
1

Assessing Hyper-Heuristic Performance

Nelishia Pillay1, Rong Qu2,
1Department of Computer Science, University of Pretoria, South Africa

2 ASAP Group, University of Nottingham, UK

Hyper-heuristics is an emerging area of Computer Science and as such certain areas of the field need further development before
it is established. One such area is assessing hyper-heuristic performance. Limited attention has been paid to assessing the generality
performance of hyper-heuristics. The performance of hyper-heuristics has been predominately assessed in terms of optimality which
is not ideal as the aim of hyper-heuristics is not to be competitive with state of the art approaches but rather to raise the level
of generality. Furthermore from existing literature it is evident that different hyper-heuristics aim to achieve different levels of
generality and need to be assessed as such. To cater for this the paper firstly presents a new taxonomy of four different levels of
generality that can be attained by a hyper-heuristic. The paper then proposes a performance measure to assess the performance of
different types of hyper-heuristics at the four levels of generality in terms of generality. Three case studies from the literature are
used to demonstrate the application of the generality performance measure. The paper concludes by examining how the generality
measure can be combined with other measures, such as optimality, to assess hyper-heuristic performance on more than one criterion.

Index Terms—hyper-heuristics, performance evaluation, generality, performance measure

I. INTRODUCTION

Hyper-heuristics is an emerging technique that has proven to
be effective at solving various problems including educational
timetabling, vehicle routing, personnel scheduling and packing
problems, amongst others [1]. The aim is to achieve a higher
level of generality by using a general framework over a set of
different problems or instances, rather than designing tailor-
made problem specific algorithms which may perform well on
some problems or instances but poorly on the others [2].

The generality of hyper-heuristics is achieved by exploring
in a higher level search space of heuristics, rather than in
a lower level space of direct solutions [3]. In the literature,
most classic metaheuristics such as simulated annealing and
evolutionary algorithms directly explore the search space of
solutions to a problem. Hyper-heuristics adaptively search in
the heuristic space at the higher level, thus achieving greater
generality by leaving problem specific details to a set of low-
level heuristics which operate upon the direct solution space.
Note that most classic metaheuristics can also be employed
by a hyper-heuristic to explore the high level heuristic space.

However, there has been no formalization of measurement
on how well a hyper-heuristic performs in terms of generality.
In some studies the performance of the hyper-heuristic is
compared to that of state-of-the-art approaches [4], [5]. Such
assessment is not appropriate against the main aim of a hyper-
heuristic, to produce good results over a problem set rather
than best results for certain problem instances without con-
sidering its general performance across others. Furthermore,
depending on the type of hyper-heuristic, the performance
expectations differ. For example, a generation constructive
hyper-heuristic aims at creating new low-level constructive
heuristics and as such cannot be expected to perform as well as
state-of-the-art metaheuristics which are dedicated to improve

Manuscript received December 1, 2012; revised August 26, 2015. Corre-
sponding author: N.Pillay (email: npillay@cs.up.ac.za

complete solutions. A more suitable comparison would be with
existing constructive heuristics for the problem domain.

The aim of this paper is to present a performance measure
to assess the performance of hyper-heuristics in terms of
generality. As a starting point the paper focuses specifically
on the evaluation of hyper-heuristic performance in solving
discrete optimisation problems. Future work will extend this to
emerging application areas of hyper-heuristics such as contin-
uous optimisation, multiobjective optimisation and automated
design.

Section II defines the terminology used in the paper. Section
III provides an overview of hyper-heuristics, which reveals that
different research addresses hyper-heuristics of different levels
of generality. These can range from performing well on a set
of problem instances for a single problem [6] to achieving
generality across multiple problem domains [7]. Based on this
overview Section IV then presents a new taxonomy of gener-
ality and illustrates this using examples from the literature.
Section V presents a performance measure to evaluate the
performance of hyper-heuristics in terms of generality rather
than optimality, and describes how this can be used to assess
the performance of the different types of hyper-heuristics.
Three case studies are used to illustrate the application of the
performance measure. The section concludes by examining
how the proposed generality measure can be combined with
other criterion, such as optimality, to assess hyper-heuristic
performance using more than one criterion. Finally, Section VI
provides a summary of the findings of the paper and proposes
future research directions. The main contribution of the paper
is a generality performance assessment measure for hyper-
heuristics.

This research aims to motivate and stimulate more ad-
vanced approaches based on existing diverse work in hyper-
heuristics, by providing important complementary mechanisms
with different classifications of general hyper-heuristics. The
contributions of this research are as follows:

2

• A taxonomy defining different levels of generality a
hyper-heuristic can attain.

• A performance measure to assess the performance of
hyper-heuristics in terms of generality.

II. TERMINOLOGY

This section defines the terms used in the paper in the
context of the research presented.

Problem domain refers to a domain that may include
various problems. Each problem domain has an underlying
problem and the various problems are variations of the un-
derlying problem. For example, the educational timetabling
domain includes the school timetabling, university course
timetabling and examination timetabling problems. Similarly,
the packing problem domain includes one-dimensional(1D),
two-dimensional(2D) and three-dimensional(3D) bin-packing.

Problem is one of the problems in a particular problem
domain. Examples include the examination timetabling prob-
lem in the educational timetabling problem domain and the
capacitated vehicle routing problem in the vehicle routing
domain.

Problem instance refers to an instance of a particular
problem. For example, pur93 is a problem instance for the
examination timetabling problem [8]. Similarly, eil76 [9] is
a problem instance for the symmetric travelling salesman
problem.

Benchmark set refers to a set of problem instances for
a particular problem. For example, the Toronto benchmark
set for the examination timetabling problem and the Scholl
benchmark set for the one-dimensional bin-packing problem.

III. OVERVIEW OF HYPER-HEURISTICS

A hyper-heuristic aims to improve its generality to different
problems by working in a heuristic space instead of a solution
space [3], [10]. At the higher level, a hyper-heuristic carries
out problem independent search on the space of heuristics,
configuring problem specific low-level heuristics which op-
erate on the search space of direct solutions. Based on the
methods used at the high and low levels, four classes of hyper-
heuristics have been defined, namely, selection constructive,
selection perturbative, generation constructive and generation
perturbative [1], [11], [12], [10].

Selection constructive hyper-heuristics select low-level con-
structive heuristics to apply at each decision making point
(i.e. assign a value to a decision variable) in creating a
solution to the problem. For example, for the examination
timetabling problem, different low-level constructive heuristics
(i.e. largest degree, largest weighted degree, largest colour
degree, largest enrolment and saturation degree) can be used
to create a solution [5], [13]. These heuristics assess the
difficulty of scheduling examinations, and assign them one
by one accordingly to construct a solution, most difficult first.
At each step during the high level search, the hyper-heuristic
configures the low-level constructive heuristics to construct a
solution.

Selection perturbative hyper-heuristics are used to choose
a perturbative low-level heuristic at each point to iteratively
improve a complete solution subject to a stopping condition.
An initial solution can be created either randomly or using a
constructive heuristic. For the examination timetabling prob-
lem, perturbative heuristics include moving an examination to
another period, swapping the periods of two randomly selected
examinations, deallocating an examination [14].

In a single point based hyper-heuristic search, moves are
made based on the selected heuristic associated with an
acceptance criterion.

Hyper-heuristics performing a multipoint search such as
genetic algorithms are not composed of separate components
for heuristic selection and move acceptance as the multipoint
search technique by its nature performs both these tasks [15].

Generation constructive hyper-heuristics focus on creating
new constructive heuristics by combining variables represent-
ing given low-level heuristics, components of existing low-
level heuristics and problem characteristics using arithmetic
and conditional operators. These are essentially a priority
function such as an arithmetic function or arithmetic rule. In
the case of university course timetabling, this could be an arith-
metic function comprised of standard addition, subtraction,
multiplication and division operators to configure and combine
problem characteristics such as the number of students taking
the lecture, the number of other conflicting lectures (with
common students), the number of feasible timetable periods
available to allocate a lecture to [16].

Like generation constructive hyper-heuristics, generation
perturbative hyper-heuristics create new heuristics but these
are perturbative. The new heuristics are comprised of the
given low-level heuristics or components thereof and condi-
tional and/or iterative operators. For example, for the Boolean
satisfiability problem, low-level perturbative heuristics select
and move variables and clauses. The components of low-level
heuristics, such as net gain and select a clause randomly, are
combined with conditional operators to produce new heuristics
[17].

The new heuristics created by generation constructive and
generation perturbative hyper-heuristics can be disposable or
reusable. Disposable heuristics are created specifically for
a particular problem instance, while reusable heuristics are
effective when applied to new problem instances different from
those used to create the heuristic. Genetic programming [18]
and its variations, such as grammar-based genetic program-
ming [19] and grammatical evolution [20], have chiefly been
employed by hyper-heuristics to create new constructive and
perturbative heuristics.

From the existing research conducted in this area, it is
evident that hyper-heuristics are proposed to achieve different
levels of generality based on the problem at hand. The follow-
ing section provides a taxonomy to standardise the levels of
generality based on the existing research in hyper-heuristics.

IV. LEVELS OF GENERALITY

In this section we firstly present a taxonomy for different
levels of generality that must be achieved by hyper-heuristics.

3

This is based on applications of hyper-heuristics in the litera-
ture, as well as levels we see as needed to build an extensible
taxonomy with future growth of the field. Examples are then
provided from the literature to illustrate each level in the
taxonomy.

A. Taxonomy for Hyper-Heuristic Generality

The taxonomy is comprised of the following four levels of
generality:

• Level 1: Single problem, single benchmark - In this case
the hyper-heuristic should produce good results for a
particular benchmark set of instances for a particular
problem. For example, the ITC 2007 benchmark set
for the examination timetabling problem [21] or the
Faulkenauer benchmark set for the one-dimensional bin-
packing problem [22]. The hyper-heuristic solves prob-
lem instances in a benchmark set for a single problem
and hence its ability to generalize is the lowest for this
level.

• Level 2: Single problem, multiple benchmarks - The
hyper-heuristic should perform well for different bench-
mark sets for a particular problem. For example, for
the examination timetabling problem different benchmark
sets would include the Toronto benchmark [13] and
the ITC 2007 benchmark [21]. Similarly, for the one-
dimensional bin-packing domain the problems would
include the Faulkenauer and Scholl benchmark sets [22],
[23]. The instances contained in the different benchmark
sets must differ with respect to the problem constraints.
For example, the Toronto and ITC 2007 benchmark sets
differ with respect to the hard and soft constraints that
must be met. For some problems, such as bin packing
and the travelling salesman problem, there is just one
constraint, so the benchmarks sets differ in terms of
the problem features. For example, the Faulkenauer and
Scholl benchmark sets differ in terms of the range for the
size of items, number of items, bin capacities, etc. Hyper-
heuristics in this category generalize better than Level 1
hyper-heuristics in that they can produce good solutions
over more than one benchmark set with problem instances
of differing constraints or features. In the case of problem
features there must be a sufficient difference in features
as in the Faulkenauer and Scholl benchmark sets. If the
differences in features is small these will be equivalent
to different problem instances in the same benchmark set
rather than different benchmark sets.

• Level 3: Single domain, multiple problems - The hyper-
heuristic must produce good solutions for different
problems for a particular problem domain. The prob-
lem domain has a specific underlying problem, e.g.
packing items in a bin, allocating educational events
to timetable periods. The hyper-heuristic solves vari-
ations of the underlying problem. For example, one-
dimensional, two-dimensional and three-dimensional bin-
packing problems for the packing domain. There must
be a single underlying problem, for example educational
timetabling involves allocating educational events and

variations include examination timetabling, university
course timetabling and school timetabling for the edu-
cational timetabling domain.

• Level 4: Cross Domain - The hyper-heuristic is applied
to problems across different problem domains. Each
problem domain has a different underlying problem. For
example, solving various discrete optimsation problems
such as the symmetric travelling salesman problem, one-
dimensional bin-packing problem and personnel schedul-
ing problem [24], [25]. Similarly, solving continuous
optimisation problems such as function optimisation and
time series forecasting.

The levels distinguish between the hyper-heuristics in terms
of the extent to which they generalize, with Level 1 being
the lowest level of ability to generalize and Level 4 the
highest level. Progression from one level to the next is not
indicative of the problems being more challenging to solve
at the higher levels but rather that the hyper-heuristic is
able to generalize further. Also please note that there is no
polymorphic relationship between the levels, i.e. a hyper-
heuristic a Level 4 will not necessarily perform better than
a hyper-heuristic at Level 1 in attaining Level 1 generality.
The reason for this is that the aim of the hyper-heuristics
at different levels are different and a hyper-heuristic that is
developed to perform well across different problem domains
for example, will not necessarily perform well for a particular
problem or set of benchmark instances. These levels are based
on the current state of the field of hyper-heuristics. However,
the idea is to provide an extensible taxonomy that can be
adapted according to the growth of the field.

In the following sections we provide an example for each
level of generality from the literature. Note that we use good
results here to indicate the expected performance at different
levels of generality. A performance measure concerning differ-
ent levels of generality is proposed and discussed in Section
V.

B. Level 1: Single Problem-Single Benchmark

A fair amount of the studies on hyper-heuristics aim to
achieve Level 1 generality, i.e. on a benchmark set of instances
for a particular problem. One of the earlier studies [26]
employed a selection constructive hyper-heuristic to solve the
examination timetabling problem for the Toronto benchmark.
In [27] a selection perturbative hyper-heuristic is implemented
to solve the set covering problem using the OR-Library
benchmark set. Similarly, in [16] a generation constructive
hyper-heuristic is applied to the university course timetabling
problem. The hyper-heuristic was applied to the ITC 2007
curriculum based course timetabling benchmark set. A further
example is the generation perturbative hyper-heuristic em-
ployed by Fukunaga [17] to solve the Boolean satisfiability
problem using the problem instances from SATLIB. Compar-
isons are usually conducted against other metaheuristics and
evolutionary algorithms designed for the particular problem.
Table I lists some examples of Level 1 generality hyper-
heuristics.

4

TABLE I
EXAMPLES OF HYPER-HEURISTICS AT LEVEL 1 GENERALITY

Problem Type of Benchmark Reference
Domain Hyper-Heuristic Set
Examination Selection Toronto Pillay [28]
timetabling constructive
Constraint Selection Generated Terashima-Marı́n
satisfaction constructive et al. [29]
Travelling Selection Easton Chen et al. [30]
tournament problem perturbative
Set covering Selection ORLib Ferreira
problem perturbative et al. [27]
Examination Selection Toronto Burke et al. [31]
timetabling perturbative
Examination Generation Toronto Bader-El-Den
timetabling constructive et al. [4]
2D strip Generation Generated Burke et al. [32]
packing constructive
Multidimensional Generation ORLib Drake et al. [33]
knapsack problem constructive
One dimensional bin Generation ORLib Sim et al. [34]
packing constructive
3-SAT Generation SatLib Bader-El-Den

perturbative et al. [35]

C. Level 2: Single Problem-Multiple Benchmarks

Level 2 hyper-heuristics aim to solve problem instances
in different benchmark sets for a problem. Benchmark sets
usually differ in terms of characteristics. For example, for
the examination timetabling problem different benchmark sets
have different hard and soft constraints for the problem. Simi-
larly, for the one-dimensional bin-packing problem different
benchmark sets vary in the dimensions of items and bin
capacities.

In the study conducted by Terashima-Marı́n et al. [6], a
selection constructive hyper-heuristic is used to create solu-
tions to the 2D regular cutting stock problem. The hyper-
heuristic was evaluated on a combination of subsets of various
2-D regular cutting stock problems and randomly generated
problem instances. In [36] a selection perturbative hyper-
heuristic is used to solve a combination of problem instances
from two benchmark sets for the examination timetabling
problem, namely, the Toronto benchmark set and the Yeditepe
benchmark set. In the study conducted by Burke et al. [32] a
generation constructive hyper-heuristic is used to create new
low-level constructive heuristics for the two dimensional strip
packing problem. The hyper-heuristic is trained and tested on
a combination of problem instances from different benchmark
sets. In these studies the problem instances from the different
benchmark sets are combined into a single set to which the
hyper-heuristic is applied.

Some studies have applied the hyper-heuristic developed to
different benchmark sets for a problem, but the performance
of the hyper-heuristic is not evaluated on the combined set
of problem instances from all the benchmark sets. Hence,
the hyper-heuristic is applied and evaluated separately for
each benchmark set. For example, in the study conducted by
Sabar et al. [37], a selection constructive hyper-heuristic is
implemented to solve the examination timetabling problem
for the Toronto and ITC 2007 benchmark sets. In [15] a
selection perturbative hyper-heuristic is used to solve problem

instances in various benchmark sets for the school timetabling
problem. Sim and Hart [38] have implemented a generation
constructive hyper-heuristic to solve the one-dimensional bin-
packing problem which was applied to 5 one-dimensional bin-
packing benchmark sets. In this research, the hyper-heuristics
developed are compared with other algorithms designed for the
different benchmark data sets, respectively, to demonstrate its
generality across different data sets of instances. Two different
rankings, or comparison analyses, are used separately for the
different data sets. Examples of Level 2 generality hyper-
heuristics are listed in table II.

D. Level 3: Single Domain - Multiple Problems

Hyper-heuristics in this category solve different problems
in a particular domain. For example, in the study presented in
[43], a selection constructive hyper-heuristic is used to solve
bin-packing problems. Problem instances from benchmark sets
for the one dimensional bin packing problem, two dimensional
bin packing problems and two dimensional bin packing prob-
lems with irregular concave polygons are combined to evaluate
the hyper-heuristic.

In other studies, the hyper-heuristic is applied to the
benchmark set for each problem separately, i.e. the prob-
lem instances for the different problems are not combined.
Terashima-Marı́n et al. [44] employ a selection perturba-
tive hyper-heuristic to solve packing problems. The hyper-
heuristic solves both two dimensional regular and irregular
problems. Burke et al. [5] also use a selection construc-
tive hyper-heuristic for the educational timetabling domain.
Examination timetabling problem instances and university
course timetabling problem instances are solved by the hyper-
heuristic. Similarly, Misir et al. [45] employ a selection per-
turbative hyper-heuristic to solve three healthcare scheduling
problems, namely, home care scheduling, nurse rostering and
patient admission scheduling. In this set of research, the
hyper-heuristics developed are compared with other algorithms

5

TABLE II
EXAMPLES OF HYPER-HEURISTICS AT LEVEL 2 GENERALITY

Problem Type of Hyper- Benchmark Reference
Domain Heuristics Sets
One dimensional Selection Scholl and Pillay [39]
bin packing constructive Faulkenauer
One dimensional Selection Faulkenauer and Ross et al. [40]
bin packing constructive Technische Universitat

Darmstadt
2D regular Selection Generated, ORLib, Terashima-Marı́n
stock cutting constructive Martello and Vigo et al. [6]

Berkey and Wang
Examination Selection Toronto and Sabar et al. [37]
timetabling constructive ITC 2007
School Selection Abramson, Valouxis, Raghavjee
timetabling perturbative Beligiannis, South et al. [15]

African primary school
South Africa high school

Examination Selection Toronto and Özcan et al. [36]
timetabling perturbative Yeditepe
Vehicle routing Generation Solomon and Sim et al. [41]

constructive Sim and Hart
Constraint Generation Generated, RLFAP-graphs Sosa-Ascenio
satisfaction et al. jobShop-e0ddr1 [42]
SAT Generation SatLib and Fukunaga [17]

perturbative Gottlieb

designed for the different benchmark problems, respectively,
to demonstrate its generality across different problems in the
same domain. Two different rankings, or comparison analyses,
are used separately for the different data sets to assess the
generality of the developed hyper-heuristics.

Table III presents examples of Level 3 generality hyper-
heuristics.

E. Level 4: Cross Domain

Cross domain hyper-heuristics are applied across differ-
ent problem domains. The concept of cross domain hyper-
heuristics was initiated by the hyper-heuristic community in
2011 to increase the generality level of hyper-heuristics. The
HyFlex Java framework [46] was developed and made publicly
available to promote research on cross domain selection pertur-
bative hyper-heuristics. The framework provides the methods
for creating an initial solution, the low-level perturbative
heuristics, the objective function and problem instances for
six discrete optimization problems, namely, Boolean satisfia-
bility, one dimensional bin packing, permutation flow shop,
personnel scheduling, travelling salesman and vehicle routing.
It is used to implement different selection perturbative hyper-
heuristics for all six domains. Two challenges, CHeSC 2011
and CHeSC 2014, using this framework, were held to promote
research in cross domain hyper-heuristics.

Hence, the research in this area has focused on using the
HyFlex framework for cross domain hyper-heuristics. The
early work includes that presented in [7], where an adaptive
dynamic heuristic set (ADHS) strategy was used for heuristic
selection, and an adaptive iteration limited list based threshold
accepting (AILLA) approach was used for move acceptance.
This hyper-heuristic has produced the best results in CHeSC
2011. The selection perturbative hyper-heuristic implemented
by Chan et al. [47] takes an analogy from pearl hunting to

explore the space of low-level pertubative heuristics. Cichow-
icz et al. [48] implemented a five-stage hyper-heuristic and
a genetic hive hyper-heuristic for the cross domain challenge.
Subsequent to the challenge, this field has grown rapidly with a
number of attempts to produce better performing cross domain
selection perturbative hyper-heuristics.

Examples of Level 4 generality hyper-heuristics are depicted
in Table IV.

V. ASSESSING THE PERFORMANCE OF A
HYPER-HEURISTIC

This section firstly introduces a measure for assessing the
generality performance of hyper-heuristics. The application of
this generality measure is then illustrated using case studies
from the literature. The section ends by examining how the
generality measure presented can be combined with other
criteria to assess hyper-heuristic performance.

A. Measure for Assessing Hyper-Heuristic Performance

In the existing literature, the performance of a hyper-
heuristic is assessed by comparing its performance to ei-
ther existing low-level constructive or perturbative heuristics,
other hyper-heuristics, or optimisation techniques on a set of
problem instances, depending on the type of hyper-heuristic.
The comparisons have been based on optimality which is not
appropriate for the comparison of hyper-heuristic performance.
Ranking has previously been used to perform this comparison
for selection perturbative hyper-heuristics [46]. In this section
we examine the use of ranking for comparing hyper-heuristic
performance and introduce an alternative measure to assess
the generality of hyper-heuristics.

In ranking, the approach being compared which produces
a solution with the best objective value is assigned a rank of
1, the one with the next best objective value a rank of 2, and

6

TABLE III
EXAMPLES OF HYPER-HEURISTICS FOR LEVEL 3 GENERALITY

Problem Problems Type of Hyper- Benchmark Reference
Domain Heuristics Sets
Educational Examination Selection Generated Burke
timetabling timetabling and constructive et al. [26]

course timetabling
Offline packing 1D single bin, 2D Selection Generated, Scholl, Lopez-
problems regular and 2D constructive Washer and Camacho

irregular single bin Faulkenauer et al. [43]
Educational Examination Selection Toronto Burke
timetabling timetabling and constructive Metaheuristic et al. [5]

course timetabling
network

Educational Examination Selection Toronto Qu et al.
timetabling timetabling and constructive Metaheuristic [3]

course timetabling network
2D stock Regular Selection Generated, ORLib, Terashima-
cutting and irregular constructive Martello and Vigo Marı́n [44]

Berkey and Wang

TABLE IV
EXAMPLES OF HYPER-HEURISTICS AT LEVEL 4 GENERALITY

Problem Type of Hyper- Benchmark Reference
Domains Heuristics Sets
Nurse rostering Selection Aickelin and Downsland Burke
Course timetabling perturbative Metaheuristic network et al. [49]
Examination timetabling Selection ITC 2007, Taillard, Sabar
Dynamic vehicle routing perturbative Christofides, Fischer et al. [25]
Examination timetabling Generation ITC 2007, Golden, Sabar
Vehicle routing perturbative Christofides et al. [24]
6 CHeSC problem Selection CHeSC Misir
domains perturbative benchmark sets et al. [7]
6 CHeSC problem Selection CHeSC Chan
domains perturbative benchmark sets et al. [47]
6 CHeSC problem Selection CHeSC Cichowicz
domains perturbative benchmark sets [48]
6 CHeSC problem Selection CHeSC subsets of Lehrbaum
domains perturbative benchmark sets [50]

so on. In the case of ties on objective values, the approaches
are assigned the same rank. The ranks are then aggregated
or averaged to compare the performance of the approaches.
The approach with the lowest total or average is the best
performing approach. Algorithm 1 presents a typical ranking
algorithm.

Algorithm 1 Ranking algorithm
1: Apply approach ai to problem instance pj
2: Assign a rank rj to approach ai based on the objective

value of the solution it has produced for problem instance
pj

3: The overall rank for each approach ai is Ri =

∑n

j=1
rj

n ,
where n is the number of problem instances, i.e. j = 1,
..., n.

Ranking favours the approach that produces the best ob-
jective value for most of the problem instances. As such it
is not capable of measuring whether the approach performs
well over the problem set with instances of different scales
of objective values. We propose the standard deviation of
differences (SDD) as a measure to assess how well a hyper-
heuristic performs over a set of problem instances. Equation

(1) presents the formula for SDD, where N is the number of
problem instances.

SDD(H) =

√∑N
i=1 (xi − x̄)2

N − 1
(1)

xi = 0 if oi = 0 and bi = 0 (2)

xi = (|oi − bi|)/average(oi, bi)) ∗ 100 otherwise (3)

x̄ =

∑N
i=1 xi

N
(4)

SDD is the standard deviation of the percentage difference
between oi the objective value of the solution produced by the
approach for problem instance i, and the best known objective
value or the best objective value bi among the approaches
being compared. As indicated in equation 3 the percentage
difference is calculated to be the percentage of the absolute
value of the objective value and the best known objective
value divided by the average value of both these values if
both oi and bi are not zero. Alternatively, the maximum of
both objective values could be taken instead of the average. If

7

both oi and bi are zero, the percentage difference xi is zero as
indicated in equation 2. A lower standard deviation indicates
that there is less variance in the distance from the best known
objective value over the set of problem instances and hence a
better ability to generalize. Hence, if the difference from the
optimum is the same for all problem instances, there is no
variation and the SDD value is 0 indicating that the hyper-
heuristic generalizes well. Thus, the best SDD value a hyper-
heuristic can attain is 0. However, as can be seen from the
literature and the examples presented below this is not very
likely.

The aim of the SDD is to assess the variation of the
difference from optima (or best known) over the set of problem
instances. By definition this is what the standard deviation
assesses. The less variation in the differences the better the
hyper-heuristic can generalize. Thus if the difference from the
optimum is the same there is no variation in the differences
and SDD will be zero. The aim of SDD is to assess generality,
rather than optimality (as the majority assessment used in the
literature). For example, given three problem instances with oi
and bi values 1025, 107, 29 and 1020, 102, 24 respectively.
There is no variation in the difference from the optimum
giving a value of 0 for SDD indicating that the hyper-heuristic
has generalized (rather than optimised) well over the set of
problem instances. Optimality can be added as an additional
criterion as discussed below.

We illustrate both ranking(RAN) and SDD using two
hyper-heuristics in [5], which aim to perform well over the
problem set, and two approaches aiming to produce the best
objective values for the problem instances in the benchmark
set [51], [52]:

• GHH - The tabu search hyper-heuristic in [5].
• Multistage - The multistage version of GHH in [5].
• SB - The sequential allocation approach with backtrack-

ing in [51] for examination timetabling problems. This
approach has produced the best objective values for more
problem instances in the Toronto benchmark set than any
other approach applied to this set.

• TS - In [52] a tabu search is applied to the examination
timetabling problem, aiming to produce the best objective
value for the problem instances. This approach is also ap-
plied to the Toronto benchmark set and has not produced
the best objective value for any of the problem instances.

Table V displays the RAN and SDD values for the
four approaches to the 11 problem instances in the Toronto
benchmark set.

TABLE V
PERFORMANCE COMPARISON USING RAN AND SDD

Approach RAN SDD
SB 1.8 14.66
GHH 1.91 5.99
Multistage 2.73 8.3
TS 3.36 10.54

From Table V it can be seen that the sequential allocation
approach with backtracking (SB) by [51] has the best RAN
value, and produces the best objective value for more of the

problem instances in the benchmark set. In terms of SDD,
however, both the hyper-heuristics, GHH and Multistage,
perform better than the approaches which aim to produce the
best results for the problem instances. SB has the worst SDD
value, and produces the best results for some of the problems
instances but performs poorly on the other problem instances.
This indicates that it does not generalize as well over the
problem set compared to the other approaches. While TS does
not produce the best results for any of the problem instances, it
generalizes better over the problem set than SB. With SDD the
measurement of generality reveals more information on how
the approaches generlize across different problem instances.

B. Different Types of Hyper-Heuristics and Generality Lev-
els

This section firstly examines how to assess the performance
of the different types of hyper-heuristics, namely, selection
constructive, selection perturbative, generation constructive
and generation perturbative, against the four levels of
generality defined in section III. Then performance evaluation
for the four levels of generality is explained.

Selection constructive hyper-heuristics

Selection constructive hyper-heuristics choose a low-level
constructive heuristic to apply at each point in constructing
a solution to a problem. Hence, the overall aim of these
hyper-heuristics is the same as that of low-level constructive
heuristics, namely, to create a good initial solution which can
be optimised further using other techniques. Hence, the perfor-
mance of these hyper-heuristics, using the SDD performance
measure, can be assessed by comparing the results obtained
to :

1) The existing low-level constructive heuristics that are
used to create initial solutions for the problem domain.

2) Other selection constructive hyper-heuristics that have
been applied to the benchmark set of problems.

Selection perturbative hyper-heuristics

Selection perturbative hyper-heuristics aim to improve an ini-
tial solution created randomly or using a constructive heuristic.
These heuristics essentially select a move operator to apply in
the solution space. The hyper-heuristics can be evaluated by
comparing their performance, using the SDD performance
measure, to:

• Other selection perturbative hyper-heuristics applied to
the same benchmark sets.

• Other optimisation techniques applied to the same bench-
mark sets.

Generation constructive hyper-heuristics

Generation constructive hyper-heuristics create new low-level
heuristics and hence their performance is measured in terms
of the new heuristics. The induced heuristics are used to create
an initial solution to the problem. As such they are evaluated
by comparing their performance, using the SDD performance
measure, to:

8

• Existing low-level constructive heuristics for the problem
domain.

• Other generation constructive hyper-heuristics applied to
the same domain.

Generation perturbative hyper-heuristics

Generation perturbative hyper-heuristics create new low-level
perturbative heuristics. These are essentially local search oper-
ators. These hyper-heuristics are evaluated by comparing their
performance, using the SDD performance measure, to:

• Existing local search operators for the problem domain.
Each generated perturbative heuristic and existing local
search operator is applied for a number of iterations to
an initial solution. A set time or number of iterations
can be used as a termination criterion. Alternatively, this
iterative process can be terminated when there is no
further improvement in the objective value of the resulting
solution.

• Other generation perturbative hyper-heuristics all applied
to the same benchmark set of problems.

In the case of Level 1 hyper-heuristics, SDD is calculated
over the benchmark set to show the generality of the hyper-
heuristic. For hyper-heuristics aiming to attain Level 2 general-
ity, i.e. performing well over n benchmark sets for a particular
problem, SDD must be calculated over the instances in all
n benchmark sets. For example, suppose that two benchmark
sets containing 12 and 8 problem instances are used to evaluate
the hyper-heuristic, SDD is calculated over the 20 problems.
Similarly, for Level 3 and Level 4 hyper-heuristics these
measures must be calculated over all the problem instances
from the different benchmark sets for the problem domain
and the instances from the benchmark sets for the different
domains, respectively.

C. Case Studies

This section illustrates and demonstrates the use of the
SDD performance measure established in Section V-A in
assessing the performance of hyper-heuristics in three studies
from the literature, namely:

• A selection constructive Level 1 hyper-heuristic [39]
• A selection perturbative Level 4 hyper-heuristic [50]
• A generation constructive Level 3 hyper-heuristic [53]

The study in [39], [54] employs a selection constructive
hyper-heuristic to solve the Toronto benchmark examination
timetabling set of problems. Evolutionary algorithm hyper-
heuristics are investigated to explore the space of heuristic
combinations. Each low-level constructive heuristic in the
combination is applied in sequence to select the next exam-
ination to allocate to the timetable. The study compares the
performance of four evolutionary algorithm selection construc-
tive hyper-heuristics:

• FHC - The heuristic combinations are of fixed length,
equal to the number of examinations to be allocated.

• VHC - The heuristic combinations are of variable length
between one and a specified maximum value.

• NHC - The heuristic combination is not comprised of just
characters representing the low-level constructive heuris-
tics, but integer-character pairs. The integer specifies the
number of times the paired heuristic will be used to select
an examination to schedule to the timetable.

• CEA - The heuristic combinations that make up the
population in the evolutionary algorithm include all three
representations, i.e. the representations used by FHC,
VHC and NHC.

The paper presents just the results obtained by the four
hyper-heuristics so a performance comparison with the exist-
ing low-level heuristics is not possible. Table VI presents the
SDD values calculated to assess the performance of the four
hyper-heuristics. Both CEA and VHC outperform the other
hyper-heuristics.

TABLE VI
PERFORMANCE COMPARISON OF HYPER-HEURISTICS IN [39]

Hyper-Heuristic SDD
CEA 8.39
VHC 88.31
NHC 88.45
FHC 89.61

Lehrbaum [50] presents a Level 4 selection perturbative
hyper-heuristic, HAHA, to solve discrete optimisation prob-
lems for different domains in HyFlex, namely, Boolean sat-
isfiability, one dimensional bin packing, personnel schedul-
ing, flow shop scheduling, vehicle routing and the travelling
salesman problem. Table VII presents SDD for HAHA and
five other selection perturbative hyper-heuristics entered in the
cross domain challenge, which also aim to achieve Level 4
generality across the six problem domains.

TABLE VII
PERFORMANCE COMPARISON OF SELECTION PERTURBATIVE

HYPER-HEURISTICS FROM [50]

Hyper-Heuristic SDD
AdaptHH 10.56
VNS-TW 39.5
HAHA 43.04

ML 43.81
SA-ILS 60.03
DynILS 61.09

Applying the SDD, we can see that in Table VII, AdaptHH
outperforms the other hyper-heuristics. It is interesting to note
that this hyper-heuristic was the winner of the cross domain
challenge. VNS-TW performs better than the remaining hyper-
heuristics with DynILS achieving the least level of generality
across the problems.

The study presented in [53] compares the performance of
two generation constructive hyper-heuristics to generate new
low-level constructive heuristics for educational timetabling
problems. AHH employs genetic programming to evolve arith-
metic low-level heuristics. The second hyper-heuristic, HHH-
GA10, uses a genetic algorithm to evolve hierarchical low-
level constructive heuristics. The study evaluates both of these
hyper-heuristics separately on examination timetabling and
curriculum-based university course timetabling problems to

9

determine how they perform in the domain of educational
timetabling. The Toronto and the ITC 2007 examination
timetabling track benchmark sets have been used to assess
the hyper-heuristics for examination timetabling and the ITC
2007 curriculum-based course timetabling track benchmark set
for course timetabling. The study reveals that AHH performs
better for examination timetabling and HHH-GA10 better for
curriculum based course timetabling.

We examine the performance of both hyper-heuristics over
both problems to assess their performance for the domain
of educational timetabling. The SDD value for each of
the hyper-heuristics over three benchmark sets, i.e. Toronto,
ITC 2007 examination timetabling and ITC 2007 curriculum-
based course timetabling, is listed in Table VIII. HHH-GA10
generalizes better for the domain of educational than AHH,
performing well over all three benchmark sets.

TABLE VIII
PERFORMANCE COMPARISON OF GENERATION CONSTRUCTIVE

HYPER-HEURISTICS FROM [53]

Hyper-Heuristic SDD
AHH 78.9

HHH-GA10 62.93

D. Combining the Generality Measure with Other Criteria

In some instances the researcher may want to assess hyper-
heuristic performance in terms of other criteria in addition
to generality. For example, in addition to generality, the
researcher may want to assess hyper-heuristic performance in
terms of optimality and runtime. One approach that can be
used is scalarization [55] such as taking the weighted sum of
the different criteria. However, in order to take a weighted sum
it is necessary that the values in the weighted sum are of the
same dimension. Various normalization techniques can be used
for this purpose [56]. The simplest is to divide the value by the
known optimum in instances where this optimum is not zero.
The most appropriate multiobjectve function to use is beyond
the scope of the paper and future research will examine this
further.

VI. CONCLUSION AND FUTURE RESEARCH

Hyper-heuristics aim at attaining generality in providing
solutions to problems. Given that this is an emerging area
existing performance measures from optimization such us op-
timality and ranking have been used to assess hyper-heuristic
performance which is not ideal. It is also evident from the
research in the field that different hyper-heuristics aim to
achieve different levels of generality. The paper presents a
taxonomy to classify hyper-heuristics in terms of the generality
level it aims to attain. A performance measure to assess hyper-
heuristic performance in terms of generality is presented and
illustrated using three case studies.

The study presented in this paper has focused on hyper-
heuristics for solving discrete optimisation problems. Future
work will investigate applying the measure to continuous and
multiobjective optimisation. Furthermore, the use of hyper-
heuristics for the automated design of machine learning and

search algorithms has been shown to be effective. Future
extensions of this work will also investigate this performance
measure for assessing the performance of hyper-heuristics
to this rapidly developing area of hyper-heuristics. Future
work will also identify the most appropriate multiobjective
function for assessing the performance of hyper-heuristics
using more the one criterion such as optimality and gen-
erality. Generality and optimality may be contradictory in
some instances and need to be weighed carefully. Such a
multiobjective evaluation function must be extensible to cater
for new dimensions/objectives as the field of hyper-heuristics
develops further.

REFERENCES

[1] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, and
E. Ozcan, “Hyper-heuristics: A survey of the state of the art,” Journal
of Operational Research Society, vol. 64, pp. 1695–1724, 2013.

[2] P. Ross, “Hyper-heuristics,” in Search Methodologies. Springer, 2014,
pp. 611–638.

[3] R. Qu and E. K. Burke, “Hybridisations within a graph based hyper-
heuristic framework for university timetabling problems,” Journal of
Operational Research Society, vol. 60, pp. 1273–1285, 2009.

[4] M. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling heuris-
tics using grammar-based genetic programming hyper-heuristic frame-
work,” Memetic Computing, vol. 1, pp. 205–219, 2009.

[5] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu,
“A graph-based hyper-heuristic for educational timetabling problems,”
European Journal of Operational Research, vol. 176, pp. 177–192, 2007.

[6] H. Terashima-Marin, C. F. Zarate, P. Ross, and M. Valenzuela-Rendon,
“A GA-based methd to produce generalized hyper-heuristics for the
2D-regular cutting stock problem,” in Proceedings of the 8th Annual
Conference on Genetic Programming and Evolutionary Algorithms.
ACM, 2006, pp. 591–598.

[7] M. Misir, K. Verbeeck, P. D. Causmaecker, and G. V. Berghe, “A
new hyper-heuristic as a general problem solver: An implementation
in hyflex,” Journal of Scheduling, vol. 16, no. 3, pp. 291–311, 2013.

[8] R. Qu, E. Burke, B. McCollum, L. Merlot, and S. Lee, “A survey of
search methodologies and automated system development for exami-
nation timetabling,” Journal of Scheduling, vol. 12, no. 1, pp. 55–89,
2009.

[9] G. Reinelt, “Tsplib-a traveling salesman problem library,” ORSA Journal
on Computing, vol. 3, no. 4, pp. 376–384, November 1991.

[10] N. Pillay and R. Qu, Hyper-Heuristics: Theory and Applications, ser.
Natural Computing Series. Springer, 2018.

[11] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, Ö. Ender, and W. J. R.,
“A classifiction of hyper-heuristic approaches: Revisted,” in Handbook
of Metaheuristics. Springer, 2019.

[12] M. Epitropakis and E. K. Burke, “Hyper-heuristics,” in Handbook of
Metaheuristics. Springer, 2018.

[13] R. Qu, E. K. Burke, and B. McCollum, “Adaptive automated con-
struction of hybrid heuristics for exam timetabling and graph colouring
problems,” European Journal of Operational Research, vol. 198, no. 2,
pp. 392–404, 2009.

[14] G. Kendall and N. M. Hussin, “An investigation of a tabu-search-
based hyper-heuristic for examination timetabling,” in Multidisciplinary
Scheduling: Theory and Applications, E. Burke, S. Petrovic, and M. Gen-
dreau, Eds. Springer, 2005, pp. 309–328.

[15] R. Raghavjee and N. Pillay, “A selection perturbative hyper-heuristic
for solving the school timetabling problem,” ORiON, vol. 31, no. 1, pp.
39–60, 2015.

[16] N. Pillay, “Evolving construction heuristics for the curriculum based
university course timetabling problem,” in Proceedings of the IEEE 2016
Congress on Evolutionary Computation (CEC 2016), Y.-S. Ong, Ed.
IEEE, 2016, pp. 4437–4443.

[17] A. S. Fukunaga, “Automated discovery of local search heuristics for
satisfiability testing,” Evolutionary Computation, vol. 16, no. 1, pp. 31–
61, 2008.

[18] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, 1st ed. MIT, 1992.

[19] R. I. McKay, N. X. Hoai, P. Whigham, and M. O’Neill, “Grammar-based
genetic programming: A survey,” Genetic Programming and Evolvable
Machines, vol. 11, no. 3, pp. 365–396, 2010.

10

[20] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Springer, 2003.

[21] B. McCollum, P. McMullan, B. Paechter, R. Lewis, A. Schaerf, L. Di-
Gaspero, A. Parkes, R. Qu, and E. Burke, “Setting the research agenda
in automated timetabling: The second international timetabling compe-
tition.” INFORMS Journal of Computing, vol. 22, no. 1, pp. 120–130,
2008.

[22] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”
Journal of Heuristics, vol. 2, no. 1, pp. 5–30, June 1996.

[23] A. Scholl, R. Klein, and C. Jurgens, “Bison: A fast hybrid procedure for
exactly solving the one-dimensional bin packing problem,” Computers
and Operations Research, vol. 24, no. 7, pp. 626–645, 1997.

[24] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Grammatical evo-
lution hyper-heuristic for combinatorial optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 6, pp. 840–861,
September 2013.

[25] ——, “A dynamic multi-armed bandit-gene expression programming
hyper-heuristic for combinatorial optimization problems,” IEEE Trans-
actions on Cybernetics, vol. 45, no. 2, pp. 217–228, 2014.

[26] E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection for
timetabling problems,” Journal of Scheduling, vol. 9, no. 2, pp. 115–132,
2006.

[27] A. S. Ferreira, A. T. R. Pozo, and R. A. Goncalves, “An ant colony
based hyper-heuristic approach for the set covering problem,” Advances
in Distributed Computing and Artificial Intelligence Journal, vol. 4, p.
http://dx.doi.org/10.14201/ADCAIJ201541121, 2015.

[28] N. Pillay, “A study of evolutionary algorithm hyper-heuristics for the
one-dimensional bin-packing problem,” South African Computer Jour-
nal, vol. 48, pp. 31–40, June 2012.

[29] H. Terashima-Marin, J. Ortiz-Bayliss, P. Ross, and M. Valenzuela-
Rendon, “Hyper-heuristics for the dynamic variable ordering in con-
straint satisfaction problem,” in Proceedings of the 10th Annual Confer-
ence on Genetic and Evolutionary Computation (GECCO ’08). ACM,
2008, pp. 571–578.

[30] P.-C. Chen, G. Kendall, and G. V. Berghe, “An ant based hyper-
heuristic for the travelling tournament problem,” in IEEE Symposium
on Computational Intelligence in Scheduling (SCIS ’07), 2007, p. doi:
10.1109/SCIS.2007.367665.

[31] E. K. Burke, G. Kendall, M. Misir, and E. Özcan, “Monte carlo hype-
heuristics for examination,” Annals of Operations Research, vol. 196,
no. 1, pp. 73–90, 2012.

[32] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “A genetic pro-
gramming hyper-heuristic approach for evolving two dimensional strip
packing heuristics,” IEEE Transactions on Evolutionary Computation,
pp. 942–958, 2010.

[33] J. H. Drake, M. Hyde, K. Ibrahim, and E. Özcan, “A genetic pro-
gramming hyper-heuristic for the multidimensional knapsack problem,”
Kybernetes, vol. 43, no. 9/10, pp. 1500–1511, 2014.

[34] K. Sim, E. Hart, and B. Paechter, “A lifelong learning hyper-heuristic
method for bin packing,” Evolutionary Computation, vol. 23, no. 1, pp.
37–67, 2015.

[35] M. Bader-El-Den and R. Poli, “Generating SAT local-search heuristics
using a GP hyper-heuristic framework,” in Artificial Evolution: Interna-
tional Conference on Artificial Evolution. Springer, 2008, pp. 37–49.

[36] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, “A reinforcement
learning-great-deluge hyper-heuristic for examination timetabling,” In-
ternational Journal of Applied Metaheuristic Computing, vol. 1, no. 1,
pp. 39–59, January 2010.

[37] N. R. Sabar, M. Ayob, R. Qu, and G. Kendall, “A graph colouring con-
structive hyper-heuristic for examination timetabling problems,” Applied
Intelligence, vol. 37, no. 1, pp. 1–11, July 2012.

[38] K. Sim and E. Hart, “Generating single and multiple cooperative
heuristics for the one dimensional bin packing problem using a single
node genetic programming island model,” in Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation, 2013,
pp. 1549–1556.

[39] N. Pillay, “Evolving hyper-heuristics for the uncapacitated examination
timetabling problem,” Journal of Operational Research Society, vol. 63,
no. 47-58, 2012.

[40] P. Ross, S. Schulenburg, J. G. Marin-Blazquez, and E. Hart, “Hyper-
heuristics: Learning to combine simple heuristics in bin-packing prob-
lems,” in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’02). Morgan Kaufman Publishers, 2002, pp.
942–948.

[41] K. Sim and E. Hart, “A combined generative and selective hyper-
heuristic for the vehicle routing problem,” in Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO ’16). ACM, 2016,
pp. 1093–1100.

[42] A. Sosa-Ascencio, G. Ochoa, H. Terashima-Marin, and S. E. Conant-
Pablos, “Grammar-based generation of variable-selection heuristics for
constraint satisfaction problems,” Genetic Programming and Evolvable
Machines, vol. 17, no. 2, pp. 119–144, 2015.

[43] E. Lopez-Camacho, H. Terashima-Marin, P. Ross, and G. Ochoa, “A
unified hyper-heuristic framework for solving bin packing problems,”
Expert Systems with Applications, vol. 41, pp. 6876–6889, 2014.

[44] H. Terashima-Marı́n, P. Ross, E. López-Camacho, and M. Valenzuela-
Rendón, “Generalized hyper-heuristics for solving 2d regular and irreg-
ular packing problems,” Annals of Operations Research, vol. 179, pp.
369–392, 2010.

[45] M. M, V. K, D. C. P, and V. B. G, “An investigation on the generality
level of selection hyper-heuiristics under different empirical conditions,”
Applied Soft Computing, vol. 13, no. 2013, pp. 3335–3353, 2013.

[46] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S. Petrovic, and
E. Burke, “Hyflex: A benchmark framework for cross-domain heuristic
search,” in Evolutionary Computation in Combinatorial Optimization
(EvoCOP 2012), Lecture Notes in Computer Sceince, vol. 7245, 2012,
pp. 136–147.

[47] C. Chan, F. Xue, W. Ip, and C. Cheung, “A hyper-heuristic inspired by
pearl hunting,” in Learning and Intelligent Optimization, Lecture Notes
in Computer Science, Y. Hamadi and M. Schoenauer, Eds., vol. 7219,
2012, pp. 349–353.

[48] T. Cichowicz, M. Drozdowski, M. Frankiewicz, Grzegorz, F. Rytwiń,
and J. Wasilewski, “Five phase genetic hive hyper-heuristics for the
cross-domain search,” in Learning and Intelligent Optimization, Lecture
Notes in Computer Science, Y. Hamadi and M. Schoenauer, Eds., vol.
7219. Springer, 2012, pp. 354–339.

[49] E. K. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic
for timetabling and rostering,” Journal of Heuristics, vol. 9, pp. 451–
470, 2003.

[50] A. Lehrbaum, “A new hyper-heuristic algorithm for cross-domain search
problems,” Master’s thesis, Faculty of Informatics, Vienna University of
Technology, 2011.

[51] M. Caramia, P. D. Olmo, and G. Italiano, “New algorithms for ex-
amination timetabling,” in 4th International Workshop on Algorithm
Engineering (WAE 2000), Leture Notes in Computer Science, S. Naher
and D. Wagner, Eds., vol. 1982, 2001, pp. 230–241.

[52] L. D. Gaspero and A. Schaerf, “Tabu search techniques for examination
timetabling,” in Selected Papers from the 3rd International Conference
on the Practice and Theory of Automated Timetabling, Lecture Notes of
Computer Science, E. K. Burke and W. Erben, Eds., vol. 2079, 2000,
pp. 104–117.

[53] N. Pillay and E. Özcan, “Automated generation of constructive ordering
heuristics for education timetabling,” Annals of Operations Research,
pp. 1–28, September 2017.

[54] N. Pillay, “Evolving hyper-heuristics for a highly constrained exami-
nation timetabling problem,” in Proceedings of the international con-
ference on the Practice and Theory of Automated Timetabling (PATAT
2010), 2010, pp. 336–346.

[55] N. Guantara, “A review of multi-objective optimization: Methods and
applications,” Electrical and Electronic Engineering, vol. 5, 2018.

[56] H. Mausser, “Normalization and other topics in multi-objective op-
timization,” in Proceedings of the Field-MITACS Industrial Problems
Workshop, 2006, pp. 89–101.

