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Abstract  

Myanmar’s territory mostly experiences tropical monsoon climate, where temperatures 

are normally not extreme, but humidity can increase discomfort. In response, vernacular 

architecture strategies have evolved to deal with excess heat and humidity. One of the most 

prominent of these strategies is the use of high multistage roofs with ventilation. Over the years, 

many of the traditional buildings were altered but the use of multistage roof design has 

remained remarkably resilient in Myanmar. Nevertheless, little is known about their 

contribution to thermal comfort and their vulnerability to overheating risks due to the pervasive 

threat of the climate crisis. 

In the work presented here, a thorough review of multistage roof typologies was followed 

by an investigation of their performance when building parameters including form, ventilation 

and materials were varied.  Twenty-four dynamic simulations were performed using three 

building typologies and thirty-two fluid dynamic simulations were performed using two 

building typologies. In all cases, indoor volumes were kept the same. The results suggest that 

with the use of typical light-weight permeable envelope, the indoor temperatures follow 

ambient temperature closely; although a heavier-weight set of materials did not impact 

significantly on the maximum air temperatures, it has made a different with regard to the lowest 

temperatures and overall comfort. The variable that impacted the most on the results was roof 

ventilation mode, with the best results being 3.5% of a year better than the worst. The 

multistage roof was found to help reduce heat gains form solar radiation.      

The findings showed that Myanmar’s vernacular buildings with multistage roofs offer an 

opportunity to improve indoor comfort in tropical climates and therefore its ability to moderate 



 

indoor temperatures through the use of simple building physics and geometry should be 

honoured. 
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1. Introduction 

The Asian country of Myanmar (also known as Burma) has an extensive territory that 

mostly experiences tropical monsoon climate with three seasons: cool (warm and dry, 

November to February), hot (very high temperatures but relatively dry, March to May) and 

rainy (hot and humid, ). In response to this, and similarly to other countries with comparable 

conditions, vernacular architecture strategies have evolved to deal with excess heat and 

humidity. One of the most prominent strategies that can be commonly observed in Myanmar 

is the use of high multistage roofs with ventilation.  

Over the years, Myanmar’s vernacular architecture has undergone significant 

customisation such as changes in building forms, building plans, building materials and 

decorative features to meet a wide range of complex needs and social-economic limitations. 

Those changes in design have enabled the perpetuity of Myanmar vernacular architecture for 

many centuries; however, they have also raised a question of whether these buildings still 

deliver thermal comfort despite the alterations. Many of these traditional design features can 

be modified and implemented in modern buildings to improve their performance without the 

need for energy-hungry means of space conditioning and therefore are of extreme relevance 

when the need to mitigate and adapt to climate change is considered; nevertheless, this has not 

been studied to date.  



 

Among many obstacles that have precluded it from being studied is the fact that it 

represents an alternative mode imposed by the enlightenment in Buddhism. Another obstacle 

is the rich diversity of the country and different customs between and within ethnic groups that 

have settled in Myanmar since 700 AD [1] as each of these groups have reflected their ethnicity 

on building characteristics. Early multistage roof design in Myanmar architecture can be traced 

to the archaeological pieces belonging to the Pagan (Bagan) period from the eighth century [2, 

3]; thenceforth countless buildings have been designed using various forms of multistage roofs. 

In this paper, the authors present a detailed review of these and their evolution in Section 2. 

The use of multistage roof design seems to have remained remarkably resilient in Myanmar. 

However, little is known about their performance and therefore the authors have attempted to 

bridge this knowledge gap.  

Myanmar was ranked second out of 183 countries in the long-term climate risk index for 

the period 1990-2018 [4, 5]. A past study revealed that a combination of traditional passive 

design techniques used in the Myanmar vernacular houses would not be sufficient to achieve 

thermal comfort in the present and predicted future climate scenarios [6, 7]. In the present work, 

the authors have focused particularly on the impact of multistage roofs in the performance of 

Myanmar’s traditional buildings. Various building parameters including form and  materials 

were investigated using dynamic whole-building simulation and computer fluid dynamics 

(CFD)  in order to identify whether they are inherently vulnerable to overheating risks due to 

the pervasive threat of the climate crisis. Figure 1 presents the research method deployed in 

this study. The authors anticipate that this work will contribute to the ongoing resilience of 

Myanmar vernacular architecture.  



 

 
Figure 1. Research approaches and steps proposed and applied in this study 

2. Context and Background 

In this section, the authors first discuss what similarities and differences can be observed 

from vernacular architecture in general, from which the knowledge gained can be transferred 

to the Myanmar context.  This is followed by a review of relevant historical and typological 

data that describes the transformation of the multistage roof design in Myanmar over time.  

2.1. Lesson learnt from vernacular architecture 

Despite variations in climates, culture and availability of construction materials, 

vernacular architecture from different locations share similarities [Figure 2]. For instance, the 

Trulli1 house [8] and Beehive shape2 houses [9, 10] are located at a 4° latitude difference and 

have a similar cone-shaped roof on a circular or square plan. However, different ventilation 

practices and uses of building materials create different microclimate modifiers for the two 

houses to maintain the indoor thermal comfort for their local contexts. Similarly, Mali houses 

in Dogon Country3 and Cameroon huts in Musgum4 [11] share similar beehive forms and 

homogeneous looks, but materials used and their interaction with the outdoor climates differ 

in order to maintain the indoor thermal comfort. Likewise, both Viking Stöng5 longhouses in 



 

Iceland [12] and tropical Batak6 longhouses in Indonesia [13] share the same concept of 

longhouse shape layout and use of roof insulation, but ventilation practices differ in response 

to their outdoor climatic conditions. Despite 20ºC temperature differences in their annual 

temperature profiles, Stave churches7 in north-western Europe and traditional buildings with 

multistage roofs in Myanmar still show similarities in the use of a series of roofs with wood 

structures. 

Typically, additional heating is required for Nordic climates, and additional cooling is 

required for tropical climates. Therefore, despite similarities of roof design and materials used, 

many of the passive design techniques found in both types of vernacular architecture in order 

to maintain favourable building microclimates for indoor thermal comfort are different. In the 

Nordic conditions, it is necessary to control heat loss and this is usually done by using an 

airtight envelope with a smaller overall window area [14]. In contrast, in the tropics, it is 

necessary to control solar heat gain so large eave roof shading, and highly permeable building 

envelopes are observed, in addition to numerous openings, which are essential to achieve 

appropriate levels of natural ventilation for passive cooling [15, 16]. Design of stave churches 

and Myanmar’s traditional buildings with multistage roofs have a parallel development in their 

historical timelines even though there appear to be no links between them. In sum, the 

vernacular architecture reviewed above – although by no means an exhaustive list - show how 

builders in the past used forms and materials effectively to moderate indoor conditions in their 

buildings and protect against extreme and prevailing climatic conditions. 

 



 

 
Figure 2. Some vernacular houses in Asia, Africa and Europe [17] and their location’s 
monthly temperature variations [18, 19]  

2.2. Buildings with multistage roofs in Myanmar 

Myanmar is sandwiched between two of the most important civilizations in Asia – India 

in the north-west and China in the north-east. On the western side is a long coastline, while the 



 

country itself extends through 18 degrees of latitude; as a result, Myanmar’s climate ranges 

from the subtropical highland climate at the snow-covered mountain peaks in the north to 

tropical monsoon climate in the south. In between these extremes is a dry zone, corresponding 

to the equatorial winter dry climate to the mixed humid subtropical climate [20]. 

The multistage roofs are known as "Pyatthat"8 in Myanmar. Their use was initially 

restricted by the sumptuary laws to religious buildings for the continuity of the Buddhist 

tradition and the royal family; that context typifies a close link between Buddhism and kingship 

in forming the cultural heritage of Myanmar [3, 16, 21, 22]. Multistage roofs, which are 

dominant features of Myanmar’s ancient traditional buildings, are made of successive gabled 

rectangular roofs in an exaggerated pyramidal shape that consists of a series of tiers [16]. The 

form is a fixed kind of ‘parasol’ concept; therefore, a roof can be thought of as a broad umbrella 

over the occupied spaces. The use of an abstract roof curve defines the shape of multistage 

roofs to divide the number of tiers. The number of tiers in the buildings with multistage roofs 

represents Buddhist cosmology – the description of the 31 planes of existence. The centre of 

multistage roofs is recognised as the hallmark of a building – a place for either the image of 

the Buddha or the throne room of a king [2, 16]. An intermediate box-like roof structure 

inserted between each tier is called Le-baw, where gable vents are added for roof ventilation. 

The total building height, including the height of the raised floor and the crown of the 

multistage roofs, varies between 1.25 and 2 times the length or width of the building. Four 

types of multistage roof, shown in Figure 3, are categorised by historical dynasties9 [2].  

From the fifteenth century Bargayar monastery [Figure 3] to the eighteenth century 

Mandalay palace and Myadaung monasteries [Figure 4], most of the surviving buildings with 

multistage roofs can be found around Mandalay [3, 16]. Towards the end of the eighteenth 

century or in the early nineteenth century, several changes in the buildings with multistage 

roofs could be observed due to the impacts of socio-economic and political conditions. For 



 

instance, a colourful Italianate façade, further uplifted by tiered teak roofs, is one of the finest 

examples of brick and plaster monasteries [Figure 4] showcasing changes in building 

technology with the novel forms of cultural expression in the 1930s [3].  

 
Figure 3. (a) Proportion of Pyatthat (b) Four types of Pyatthat [2] (c) Bagaya monastery in 
Mandalay (completed in 1593) [16] 

 
Figure 4. (a) Mandalay Palace in the 1880s; (b) Myadaung monasteries in 1885; (c) 
Monastery at Sagaing in the 1930s [3] 

Today, the traditional tiered roof features of Yangon city hall [23], the concourses of 

Bagan Airport and the Naypyidaw  Parliament building [24] represent the use of multistage 

roofs as memorable treasures of Myanmar traditional architecture. The Karaweik Hall palace 

[3] and the elaborate wooden resting pavilion in the Novotel Mandalay hotel [3] represent 

multistage roof-inspired building forms as an echo of Myanmar architecture. Kandawgyi 

Palace Hotel completed in 1996 by a Thai Architects firm [3] reveals the sharing concept of a 



 

series of roofs between Myanmar and Thailand as contemporary architecture. It also can be 

seen that the relics of building form remain up to the present day as both traditional and 

contemporary architecture, and their presence represents material fragments of historical 

reality.   

 
Figure 5. The use of multistage roof in Myanmar architecture [3, 23, 24] 

2.3. Tropical climate context in multistage roof design 

Tropical climate zones are found in the regions between the equator and the tropics, 

where the general patterns of the climates are typically frost-free and warm, and where 

humidity is variable depending on the precipitation pattern. Sunlight is intense in the tropics 

and the intensity of diffuse solar radiation is high. Tropical vernacular architecture employs 

natural ventilation and sun protection in order to respond to these climatic characteristics for 

building thermal performance. Deep overhangs, pitched thatch roofs with high insulation and 

verandsa allow a building to buffer the direct solar heat gain. Raised high floors help to increase 

airflow around and under a building, and highly permeable building envelopes with lightweight 

timber and bamboo walls offer improved ventilation. A number of windows including gable 

vents are typical tropical vernacular design features. These can be seen in many Asian houses 

including Myanmar vernacular houses [6, 25].  



 

Figure 3, 4 and 5 show that there have been several changes in forms and use of materials 

in Myanmar’s traditional buildings with multistage roofs over time. Original thatch and timber 

shingles have become metal roofs, and timber walls and raised timber floors have become brick 

walls and concrete floors. Open corridors along with the perimeter of the building were often 

lost due to the constraints of the gross floor area. The numbers of the occupied storey have 

increased, and the height of raised floors was lost. Despite the changes, the multistage roofs in 

Myanmar’s traditional buildings have stayed remarkably resilient.  

In Figure 6, a comparison between three roof typologies with the same internal volume 

but varied roof height is shown. Building (a) has a combination of hipped-roofs and multi-tier 

roofs [Figure 6-a] distributed on four sides, and the shape of the roof dictated the height and 

indoor air volume. In order to keep the same internal air volume as in building  (a), in building 

(b) a combination of multi-tier and offset gable roofs was used to reduce the roof height and 

increase the width [Figure 6-b]. In building (c) [Figure 6-c], the length of the intermediate roof 

structures was kept the same so it was necessary to reduce the height of the roof in order to 

maintain the same internal air volume. The use of intermediate roof structures in the building 

(b) and (c) is not as significant as their use in building (a). This simple comparison also 

indicated that the investigation of various practices in roof typologies is, indeed, a wide scope 

of work. However, one obvious investigation can be done by comparing building (a) – an 

original multistage roof design from the Pagan dynasty –  and a building with a single gable 

roof, from which the impacts of roof height and the use of intermediate roof structures on the 

thermal performance can be investigated. 

Vernacular architecture strategies are microclimate modifiers [26]. By building 

microclimate we mean the combination of the indoor microclimate and the surrounding 

microclimate, and therefore this is considered an extension of the indoor climate [27]. Spaces 

which are connected either horizontally or vertically are, therefore, building microclimate 



 

modifiers. Elevated naves in the stave churches and roof spaces in Myanmar’s traditional 

buildings with multistage roofs can be counted as one type of building microclimate modifier. 

Therefore, it is important to investigate how the changes in roof typologies, roof height, roof 

ventilation and building materials affect building microclimate for thermal performance of a 

building with a multistage roof.  

 
Figure 6. Building with multistage roofs (a) hipped roofs and multitier; (b) offset gable roofs 
and multitier; (c) same length gable roofs and multitier 

3. The simulation studies 

In order to evaluate the contribution of each roof typology, roof height, roof ventilation 

and building materials on the thermal performance of a building with a multistage roof, the 

authors set the following key questions:  

1. How does varying the building envelope materials affect the thermal performance 

of the different roof typologies? 

2. Which roof typology is more effective in reducing the indoor air temperature? 

Which roof typology has the most effective indoor airflow? 

3. To what extent can the building with multistage roofs improve the indoor thermal 

environment? 

In order to isolate the key variables, the buildings were modelled with a single zone using 

dynamic thermal simulation and computational fluid dynamics simulation (CFD) programmes. 

The dynamic thermal simulations focused on investigating the resultant overall indoor air 

temperatures of three building typologies [Figure 7] with various conditions. The CFD 



 

simulations focused on investigating the air temperatures and airflows of two building 

typologies [Figure 8].  

3.1. Dynamic thermal simulation 

Simulation engine: The simulations were performed using the Integrated Environmental 

Solution software (IES, version 2019 Hotfix1), a commercially well-known software, which 

specialises in building performance analysis and qualifies as a dynamic model in the Chartered 

Institution of Building Services Engineers (CIBSE) classification system. ApacheSim, a 

dynamic thermal simulation program in IES, uses first-principles mathematical modelling of 

the heat transfer processes occurring within and around a building. MacroFlo, which runs as 

an adjunct to ApacheSim by exchanging data at run-time, generates a fully integrated 

simulation of air and thermal exchanges for one weather year [28]. 

Building geometry: A building with a three-stage hipped roof (3R), a building with a 

one-stage hipped roof (1R) and a building with a single gable roof (0R) were used in the 

dynamic thermal simulation. Regarding the geometries of the buildings [Figure 7], the sizes of 

the occupied space were first fixed as 18m length, 18m width, and 5m height. The combined 

heights of the building were then set as 15.15m in building 3R; the total height of buildings 1R 

and 0R were, therefore, lower than building 3R. The size of the intermediate roof structures 

was increased in building 1R to retain the same internal air volume. The characteristics of the 

building geometries and building abbreviations, as shown in Figure 7 and Table 1, mean that 

the internal air volumes of each building were fixed, but the heights of the three buildings were 

different. Regarding the abbreviations that describe the models, the suffix 'n' represents the 

buildings with no gable vents in the roof structures and the suffix 'v' represents the buildings 

with gable vents in the roof structures.  

Opening: In the occupied spaces of all buildings, a total of 108 m2 (equivalent to 30% of 

the window-to-wall-area-ratio of the occupied space) for the fenestration areas was equally 



 

distributed across all four sides of the walls. Additionally, the gable vent area 23.92 m2 was 

equally split into all the roof stages of the buildings 3Rv, 1Rv and 0Rv. Geometrically, there 

were 12 scenarios shown in Figure 7 – three roof typologies, two ventilation modes, and two 

ceiling modes. The ceiling modes were the buildings with ‘no ceiling’ and the buildings ‘with 

ceilings’ added. For the latter mode, a 600 x 600 mm size ceiling void at every 6m intervals 

was added in each building to remove the air through the gable vents. Regarding the opening 

time for fenestration, the fenestration of occupied space from all buildings was opened from 

06:00 a.m. to 18:00 p.m., which means they were opened during the daytime. The gable vents 

in the roof spaces were continuously open. 

Internal gains: In order to simplify the effects of internal gains in the CFD simulations, 

the dynamic thermal simulations for all buildings were generated with no internal gains from 

the occupants, equipment or lighting. Myanmar’s vernacular buildings are a free-running 

building type; therefore, both simulations were generated by using natural ventilation mode. 

Materials and simulation scenarios: The 12 scenarios doubled when two sets of building 

materials were considered for the building envelopes as shown in Table 3 (see Appendix). 

Therefore, there were a total of 24 scenarios due to variations in typologies, ceiling modes, 

building materials, and ventilation modes. The material set-1 contained thatch roofs, timber 

floors, timber walls, timber ceilings, and timber windows. The material set-2 contained metal 

roofs, concrete floors, brick walls, timber ceiling, and glazed windows. One needs to note that 

the buildings shown in Figure 7 and Table 1 are those with material set-2. Therefore, the total 

building height for each building of the material set-1 will be 3m higher than the material set-

2 because of the raised floor height for a timber floor. The infiltration was set as 10 ac/h for the 

buildings with material set-1 and 1.5 ac/h for the buildings with material set-2, which were 

rough assumptions [6, 29]. The results of dynamic thermal simulations were compared with 

the results of computational fluid dynamics simulations. 



 

 

 
Figure 7. Twelve building typologies used in the dynamic thermal simulations, material set-2.  



 

Table 1. Geometry characteristics of the buildings used in both simulations  

Buildings Gable Vents 
contained 

Building 
Height 

Window 
Areas (m2) 

Gable Vents 
Areas (m2) 

Room air 
volume (m3) 

3Rv Yes 15.150 108 23.92 2450 
3Rn No 15.150 108 0.00 2450 
1Rv Yes 11.925 108 23.92 2450 
1Rn No 11.925 108 0.00 2450 
0Rv Yes 9.525 108 23.92 2450 
0Rn No 9.525 108 0.00 2450 

 

Weather file: Most of the surviving buildings with multistage roofs can be found in 

Mandalay (21°58′N 96°5′E), the last royal capital of Myanmar, located in the central dry zone 

of the country. Therefore, the authors decided to use the Mandalay typical weather file for 

dynamic thermal simulations. Long-term historical weather data and future weather data are 

generally unavailable or very limited in Myanmar. The typical weather file used in this paper 

was generated by Huang et al. (2014) for the standard data of the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) for simulation. The typical weather 

dataset was created with data collected from 2005 to 2013, less than a decade’s worth. The 

study also [6] used the same weather files. 

3.2. Computational fluid dynamics simulations 

Numerical modelling method: The numerical simulations were carried out using 

ANSYS FLUENT 18.1 software. The assumptions for the steady-state simulation comprised a 

three-dimensional, fully turbulent and incompressible flow. The turbulent nature of the flow 

was modelled by the standard K-epsilon turbulence model (k–ε) which is well established in 

the field of natural ventilation and windcatcher research [31, 32]. The CFD code used the Finite 

Volume Method (FVM) approach and employed the Semi-Implicit Method for Pressure-

Linked Equations (SIMPLE) velocity-pressure coupling algorithm with the second-order 

upwind discretisation. The simulations were completed using parallel processing on a 

workstation with two Intel Xeon 2.8GHz processors and a 64GB fully buffered DDR2. 



 

CFD theory: The governing equations for the 1-continuity, 2-momentum, 3-energy, 4-

turbulent kinetic energy (TKE) and 5-energy dissipation rate are detailed below: 

∂ρ

∂t
+ ∇  × (ρU) = 0 

[1] 

where ρ is density, t is time and U is the fluid velocity vector. 

𝜕(𝜌𝑢)

𝜕𝑡
+  ∇ × (𝜌𝑢𝑢) =  −∇𝑝 + ∇ 𝑥 (𝜇∇𝑢) −  ∇ ×  𝜏௧ 

[2] 

where p is the pressure, g is a vector of gravitational acceleration, μ is molecular dynamic 

viscosity and τt is the divergence of the turbulence stresses which accounts for auxiliary stresses 

due to velocity fluctuations. 

డ(ఘ௘)

డ௧
+  ∇ × (𝜌𝑒𝑢) =  ∇ × ൫𝑘௘௙௙ ∇𝑇൯ −  ∇  × (∑ ℎ௜𝑗௜௜ ) [3] 

where e is the specific internal energy, keff is the effective heat conductivity, T is the air 

temperature, hi is the specific enthalpy of fluid and ji is the mass flux. 

𝜕(𝜌𝑘)

𝜕𝑡
+  ∇  × (𝜌𝑘𝑢) =  ∇ × ൣ𝛼௞𝜇௘௙௙∇𝑘൧ +  𝐺௞ +  𝐺௕ −  𝜌ఌ 

[4] 

𝜕(𝜌𝜀)

𝜕𝑡
+  ∇ × (𝜌𝜀𝑢) =  ∇ × ൣ𝛼ఌ𝜇௘௙௙∇𝜀൧ +  𝐶ଵఌ

𝜀

𝑘
 (𝐺௞ +  𝐶ଷఌ 𝐺௕) −  𝐶ଶఌ𝜌

𝜀ଶ

𝑘
 

[5] 

where Gk is the source of TKE due to average velocity gradient, Gb is the source of TKE 

due to buoyancy force, αk and αε are turbulent Prandtls numbers, and C1ε, C2ε and C3ε are 

empirical model constants. The Discrete Ordinates (DO) radiation model solves the radiative 

transfer equation [6] for a finite number of discrete solid angles, each associated with a vector 

direction 𝑠 fixed in the global Cartesian system (x, y, z): 

∇ ∙ (𝐼(𝑟, 𝑠)𝑠) + (𝑎 + 𝜎௦)𝐼(𝑟, 𝑠) = 𝑎𝑛ଶ
𝜎𝑇ସ

𝜋
+

𝜎௦

4𝜋
න 𝐼(𝑟, 𝑠ᇱ)

ସగ

଴

𝜑(𝑠 ∙ 𝑠)𝑑𝛺ᇱ 
[6] 

where 𝑟 is the position vector; 𝑠 is the direction vector; 𝑠ᇱ is the scattering direction 

vector; 𝑎 is the absorption coefficient; 𝑛 is the refractive index; 𝜎 is the scattering coefficient; 

𝜎௦ is the Stefan-Boltzmann constant (5.672 x 10-8 W/m2-K4); I is the radiation intensity; 𝜑 is 

the phase function, and 𝛺ᇱ is the solid angle. 

Boundary conditions: The boundary conditions for the flow study are specified in 

accordance with the best practice guidelines. The profiles for the airflow velocity U and 



 

turbulent kinetic energy (TKE) are imposed at the inlet, with the stream-wise velocity of the 

incident airflow following the power law with an exponent equal to 0.14 corresponding to flow 

on a sub-urban terrain [Figure 16 of the Appendix]. The values of ɛ of the k-ɛ turbulence model 

are determined by assuming local equilibrium of Pk = ɛ. Standard wall functions are invoked 

to all wall boundaries aside from the ground boundary, with the ground having wall functions 

adjusted for roughness. According to Cebeci and Bradshaw [33], this must be indicated by a 

corresponding sand-grain roughness height ks and a roughness constant Cs. The horizontal 

non-homogeneousness of the ABL is controlled by adapting sand grain roughness height and 

roughness constant for the inlet profile, adhering to the equation: 

𝑘௦ =  
9.793𝑧ை

𝐶௦
 

[7] 

where, 𝑧଴ is the aerodynamic roughness length corresponding to sub-urban terrain. The 

values selected for sand-grain roughness height and a roughness constant are 1.0 mm and 1.0, 

respectively, in accordance with best practice guidelines. The sides and the top of the domain 

are specified as symmetry, signifying zero normal velocity and zero gradients for all the 

variables in these boundary zones. Zero static pressure is used for the outlet boundary. The 

boundary conditions are summarised in Table 4 (see Appendix).  

CFD Domain: If the building height was H, the inlet of the computational domain was 

3H away from the building, and the outlet was positioned 15H behind the building, which is 

derived from Franke et al. [34]. The inlet wind speed profile was defined according to the 

logarithmic law of the wall for high Reynolds numbers for turbulent flow. All CFD models 

were sited on the ground surface with roughness height (Ks) = 0.14m and the constant 

roughness (Cs) = 7, which are derived from to Blocken et al. [35]. The simulation models were 

generated using medium grids and the unstructured mesh that allowed for flexibility in 

conforming to the complex geometries. The average skewness and the mesh quality for all 

models are shown in Table 5 (see Appendix). The turbulent nature of the flow was modelled 



 

by the standard k–ε turbulence model and Reynolds Averaged Navier Stokes equations 

(RANS), which are well established in the field of fluid dynamic and heat transfer parameters 

[36, 37]. 

 
Figure 8. (a) Two building typologies used in the CFD simulations (b) Perspective view of 
the computational domain  

Solution convergence: The solution convergence was monitored, and the solution was 

considered complete upon observation of no significant change between iterations. In addition, 

property conservation is also verified if attained. This is conducted by performing a mass flux 

balance for the converged solution. This option is available in the FLUENT flux report panel, 

which permits the computation of mass flow rate for boundary zones. For this study’s 



 

simulation, the mass flow rate balance is below the required value or < 1% of the smallest flux 

through the domain boundary (the inlet and outlet). 

Materials: Although the geometries of the CFD simulation models were duplicated from 

the dynamic thermal simulation models [Figure 7], the entire building envelopes for the CFD 

models were defined as timber material properties and the ground surface to be of gravel-filled 

soil. The raised floor and air infiltration were not considered in the CFD simulations. The 

material properties used in the CFD simulations are shown in Table 6 (see Appendix). 

Microclimate data: The simulation time and date were selected from the location of 

Myanmar – the longitude of 21.96°N, the latitude of 96.09°E and the UTC of + 6:30. The 

intensity of the solar radiation, air velocity, air turbulent intensity, the ambient temperature and 

the ground roughness conditions were set based on available weather data. The boundary 

temperatures of the building fabric and the initial temperatures were assumed to be the same 

outdoor dry bulb temperature. 

The typical weather file of Mandalay showed that 24.61% of a year fell between the 

temperature range of 30°C and 36°C, which can be considered a high-temperature range. For 

instance, the CIBSE Guide A (2015) [38] has recommended that the internal operative 

temperature should not exceed 30°C in a free-running building. In order to understand a high 

outdoor air temperature range effect on its related indoor air temperature and airflow, two 

temperature variables – 30°C and 36°C – were used in the CFD simulations.  

The ASHRAE Standard 55 (2013) [39] has recommended that the acceptable operative 

temperature limit in occupant-controlled, naturally conditioned spaces can be increased up to 

2.2°C at the average airspeed 1.2 m/s. The typical weather file of Mandalay showed that 

26.79% of a year had wind speeds of between 0.15m/s and 1.2m/s, while 33.56% of a year had 

wind speeds of between 1.2m/sand 3m/s. Therefore, two variables of wind speeds (1.2m/s and 

3m/s) were considered for use in the CFD simulations. Regarding the radiation models, two 



 

sets of the macroclimate entities shown in Table 2 were considered, which referred to the 

typical weather year data of Mandalay. Therefore, the CFD simulation experiments were set to 

compare 32 isothermal scenarios – two roof typologies for two ventilation modes (with gable 

vents or without gable vents), two temperature variables (30°C and 36°C as initial 

temperatures), two wind speed variables (1.2m/s and 3m/s), and two radiation conditions. 

Table 2. Macroclimate entities for the radiation model used in the CFD simulations, data 
from typical weather file of Mandalay 

Microclimate parameters High radiation condition Low radiation condition 
Direct Normal Radiation (Wh/m2)* 892 475 
Diffuse Radiation (Wh/m2)* 604 461 
Sky cover (%) 0 50 
Temperature variables 30°C and 36°C for both high and low conditions 
Wind speed variables  1.2 m/s and 3 m/s for both high and low conditions 
* Irradiation, the sum of irradiance over a time period, is the amount of solar energy falling 
on a unit area over a stated time interval which is expressed in Wh/m2. 

 
4. Results of the simulation studies 

The results of IESVE simulations were presented on an annual basis, illustrating the 

indoor air temperatures for the three building typologies. The results of the CFD simulations 

were illustrated as indoor air temperature and indoor airflow for the two building typologies. 

4.1. Simulation results from IESVE 

Annual air temperatures: Figure 9 presents the results of the 24 scenarios that were 

generated for the indoor air temperatures of the occupied zones on an annual basis, based on a 

typical weather year of Mandalay. For the buildings with the material set-1, small differences 

between the outdoor and indoor air temperatures revealed that the indoor thermal environment 

of the simulated building had a close relation to the weather outdoors. On the contrary, there 

were considerable differences between the outdoor and indoor air temperatures in the results 

of the buildings with the material set-2. Virtually identical results from the two material sets 

showed that the maximum air temperatures of all buildings were negligibly different but the 

minimum air temperatures of the buildings with material set-2 were higher than those with 

material set-1.  



 

 
Figure 9. Air temperatures of the 24 scenarios simulated using a typical weather year for 
Mandalay 

For instance, in Figure 9, the building 0Rn reached the maximum air temperature 41.4°C 

while the building 3Rn reached 41.38°C in the results of material set-1 (ceiling added mode). 

Similarly, the building 0Rn reached the maximum air temperature 40.16°C while the building 

3Rn reached 40.01°C in the results of material set-2 (ceiling added mode). The material set-2 

contained a cool roof effect from which the buildings could better offset the peak outdoor dry 

bulb temperature than the buildings with material set-1 were able to. Moreover, the buildings 

with material set-2 received shorter quartile lengths and higher median and mean values than 

the buildings with material set-1. It was also found that the values of the upper extremes for all 

scenarios were above 31°C. Therefore, the authors decided to check the percentage of a year 

above indoor air temperatures, with 31°C and 36°C as extreme cases.  

 



 

Air temperatures above 31ºC and 36ºC: Figure 10 indicates that the buildings with 

material set-2 received a higher percentage of a year above indoor air temperature 31°C and 

maintained the lower percentage of a year above indoor air temperature 36°C. Conversely, the 

buildings with material set-1 received a lower percentage of a year above indoor air temperature 

31°C and maintained a higher percentage of a year above indoor air temperature 36°C. The 

percentages of a year above 31°C and 36°C were increased in the buildings if there were no 

gable vents.  

For instance, for the buildings with no ceiling in the material set-2, 31°C was found in 

the building 3Rv for 27.31% of a year above indoor air temperature, but this changed to 30.81% 

in the building 3Rn, as 3.5% difference. Moreover, the results of both material sets showed an 

increased percentage of air temperatures above 31°C and 36°C in all buildings when the 

ceilings were added but the gable vents were excluded. The results of Figure 9 and Figure 10 

were generated for the occupied spaces, and the building geometries, internal gains and window 

opening times were fixed. Therefore, those different results of indoor air temperatures were 

due to the impacts of roof typologies, roof ventilation, ceiling modes, and building materials.  

 
Figure 10. Air temperatures above 31ºC and 36ºC at the occupied spaces of each building, a 
typical weather year for Mandalay 



 

Peak air temperatures: The results of Figure 11 were generated from the indoor air 

temperatures of all intermediate roof levels from the day when the air temperature reached the 

maximum value in a typical weather year. The results showed that the indoor air temperatures 

of the roof spaces were higher than the occupied space. As there were no internal gains in the 

occupied spaces of all buildings, a high indoor air temperature of roof spaces was due to its 

direct contact with the solar heat gain above the roof and the upward buoyant force of the hot 

air. Although the results of the buildings’ indoor air temperatures of occupied space were 

unnoticeably different in all scenarios, their indoor air temperatures of roof spaces were 

significantly increased, but the increments were different due to ceiling mode, ventilation 

modes and building materials. In both material sets, the indoor air temperatures of roof spaces 

unnoticeably dropped when the ceilings were added but considerably increased when the gable 

vents were excluded. In both material sets, if the buildings had gable vents, the resultant indoor 

air temperature was lower in building 0Rv than in building 3Rv. On the contrary, in the material 

set-2, if the gable vents were excluded  from the models, the building 0Rn resultant roof space's 

indoor air temperature was higher than in building 3Rn. For instance, as shown in Figure 11, 

in the material set-1 without ceiling mode, the roof space's indoor air temperatures of  building 

3Rv reached 41.89°C and of building 0Rv reached 41.64°C; building 3Rn reached 42.65°C 

while  building 0Rn reached 42.44°C. In the material set-2 with the ceiling added mode, the 

roof space's indoor air temperatures of building 3Rv reached 42.18°C and building 0Rv reached 

41.59°C; building 3Rn reached 42.02°C while building 0Rn reached 43.04°C. 



 

 
Figure 11. Indoor air temperatures of occupied space and roof spaces of each building – 
results for the day when the air temperature reached a maximum for a typical weather year 

4.2. Simulation results from CFD 

This section presents the results of the 32 isothermal scenarios that were investigated 

using CFD simulation; the results were generated from the vertical planes of each building with 

1m interval that allowed us to compare the changes of indoor air temperatures and airflows 

along with the building height. The vertical planes of temperature profiles were generated using 

a normal angle at the inlet wind direction. The vertical planes of airflow profiles were generated 

from the plane which was parallel to the inlet wind direction. 

Roof typologies: Figure 12 presents the indoor air temperatures’ profiles and airflow 

profiles of two building typologies in which two ventilation modes were compared for the 

microclimate variables 36°C  (temperature) and 3m/s (wind speed) from the vertical planes. 

Selecting samples for a high temperature (36°C) and wind speed (3m/s) for Figure 12 allowed 

us to compare a significant turbulence indoor airflow and temperature changes along the 

vertical planes. The results showed that the indoor air temperatures of the building 3Rn were 

lower than those of the building 0Rn up to 2.5m height. For instance, the indoor air 

temperatures were found at 2m height as 37°C in the building 3Rn and at 38°C in the building 

0Rn. However, along the vertical planes, 2.5m onward, the building 3R maintained a higher 

indoor air temperature than the building 0R. On the contrary, the indoor air temperatures of the 



 

building 3Rv was found to be 43.6°C at 13.5m height (near the roof) and the indoor air 

temperatures of the building 0Rv was found to be 38.4°C at 9m height (near the roof), from 

which the roof's space temperature difference was found to be 5.2°C. It was also clear that the 

lack of gable vents caused high indoor air temperatures. For instance, the indoor air 

temperatures of the building 3Rv were found to be 43.6°C at 13.5m height (near the roof); at 

that time the indoor air temperatures of the building 3Rn was found to be 50.7°C. 

 
Figure 12. Indoor air temperatures profiles and airflow profile of two building typologies 
with two ventilation modes at high radiation conditions of the observed vertical planes 

Unlike temperature profiles, significant differences between the buildings with gable 

vents and without gable vents were found in the wind speed profiles. The different profiles of 

buildings 3Rn and 0Rn revealed that the impacts of building height and roof typologies had 

greater impacts on the airflow profiles than on the temperature profiles. The upstream airflow 

of building 0Rv reached to about 8m in height, where there was a large area of gable vent; 

however, the airflow instantly dropped near the roof. On the contrary, the airflow in building 

3Rv accelerated along with its location of gable vents, but created a lower airflow than building 

0Rv attained, the lowest of which was near the roof. 

Indoor air temperatures: The indoor air temperature profiles shown in Figure 13 were 

generated for a high radiation condition for two building typologies with two ventilation 

modes. In all buildings, the indoor air temperatures were significantly inclined from about 2.5m 

height onwards. The results revealed that there was temperature increment at the top of the roof 



 

and boundary of the envelope, which was clearly indicated with green and light blue colours. 

The results showed that the indoor temperatures at the lower height of the building 3R were 

closely related to its initial temperatures and the outdoor microclimates than was the case with 

building 0R. For instance, at the outdoor microclimate scenario 30°C with 1.2m/s, the indoor 

temperatures of the building 0Rn and building 3Rn were 32.4°C and 31°C, respectively at 1m 

height. Among all results, the building 3Rn with a low airspeed for the outdoor microclimate 

showed the worst-case scenarios. For instance, the indoor air temperatures of the building 3Rn 

were found to be 56°C at 14m height (near the roof) for 36°C, 1.2m/s scenario. 

Indoor airflow: Following the same approach presented for the indoor air temperature 

profiles, the indoor airflow profiles shown in Figure 14 were generated for a high radiation 

condition. The results revealed that there was scope for air turbulence in the buildings with 

gable vents. The results also showed that the speed of indoor airflow dropped beyond the 

opening height of building 3Rn that even caused very still air conditions near the top of the 

roof. Unlike building 3Rn, some turbulence was found at the top of building 0Rn. When there 

was wind flowing through the gable vents, turbulent conditions were found in both buildings 

3Rv and 0Rv aligned with the height of the gable vents. For instance, in building 3Rv for the 

profile of 36°C with 3m/s, the speed of indoor airflow dropped to 0.6m/s at 4m height but 

increased to 1.9m/s at 8.5m height. Although both buildings 3Rv and 0Rv had the same indoor 

air volumes and gable vent areas, a greater airflow can be observed in the building 0Rv, which 

was caused by a single inlet of wind. 

Radiation models: Figure 15 compares the results of two radiation conditions for the 

building 3Rn (solid lines for low radiation conditions and dash lines for high radiation 

conditions), where the intensity of radiation was differentiated by the values of sky cover, direct 

normal radiation and diffuse radiation, as shown in Table 2. In the same building, if the initial 

temperature, the outdoor dry bulb temperature and wind speed were fixed, the scenario with a 



 

low radiation condition received a lower indoor temperature than the scenario with a high 

radiation condition. If the occupied spaces were considered for 2m height, for the profile of 

30°C with 1.2m/s, the indoor air temperature was found to be 31.5°C in low radiation 

conditions, it changed to 32.2°C in the high radiation conditions that caused 0.7ºC difference. 

The more the building height increased, the higher the temperature increment was found 

between two radiation conditions. For instance, for the profile of 30°C with 3m/s, the indoor 

air temperature of low radiation conditions was found to be 34.2°C at 12m height, but the 

indoor air temperature of high radiation conditions was found to be 32.6°C at 12m height,  

which caused a 1.6ºC difference. For instance, for the profile of 36°C with 3m/s, the indoor air 

temperature of low radiation conditions was found to be 40.2°C at 12m height, but the indoor 

air temperature of high radiation conditions was found to be 38.6°C at 12m height, causing a  

1.6ºC difference. When the two radiation conditions were compared, a small temperature 

difference (0.7ºC) was found when the outdoor microclimate entities were 30°C with 1.2m/s, 

but a large temperature difference (1.6ºC) were found when the outdoor microclimate entities 

were at 30°C with 3m/s and 36°C with 3m/s. The results of the temperature differences between 

the two radiation conditions revealed that there was a considerable heat gain from the solar 

radiation in the studied climate. 

 



 

 
Figure 13. Indoor air temperature profiles of two building typologies with two ventilation 
modes considering high radiation conditions on the observed vertical planes 



 

 
Figure 14. Indoor airflow profiles of two building typologies with two ventilation modes 
considering high radiation conditions on the observed vertical planes 



 

 
Figure 15. Comparison of high and low radiation conditions for the building 3Rn 

 

5. Discussion 

The factors that impact on the resultant building microclimates considering the 

prescribed scenarios and combinations of conditions are complex. Therefore, the findings for 

the key questions were grouped under headings, as follows. 



 

5.1. Building materials 

Distinct outcomes were observed between the material set-1 (thatch roof and timber 

walls) and material set-2 (metal roof and brick walls) considering annual air temperatures in 

the occupied spaces [Figure 9]. The material set-1 contained lightweight vernacular materials 

such as timber. The buildings with material set-1 presented a high percentage of a year above 

36°C [Figure 10], which revealed that buildings with vernacular materials might be vulnerable 

to high and extreme temperature conditions. The results presented for the material set-1 are in 

agreement with the study by Nicol et al. [40]: if buildings have poor insulation characteristics 

or are lightweight, with low thermal capacity, they are likely to produce uncomfortable indoor 

temperatures during hot summers. The material set-2 contained a cool roof effect with less 

solar absorptance value (high reflectance) and high thermal capacity in the walls. Regardless 

of the differences in roof typologies, the use of material set-2 caused a higher annual mean 

temperature and a higher minimum air temperature in the occupied spaces [Figure 9]. 

Therefore, the buildings with material set-2 presented a higher percentage of a year above t 

31°C but a lower percentage of a year above 36°C than the material set-1 [Figure 10]. In 

agreement with this, two years of continuous monitoring work undertaken in Italy also revealed 

that the buildings with cool roof effect had better capability to offset a higher outdoor dry bulb 

temperature than a roof with high solar absorptance [41]. The highest indoor air temperature in 

the roof spaces of building 0Rn was observed in the results of material set-2; however, in both 

material sets, the highest indoor air temperature was observed in the roof spaces of the building 

3Rv compared to the building 0Rv [Figure 11]. The simulation results from IESVE revealed 

that the thermal performances of the studied buildings were more altered by the building 

envelope materials and roof ventilation mode rather than by roof typologies.  



 

5.2. Roof typologies and roof ventilation 

In the IESVE simulations, building 3Rs presented a higher annual mean and median 

value but a lower maximum air temperature than building 0R [F9]. Moreover, the occupied 

space of the building 3R maintained a slightly lower percentage of a year above air temperature 

31°C and 36°C than the buildings 1R and 0R when using the material set-1 [Figure 10]; 

however, differences in their results were negligible when roof typologies were considered. 

Regarding the roof space’s air temperature, building 3R presented higher temperatures than 

building 0R regardless of gable vents modes in both material sets [Figure 11].  

In the CFD simulations, the results showed that the indoor air temperatures of building 

3Rn were lower than those of building 0Rn up to 2.5m height; however, along the vertical 

planes from 2.5m onward, building 3R maintained a higher indoor air temperature than the 

building 0R did [Figure 12]. The CFD results also showed that the building 3R maintained a 

higher indoor air temperature than the building 0R along the vertical planes of 2.5m onward.  

Both IESVE and CFD simulations demonstrated good agreement, but findings conflicted 

for the building 3R, the traditional building with the multistage roof had lower air temperature 

up to 2.5m height but a higher roof space air temperature compared to the buildings with a 

single gable roof.  

5.3. Response to tropical climates 

Roof ventilation and roof typology play roles in removing hot air from a naturally 

ventilated building in the tropics. In this study, the CFD results suggested that building 3R 

could keep a lower air temperature up to 2.5m height. The results also demonstrated  

temperature differences between two radiation conditions, revealing considerable heat gain 

from the solar radiation in the studied climate [Figure 15]. This suggests that the buildings with 

multistage roofs have the benefit of being able to reduce the incidence of radiated heat gain. 

However, in order to avoid high air temperature in the roof space, gable vents should be used 



 

to remove the hot air. Ameer et al.’s study [42] revealed that a narrowed roof in a building 

excels in providing a lower mean age of air and higher air change effectiveness and also creates 

a considerable roof height and less internal air volume. A similar concept was found in 

Myanmar’s traditional buildings with a multistage roof that use an abstract roof curve to reduce 

the size of intermediate roof structures. Furthermore, one should not forget that the buildings 

with multistage roofs enable the relocation of the gable vent to the centre of the buildings, 

which allows for quicker removal of hot air quickly. In addition to the roof form, the simulation 

results revealed that the use of gable vents would be more effective in the buildings with 

multistage roofs if their building envelopes have material set-2.  

The uncomfortably high air temperature in roof spaces revealed why the roof spaces of 

the ancient Myanmar buildings were unoccupied. Similar study done in the CFD simulations, 

which investigated the indoor air quality and thermal performance of a windcatcher building, 

showed a high air temperature near the top of the building [43].  

Although the roof spaces of the buildings with multistage roofs were inherently 

vulnerable to overheating, the results of this study inform us that the indoor air temperatures of 

the occupied spaces for all simulated buildings closely responded to the outdoor air 

temperatures. Although the buildings with multistage roof has roof ventilation for passive 

cooling, the occupied spaces of the buildings with multistage roofs might be at risk of thermal 

discomfort because of both, extreme summer overheating and increased annual mean air 

temperature, due to the pervasive threat of the climate crisis. Similar results for Geodesic dome 

building in hot climates [44] also revealed that natural ventilation using roof vents cannot 

satisfy thermal requirements during hot summer periods and complementary cooling solutions 

should be considered. 



 

5.4. Limitations  

To date, very limited literature was found for the thermal performance design strategies 

used in Myanmar’s vernacular architecture. Therefore, to the best of the authors’ knowledge, 

this study might be one of the first to investigate the effects of the present climate conditions 

on the thermal performance of buildings with multistage roofs. It was impossible to capture the 

rich diversity of Myanmar cultures and customs as they developed through history within two 

simulation experiments presented in this paper; however, it was necessary to set the workable 

scope to investigate the difference between the buildings with a multistage roof and the 

buildings with a single gable roof in terms of their thermal performance. With this pressure in 

mind, the results of both simulations were generated as a single zone for the entire building 

with various prescribed, fixed assumptions. It is necessary to note acknowledge other 

limitations of this study as follows.  

In both simulation studies, the size and shape of the buildings were treated as equal length 

and width, and 1.5m eave for roof shading. It is also important to note that the aim of using the 

sample size of buildings in this paper was to compare differences between three-stage multi-

tier roofs and a single gable roof; therefore, a more realistic roof size for Myanmar’s traditional 

building might be considered for application, as shown in Figure 4 and Figure 5. The weather 

file used in the IESVE simulations was unable to generalise to the whole country as Myanmar 

extends through 18 degrees of latitude that results in different climate zones. The CFD 

simulations were generated by using an isothermal situation; therefore, the exterior air 

temperature fluctuation, natural wind direction and wind speed changes over time were out of 

the scope of work for the CFD simulations. All these factors are difficult to put together in one 

study, yet nevertheless are important considerations for the building microclimate. Although 

the simulation theories used in this study were well-established [28, 30, 34-37], ideally input 

data and results should be validated with real-world data, for which further studies are 



 

necessary. Nevertheless, the simulation studies presented in this paper can be a platform for 

further Myanmar vernacular architecture research, both for the art and history and for the 

building thermal performance design and building microclimates for the present climates.  

6. Conclusion  

When investigating the thermal performance of buildings with multistage roofs, several 

building parameters and microclimate conditions should be considered, as well as their impacts 

on indoor air temperatures and airflow. In the present study, the author used three buildings 

typologies with two ventilation modes to compare the impacts of building materials and 

different microclimate variables on the indoor thermal performance. When evaluating the 

thermal performance of the selected roof typologies, distinct results were observed when two 

different material sets were used; however, the thermal performances of the building with 

multistage roofs and the building with a single gable roof were more impacted by the use of 

different ventilation modes.  

As Oliver (1986) asserted, the technological merits of vernacular traditions do need to be 

studied and understood, and the extent of vernacular knowhow does demand to be examined 

and recognised. The findings showed that Myanmar’s vernacular buildings with multistage 

roofs offer an opportunity to improve indoor comfort in tropical weather because of their 

adaptability for roof ventilation through gable vents, and the use of an abstract roof curve to 

divide the number of tiers and to reduce roof internal air volume. If the grandness of the ancient 

Myanmar multistage roof is to be appreciated, it is not only because of its fine art and semiotic 

values; what should also be honoured is its capability to manage the hot, stale air in the roof 

structure from the use of simple building physics and geometry.  

 

  



 

Appendix 

Table 3. Material properties used in the IESVE simulations [28, 38] 

 T λ D Cp U Cm SA 
Material Set 1        
Thatch roof 300 0.07 240 180 0.2170 7.66 0.70 
Timber floor 25 0.13 900 2000 2.9240 22.50 - 
Timber wall 25 0.13 900 2000 2.9240 22.50 0.55 
Timber ceiling 25 0.165 650 1600 2.7295 13.00 - 
Timber window  40 0.130 900 2000 2.1863 36 - 
Material Set 2        
Metal roof 15 0.19 960 837 2.3735 27.50 0.30 
Concrete floor 500 - - - 0.7957 174.72 - 

Screed  0.41 1200 840    
Sand  0.35 2080 840    

Brick wall 250 - - - 1.6692 124.60 0.55 
Plaster - 0.16 600 1000    
Brick - 0.84 1700 800    

Timber ceiling 25 0.165 650 1600 2.7295 13.00 - 
Glazed window 12 - - - 5.75 - - 
T = Total thickness [mm]; λ = Conductivity [W/(mK)]; D = Density [kg/m3] 
Cp = Specific heat capacity [J/(kg.K)]; U = Thermal transmittance [W/m2K] 
Cm = Thermal mass [kJ/(m2K)]; SA = Outside surface Solar absorptance 

 
 
Table 4. Summary of the CFD model boundary conditions 

Boundary condition Set value 
Algorithm 
Time 
Solver type 
Discretisation Scheme 
Turbulence model 
Near wall 
Velocity inlet  
Pressure outlet 

Simple 
Steady-state 
Pressure based 
Second-order upwind 
Standard k-epsilon  
Standard wall functions 
ABL profile (see Figure 16) 
0 Pa 

 

Table 5. Mesh characteristics of the buildings for CFD simulations  

Buildings Gable Vents 
contained 

Elements Nodes Average 
skewness 

Average  
orthogonal quality 

3Rv Yes 1015111 1408084 0.25148 0.74723 
3Rn No 1463635 2032705 0.24186 0.75686 
0Rv Yes 1599544 2226556 0.22755 0.77114 
0Rn No 1556506 2168641 0.22680 0.77188 
 

  



 

(a) (b) 

  
Figure 16. (a) Velocity profile; (b) Turbulent kinetic energy profile of approach wind flow 
[46] 
 

 

 
Figure 17. Microclimate entities of Mandalay in a typical weather year [30] 
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Table 6. Material properties of air and building materials used in CFD simulations 

Material properties Air Timber (Building) 
Density (kg/m3) 1.225 900 
Cp (Specific heat) (j/K-.kg) 1006.43 2000 
Thermal conductivity (w/m-k) 0.0242 0.13 
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Endnote 

1 The immensely thick stone walls and dome of the Trulli houses create a pleasantly cool environment in 

the summer; however, the excess moisture in the air condenses while cooking; therefore, the inhabitants need to 

leave the doors and small windows open during the day to keep the interior dry and to remove the humid air inside 

the building. 

2 In a Beehive-shaped house, the hole at the sides of each conical dome serves as a chimney and a 

ventilation hole to remove the smoke and hot air that allows occupants to avoid the indoor moisture from the sun-

 



 

 

dried or burned clay brick envelope. Therefore, the inhabitants usually close the openings to prevent the extreme 

differences in the climate during the summer and the winter to maintain a comfortable indoor environment. 

3 The stone and earth architecture of Dogon Country is set against the steep cliffs of Mali’s Bandiagara 

escarpment. 

4 Cameroon huts in Musgum are made of sun-dried mud. 

5 The Viking longhouse begins with the construction of stone footings. Besides forming a firm base on 

which the house rests, they also keep the wooden structural elements of the house away from the soil, protecting 

them from rot. 

6 The boat-shaped Batak longhouse has carved gables and large steeply pitched saddle back roof, and the 

main house is built on piles. 

7 Stave churches are elaborately carved wooden houses of worship once common in north-western Europe. 

Stave building is a frame construction consisting of horizontal and vertical elements resting on the stone 

foundation on the ground. Stave churches with elevated naves have a number of staves, or nave posts, which stand 

separately in the interior and support the upper part of the construction. Heddal stave church is the largest surviving 

stave church with elevated naves in Notodden, Norway, which was probably built in the 1200s. Most stave 

churches were made of Scots pine and oak, which have an extreme density and are hard to find in present-day 

Norwegian forests; therefore, the excellent quality timber might be one of the reasons for those wooden buildings 

surviving in the Nordic climate for so many centuries. 

8 Pyatthat in the Pali-Myanmar dictionary means ‘a building with a series of roof tiers’. The word 

originated from the Sanskrit word ‘Pa-Thar-Da’, which means ‘a building with pleasant sight.’ Each tier is called 

"boun'', and the numbers are always uneven to keep three or five or seven tiers, up to eleven. An intermediate box-

like roof structure inserted between each tier is called "Le-baw". 

9 Four types of multistage roofs can be categorised by historical dynasties: Pagan dynasty, first-Ava 

dynasty, Hanthawaddy dynasty, and Konbaung dynasty. The use of intermediate roof structures is more dominant 

in the Pagan and first-Ava dynasties. The use of a series of roofs is more powerful in the Hanthawaddy dynasty, 

which was developed for Kho-Nan-Cho design, which means there are the same length and width at every corner. 

The empire of King Bayinnaung extended to the Ayutthaya of Thailand in the Hanthawaddy Dynasty. Therefore, 

the use of a series of roofs has been developed in both countries. 


