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Abstract: 10 

By 2050, the aviation sector is expected to generate about 500,000 tonnes of accumulated carbon fibre 11 

reinforced plastic waste from the production and end-of-life phase. In this study, aircraft interior applications of 12 

recycled carbon fibre (rCF) replacing virgin glass fibre are examined over the full life cycle in terms of 13 

environmental and financial viability. The viability of rCF for closed-loop aviation applications are demonstrated 14 

across rCF conversion (papermaking; fibre alignment) and composite manufacture (compression moulding; 15 

injection moulding)The results show that rCF composites, especially aligned rCF composites, give reasonable 16 

environmental (4-31%) and cost reductions (5-31%) relative to virgin glass fibre composites. 17 
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1 Introduction 20 

The aviation industry is a key element of transportation and is responsible for 12% of CO2 emissions from all 21 

transports sources compared to 74% from road transport [1]. Carbon fibre reinforced polymers (CFRP) has been 22 

widely used for weight reduction in aviation applications (e.g., the Boeing 787 Dreamliner and Airbus A350) 23 
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towards fuel efficiency objectives. For instance, Boeing 787 has used up to 50% weight of CFRP materials in the 24 

body structure [2]. The global demand for carbon fibres are expected to increase from 63,500 tonnes 25 

(approximately 2.34 billion US$) in 2016 to 117,000 tonnes by 2022, corresponding to an annual growth rate of 26 

8.7% [3]. By 2050, the aviation sector will generate approximately 500,000 tonnes of accumulated CFRP waste 27 

from the production and the end-of-life phase in total [4]. In anticipation of the growth of waste arising from 28 

increasing demand in the future, it is necessary to create a waste management system delivering minimal negative 29 

environmental and cost impacts.  30 

Existing EU regulations also drive the aviation industries to make efforts in carefully dealing with production 31 

and end of life waste materials. The European Waste Framework Directive (2008/98/EC) requires the adoption of 32 

the waste management hierarchy (3R strategy): Reduce, Reuse, Recycling and Disposal. The European 33 

Commission’s Circular Economy Policy Package seeks to increase recycling rates of municipal waste to 65% by 34 

2035 and reduce landfill rate to 10% by 2035. The End-of Life Vehicle Directive (ELV, 2000/53/EC) sets targets 35 

which currently (as of 1 January 2015) require 85% by weight of vehicles to be reused or recycled [5]. Although 36 

this is not similar for aerospace, there are industry initiatives to minimise waste generation and achieve recycling 37 

targets [6, 7]. Airbus already sets up plans to distribute 95% of the CFRP waste that comes from its process to the 38 

recycling industry between 2020 and 2025. They also plan to use 5% out of the 95% for aircraft parts [7]. Landfill 39 

tax in UK at £94/tonne ($122.7/tonne) (2020-2021 rate), makes the cost of landfill, including the gate fees and 40 

transport, up to £130-£140/ tonne ($170-$183/tonne) making landfill as the least option for waste disposal [8].  41 

The nature of CFRP, a fibre-reinforced cross-linked thermoset polymer structure, gives excellent stiffness, 42 

strength and durability, however, it also makes them difficult to recycle [9, 10]. Solutions have emerged and 43 

continue to be improved for recycling value from end-of-life composite materials, contributing to a circular 44 

economy. Current CFRP recycling techniques are based on either mechanical recycling processes, in which the 45 

waste is reduced in size to produce fibrous or powdered materials, or thermal processes in which the polymer is 46 

removed to yield a clean CF recyclate [11, 12]. Recovery of CF instead of landfilling has shown multiple benefits 47 

with regards to reduced energy consumption and reduced greenhouse emissions relative to virgin CF (vCF) 48 

production (198-595 MJ/kg) or even virgin glass fibre (GF) production (13–54 MJ/kg) [13]. It is found from our 49 

previous study that the CF recycling could be achieved at $5/kg or less, which is approximately 15% of the cost 50 

of the vCF [14]. However, up until now, there have been almost no cases where recycled CFs (rCFs) have been 51 
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used for mass production, only demonstrators (prototypes), such as aircraft seat arm rests and car seat base, have 52 

been produced [15]. 53 

Life cycle assessment (LCA) is a standardised method to assess a trade-off of existing and emerging 54 

technologies/materials by comparing the environmental impacts over the full life cycle [16, 17]. The applications 55 

of LCA methodologies are growing in the composite material field in which they have been adopted to investigate 56 

the environmental and cost impacts of substituting conventional material types with virgin CFRP (vCFRP) or 57 

recycled CFRP (rCFRP) in transport applications [18-21]. Our previous study applied LCA methods to use rCF 58 

in place of vCF in automotive applications, concluding that CF recycling is far less impacting than vCF 59 

manufacture which can potentially reduce the environmental impacts across the full life cycle [22]. These 60 

assessments could provide a basis for identifying environmentally beneficial applications for rCFRP materials. 61 

Integrating LCA with financial analysis enables further understanding of trade-offs between cost and environment 62 

factors to guide material selection [18, 19, 23, 24]. Opportunities to use rCF materials exist in automotive 63 

components such as vertical pillar and car hood under bending conditions as demonstrated using material indexes. 64 

Achieving high rCF fibre volume fraction is necessary to reduce the life cycle costs as it is dependent very much 65 

on material properties achievable with rCFRP and the design requirements of the application in automotive sector.  66 

However, so far, there is no study assessing the environmental and financial viability of using rCF in aviation 67 

applications. 68 

In aviation industries, cost and weight considerations for aircraft interiors have traditionally had different 69 

driving mechanisms than that for any other transportation systems. Weight savings gained during the initial design 70 

and development of an aircraft in one area can have a savings multiplier effect in operating cost considering the 71 

cost versus performance benefit. In this study, we focus on aircraft interior applications for rCF replacing virgin 72 

fibre which has not been covered in most of literatures. The aim is to examine the environmental and financial 73 

viability of using rCF in aviation industries to close the loop of CFRP material. A set of rCFRP manufacturing 74 

approaches including the compression moulding and injection moulding are proposed, and the production and 75 

usage of material are evaluated in an aircraft during its lifetime period. The effects of the life cycle environmental 76 

and cost can be quantified and integrated in decision making systems for sustainable use of CFRP in aviation 77 

industries and beyond. 78 
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2 Methodology 79 

The life cycle model begins where the waste CFRP has been collected (Figure S1). For recycling, to the system 80 

boundary includes fibre recovery, the production of composite materials from rCF and the use in aviation, but no 81 

collection of waste CFRP. The overall life cycle environment and cost of rCFRP components are compared to 82 

GFRP and competitor lightweight materials (vCFRP) to assess the relative environmental and financial 83 

performance of utilising rCF for aircraft component manufacture while meeting the same component design 84 

criteria. Process models are developed to estimate the mass and energy balance of production pathways. Material 85 

substitution is used for component design from the set of materials to meet performance criteria (i.e., equivalent 86 

stiffness). The following composite production pathways are considered: 87 

1) Reference GFRP material is produced by compression moulding and the fibre volume fraction is 30%vf: 88 

vGF PR_40%. 89 

2) Random structure – Compression Moulded rCFRP: rCF is processed by a wet papermaking process prior 90 

to impregnation with epoxy resin (EP)/phenolic resin (PR) and compression moulding. Fibre volume 91 

fractions of 30%are considered: Random rCF PR_30% vf, Random rCF EP_30%. 92 

3) Random structure – Injection Moulded rCFRP: rCF is processed by wet papermaking and subsequently 93 

chopped prior to compounded with polypropylene (PP); rCF-PP pellets are subsequently injection 94 

moulded. Fibre volume fraction is 18%vf: Random rCF PP_18%. 95 

4) Aligned – Compression Moulded rCFRP fabric: rCF is processed by a fibre alignment process prior to 96 

compression moulded with epoxy resin. 50%vf  is considered: Fabric Aligned rCF EP_50%. 97 

5) Fabric – Autoclaved vCFRP: bi-directionally woven vCF preimpregnated (prepreg) is autoclave moulded 98 

with epoxy resin; fibre volume fraction is 50%vf [25]: Fabric vCF EP_50% 99 

This life cycle inventory data is supplemented with databases to estimate impacts of producing and using 100 

material and energy inputs (e.g., Gabi [26], Ecoinvent [27], GREET [28]) assuming all activities to occur in the 101 

UK. The manufacture of composite from virgin CF is also modelled based on processing parameters similarly to 102 

provide inventory data for comparative analysis. Two environmental impacts are quantified: primary energy 103 

demand (PED) in terms of MJ and (GHG) emissions, reported as gram CO2 equivalents (gCO2eq.) based on the 104 

most recent IPCC 100-year global warming potential (GWP) [29]. The functional unit is galley cabinet door flat 105 

sandwich panel with a mass of 2.54 kg and a thickness of 15 mm. Each skin thickness is 1.5 mm, made of glass 106 
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fibre reinforced plastic (GFRP) comprising GF and phenolic resin (MTM 82S-C) [30] and the core thickness is 107 

12 mm, made of Nomex honeycomb (ANA-3.2-48) (the density is 48 kg/m3) [31]  108 

The capital and operational costs are estimated as previously [14] and then extrapolated to those of year 2019 109 

based on the Chemical Engineering Plant Cost Index. The capital costs (CAPEX) is annualised over the production 110 

life as below to calculate the life cycle cost, 111 

𝐴𝑐 = 𝐶𝐴𝑃𝐸𝑋 × 
𝑖(1+𝑖)𝑛

(1+𝑖)n−1
          1 

where 𝐴𝑐 is the annualised cost ($); n is the production life of the project (year); i is the discount rate (%). 112 

Figure 1 The overview of closed-loop recycling of aviation carbon fibre composite waste 113 

2.1 Fluidised bed recycling process 114 

The fluidised bed recycling process requires a shredding process before feeding CFRP wastes into the reactor. 115 

The silica sand bed is used to volatilise the shredded scrap material and thus to decompose the epoxy resin and 116 

release the fibres. The fluidising air can elutriate the released fibres while degraded material remains in the bed. 117 

The operating temperature above 500 °C of the reaction is chosen to be sufficient to decompose polymer, leaving 118 

clean fibres, but not too high to degrade the fibre properties substantially. The fibres can then be removed from 119 

the gas stream by a cyclone and collected [32]. Finally, the gas stream after fibre separation is directed to a 120 

combustion chamber to fully oxidise the polymer by-products from the process. Heat is recovered to pre-heat inlet 121 

air input before being exhausted through the stack. Fluidised bed recycling is in technology readiness level 6 with 122 

pilot plants in Nottingham UK. 123 

Inventory data is extracted from the process model and the operating conditions are given including 500 t rCF/yr 124 

annual capacity, 9 kg CF/hr-m2 fluidised bed feed rate and 5% air in-leakage. These parameters correspond to an 125 

energy requirement of 7.7 MJ/kg rCF, comprised of 1.9 MJ/kg (natural gas) and 5.8 MJ/kg (electricity) [33]. CO2 126 

emissions resulting from the oxidation of the epoxy matrix material are calculated on a stoichiometric basis 127 

assuming all carbon is fully oxidised to CO2. 128 

2.2 Carbon Fibre Conversion Process 129 

rCF is converted into an intermediate form suitable for composite manufacture by a) wet papermaking to 130 

produce a random non-woven mat and b) fibre alignment to produce an aligned fibre mat. In the wet papermaking 131 

process, rCF is metered and dispersed in a viscous aqueous solution to form a fibre suspension. The suspension is 132 
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then filtered out onto a moving mesh to form a wet mat. The mat is later subjected to binder application, drying 133 

and winding onto a fibre roll. Capital and operational costs were estimated based on standard equipment, sized to 134 

required capacity and non-standard equipment as previously. An energy requirement of 14.3 kWh/kg for a 100 135 

tonne/yr capacity is used in the analysis.  136 

In the fibre alignment process, the rCF suspension is injected onto a mesh screen inside a rotating drum and the 137 

convergent nozzle filters and aligns the fibres. Vacuum suction is employed under the mesh to accelerate the 138 

dewatering/drying step. As the alignment process is under development, a best estimation of energy consumption 139 

of 22 MJ/kg rCF mat is used in the analysis based on a target for technology development. Target fibre alignment 140 

costs are determined in order for aligned rCFRP materials to achieve the same capital and operational costs as the 141 

best performing randomly aligned rCFRP material.  142 

2.3 Composite manufacture 143 

A demonstrator component was made using prepreg from ACG made using a phenolic resin for fire retardence 144 

[34]. This was a sandwich panel construction compression moulded. The demonstrator was finished as a typical 145 

door for a compartment within an aircraft galley. The part was made successfully, and the performance approached 146 

that achievable from virgin materials, although a higher fibre volume fraction in the prepreg would be required to 147 

achieve commercial viability.  148 

Compression moulding or injection moulding from random/aligned rCF mats is assumed to be utilised to 149 

manufacture equivalent components. The fixed capital cost of the compression moulding process is $1.88million 150 

for a 200 tonne/yr plant [18] with 1.5 labourers per operational shift based on a rate of £21.8/hour ($28.5/hour). 151 

The injection moulding facility consists of compounding, injection and trimming machines and the equipment 152 

capital cost ($24.8million for a 144 tonne/yr plant) [18] with 1.5 labourers per shift. 153 

2.4 Mechanical properties of composite materials 154 

2.4.1 Mechanical properties of random oriented rCFRP 155 

In the material substitution design, the material properties are significant inputs to be determined to meet the 156 

functional requirements and geometries constraints. The Halpin-Tsai equations [35, 36] use empirical 157 

relationships to calculate the mechanical properties of the composite in terms of properties of the fibre and the 158 

matrix and geometries. The equation can be expressed as followed: 159 
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𝑃𝑐 = 𝑃𝑚

1 + 𝜁𝜂𝑣𝑓

1 − 𝜂𝑣𝑓

 
2 

where Pc is the property of a composite, Pm is the corresponding property of the matrix, Pf is the property of 160 

fibre, ζ is a factor curved fitted to specific modulus calculations, vf is the volume fraction of fibre, and the 161 

efficiency factor is: 162 

𝜂 =

𝑃𝑓

𝑃𝑚
− 1

𝑃𝑓

𝑃𝑚
+ 𝜁

 
3 

2.4.2 Mechanical properties of aligned rCFRP 163 

Compared to random oriented rCFRP, the aligned rCFRP normally show better mechanical performance due 164 

to the higher fibre volume fraction (40% or over). The properties of rCF from fluidised bed process and epoxy 165 

resin used in the manufacture are shown in Table S2. The volume fraction of CF can be determined using Eq. 4. 166 

The multi-laminate composite used in this study is assumed to be a layup [0°/90°]. Based on the Classical 167 

Lamination Theory [37], we have developed a micromechanics model as in section 1.1 in SI to predict their 168 

modulus. 169 

𝑉𝑓 =
𝑁𝑓𝐺𝑓/𝜌𝑓

(𝑁𝑓𝐺𝑓) 𝜌𝑓⁄ + 𝑁𝑅𝐺𝑅/𝜌𝑅

 
4 

where Nf= number of layers of fibre mat; Gf=fibre ply areal density; ρf=fibre density, kg/m3; NR=number of 170 

layers of resin film; GR=resin film areal density; ρf =epoxy resin density, kg/m3. 171 

2.5 Functional unit 172 

The demonstration component selected was a GFRP galley cabinet door of generic construction utilizing the 173 

same manufacturing processes common to flat panel parts processed for aircraft interior construction with 174 

requirements of bending and torsion stiffness. When evaluating alternative materials, functional equivalence 175 

measured by component stiffness is maintained by considering the design material index of 1/3 and varying face 176 

thickness to account for differences in each material’s mechanical properties (modulus in this study) according to 177 

[38-40]. The Nomex honeycomb core thickness is kept the same as 12 mm. 178 

𝑅𝑚 =
𝑚

𝑚𝑟𝑒𝑓

=
𝜌

𝜌𝑟𝑒𝑓

(
𝐸𝑟𝑒𝑓

𝐸
)1/3 5 
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where Rm is the ratio of component mass between the substitution material (t) and the reference (GFRP, tref,=1.5 179 

mm), ρ is the density of the two materials (kg/m3), and E is the modulus of the two materials (GPa). 180 

2.6 Aircraft use phase 181 

In the use phase, the aircraft part will influence fuel consumption due to its weight. The fuel consumption of an 182 

aircraft depends on airframe drag power, engine fuel use, flying distance, vertical flight route and its weight. Most 183 

fuel consumption models are mainly based on the widely-used Base of Aircraft Data (BADA) models [41]. 184 

According to BADA model, fuel consumption for aircraft is expressed in Thrust Specific Fuel Consumption 185 

(TSFC) based on an energy balance of thrust (see section 1.2 in SI). The mass induced fuel consumption can be 186 

defined as the energy per unit weight per unit distance as below. 187 

𝑀𝐼𝐹 =
𝐹

𝑚
=

(𝐶𝐷𝑓𝐴)
1
2

𝜀
𝑔 6 

where fA is the filling factor, ε is the efficiency of real jet engine (~1/3), CD is coefficient of drag, m is the mass of 188 

the plane and g is the gravitational acceleration. 189 

The mass induced fuel consumption is a dimensionless factor multiplied by the gravitational acceleration. The 190 

dimensionless factor depends on a plane’s geometry, the drag coefficient and the engine efficiency rather than the 191 

size or mass of the plane or air density. For an aircraft component LCAs, the component is assumed to be designed 192 

for an aircraft (Boeing 747-300 in this study the parameters are shown in the Table S3 [42]). The lifetime is 193 

assumed to be initially 5 years with a daily distance of 14,000 km, while a sensitivity of 1 years and 10 years is 194 

considered. Therefore, the total life cycle distance is estimated at about 25 million km. The parts can be considered 195 

as load that have to be carried by the aircraft during each flight. 196 

3 Results and discussion 197 

3.1 Mechanical properties of rCFRP 198 

When evaluating alternative materials in substitution, functional equivalent stiffness is maintained by varying 199 

component mass to account for differences in each material’s mechanical properties. The mechanical properties 200 

of rCFRP calculated in this study are shown in Figure 2 (which align well with the experimentally and publicly 201 

reported data (the discrete markers) and Table S4. The referenced GFRP (30%vf GF-PR) has a modulus of 22.7 202 

GPa [30]. Increasing fibre volume fraction, rCFRP materials generally show better mechanical performance. 203 

Random structure-injection moulded rCFRP (18%vf-PP) can achieve a modulus of 16.3 GPa using 5%wt maleic 204 
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anhydride grafted polypropylene coupling agent [43]. Random structure-compression moulded rCFRP with epoxy 205 

resin show higher modulus of 37.1 GPa for 30%vf [44]. As rCF are in a fluffy, discontinuous, 3D random and 206 

highly entangled structure with a typically low bulk density (~50 kg/m3), it is difficult to manufacture CFRP with 207 

the same high modulus as unidirectional part. However, relatively high fibre volume fractions can be achieved by 208 

fibre alignment process [45, 46] and thus high mechanical performance (60.8 GPa for 50%vf; 73.9 GPa for 60%vf) 209 

similar with woven vCFRP (70 GPa for 50%vf) [25]. Due to differences of fibre volume fractions and resin used 210 

in component manufacturing, the composite density is also different. These differences would determine the 211 

relative masses between rCFRP and reference GFRP during material substitution. 212 

Figure 2 Tensile properties of an epoxy recycled carbon fibre composite experimentally measured. Solid and 213 

dotted lines represent the theoretical modulus calculated using the generalized rule for randomly distributed and 214 

aligned fibres, respectively. 215 

3.2 Life cycle energy use and greenhouse gas emissions 216 

All substitution materials are capable of significantly reducing component weight relative to the referenced 217 

GFRP sandwich panel. Higher proportions of CF in a composite give better properties and lighter components. 218 

Thus, CFRP materials with increased fibre volume fraction achieve the greatest weight reductions relative to 219 

GFRP (Figure 3). 5%-27% overall weight reductions or 6%-34% surface panel weight reductions are seen in 220 

random rCFRP with fibre volume fractions of 18% - 30%vf. Weight reductions vary depending on resin types 221 

used in composite manufacture: random rCF (18%vf) using polypropylene achieves 20% overall weight reduction 222 

(26% surface panel weight reduction);  random rCF (30%vf) using the same phenolic resin as referenced GFRP 223 

achieves 5% overall weight reduction (6% surface panel weight reduction), random rCF (30%vf) using epoxy 224 

resin achieves 27% overall weight reduction (34% surface panel weight reduction). Achieving higher fibre content 225 

of 50%vf by aligning rCF can result in significant reductions in component weight (231% overall weight reduction 226 

or 39% surface panel weight reduction). Like the aligned rCFRP, woven vCFRP achieves very low component 227 

weight (33% overall weight reduction or 42% surface panel weight reduction).  228 

The referenced GFRP has a production PED of 228 MJ/part and GHG emissions of 8.7 kgCO2eq/part (Figure 229 

3). The Nomex honeycomb core material has the same PED (39.8 MJ/kg) and GHG emissions (0.9 kgCO2eq/kg) 230 

for all selected materials thus would not change the comparison. GHG emissions associated with the production 231 

of rCFRP components generally represent similar or even lower value relative to GFRP. CF recycling is associated 232 
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with very low GHG emissions. Production of matrix material, rCF processing, and final manufacture represent 233 

the largest shares of production emissions. Increasing the fibre volume fraction of rCFRP contributes to lower 234 

production GHG emissions due to reduced contribution of more GHG-intensive matrix material than rCF. 235 

Random structure-compression moulded rCFRP (30%vf) can achieve lower GHG emissions (4% reduction) than 236 

that of GFRP. Alignment of fibre is the only way to achieve further higher fibre volume fraction of rCFRP (50%vf) 237 

but has a 11% increase of production GHG emission due to high emissions related to autoclave moulding. 238 

Although Random rCF PP_18% has lower fibre volume fraction, due to less GHG-intensive polypropylene and 239 

injection moulding manufacturing method, the lowest production GHG emission can be achieved at 4.4 240 

kgCO2eq/part, approximately 49% emission reduction. Similar with GHG results, the results show production 241 

PED decreases with the increasing fibre volume fractions of rCFRP. Results of vCFRP component presents 242 

relatively high production PED (821 MJ/part) and GHG emissions (37.0 kgCO2eq/part) primarily due to the high 243 

environmental impacts of vCF manufacture. 244 

  Figure 3 Production a) primary energy demand; b) greenhouse gas emissions; and mass of components made 245 

of different materials achieving equivalent stiffness in aircraft components 246 

Use phase dominates the full life cycle impacts and therefore the environmental impact is driven by component 247 

weight, not embodied emissions (Figure 4). The environmental benefits from substitution are highly dependent 248 

on weight reductions achieved: the greater weight reduction, the lower mass-induced fuel consumption during the 249 

use phase as well as lower material requirements during manufacture. We separately consider the life cycle 250 

impacts over 1 year, 5 years and extended 10 years lifetime travelling distance. The base lifetime is assumed to 251 

be 5 years with a daily distance of 14,000 km. Embodied emissions are only 0.1-4.5% of total environmental 252 

impact: 0.1-0.8% for GFRP, 0.5%-4.5% for vCFRP, and 0.1%-1.0% for rCFRP, respectively. Impacts associated 253 

with rCFRP components vary depending on the production route and fibre volume fractions.  254 

There is no major difference of relative life cycle GHG emission of rCFRP to that GFRP for 1 year, 5 year and 255 

10 year travelling distance. Random structure, compression moulded rCFRP components using epoxy resin can 256 

reduce GHG emission relative to GFRP by 126% (30%vf); similar trends are seen in PED. Compression moulded 257 

rCFRP using phenolic resin, however, can only reduce 4-5% GHG emissions primarily due to less fuel savings 258 

associated with less weight reduction as shown above. Injection moulded rCFRP components using polypropylene 259 

achieves lower reduction of PED (~21% reduction) and GHG emissions (~21% reduction) although they have the 260 

lowest production PED and GHG emission. Further PED and GHG emissions reductions of up to 31% for 50%vf 261 
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can be achieved through fibre alignment conversion process. In comparison, despite the high energy intensity for 262 

vCF production, fabric vCFRP components still achieve GHG reduction by 27% (1 year lifetime travelling) to 263 

32% (10 year lifetime travelling). This is mainly attributed to the similar largest weight reduction (33%) with 264 

aligned rCFRP achieved in the substitution. 265 

Figure 4 Life cycle with use phase a) primary energy demand; b) global warming potential of components made 266 

of different materials achieving equivalent stiffness in aircraft components for different lifetime years 267 

A breakeven analysis of PED and GHG emissions of all substitution scenarios is shown in Figure S2. Generally, 268 

over any realistic operating life, lighter materials deliver lower impact. Random injection moulded rCFRP (18%vf) 269 

and rCFRP (30%vf) using epoxy resin already has lower production PED and GHG emissions and thus do not 270 

need a distance to breakeven the life cycle impacts. Random compression moulded rCFRP components using 271 

phenolic resin need 136292 km to breakeven the GHG emissions. The fabric vCFRP components require a longer 272 

breakeven distance of 391420 km for life cycle GHG emissions but in the context of reasonable lifetime. This is 273 

approximately 28 days flying distance (14000 km/day). 274 

3.3 Life Cycle Cost 275 

The production cost savings from substitution are highly dependent on weight reductions achieved: the greater 276 

weight reduction, lower material requirements during production phase. Although Nomex honeycomb core 277 

materials are at a high cost of  $25.6/kg [47, 48], it does not affect the overall results as all components have the 278 

same mass of core material(Figure 5). Material cost of rCFRP using epoxy resin ($13.6/kg) is generally more 279 

expensive than those using polypropylene ($1.5/kg) and phenolic resin ($2.3/kg) even at the same fibre volume 280 

fraction. In material substitution, the varied mass is achieved by varying component thickness to account for 281 

differences in each material’s mechanical properties. The relative thickness of the components impacts costs for 282 

raw material as thicker CFRP components require greater quantities of fibre and matrix materials for functional 283 

equivalence. Due to high cost of vCF ($40/kg versus $2.2/kg rCF), vCFRP (50%vf) requires an overall material 284 

cost of $43.1/part compared to $16.1/part for GFRP ($2/kg GF).  285 

Manufacture costs include wet papermaking cost for random rCFRP, fibre alignment for aligned rCFRP and 286 

composite manufacture (i.e., injection moulding, compression moulding, and autoclave moulding) as previously 287 

[14]. Similar with material costs, larger weight components also require higher cost for manufacturing. 288 

Manufacture costs account for 23.5% for referenced GFRP while for vCFRP they are only 8.6%. Aligned rCFRP 289 
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components ($5.2/part) require higher manufacture costs than most random rCFRP components ($4.6-6.1/part) 290 

primary due to high energy cost related to fibre alignment and autoclave moulding processes. 291 

Figure 5 The production cost of aircraft component materials ($/part) 292 

Use phase dominates the life cycle cost which is driven by mass-induced fuel consumption: the greater weight 293 

reduction, the lower mass-induced fuel consumption during the use phase. In Figure 6, the use phase costs over 5 294 

years are already converted to net present values for life cycle cost. The referenced GFRP has a life cycle cost of 295 

$85,563/part (production cost accounts for 0.02%). With the increasing fibre content, rCFRP materials show better 296 

mechanical performance which is beneficial in reducing component mass for functional equivalence with GFRP. 297 

All rCFRP materials can offer both cost savings and weight reductions relative to GFRP: random structure 298 

compression moulded rCFRP using epoxy resin (30%vf) can achieve 26% life cycle cost reduction and aligned 299 

rCFRP can achieve up to 31% life cycle cost reduction for the highest fibre volume fraction of 50%. Despite an 300 

increased cost of vCFRP during manufacture, it shows a significant reduction in life cycle cost. In-use fuel saving 301 

achieved from weight savings far outweigh the high cost of vCF material, enabling vCFRP to achieve a 33% life 302 

cycle cost savings.  303 

Figure 6 The life cycle cost of aircraft component materials ($/part) for a period of 5 years 304 

Similar with results of environmental metrics, the cost impacts are entirely driven by component weight: lighter 305 

materials deliver lower cost over any realistic operating life (Figure S3). vCFRP components become favourable 306 

to GFRP when travelling distance exceeds 18390 km which is just less than two days flight time. rCFRP 307 

components can achieve life cycle cost reduction at a relatively short distances of 5950 km for compression 308 

moulded rCFRP with 30%vf and 2860 km for aligned rCFRP with 50%vf, respectively. 309 

3.4 Discussion 310 

rCFRP components can achieve weight reductions while reducing the impacts of primary production due to the 311 

low energy-, GHG emission-, and cost- intensive recycling and rCF processing activities. Random structure, 312 

injection moulded rCFRP with relatively low fibre volume fraction can reduce both life cycle environmental and 313 

cost impacts, however, injection moulding is normally used to manufacture relatively small parts and might not 314 

be the most appropriate manufacturing technique for larger components in aircraft. The results provide a 315 

comparable alternative manufacturing route for rCF for better environmental and financial benefits. 316 
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Although the findings present high performance vCFRP is still better than rCFRP materials primary due to less 317 

weight reduction associated with mechanical degradation during recycling, diverting CFRP waste from 318 

conventional landfill/incineration for secondary application is beneficial in addressing waste management issues. 319 

Currently waste landfilling in the UK will be charged a gate fee at a cost of £24/tonne ($31.3/tonne) excluding 320 

landfill tax and £113/tonne ($147.5/tonne) including landfill tax, while tipping fees for incineration are £93/tonne 321 

($121.4/tonne) in 2018/2019 [8]. Seeking application markets for rCF is significantly contributing to a circular 322 

economy. The market development of CFRP recycling, however, requires collaborations between all stakeholders 323 

across upstream (recyclers), midstream (intermediate substrate manufacturers), downstream (end-product 324 

manufacturers) and end-users. It is believed to be effective through mutual cooperation among intermediate 325 

substrate manufacturers to identify the better type between nonwoven and aligned mats, resin manufacturers, and 326 

processing manufacturers. 327 

Moreover, as aircraft interiors only have a life of about 5 years and thus are replaced regularly. Over their 328 

realistic operating life, aligned rCFRP is found to have comparable environmental and financial benefits relative 329 

to high performance vCFRP, indicating new fibre alignment techniques are required. 330 

In aircraft design, weight saving is not always a reliable indicator of system performance as this single metric 331 

ignores the impacts associated with material production and other aircraft design criteria such as fatigue properties, 332 

durability and safety issues. Future work shall link component design criteria including modulus, strength, fatigue 333 

properties and durability of components to life cycle environmental and cost impact to integrate this approach 334 

with whole aircraft design considerations and optimisation tools in order to identify the most promising 335 

applications. 336 

Waste reduction at the highest level of waste management hierarchy is still the most demanding option than 337 

recycling. In aerospace industry, the ‘buy-to-fly’ ratio (the ratio of materials weight procured to the weight of the 338 

finished product) is a key concern and lots of efforts at reducing manufacturing waste generation are in progress.  339 

It includes the manufacturing technology developments such as out of autoclave and novel curing. Moreover, high 340 

performance fibre reinforced thermoplastic composites and more sustainable single-polymer-composites have 341 

been developed for aircraft industries. As they are recyclable via direct melting while proving high mechanical 342 

performance in forms of sandwich panels, they can be considered in replacing the high-cost and high-energy-343 

intensity fibre reinforced thermoset composite materials to some extent and this will be the on-going technologies 344 

under development.  345 
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It shall be noted that end of life phase of all the candidate materials are excluded in the system boundaries. The 346 

conventional incineration of waste plastic would emit about 3.1 kgCO2eq/kg waste, although advanced recycling 347 

of these materials can significantly reduce the GHG emissions [49]. Taking into account of component weight, 348 

incineration of all these material waste at the end of life would only result in about 4.7 – 7.0 kgCO2eq/part, which 349 

would not alter the finding as use phase dominates the overall environmental impacts. However, the end of life 350 

treatment option cannot be easily applied to all selected candidate materials as GFRP and vCFRP waste can be 351 

mechanically/thermally recycled but rCFRP may not be able to be similarly recycled as the rCF is already in short 352 

sizes (6-20 mm) after primary recycling. Future research can look at how to achieve the best secondary life of 353 

rCFRP materials in terms of optimised environmental and financial impacts. 354 

It shall also be noted that what considered in this study is not necessarily closed-loop – as it is for a less 355 

demanding application (although still in aviation industry) and unsure if further recycling would be viable. 356 

Innovation is needed to achieve true closed-loop solutions for aviation industries: e.g., the thermoplastic 357 

composites as above which would enable simpler recovery of CFRP while maintaining high mechanical properties 358 

and so could be suitable for same demanding applications. However, this still needs to be able to meet design 359 

requirements for strength/stiffness/durability. 360 

4 Conclusions 361 

This study presents a complete life cycle environmental and cost analyses by using the rCF from fluidised bed 362 

process in aviation industries. The viability of rCFRP materials for closed-loop aviation applications are 363 

demonstrated and compared with vCFRP to replace conventional GFRP. rCF materials have significant effect on 364 

the environmental benefits and cost-effectiveness in terms of the material selection processes and empower eco-365 

friendly light weighting strategies in the aviation sector. It offers a list of environmental and financial impact 366 

categories and a set of valuable data to cover gaps of data availability for the closed-loop recycling and reuse of 367 

CFRP material. Results reveal that the specific components of the rCFRP materials could achieve the substantial 368 

reduction of weight and optimise the potential environmental and cost benefits.  369 

The mathematical models can be used to predict the material properties of rCFRP and contribute to better 370 

understand and optimise emerging technologies in composite fields. It can also be applied to look at other potential 371 

rCF markets. 372 

The overall finding identifies significant potential market opportunities in the aviation sector. It can enable 373 

industry and policy makers to comprehensively understand the environmental and financial impacts in comparison 374 



15 

 

with conventional material groups in particular at product design stage for weight reduction in aviation industry. 375 

It has the potential to support the development of relevant policies to encourage suitable utilisation of rCF 376 

materials.  377 

Use phase dominates the overall life cycle cost for aviation application and therefore the environmental impact 378 

is driven by component weight: the greater weight reduction during substitution, the lower in-use fuel 379 

consumption as well as lower material requirements. The decision making in looking at lightweight vCFRP or 380 

rCF markets shall be made carefully between upfront cost and overall life cycle environmental and cost impacts 381 

as demonstrated in this study. 382 

Future research can be focused on balanced market application opportunities between high market volume like 383 

automotive and low market volume like aerospace given level of scrap available (e.g. milled fibre / speciality non-384 

woven products). It is also highly demanded for the establishment of standards for CF recycling, full LCA database 385 

and the policy support from the government and cooperation between upstream and downstream firms under CF 386 

supply chain. This can link all stakeholders across upstream and downstream industry partners and end-users to 387 

drive sustainable development of CFRP material markets. 388 
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Figure 1 The overview of closed-loop recycling of aviation carbon fibre composite waste. 499 
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 500 

Figure 2 Tensile modulus properties of an epoxy recycled carbon fibre composite experimentally measured. 501 

Solid and dotted lines represent the theoretical modulus calculated using the generalized rule for randomly 502 

distributed and aligned fibres, respectively. 503 
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  505 

Figure 3 Production a) primary energy demand; b) greenhouse gas emissions; and mass of components made 506 

of different materials achieving equivalent stiffness in aircraft components. 507 
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 509 

 510 

Figure 4 Life cycle with use phase a) primary energy demand; b) global warming potential of components 511 

made of different materials achieving equivalent stiffness in aircraft components for different lifetime years. 512 
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Figure 5 The production cost of aircraft component materials ($/part). 514 

 515 

Figure 6 The life cycle cost of aircraft component materials ($/part) for a period of 5 years. 516 
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