA-BFGS 0.6466±0.0462 0.3784±0.0122 0.6035±0.0560 2.3817±0.0239 2.1111±0.0820 1.6751±0.0167

DF-LDL 0.3787±0.0416 0.3667±0.0106 0.5635±0.0390 2.3824±0.0239 2.0906±0.0711 1.4124±0.0176

Can↓
SA-BFGS 1.3595±0.1100 0.7831±0.0246 1.1679±0.1163 6.5546±0.0914 14.4531±0.6124 4.4333±0.0553

DF-LDL 0.7776±0.0798 0.7593±0.0186 1.0846±0.0785 6.5532±0.0914 14.3439±0.7324 3.7289±0.0544

KL↓
SA-BFGS 0.1639±0.0245 0.0634±0.0038 0.1543±0.0405 1.1120±0.0999 0.2365±0.0184 0.0896±0.0048

DF-LDL 0.0583±0.0117 0.0622±0.0035 0.1266±0.0203 1.0047±0.0999 0.2301±0.0135 0.0702±0.0034

Cos↑
SA-BFGS 0.8739±0.0179 0.9389±0.0034 0.9072±0.0188 0.6724±0.0149 0.8343±0.0102 0.9831±0.0019

DF-LDL 0.9454±0.0111 0.9385±0.0035 0.9173±0.0120 0.6711±0.0149 0.8399±0.0099 0.9873±0.0016

Inter↑
SA-BFGS 0.7788±0.0162 0.8616±0.0041 0.8040±0.0199 0.5248±0.0145 0.7842±0.0092 0.9142±0.0035

DF-LDL 0.8682±0.0131 0.8637±0.0036 0.8163±0.0140 0.5248±0.0145 0.7898±0.0081 0.9223±0.0031

Measure Method
Datasets

Semeion Ecoli LED7digit Wq Jura Average

Cheby↓
SA-BFGS 0.1368±0.0084 0.0875±0.0188 0.0981±0.0086 0.3026±0.0223 0.0732±0.0046 0.1044±0.0076

DF-LDL 0.1462±0.0062 0.0753±0.0156 0.0754±0.0084 0.3006±0.0216 0.0728±0.0057 0.0973±0.0067

Clark↓
SA-BFGS 1.4282±0.0208 0.8979±0.0439 1.2670±0.0419 3.1255±0.0427 0.2592±0.0248 0.9432±0.0276

DF-LDL 1.2428±0.0185 0.7059±0.0372 0.8589±0.0280 3.1257±0.0422 0.2540±0.0243 0.8614±0.0240

Can↓
SA-BFGS 3.7601±0.0579 1.6400±0.0938 3.2747±0.0991 10.7824±0.2188 0.3674±0.0308 3.0473±0.0980

DF-LDL 3.2911±0.0616 1.2878±0.0804 2.2037±0.0652 10.7794±0.2164 0.3616±0.0303 2.8474±0.0975

KL↓
SA-BFGS 0.1652±0.0132 0.0730±0.0254 0.0932±0.0145 1.0540±0.0714 0.0231±0.0035 0.1940±0.0192

DF-LDL 0.1460±0.0093 0.0466±0.0124 0.0538±0.0108 1.0266±0.0604 0.0226±0.0036 0.1717±0.0150

Cos↑
SA-BFGS 0.9512±0.0078 0.9847±0.0078 0.9732±0.0084 0.6248±0.0134 0.9875±0.0023 0.9215±0.0066

DF-LDL 0.9574±0.0053 0.9889±0.0055 0.9806±0.0064 0.6300±0.0128 0.9875±0.0026 0.9281±0.0053

Inter↑
SA-BFGS 0.8330±0.0095 0.9073±0.0199 0.8737±0.0117 0.4431±0.0170 0.9628±0.0046 0.8448±0.0085

DF-LDL 0.8270±0.0067 0.9211±0.0162 0.9041±0.0102 0.4490±0.0166 0.9272±0.0057 0.8521±0.0074
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Table 6: Wilcoxon Signed Ranks test comparing DF-LDL vs. Base Learners

DF-LDL vs. StructTree DF-LDL vs. SA-BFGS

Measure R+ R− p-value R+ R− p-value

Cheby 153 0 1.5258× 10−5 109.5 26.5 0.0313

Clark 93 60 ≥ 0.2 135.5 17.5 0.0035

Can 94 59 ≥ 0.2 142 11 0.0001

KL 153 0 1.5258× 10−5 124 12 0.0021

Cos 153 0 1.5258× 10−5 110 26 0.0290

Inter 153 0 1.5258× 10−5 102.5 33.5 0.0786

5.2. Evaluation of DF-LDL vs. LDL state-of-the-art algorithms

We will now see how DF-LDL behaves compared to three other state-of-

the-art algorithms as SA-BFGS, LDLFs and StructRF. Note than the selected

base learner used by DF-LDL for this comparison is StructTree. We reach the

following conclusions:475

• The results of the different measures shown in Table 7 highlight the best

average score of DF-LDL in all cases.

• Table 8 includes the outcome of the Friedman rank and Holm tests in

relation to the obtained results over the computed measures. DF-LDL

is ranked first compared to SA-BFGS, LDLFs and StructRF. Although480

DF-LDL has a better ranking than StructRF, both yield very competitive

results.

• Note also that the results vary considerably depending on the dataset used.

LDLFs proves to be very effective on the Yeast datasets but decreases in

strength on the other sets. In this experiment, DF-LDL uses the same485

base algorithm than StructRF, so when the number of learners used by

DF-LDL is much lower than the used by StructRF, this last one provides

a better accuracy (remember that the number of learners is related to the
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number of output labels in DF-LDL while it remains a fix value in the

case of StructRF).490

Another measure that is of interest to compare is the execution time. At this

point we will focus only on the two proposals that have achieved the best results.

In our experiment, DF-LDL uses the same base algorithm than StructRF, Struct

Tree. Hence the computational complexity of the training phase is similar for

both methods: O(m2 × q × trees) in StructRF and O(m2 × q × c(c − 1)) in495

DF-LDL. If c(c − 1) is less than the number of trees used in StructRF, our

proposal DF-LDL will be faster to train and vice versa. As for the prediction,

the computational complexity for StructRF is O(q × trees). For DF-LDL it is

also necessary to add the time of the previous prediction AA-KNN, resulting in

a complexity of O(q× c(c− 1)/2 +mq). We have two factors that can make one500

algorithm more efficient predicting than the other. On the one hand, if c(c−1)/2

is less than the number of trees used in StructRF, our proposal DF-LDL will

use fewer prediction trees and vice versa. But in the case of DF-LDL it is also

necessary to add the time of the previous prediction AA-KNN.

We can see an overview of the runtimes on each dataset in Table 9 that505

corroborate this fact, obtaining prediction times that improve StructRF in the

vast majority of cases.
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Table 7: Experimental Results DF-LDL vs. LDL state-of-the-art algorithms (mean ± std)

Measure Method
Datasets

Yeast alpha Yeast cdc Yeast diau Yeast elu Yeast heat Yeast spo

Cheby↓

SA-BFGS 0.0135±0.0008 0.0163±0.0009 0.0370±0.0014 0.0163±0.0006 0.0423±0.0008 0.0584±0.0037

LDLFs 0.0129±0.0003 0.0159±0.0007 0.0344±0.0017 0.0156±0.0005 0.0392±0.0011 0.0561±0.0020

StructRF 0.0134±0.0008 0.0162±0.0009 0.0359±0.0015 0.0161±0.0005 0.0407±0.0009 0.0578±0.0030

DF-LDL 0.0133±0.0008 0.0162±0.0009 0.0367±0.0013 0.0161±0.0005 0.0418±0.0008 0.0609±0.0024

Clark↓

SA-BFGS 0.2107±0.0126 0.2165±0.0129 0.2008±0.0079 0.1992±0.0055 0.1828±0.0027 0.2500±0.0164

LDLFs 0.2021±0.0031 0.2126±0.0065 0.1872±0.0112 0.1908±0.0052 0.1706±0.0040 0.2427±0.0082

StructRF 0.2095±0.0125 0.2158±0.0134 0.1947±0.0076 0.1974±0.0054 0.1770±0.0028 0.2467±0.0139

DF-LDL 0.2084±0.0125 0.2158±0.0134 0.1990±0.0062 0.1977±0.0053 0.1813±0.0028 0.2575±0.0124

Can↓

SA-BFGS 0.6847±0.0432 0.6493±0.0394 0.4310±0.0186 0.5838±0.0159 0.3647±0.0058 0.5137±0.0335

LDLFs 0.6555±0.0099 0.6385±0.0146 0.4011±0.0221 0.5595±0.0148 0.3408±0.0076 0.4969±0.0173

StructRF 0.6812±0.0434 0.6472±0.0410 0.4177±0.0178 0.5780±0.0156 0.3541±0.0063 0.5066±0.0274

DF-LDL 0.6772±0.043 0.6472±0.0406 0.4279±0.0155 0.5804±0.0153 0.3629±0.0057 0.5295±0.0251

KL↓

SA-BFGS 0.0055±0.0006 0.0070±0.0008 0.0131±0.0011 0.0062±0.0004 0.0126±0.0004 0.0246±0.0029

LDLFs 0.0051±0.0002 0.0067±0.0004 0.0115±0.0013 0.0057±0.0003 0.0111±0.0005 0.0231±0.0016

StructRF 0.0055±0.0006 0.0070±0.0009 0.0125±0.0010 0.0061±0.0004 0.0120±0.0004 0.0243±0.0024

DF-LDL 0.0054±0.0006 0.0070±0.0009 0.0132±0.0010 0.0061±0.0004 0.0126±0.0005 0.0270±0.0023

Cos↑

SA-BFGS 0.9946±0.0006 0.9933±0.0007 0.9879±0.0010 0.9940±0.0004 0.9880±0.0004 0.9769±0.0026

LDLFs 0.9950±0.0001 0.9935±0.0003 0.9895±0.0011 0.9945±0.0003 0.9894±0.0004 0.9786±0.0014

StructRF 0.9946±0.0006 0.9933±0.0008 0.9885±0.0010 0.9941±0.0003 0.9886±0.0004 0.9773±0.0021

DF-LDL 0.9947±0.0006 0.9934±0.0008 0.9878±0.0009 0.9941±0.0003 0.9880±0.0005 0.9746±0.0019

Inter↑

SA-BFGS 0.9622±0.0024 0.9573±0.0026 0.9403±0.0027 0.9588±0.0011 0.9401±0.0010 0.9154±0.0053

LDLFs 0.9638±0.0006 0.9580±0.0009 0.9445±0.0028 0.9606±0.0010 0.9441±0.0012 0.9186±0.0028

StructRF 0.9624±0.0024 0.9574±0.0027 0.9421±0.0026 0.9592±0.0011 0.9419±0.0011 0.9167±0.0042

DF-LDL 0.9626±0.0024 0.9574±0.0026 0.9406±0.0023 0.9591±0.0011 0.9405±0.0010 0.9126±0.0038

Measure Method
Datasets

SJAFFE SBU 3DFE Movie Natural Scene Human Gene Optdigits

Cheby↓

SA-BFGS 0.1603±0.0160 0.1100±0.0039 0.1398±0.0161 0.3549±0.0159 0.0533±0.0036 0.0744±0.0032

LDLFs 0.1158±0.0153 0.1302±0.0046 0.1170±0.0033 0.3604±0.0260 0.0531±0.0159 0.6270±0.0129

StructRF 0.1094±0.0108 0.1183±0.0058 0.1104±0.0048 0.2738±0.0116 0.0553±0.0048 0.1034±0.0048

DF-LDL 0.1044±0.0160 0.1198±0.0064 0.1123±0.0050 0.2672±0.0117 0.0499±0.0039 0.0874±0.0040

Clark↓

SA-BFGS 0.6466±0.0462 0.3784±0.0122 0.6035±0.0560 2.3817±0.0239 2.1111±0.0820 1.6751±0.0167

LDLFs 0.4175±0.0361 0.4011±0.0110 0.5269±0.0123 2.4841±0.0300 2.1240±0.0637 2.5616±0.0242

StructRF 0.3900±0.0350 0.3680±0.0173 0.5039±0.0233 2.3946±0.0227 2.1776±0.1232 1.0620±0.0225

DF-LDL 0.3792±0.0527 0.3783±0.0188 0.5081±0.0267 2.3719±0.0221 2.0755±0.0433 1.0088±0.0199

Can↓

SA-BFGS 1.3595±0.1100 0.7831±0.0246 1.1679±0.1163 6.5546±0.0914 14.4531±0.6124 4.4333±0.0553

LDLFs 0.8797±0.0804 0.8610±0.0253 0.9995±0.0233 6.8694±0.1319 14.5737±0.4372 7.8649±0.0948

StructRF 0.8089±0.0769 0.7817±0.0354 0.9595±0.0441 6.4559±0.0950 14.8633±0.8857 2.7195±0.0638

DF-LDL 0.7839±0.1088 0.7881±0.0378 0.9737±0.0515 6.3743±0.0934 14.0834±0.7432 2.5748±0.0573

KL↓

SA-BFGS 0.1639±0.0245 0.0634±0.0038 0.1543±0.0405 1.1120±0.0999 0.2365±0.0184 0.0896±0.0048

LDLFs 0.0707±0.0132 0.0765±0.0045 0.0988±0.0043 0.9453±0.0569 0.2398±0.0719 1.0301±0.0446

StructRF 0.0603±0.0089 0.0659±0.0054 0.0901±0.0061 0.6436±0.0211 0.2480±0.0265 0.1056±0.0081

DF-LDL 0.0589±0.0145 0.0705±0.0064 0.0961±0.0072 0.6300±0.0265 0.2289±0.0239 0.0827±0.0053

Cos↑

SA-BFGS 0.8739±0.0179 0.9389±0.0034 0.9072±0.0188 0.6724±0.0149 0.8343±0.0102 0.9831±0.0019

LDLFs 0.9334±0.0125 0.9249±0.0040 0.9347±0.0028 0.6653±0.0185 0.8353±0.0251 0.6879±0.0193

StructRF 0.9429±0.0083 0.9348±0.0055 0.9407±0.0039 0.7895±0.0091 0.8202±0.0205 0.9758±0.0035

DF-LDL 0.9438±0.0139 0.9298±0.0065 0.9367±0.0043 0.7889±0.0098 0.8497±0.0167 0.9837±0.0021

Inter↑

SA-BFGS 0.7788±0.0162 0.8616±0.0041 0.8040±0.0199 0.5248±0.0145 0.7842±0.0092 0.9142±0.0035

LDLFs 0.8501±0.0151 0.8450±0.0046 0.8350±0.0040 0.4605±0.0220 0.7833±0.0235 0.3619±0.0131

StructRF 0.8622±0.0132 0.8592±0.0065 0.8432±0.0060 0.5919±0.0097 0.7739±0.0159 0.8871±0.0050

DF-LDL 0.8660±0.0192 0.8568±0.0072 0.8397±0.0069 0.6061±0.0102 0.8009±0.0123 0.9035±0.0042

Measure Method
Datasets

Semeion Ecoli LED7digit Wq Jura Average

Cheby↓

SA-BFGS 0.1368±0.0084 0.0875±0.0188 0.0981±0.0086 0.3026±0.0223 0.0732±0.0046 0.1044±0.0076

LDLFs 0.3569±0.0459 0.4888±0.0329 0.4719±0.0461 0.3065±0.0116 0.1115±0.0168 0.1949±0.0140

StructRF 0.2099±0.0042 0.0716±0.0240 0.0532±0.0114 0.2859±0.0185 0.0689±0.0090 0.0965±0,0069

DF-LDL 0.1799±0.0079 0.0749±0.0272 0.0503±0.0087 0.2840±0.0171 0.0791±0.0144 0.0938±0.0076

Clark↓

SA-BFGS 1.4282±0.0208 0.8979±0.0439 1.2670±0.0419 3.1255±0.0427 0.2592±0.0248 0.9432±0.0276

LDLFs 1.6710±0.0889 1.5454±0.0502 1.9121±0.1527 3.1115±0.0295 0.3429±0.0348 1.0767±0.0336

StructRF 1.3193±0.0197 0.4650±0.0748 0.3293±0.0591 3.1006±0.0443 0.2416±0.0216 0.7996±0.0305

DF-LDL 1.2406±0.0286 0.4245±0.069 0.3040±0.0477 3.1031±0.0425 0.2768±0.0255 0.7842±0.0264

Can↓

SA-BFGS 3.7601±0.0579 1.6400±0.0938 3.2747±0.0991 10.7824±0.2188 0.3674±0.0308 3.0473±0.0980

LDLFs 4.7213±0.3042 3.2622±0.1264 5.5698±0.5812 10.7510±0.1516 0.5034±0.0588 3.5264±0.1236

StructRF 3.5802±0.0661 0.7990±0.1509 0.7832±0.156 10.6299±0.2312 0.3406±0.0309 2.7004±0.1169

DF-LDL 3.3518±0.0929 0.7230±0.1348 0.7093±0.1240 10.6209±0.2191 0.3829±0.0399 2.6230±0.1087

KL↓

SA-BFGS 0.1652±0.0132 0.0730±0.0254 0.0932±0.0145 1.0540±0.0714 0.0231±0.0035 0.1940±0.0192

LDLFs 0.4456±0.0874 0.7172±0.0748 0.7356±0.0945 1.1061±0.0372 0.0435±0.0099 0.3278±0.0296

StructRF 0.2135±0.0095 0.0448±0.0267 0.0326±0.0095 0.9391±0.0406 0.0206±0.0031 0.1489±0.0101

DF-LDL 0.1756±0.0125 0.0502±0.0336 0.0305±0.0075 0.9255±0.0413 0.0266±0.0063 0.1439±0.0112

Cos↑

SA-BFGS 0.9512±0.0078 0.9847±0.0078 0.9732±0.0084 0.6248±0.0134 0.9875±0.0023 0.9215±0.0066

LDLFs 0.8451±0.0406 0.6986±0.0341 0.6735±0.0359 0.5887±0.0104 0.9744±0.0076 0.8648±0.0126

StructRF 0.9316±0.0065 0.9831±0.0141 0.9835±0.0053 0.6634±0.0101 0.9880±0.0033 0.9347±0.0056

DF-LDL 0.9468±0.0077 0.9785±0.0181 0.9844±0.0052 0.6672±0.0091 0.9848±0.0053 0.9369±0.0061

Inter↑

SA-BFGS 0.8330±0.0095 0.9073±0.0199 0.8737±0.0117 0.4431±0.0170 0.9628±0.0046 0.8448±0.0085

LDLFs 0.6098±0.0480 0.4876±0.0315 0.4854±0.0451 0.3999±0.0118 0.8885±0.0168 0.7469±0.0144

StructRF 0.7656±0.0062 0.9251±0.0026 0.9389±0.0132 0.4745±0.0149 0.9311±0.0090 0.8548±0.0082

DF-LDL 0.7948±0.0095 0.9220±0.0292 0.9423±0.0102 0.4828±0.0134 0.9209±0.0144 0.8593±0.0088
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Table 8: Friedman rank and Holm test applied to the results amoung the tested algorithms

Measure
Control Method: DF-LDL (2.1176)

i Algorithm (Rank) Z p-Value

Cheby

3 SA-BFGS (3) 1.9926 0.0463

2 LDLFs (2.7059) 1.3284 0.1840

1 StructRF (2.1765) 0.1328 0.8943

Measure
Control Method: DF-LDL (1.9706)

i Algorithm (Rank) Z p-Value

Clark

3 SA-BFGS (3.2941) 2.9889 0.0028

2 LDLFs (2.7059) 1.6605 0.0968

1 StructRF (2.0294) 0.1328 0.8943

Measure
Control Method: DF-LDL (1.9706)

i Algorithm (Rank) Z p-Value

Can

3 SA-BFGS (3.2941) 2.9889 0.0028

2 LDLFs (2.7059) 1.6605 0.0968

1 StructRF (2.0294) 0.1328 0.8943

Measure
Control Method: DF-LDL (2.1765)

i Algorithm (Rank) Z p-Value

KL

3 SA-BFGS (2.8824) 1.5941 0.1109

2 LDLFs (2.7059) 1.1956 0.2319

1 StructRF (2.2353) 0.1328 0.8943

Measure
Control Method: DF-LDL (2.2353)

i Algorithm (Rank) Z p-Value

Cos

3 SA-BFGS (2.7941) 1.2620 0.2069

2 LDLFs (2.7059) 1.0627 0.2879

1 StructRF (2.2647) 0.0664 0.9470

Measure
Control Method: DF-LDL (2.1471)

i Algorithm (Rank) Z p-Value

Inter

3 SA-BFGS (2.8824) 1.6605 0.0968

2 LDLFs (2.7647) 1.3948 0.1631

1 StructRF (2.2059) 0.1328 0.8943

Table 9: Execution times (in seconds), measured on a machine with ®Intel Core i7-7300HQ

processor (4 cores, 6MB cache, 2.5GHz - 3.5GHz) and 16GB DDR4 2400MHz RAM

Datasets Fit time Prediction time

StructRF DF-LDL StructRF DF-LDL

Yeast alpha 574.35 4709.50 0.10 0.52

Yeast cdc 736.34 2196.00 0,12 0,29

Yeast diau 717.97 421.10 0.11 0,09

Yeast elu 712.89 1365.01 0.11 0,24

Yeast heat 710.97 203.28 0.10 0.06

Yeast spo 522.11 201.99 0.10 0.06

SJAFFE 143.77 86.00 0.05 0.01

SBU 3DFE 2272.50 1370.02 0.07 0.04

Movie 10413.56 4160.43 0.39 0.20

Natural Scene 2866.39 4122.04 0.08 0.06

Human Gene 4317.67 390,365.00 0.78 35.34

Optdigits 1432.00 2335.03 0.24 0.22

Semeion 630.05 1161.71 0.06 0.05

Ecoli 42.28 11.52 0.008 0.006

LED7digit 2866.38 5058.16 0.08 0.07

Wq 306.38 717.15 0.03 0.06

Jura 54.53 4.23 0.007 0.001
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6. Conclusion

In this paper, we proposed a novel decomposition strategy that adapts to

LDL constraints. We have based the design of this algorithm on techniques like510

OVO that have already demonstrated their potential. The DF-LDL algorithm

can use any of the already existing LDL learners as base to build a stronger

classifier. In addition, the developed fusion method allows us to combine the

outputs in a way that discards the less competent classifiers.

In order to verify the effectiveness of the solution designed, it has been515

compared, firstly, with the base learners where we have demonstrated a clear

superiority of DF-LDL over practically all the datasets and measures used, and

secondly, with the state-of-the-art learner in the LDL scope where DF-LDL

achieves improvements in many of the cases.

We also want to highlight the performance improvement obtained in pre-520

diction times with respect to other multiple learning approaches thanks to the

fusion method devised that only makes use of the most competent classifiers for

each case.

As future work we want to extend the current proposal with some ideas that

have emerged during the course of this study. We can anticipate some of them525

such as the following:

• DF-LDL can be considered an LDL-oriented framework, compatible with

any LDL learning algorithm. In this study, we have experimented with two

different LDL base learners but in future work we would like to complete

the analysis with further ones. For instance, the LDLogitBoost [19] and530

the Label Distribution Learning Based on ensemble neural networks[32]

are two ensemble proposals from which we can extract the underlying base

classifier and use it in our DF-LDL framework.

• DF-LDL needs to train a large number of learners, especially when the

number of output labels is high. An interesting approach could be to535

design a decomposition strategy based on ECOC [40] in order to perform

the decomposition to fit better the data using a small number of classifiers.
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