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Abstract: The increasing prevalence of cyber threats in wireless sensor networks (WSNs)
necessitates adaptive and efficient security mechanisms to ensure robust data transmission
while addressing resource constraints. This paper proposes a reinforcement learning-based
adaptive encryption framework that dynamically scales encryption levels based on real-
time network conditions and threat classification. The proposed model leverages a deep
learning-based anomaly detection system to classify network states into low, moderate,
or high threat levels, which guides encryption policy selection. The framework integrates
dynamic Q-learning for optimizing energy efficiency in low-threat conditions and double
Q-learning for robust security adaptation in high-threat environments. A Hybrid Policy
Derivation Algorithm is introduced to balance encryption complexity and computational
overhead by dynamically switching between these learning models. The proposed system
is formulated as a Markov Decision Process (MDP), where encryption level selection is
driven by a reward function that optimizes the trade-off between energy efficiency and
security robustness. The adaptive learning strategy employs an ϵ-greedy exploration-
exploitation mechanism with an exponential decay rate to enhance convergence in dynamic
WSN environments. The model also incorporates a dynamic hyperparameter tuning
mechanism that optimally adjusts learning rates and exploration parameters based on
real-time network feedback. Experimental evaluations conducted in a simulated WSN
environment demonstrate the effectiveness of the proposed framework, achieving a 30.5%
reduction in energy consumption, a 92.5% packet delivery ratio (PDR), and a 94% miti-
gation efficiency against multiple cyberattack scenarios, including DDoS, black-hole, and
data injection attacks. Additionally, the framework reduces latency by 37% compared
to conventional encryption techniques, ensuring minimal communication delays. These
results highlight the scalability and adaptability of reinforcement learning-driven adaptive
encryption in resource-constrained networks, paving the way for real-world deployment
in next-generation IoT and WSN applications.
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reinforcement learning; resource-constrained networks; wireless sensor networks; security
optimization

Sensors 2025, 25, 2056 https://doi.org/10.3390/s25072056

https://doi.org/10.3390/s25072056
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6319-766X
https://orcid.org/0000-0001-9082-9012
https://orcid.org/0000-0002-4353-2088
https://orcid.org/0000-0003-0307-581X
https://orcid.org/0000-0002-9149-5074
https://doi.org/10.3390/s25072056
https://www.mdpi.com/article/10.3390/s25072056?type=check_update&version=1


Sensors 2025, 25, 2056 2 of 33

1. Introduction
The rapid expansion of 6G communication networks and proliferation of the Internet

of Things (IoT) have led to a surge of data-driven applications that require real-time,
intelligent, and secure communication. Wireless Sensor Networks (WSNs) play a crucial
role in smart environments, healthcare, industrial automation, disaster management, and
critical infrastructure monitoring. However, as WSNs become an integral part of 6G-driven
IoT ecosystems, they face new challenges, particularly in terms of resilience to cyberattacks,
resource constraints, and dynamic security threats.

WSNs are widely deployed in various critical domains, including smart cities, health-
care, industrial automation, agriculture, disaster management, and military surveillance.
In smart cities, WSNs are used for traffic monitoring, pollution control, and smart grids,
providing real-time data for efficient urban planning. In healthcare and remote patient
monitoring, WSNs enable continuous patient tracking through wearable devices, ensuring
real-time health analytics and emergency alerts. In industrial automation, WSNs support
predictive maintenance, process control, and environmental sensing for Industry 4.0 and
IIoT applications. In agriculture, they help detect soil moisture, analyze crop health, and
monitor climate, improving productivity. WSNs also play a crucial role in disaster man-
agement by enabling early detection of natural calamities like earthquakes and floods,
facilitating rapid response and risk mitigation. Additionally, in military and surveillance
applications, they are utilized for battlefield monitoring, intrusion detection, and border
security, strengthening tactical operations.

Despite their extensive applications, WSNs face several limitations that hinder their
integration into 6G and advanced IoT ecosystems, particularly in the context of cyberse-
curity, adaptability, and energy efficiency. Traditional WSN security approaches rely on
static encryption methods such as AES, RSA, and ECC, which lack adaptability to dynamic
cyber threats. These methods do not dynamically adjust the strength of the encryption
based on network conditions, making them vulnerable to evolving attacks. Furthermore,
WSNs operate in open and decentralized environments, making them highly prone to
cyberattacks such as DDoS, black-hole, wormhole, and data injection attacks. Traditional
intrusion detection systems (IDSs) are ineffective in real-time threat mitigation, leading to
delayed responses and potential data breaches.

Energy constraints are another significant limitation in resource-limited WSN nodes.
These nodes are battery-powered, which restricts the implementation of computationally
intensive security mechanisms. Deploying robust encryption without energy optimization
leads to rapid battery depletion and reduced network life. In addition, 6G networks require
low-latency adaptive security mechanisms to ensure real-time protection for time-sensitive
applications. However, traditional security models fail to balance security strength with
latency and energy efficiency, resulting in either excessive computational overhead or
weak security implementations. Furthermore, many existing WSN security models are
rule-based or machine learning-driven, but they lack continuous learning capabilities. This
makes them ineffective against zero-day attacks or adversarial manipulations, leading to
compromised network integrity.

1.1. Security Issues in WSN

The evolving threat landscape in 6G-driven WSN deployments demands a shift from
conventional security paradigms to more adaptive and autonomous approaches. Scalability
remains a challenge, as traditional security frameworks struggle to accommodate large-scale
WSN deployments without significantly increasing computational overhead. Furthermore,
the lack of standardized security models results in fragmented security strategies, making
it difficult to develop a unified security framework that is applicable to various WSN
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applications. A significant trade-off also exists between security and performance, as
stronger security mechanisms often increase computational complexity, negatively affecting
latency, energy efficiency, and real-time responsiveness.

These challenges highlight the urgent need for advanced security solutions in WSNs to
meet the demands of 6G-driven IoT ecosystems. Future security frameworks must address
cyberattack mitigation, resource optimization, and real-time adaptability while ensuring
minimal impact on network performance. As WSNs continue to evolve, integrating intelli-
gent, adaptive security mechanisms will be crucial to maintaining network resilience and
enabling secure communication in next-generation IoT environments.

Wireless Sensor Networks (WSNs) have revolutionized modern technology by en-
abling efficient data collection, transmission, and processing across a wide range of ap-
plications. These networks consist of distributed sensor nodes equipped with sensing,
computation, and communication capabilities, making them integral to areas such as envi-
ronmental monitoring, healthcare, military operations, smart agriculture, and industrial
automation [1,2]. The ability of WSNs to operate in resource-constrained and often inacces-
sible environments has cemented their importance in modern technological ecosystems.

Despite their advantages, WSNs face significant challenges due to their inherent
limitations, including constrained energy resources, computational power, and storage
capacities [3]. These limitations make WSNs particularly vulnerable to various cyber threats,
ranging from data injection and distributed denial-of-service (DDoS) attacks to black-hole
and wormhole attacks [4,5]. Cyberattacks not only compromise data confidentiality and
integrity, but also disrupt network functionality, jeopardizing critical applications such as
disaster management and military surveillance. The need for robust security mechanisms
to protect WSNs from these threats has become increasingly critical [6].

Existing security mechanisms, including traditional encryption techniques such as
AES, RSA, and ECC, rely on static security levels that do not adapt to evolving threats.
Although lightweight encryption techniques such as LBC, Hybrid AES-RSA, and DTE
optimize computational efficiency to some extent, they still rely on predefined security
thresholds rather than dynamically adjusting to real-time cyber threats. Furthermore,
machine learning-based security models improve threat detection, but lack adaptive mech-
anisms that dynamically adjust security policies. These limitations highlight the urgent
need for an advanced security framework capable of dynamically adapting encryption
levels based on real-time threat intelligence.

One of the critical challenges in traditional security mechanisms is their high energy
consumption, which significantly impacts the efficiency and longevity of WSNs. Standard
encryption techniques require substantial computational resources, leading to increased
power consumption. Although lightweight encryption approaches moderately optimize
energy usage, they do not explicitly balance security and energy efficiency. Machine
learning-based models focus on threat detection but often overlook energy optimization,
leading to inefficient security implementations in WSNs.

The existing encryption techniques [5,7–10] in WSNs impose high computational over-
head or lack adaptability to evolving cyber threats. Static encryption methods fail to opti-
mize security and energy efficiency simultaneously, making resource-constrained WSNs
highly vulnerable to attacks such as distributed denial-of-service (DDoS), black-hole, and
data injection attacks. To address this gap, there is a need for a reinforcement learning-based
adaptive encryption framework that dynamically adjusts encryption levels based on real-
time network conditions, ensuring robust security while optimizing energy consumption.
Mitigating cyberattacks in WSNs requires adaptive and resource-efficient solutions that
can respond dynamically to evolving threats. Traditional cryptographic techniques, includ-
ing AES and RSA, provide strong security guarantees but are computationally intensive,
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making them unsuitable for energy-constrained WSN environments [11,12]. Lightweight
encryption techniques, such as elliptic curve cryptography (ECC), have emerged as viable
alternatives due to their smaller key size and reduced energy consumption [13]. However,
static encryption methods often lack the flexibility to adapt to real-time network conditions
and evolving threat landscapes [14].

The threat detection and classification mechanisms in existing approaches are often in-
adequate, further increasing the vulnerability of WSNs. Traditional encryption mechanisms
do not provide an inherent threat classification, making them ineffective in mitigating
targeted cyber threats. Lightweight encryption techniques incorporate basic anomaly
detection, but these methods lack the sophistication required to address complex attack
scenarios. Although machine learning-based approaches enhance threat detection accuracy,
they still rely on pre-trained datasets, which limits their ability to respond to novel or
evolving threats in real time.

Cyberattack resilience is another area where traditional security models fall short.
Traditional encryption schemes are static and lack the ability to respond to dynamically
evolving attack strategies. Lightweight encryption techniques provide moderate resilience,
but rely on threshold-based security, which is ineffective against sophisticated cyber
threats. Machine learning-based models detect attacks efficiently, but lack a proactive
mitigation mechanism.

1.2. Motivation

The motivation for this research is driven by the growing complexity of cyber threats
targeting WSNs, including distributed denial-of-service (DDoS), black-hole, wormhole,
and data injection attacks. Existing machine learning-based anomaly detection systems
exhibit limitations in real-time adaptation and computational efficiency, making them
unsuitable for resource-constrained WSN environments. Additionally, traditional crypto-
graphic mechanisms impose high energy overheads, which significantly impact network
longevity. A major limitation of existing approaches is their inability to balance security
and latency. Traditional encryption methods prioritize security, but at the cost of increased
latency, which negatively impacts network performance. Although lightweight encryption
techniques reduce latency, they often compromise security effectiveness. Machine learning
models improve security, but do not effectively optimize latency. Existing security mod-
els also lack comprehensive evaluation frameworks. Traditional encryption mechanisms
assess only basic security effectiveness without considering energy efficiency or system
performance. Lightweight encryption models evaluate security–energy trade-offs, but
fail to measure network-wide performance, including latency and mitigation efficiency.
Machine learning-based models primarily assess detection accuracy, but do not incorporate
real-time performance considerations.

Adaptive encryption, which dynamically adjusts security parameters based on real-
time feedback, has gained significant attention as a means to optimize the trade-off between
security and resource efficiency in WSNs [15]. Reinforcement learning (RL), a branch of
machine learning, has shown particular promise in enabling such adaptability. Using RL
techniques, WSNs can make intelligent decisions to dynamically scale encryption levels,
balancing energy consumption, latency, and security [1]. Among RL methods, Q-learning
stands out for its ability to model and solve sequential decision-making problems in
resource-constrained environments. It enables nodes to learn optimal policies for setting
encryption levels by interacting with the environment and receiving feedback in the form
of rewards [5].

The integration of Q-learning into adaptive encryption frameworks has demonstrated
significant potential to improve the resilience of WSNs to cyberattacks [11]. Q-learning
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allows nodes to dynamically adjust encryption levels in response to network conditions,
ensuring optimal performance across key metrics such as packet delivery ratio (PDR),
latency, and energy efficiency [3,11]. Furthermore, the combination of Q-learning with
other advanced techniques, such as blockchain for secure communication and anomaly
detection for threat identification, provides a comprehensive approach to mitigate cyber
threats in distributed WSNs [13].

1.3. Research Contributions

This research introduces a reinforcement learning-based adaptive encryption frame-
work to mitigate cyberattacks in wireless sensor networks. The proposed model integrates
Q-learning with advanced encryption scaling techniques to dynamically adjust encryption
levels based on real-time threat detection while minimizing energy consumption. The key
contributions of this research are the following:

• Development of a reinforcement learning-driven adaptive encryption framework that
utilizes Q-learning-based policy optimization to select encryption levels based on
network threat conditions. The model incorporates a Markov Decision Process (MDP)
formulation to define state transitions and reward functions for optimizing energy
efficiency and security robustness [16].

• Integration of dynamic Q-learning (Algorithm 1) for energy-efficient encryption scal-
ing in low-threat conditions. The algorithm dynamically adjusts encryption complexity
by evaluating the energy cost–security trade-off, ensuring resource conservation while
maintaining sufficient security levels. It employs an ϵ-greedy exploration–exploitation
strategy with an adaptive decay mechanism to improve learning convergence in
dynamic WSN environments.

• Implementation of Double Q-Learning (Algorithm 2) for robust security adaptation
under high-threat scenarios. The use of dual Q-value function approximation re-
duces the overestimation bias inherent in traditional Q-learning. By maintaining
two separate Q-value estimations and alternating updates, the framework enhances
security decision-making, effectively mitigating advanced cyberattacks such as DDoS,
black-hole, and data injection attacks.

• Design of a Hybrid Policy Derivation Algorithm (Algorithm 3) that optimally balances
encryption levels by combining the strengths of dynamic Q-learning and double Q-
learning. The hybrid policy integrates real-time threat assessment using a feedforward
neural network-based anomaly detection model (Algorithm 4) to ensure adaptive
encryption decision-making without excessive computational overhead.

• Integration of a deep learning-based anomaly detection system (Algorithm 4) for
real-time threat classification using packet delivery ratio (PDR), latency, and anomaly
scores. The model utilizes a feedforward neural network trained on historical network
traffic to classify low-, moderate-, and high-threat states, guiding the encryption
adaptation process.

• Introduction of a dynamic hyperparameter tuning mechanism for reinforcement
learning updates, ensuring adaptive learning rate adjustment based on network
conditions. This optimizes Q-learning convergence speed, enhancing the model’s
adaptability to dynamic WSN environments.

• Extensive evaluation in a simulated wireless sensor network environment, demon-
strating a 30.5% reduction in energy consumption, a 92.5% packet delivery ratio, and
a 37% reduction in transmission latency.

• Enhanced security effectiveness with a 94% attack mitigation efficiency against DDoS,
black-hole, and data injection attacks.
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• Practical applicability and future scalability considerations, including integration with
blockchain-based encryption key management for decentralized security enhance-
ment, deployment in low-power IoT hardware such as ARM Cortex and Raspberry Pi
for real-world energy profiling, and extension to multi-agent reinforcement learning
for decentralized encryption decision-making.

Algorithm 1 Enhanced Q-Learning with Dynamic Parameter Adjustment for Adaptive Encryption.

1: Initialize Q-values Q(s, a) arbitrarily for all state-action pairs (s, a)
2: Initialize learning rate α, discount factor γ, and exploration rate ϵ
3: Define maximum and minimum exploration rates ϵmax, ϵmin, and decay rate λ
4: for each episode do
5: Initialize state s
6: for each time step do
7: Select action a using ϵ-greedy policy based on Q(s, a)
8: Execute action a, observe reward r, and next state s′

9: Update Q-value using

Q(s, a)← Q(s, a) + α

[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
10: Update state s← s′

11: end for
12: Decay exploration rate ϵ← ϵmin + (ϵmax − ϵmin)e−λ·episode

13: end for
14: return Optimized Q-values Q(s, a)

Algorithm 2 Double Q-Learning for Adaptive Encryption Scaling.

1: Initialize Q-tables Q1(s, a) and Q2(s, a) arbitrarily for all state–action pairs (s, a)
2: Initialize learning rate α, discount factor γ, and exploration rate ϵ
3: for each episode do
4: Initialize state s
5: for each time step do
6: Select action a using ϵ-greedy policy:

a = arg max
a

[Q1(s, a) + Q2(s, a)]

7: Execute action a, observe reward r, and next state s′

8: Update Q-tables using

Q1(s, a)← Q1(s, a) + α

[
r + γQ2(s′, arg max

a′
Q1(s′, a′))−Q1(s, a)

]

Q2(s, a)← Q2(s, a) + α

[
r + γQ1(s′, arg max

a′
Q2(s′, a′))−Q2(s, a)

]
9: Update state s← s′

10: end for
11: Decay exploration rate ϵ← ϵmin + (ϵmax − ϵmin)e−λ·episode

12: end for
13: return Optimized Q-tables Q1(s, a) and Q2(s, a)
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Algorithm 3 Adaptive Cyberattack Mitigation with Hybrid Encryption.

1: Initialize global parameters: learning rate α, discount factor γ, exploration rate ϵ, and
decay rate λ

2: Initialize two Q-tables Q1(s, a) and Q2(s, a) for adaptive policy learning
3: for each episode do
4: Initialize state s based on current network conditions (e.g., threat levels, energy

metrics)
5: while episode is not terminated do
6: Detect current threat level in the network
7: if threat level is high then
8: Call Algorithm 1: Double Q-Learning for secure encryption scaling
9: Update Q1 and Q2 based on Algorithm 2’s policy

10: else
11: Call Algorithm 4: Dynamic Q-Learning for energy-efficient encryption

scaling
12: Update Q1 and Q2 based on Algorithm 1’s policy
13: end if
14: Observe reward r and next state s′ from the environment
15: Update state s← s′

16: end while
17: Decay exploration rate ϵ using

ϵ← ϵmin + (ϵmax − ϵmin)e−λ·episode

18: end for
19: Derive final hybrid policy π(s) using

π(s) = arg max
a

[Q1(s, a) + Q2(s, a)]

20: return Optimized Q-tables Q1, Q2, and hybrid policy π(s)

Algorithm 4 Deep Learning-Based Anomaly Detection.

1: Load the trained feedforward neural network modelM
2: Initialize threshold values τlow and τhigh for anomaly scores
3: Input real-time network metrics: X = {PDR, Latency, Packet Drop Rate}
4: Compute the anomaly score A =M(X) using the neural network model
5: if A ≤ τlow then
6: Classify as low threat
7: Trigger energy-efficient actions (Algorithm 1)
8: else if A > τhigh then
9: Classify as high threat

10: Trigger robust encryption scaling (Algorithm 2)
11: else
12: Classify as moderate threat
13: Balance actions between energy efficiency and security
14: end if
15: Return threat classification and initiate appropriate countermeasures

The experimental results validate that the proposed model effectively mitigates cyber
threats while maintaining optimal resource utilization. Using reinforcement learning for
encryption adaptation, the framework ensures robust security without imposing excessive
computational overhead. The ability to dynamically adjust encryption strength based
on real-time network conditions makes this approach particularly suitable for resource-
constrained environments such as wireless sensor networks and Internet of Things appli-
cations. The results demonstrate that the proposed method achieves a balanced trade-off
between security, energy efficiency, and latency, making it a viable solution for secure
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real-time communication in dynamic network environments. The rest of this paper is
structured as follows. Section 2 reviews existing approaches to WSN security, emphasizing
lightweight and adaptive techniques. Section 3 details the methodology of the proposed
adaptive encryption framework. Section 4 presents experimental evaluations and results,
and Section 5 concludes with insights and potential future research directions.

2. Literature Review
The security of WSNs and IoT networks has emerged as a significant research focus,

driven by the imperative to counter cyber threats and ensure reliable network functionality.
In the realm of IoT security, ref. [17], introduced a blockchain-based encryption method
with the generation of dynamic spider web keys, achieving reduced latency and improved
throughput. The work presented in [18] focused on the detection of intrusions in underwa-
ter WSNs, employing convolutional LSTM networks with NADAM optimization to achieve
superior detection precision and precision. Meanwhile, the research work presented in [19]
proposed a trust model utilizing deep reinforcement learning and random forest algorithms
to mitigate malicious nodes in underwater sensor networks. The research in [20] integrated
Harris Hawks optimization with gradient boost to enhance threat detection in hybrid
WSNs, demonstrating exceptional precision on data sets such as NSL-KDD and WSN-DS.
Furthermore, the research in [21] presented a federated machine learning framework in-
tegrated with blockchain to detect DDoS attacks in IoT networks, incorporating dynamic
mining selection for high accuracy and reduced latency.

In terms of hybrid encryption models, studies such as those of [3,12] combined AES
and ECC to leverage the security benefits of AES with the efficiency of ECC. Although these
models demonstrated superior energy efficiency, they were limited by their static nature
and inability to adapt based on real-time feedback. Our proposed model aims to bridge
this gap by integrating reinforcement learning for adaptive scaling of the encryption level,
which dynamically adjusts the encryption strength according to network conditions and
threat levels. This approach is inspired by the work of [2], who successfully demonstrated
that reinforcement learning could optimize routing protocols in WSNs.

In addition, some research has explored the combination of reinforcement learning
with blockchain to improve security in distributed WSNs. In particular, ref. [14] introduced
a blockchain-enhanced reinforcement learning framework that provides decentralized secu-
rity while dynamically adjusting encryption parameters. Although blockchain integration
is beneficial for distributed networks, its computational requirements may be excessive for
energy-constrained WSN nodes [13].

2.1. Reinforcement Learning Models for Attack Mitigation

Several works have specifically focused on Q-learning in the context of adaptive
security for WSNs. The researchers of [13] proposed a Q-learning-based model to ad-
just encryption levels based on network activity and resource availability. Their model
showed improved adaptability and energy efficiency compared to fixed encryption schemes,
although its security effectiveness against evolving threats remained a concern. Subse-
quently, ref. [1] enhanced this model by introducing reward functions that prioritize security
in high-risk scenarios. However, their approach lacked a comprehensive evaluation of
latency and packet delivery, which are critical metrics for time-sensitive WSN applica-
tions. These vulnerabilities compromise the security, reliability, and energy efficiency
of data communication in these systems [17,19,22–24]. Current security solutions often
face limitations in scalability, adaptability to dynamic environments, and computational
efficiency [20,21,25–27].
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Suhag and Aarti [22] highlighted the critical challenges in securing WSNs, proposing
asymmetric cryptographic encryption as an effective strategy to protect data in transit
from impersonation and compromise attacks. Devi and Kumar [23] presented a secure
data framework based on key reconciliation to improve the reliability of data exchange in
WSNs, addressing key management and economic incentives. Similarly, Yesodha et al. [24]
combined trust modeling with ant colony optimization in an ECC-based secure routing
protocol to improve energy efficiency and trust analysis in cluster head selection. In parallel,
Jagwani and Poornima [25] explored machine learning techniques to detect WSN-specific
attacks such as DOS, R2L, and U2R, utilizing the SMOTE technique for data balancing and
comparing algorithms using metrics such as MCC and F1 scores.

Further advances in smart environments include the Aziz and Mirzaliev decision
tree [26] and the gray wolf optimization model for robust intrusion detection in IoT scenar-
ios. Kumar and Kumar [27] developed a hybrid encryption and attack detection framework
for smart cities enabled by the IoT, integrating deep learning and blockchain to optimize en-
cryption time and enhance attack detection. Altaweel et al. [8] conducted a comprehensive
review of security threats in opportunistic mobile networks, proposing strategies to counter-
act black-hole, wormhole, and DDoS attacks. Singh et al. [28] introduced a hybrid machine
learning model combining SVM and RF algorithms for DDoS detection in SDN networks,
while Ramalakshmi and Kavitha [29] devised a distributed multi-controller approach to
mitigate DDoS attacks in fog-based IoT systems. In particular, Han et al. [30] proposed
a trust-aware clustering algorithm to address trust-based attacks, and Saleh et al. [31] in-
vestigated the integration of blockchain and machine learning to address security issues
in medical applications of IoT. These studies collectively underscore ongoing innovations
aimed at fortifying WSNs and IoT networks against emerging cybersecurity threats.

2.2. Adaptive Encryption Models for Attack Mitigation

WSNs have gained significant attention due to their ability to collect and transmit
data in various applications, from environmental monitoring to military operations [1].
Given the limited energy resources of the WSN nodes, ensuring security without compro-
mising efficiency is a critical challenge. Traditional encryption techniques, such as AES and
RSA, while effective in securing communication, often consume substantial computational
resources, which is a constraint for WSN environments [5]. To address these limitations,
numerous studies have focused on lightweight and adaptive encryption schemes, particu-
larly integrating machine learning and, more recently, reinforcement learning, to optimize
encryption protocols based on network conditions [3].

Several researchers have explored lightweight cryptographic algorithms as potential
solutions for resource-constrained environments such as WSNs. Studies such as those
by [4,6] proposed variants of lightweight block ciphers designed to reduce encryption
overhead while maintaining acceptable levels of security. Similarly, elliptic curve cryptog-
raphy (ECC) has been frequently studied due to its smaller key size requirements, which
offer both energy efficiency and security [11]. However, static approaches to lightweight
encryption often lack the flexibility to adapt to varying security requirements in real-time.

To enable adaptive security mechanisms, some researchers have integrated threshold-
based encryption models. The work of [12] introduced dynamic threshold encryption,
which adjusts the encryption level based on pre-determined threshold values of network
parameters. Although effective, such models still rely on fixed thresholds, which may not
account for rapidly changing network conditions, especially in dynamic WSNs. In contrast,
reinforcement learning, particularly Q-learning, has shown promise in addressing these
limitations by allowing real-time decision-making [2].
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A growing body of literature has applied machine learning techniques to improve
WSN security protocols. In their seminal work, ref. [14] explored the integration of su-
pervised learning for anomaly detection, enabling the identification of potential threats
with minimal energy consumption. Recent advances, as seen in [15], have extended this
approach to unsupervised learning, allowing the detection of novel threats without prior la-
beled data. However, machine learning models generally require substantial computational
resources, which can limit their feasibility in resource-constrained WSN environments.
Reinforcement learning, specifically Q-learning, offers a promising solution by dynam-
ically adapting encryption levels in real time while considering energy constraints, as
explored in [5].

2.3. Issues with Existing Models

The research analyzed emphasizes the limitations of using static encryption methods in
WSNs and points to the promise of reinforcement learning in achieving adaptive encryption.
A summary of the existing models with an overview comparison of the previous works
indicating the methods, advantages, challenges, limitations, and experimental results is
presented in Table 1. This research extends these foundational studies by introducing a
Q-learning-driven encryption level adjustment strategy, which dynamically modulates
encryption strength based on real-time network condition feedback. This novel approach
aims to provide an efficient balance between energy consumption, latency, and security,
which has been insufficiently addressed in previous works.

As WSNs and IoT systems are increasingly integrated into critical domains such as
smart cities, healthcare, underwater networks, and industrial automation, these challenges
pose a significant threat to the integrity of the data and the functionality of systems.
To address these issues, there is an urgent need for advanced security frameworks that
leverage cutting-edge technologies such as blockchain, machine learning, and optimization
techniques to improve resilience and adaptability [8,28–31]. Developing hybrid approaches
that integrate cryptographic mechanisms, trust models, and intelligent threat detection
algorithms will be essential to effectively secure WSN and IoT ecosystems.

Table 1. Comparison of previous studies on WSN security and encryption mechanisms.

Ref. Methodology Advantages Limitations Results

Mohaned Anwar
et al. [17] (2024)

Blockchain-based encryption
with dynamic key generation

Improved security
and throughput

High computational
cost

Latency reduced by 15%,
accuracy 91%

Arivumani
et al. [18] (2024)

Convolutional LSTM for
intrusion detection

High detection
accuracy

Requires large
training data

98% precision, few false
positives

Wang et al. [19]
(2024)

Deep reinforcement learning
for trust model in
underwater WSNs

Mitigates malicious
node attacks

Requires online
learning updates

95% attack detection
accuracy, energy-efficient
routing

Rasool et al. [20]
(2025)

Hybrid optimization for
WSN security

Efficient threat
detection

High computational
complexity

96% threat detection rate,
moderate energy efficiency

Saveetha
et al. [21] (2024)

Federated learning with
blockchain for DDoS
mitigation

Decentralized
security

High resource
consumption

92% accuracy, reduced
latency

Rehman
et al. [14] (2022)

Blockchain-enhanced
reinforcement learning

Secure distributed
encryption

Increased
computation
overhead

93% anomaly detection
accuracy, low latency
overhead
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Table 1. Cont.

Ref. Methodology Advantages Limitations Results

Fascista et al. [15]
(2022)

Adaptive encryption with
real-time feedback
mechanism

Optimized energy
usage

Limited scalability in
large networks

90% improvement in
network resilience, energy
savings

Han et al. [30]
(2024)

Trust-aware clustering
algorithm for IoT networks

Enhances data
security

Higher energy
consumption

88% security effectiveness,
20% reduced overhead

Saleh et al. [31]
(2024)

Blockchain and machine
learning integration for
security

Improved anomaly
detection

High storage and
processing
requirements

97% anomaly detection
accuracy, enhanced privacy
protection

Singh et al. [32]
(2024)

Hybrid SVM and RF model
for DDoS detection in SDN

High detection
accuracy

Model complexity
increases processing
time

94% detection rate,
improved network resilience

Rama lakshmi et
al. [29] (2024)

Distributed multi-controller
approach for mitigating
DDoS in fog computing

Scalability in large
networks

Requires extensive
resource allocation

90% mitigation efficiency,
reduced latency

Altaweel et al. [8]
(2024)

Security strategies for
opportunistic mobile
networks

Detects various
attacks like
black-hole and
wormhole

High false positive
rates in anomaly
detection

91% threat classification
accuracy, moderate latency

2.4. Research Gaps Identified

Several studies have explored machine learning applications in WSNs, particularly for
anomaly detection and intrusion prevention. For example, supervised learning techniques
have been used to detect unauthorized access or abnormal patterns, effectively identifying
potential security threats. However, these approaches typically require labeled data for
training, which may not always be available or feasible in WSN environments. On the other
hand, unsupervised learning models, while useful for anomaly detection without labeled
data, often lack the adaptability needed to adjust encryption in real time. Reinforcement
learning addresses these limitations by enabling an autonomous learning process based on
trial and error, where the model learns to select optimal encryption levels by maximizing
rewards associated with energy savings and threat mitigation. This dynamic adaptability
to real-time network conditions represents a significant advancement over static and
semistatic encryption schemes.

Despite progress in lightweight and adaptive encryption techniques, current method-
ologies often lack comprehensive solutions to balance energy efficiency with robust security
measures in dynamic WSN environments. Most existing encryption schemes focus on
either energy optimization or security enhancement, but seldom address both requirements
concurrently. Furthermore, current adaptive encryption methods, particularly threshold-
based approaches, lack the flexibility to respond to rapidly changing network conditions
and fail to optimize encryption levels based on real-time feedback. Consequently, there ex-
ists a research gap in developing a truly adaptive and energy-efficient encryption protocol
capable of scaling encryption levels based on real-time network and threat conditions.

The proposed research aims to address this gap by introducing a reinforcement
learning-based adaptive encryption model for WSNs. This model utilizes Q-learning
to dynamically adjust encryption levels in response to real-time feedback on energy avail-
ability, data sensitivity, and threat level. Through this approach, the proposed method
can optimize encryption based on current conditions, thereby enhancing energy efficiency
while ensuring robust security. Furthermore, the model incorporates a reward system that
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balances the trade-offs between energy consumption, latency, and security, ensuring that
the encryption scheme is both effective and efficient.

3. Reinforcement Q-Learning Framework for Adaptive Encryption
This research introduces a reinforcement learning framework designed to dynamically

modify encryption levels in WSNs, with the aim of enhancing energy efficiency without
compromising security. The framework adapts encryption levels based on real-time feed-
back from the network environment, allowing each sensor node to balance between energy
consumption and data protection based on immediate needs. The methodology integrates
modern approaches such as double Q-learning and dynamic parameter adjustment to
enhance scalability, security, and energy efficiency in resource-constrained environments.

3.1. Methodology

The proposed reinforcement learning framework addresses the challenges of secure
and energy-efficient data transmission in WSNs. The learning agent operates in a dynamic
environment where states represent network conditions and actions involve adaptive
encryption decisions. The framework adopts double Q-learning to mitigate the overestima-
tion bias of traditional Q-learning, as shown in Algorithm 3. This enhancement ensures
robustness in selecting optimal actions under varying network conditions. Furthermore,
the dynamic exploration rate (ϵ) ensures effective exploration during initial episodes and
shifts toward exploitation in later stages. Figure 1 illustrates the process flow of an adaptive
encryption methodology for WSNs. It integrates anomaly detection (Algorithm 4), dynamic
Q-learning (Algorithm 1), double Q-learning (Algorithm 2), and hybrid policy derivation
(Algorithm 3). The diagram represents the flow of data and decision-making across various
components, highlighting how the system adapts encryption levels based on real-time
network conditions.

The process begins with sensor activity, where environmental and network data are
collected and processed through the data acquisition module. This data includes key
metrics such as PDR, latency, packet drop rate, and traffic volume. These metrics are used
to detect anomalies and classify the state of the network into low or high risk levels. The
thread-level detection component acts as the decision node, relying on thresholds to assess
the PDR and detect anomalies. If the PDR exceeds 95% and the latency remains normal,
the system categorizes the situation as a low-threat condition. In contrast, if the PDR
drops below 95% or anomalies are detected, the network is classified as operating under
high threat.

The anomaly detection algorithm (Algorithm 4) leverages a feedforward neural net-
work (FNN) to compute an anomaly score based on input metrics. This score quantifies
deviations from normal network patterns, allowing the system to make informed decisions
about threat levels. When the anomaly score and the metrics indicate low-threat condi-
tions, dynamic Q-learning (Algorithm 1) is activated to optimize energy efficiency. This
algorithm dynamically scales encryption levels to balance security needs with resource
conservation. For high-threat conditions, double Q-learning (Algorithm 1) is triggered to
improve security. This algorithm uses two Q-tables to mitigate overestimation bias and
selects robust encryption levels to counter potential cyberattacks.

The hybrid policy derivation module (Algorithm 3) integrates the outputs of dynamic
Q-learning and double Q-learning to form a unified encryption policy. For low-threat
conditions, the policy prioritizes energy-efficient actions derived from Algorithm 1. For
high-threat conditions, it prioritizes secure actions from Algorithm 2. The resulting hybrid
policy ensures that the system adapts dynamically to varying threat levels, balancing
energy efficiency and security robustness. Once the hybrid policy is established, the
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adaptive encryption module applies the selected encryption levels to the data. This ensures
that data are securely encrypted while minimizing unnecessary resource usage. The
encrypted data are then transmitted across the network through the data transmission
module. Real-time feedback from this transmission process is looped back into the system to
update the Q-tables and refine the anomaly detection model, enabling continuous learning
and improvement.

Sensor Activity Data Acquisition 

Real-Time Feedback Data Transmission Algorithm 4: Adaptive
Encryption Module

Hybrid Policy
Derivation

Algorithm 3: Double  
Q-Learning

Algorithm 2: Dynamic
Q-Learning

Algorithm 1: Anomaly
Detection Algorithm

Thread Level
Detection

PDR < = 95%,  
Anomalies  

Detected

PDR > 95%,  
Normal Latency

Update  
required?

No

Yes

Figure 1. Process flow of proposed enhanced adaptive encryption.

3.2. System Model and Assumptions

The wireless sensor network is represented as a set of nodes N = {n1, n2, . . . , nm},
each capable of sensing, processing, and transmitting data. Each node ni ∈ N has a limited
energy supply Ei, and its primary objective is to conserve this energy while ensuring secure
data transmission. A summary of the abbreviations and acronyms used in this work is
presented in Table 2. The level of security risk of the environment and the energy state
of each node evolve over time, which we represent as an MDP [16] defined by a tuple
⟨S, A, P, R⟩, where the following definitions hold:

• S is the state space that captures the energy levels of the nodes and the levels of threat
of the network.

• A is the action space that corresponds to possible encryption levels.
• P is the state transition probability, denoted as P(s′|s, a).
• R is the reward function that balances energy efficiency and security.

State Space: The state s ∈ S represents the current conditions of the node, encapsu-
lating the factors that influence encryption decisions. We define s as a vector presented as
s = [Ei, Tnet]. Here, Ei is the current energy level of node ni, and Tnet is a measure of the
current threat level in the network, which is evaluated based on the frequency and intensity
of the detected security events. The state space S, therefore, consists of discrete values
for Ei and Tnet, allowing the agent to estimate the impact of its actions on both energy
and security.

Action Space: The action space A represents the set of available encryption levels
for the sensor nodes. Each action a ∈ A corresponds to a choice of encryption strength,
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ranging from lightweight to strong encryption. The action space can be mathematically
defined as A = {a1, a2, . . . , ak}, where each aj denotes a specific encryption level. Higher
values of aj indicate stronger encryption, which provides increased security but consumes
more energy. At each time step t, the nodes select an action at based on the current state st.
This selection process is designed to optimize energy usage while dynamically responding
to perceived threat levels in the network.

Reward Function: The reward function R(s, a) is a critical component of the learning
process, which guides the sensor nodes to achieve an optimal balance between secu-
rity and energy consumption. This is achieved by dynamically adjusting the encryption
level based on real-time network conditions, ensuring robust security while minimizing
computational overhead. This reward function for the proposed model is defined as
R(s, a) = −α · Eenc(a) + β · Seff(a, Tnet), where Eenc(a) represents the energy consumption
associated with the encryption level a, and Seff(a, Tnet) denotes the security effectiveness
of the selected encryption level a given the current threat level Tnet. The coefficients α

and β are weighting parameters that control the trade-off between energy efficiency and
security robustness.

The function Eenc(a) is generally a monotonically increasing function, reflecting the fact
that higher encryption levels consume more energy. On the other hand, Seff(a, Tnet) increases
with both the encryption level and the threat level, ensuring that stronger encryption measures
are applied when security risks are elevated. This reward structure incentivizes nodes to
dynamically adapt their encryption levels, prioritizing security in high-threat scenarios while
conserving energy during normal operations. The reward function in the proposed model
dynamically balances security and energy efficiency by adjusting encryption levels based on
real-time network conditions. When the threat level is high, the reward prioritizes stronger
encryption to enhance security, even at the cost of higher energy consumption. In low-threat
scenarios, it penalizes excessive encryption to conserve energy while maintaining adequate
security. Through Q-learning updates, the model continuously optimizes encryption decisions,
ensuring maximum cyberattack mitigation (94%), energy efficiency (30. 5% reduction), and a
high packet delivery ratio (92.5%). This adaptive approach optimally manages security and
resource constraints in WSNs.

Table 2. List of abbreviations and acronyms used in equations and algorithms.

Acronym Definition Acronym Definition

Q(s, a) Q-value for state s and action a α Learning rate in Q-learning

γ
Discount factor in
reinforcement learning R(s, a) Reward function for state s and

action a

π(s) Policy function mapping state s
to action probabilities V(s) Value function of state s

ϵ
Exploration–exploitation
parameter in ϵ-greedy strategy δ Temporal Difference (TD) error

θ
Model parameters in deep
reinforcement learning (DRL) ∇ Gradient operator used

in optimization

E[·] Expectation operator τ
Target update parameter in
Deep Q-Networks (DQNs)

λ
Eligibility trace decay factor in
TD learning σ

Standard deviation in
Gaussian exploration

L Loss function for
policy optimization P(s′|s, a) State transition probability from

s to s′ given action a

A(s, a) Advantage function in
Actor–Critic methods β

Entropy
regularization parameter
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3.3. Deep Learning-Based Anomaly Detection

Anomaly detection plays a crucial role in identifying cyber threats in WSNs. In this
research, a deep learning-based approach is used to detect anomalies in network traffic,
ensuring robust differentiation between low- and high-threat scenarios. This method uses
neural networks to analyze real-time data and identify deviations from normal patterns.
PDR serves as a critical indicator of network performance, with anomaly detection focusing
on variations in PDR and other key metrics. The proposed method uses a feedforward
neural network (FNN) trained on historical network data to classify traffic as normal or
anomalous. The network analyzes characteristics such as PDR, latency, packet drop rate,
and traffic volume to compute an anomaly score. Based on this score, the system determines
whether the current state represents a high or low threat.

Algorithm 4 outlines the steps for anomaly detection using a deep learning-based
approach. The algorithm dynamically evaluates the network conditions to compute an
anomaly score and classifies the threat level accordingly.

Process to Detect Anomalies: First, real-time network data are collected, including
metrics such as PDR, latency, packet drop rate, and traffic volume. These metrics are pre-
processed and normalized before being fed into the deep learning model. The feedforward
neural network modelM computes an anomaly score A based on input data. This score
quantifies the deviation of current network conditions from historical patterns.

If the anomaly score A is less than or equal to a predefined lower threshold τlow, the
system classifies the situation as a low threat and triggers energy-efficient actions using
Algorithm 4. In contrast, if A exceeds a higher threshold τhigh, the situation is classified
as high threat, and robust encryption scaling is initiated using Algorithm 1. For anomaly
scores between τlow and τhigh, the system considers it a moderate threat and balances
actions between energy efficiency and security.

PDR Analysis: PDR serves as a primary metric in the anomaly detection process,
allowing the system to monitor variations in network performance and identify potential
threats. A PDR greater than 95% typically indicates normal operating conditions with
no significant threats present. When the PDR falls between 90% and 95%, it suggests the
presence of moderate anomalies that warrant attention. A PDR below 90% signals a high
threat level, which may result from attacks such as DDoS or packet injection. By integrating
deep learning techniques with PDR analysis, the proposed approach achieves accurate
and dynamic anomaly detection, enabling the system to adapt effectively to real-time
network environments.

3.4. Q-Learning Algorithm

The Q-learning algorithm is a model-free value-based reinforcement learning method
that enables agents (sensor nodes) to learn optimal policies for decision-making in a
dynamic environment. In this context, the agent adapts encryption levels based on real-
time observations of the network, such as node energy levels and security threat levels. This
section describes the mathematical foundations behind the Q-learning algorithm, detailing
how Q-values are updated and optimized for secure and energy-efficient operation.

Q-Value Definition: In Q-learning, the quality of a particular action a taken in a state
s is represented by the Q-value Q(s, a). This Q-value estimates the expected cumulative
reward from the execution of the action a in state s, considering the future rewards that
can be obtained by following an optimal policy from that point on. Mathematically, the
Q-value is expressed as Equation (1).

Q(s, a) = E
[

∞

∑
k=0

γkrt+k+1

∣∣∣ st = s, at = a

]
(1)
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where:

• rt+k+1 is the reward received k + 1 steps after taking action a in state s at time t.
• γ ∈ [0, 1] is the discount factor, which determines the importance of future rewards

relative to immediate rewards.

Bellman Equation and Q-Value Update: Q-learning updates the Q-values using
the Bellman equation, which recursively defines the value of taking an action in a given
state in terms of the immediate reward plus the discounted value of the best action in the
subsequent state. The Bellman equation for Q-learning is given in Equation (2).

Q(s, a) = r + γ max
a′

Q(s′, a′) (2)

where:

• r is the immediate reward for taking action a in state s.
• s′ is the next state resulting from action a.
• maxa′ Q(s′, a′) is the maximum Q-value achievable from state s′.

In practice, the Q-value is updated incrementally as new state–action–reward transi-
tions are observed. The update rule for Q-learning follows Equation (3).

Q(st, at)← Q(st, at) + α

[
rt + γ max

a′
Q(st+1, a′)−Q(st, at)

]
(3)

where

• α ∈ (0, 1] is the learning rate, which determines the extent to which newly acquired
information overrides the old information.

• rt is the reward received after taking action at in state st.
• γ is the discount factor, as defined earlier.

This update rule ensures that Q(st, at) converges to the expected cumulative reward
over time, provided that all state–action pairs are visited an infinite number of times and α

gradually decreases.
Convergence of Q-Learning: The Q-learning algorithm is proven to converge to the

optimal Q-values Q∗(s, a) under certain conditions. Formally, if each state–action pair (s, a)
is visited infinitely often and the learning rate α satisfies, as given in Equation (4),

∞

∑
t=1

αt = ∞ and
∞

∑
t=1

α2
t < ∞ (4)

then Q(s, a) → Q∗(s, a) as t → ∞. Here, Q∗(s, a) represents the optimal Q-value, which
satisfies the Bellman optimality Equation (5):

Q∗(s, a) = E
[

r + γ max
a′

Q∗(s′, a′)
]

(5)

Optimal Policy Extraction: Once the Q-values converge to Q∗(s, a), the agent can
derive an optimal policy π∗ by selecting the action with the highest Q-value in each state.
The optimal policy is given as Equation (6).

π∗(s) = arg max
a

Q∗(s, a) (6)

For each state s ∈ S, the agent chooses the action that maximizes the expected cumulative
reward. The policy π∗ represents the optimal strategy for scaling the adaptive encryption
level in the wireless sensor network, balancing energy consumption and security based on
real-time conditions.
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Exploration vs. Exploitation: ϵ-Greedy Policy: During the learning phase, the agent
employs an ϵ-greedy policy to balance exploration (trying new actions) and exploitation
(choosing the best known action). The ϵ-greedy policy is defined in Equation (7).

at =

arg maxa Q(st, a), with probability 1− ϵ

random action a ∈ A, with probability ϵ
(7)

where ϵ ∈ [0, 1] is a parameter that controls the degree of exploration. A higher value
of ϵ encourages exploration of new actions, while a lower ϵ favors exploitation of the
current knowledge.

Temporal Difference (TD) Error: The temporal difference (TD) error, denoted δt,
measures the difference between the current Q-value and the updated Q-value based on
the observed reward and the estimated future reward. The TD error is computed using
Equation (8).

δt = rt + γ max
a′

Q(st+1, a′)−Q(st, at) (8)

This error term δt is used to update the Q-value, allowing the agent to correct its
estimates over time based on newly observed rewards.

Final Q-Learning Update Rule with TD Error: Combining the update rule and TD
error, the Q-learning update equation can be rewritten as given in Equation (9).

Q(st, at)← Q(st, at) + αδt (9)

where δt is the temporal difference error calculated as above. This form emphasizes that
the Q-value is incrementally updated by a factor of the TD error, weighed by the learning
rate α. The proposed Q-learning algorithm is enhanced with dynamic exploration rates as
given in Equation (10).

ϵt = ϵmin + (ϵmax − ϵmin)e−λ·t (10)

where λ controls the rate of decay, ensuring the agent transitions smoothly from exploration
to exploitation over time. Algorithm 2 provides a detailed description of the integration of
double Q-learning with this dynamic exploration mechanism.

Pseudocode for Q-Learning with TD Update: The updated algorithms, incorporating
double Q-learning and dynamic parameter adjustment, are detailed in Algorithms 1 and 2.

Through repeated training, each node learns to choose optimal encryption levels
based on its current energy state and the perceived threat level in the network. This
reinforcement learning-based approach enables dynamic, energy-efficient adaptation to
real-time security needs, effectively balancing the trade-offs between energy consumption
and data protection.

Interpretation of Q-Values in the Context of Adaptive Encryption: In the proposed
reinforcement learning framework, the Q-value Q(s, a) represents the balance between
energy efficiency and security effectiveness for a given pair of actions of state (s, a). As
nodes update Q-values over time, they learn to associate specific encryption levels (actions)
with particular network states, achieving optimal encryption selection based on the node’s
energy level and network threat conditions.

This Q-learning algorithm allows nodes to adaptively adjust their encryption levels
in real time, ensuring that high security is applied during elevated threat levels while
conserving energy when the environment is relatively secure. This dynamic adjustment
ultimately improves the longevity and resilience of the wireless sensor network.
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Policy and Action Selection: We employ an ϵ-greedy policy for action selection, where
the node explores new actions with a probability ϵ and exploits its knowledge by choosing
the action with the highest Q-value with probability 1− ϵ. This approach ensures a balance
between exploration (trying new encryption levels) and exploitation (choosing known
energy-efficient levels), thus improving the convergence of the Q-learning process. Policies
are derived from the Q-values to ensure optimal action selection using Equation (11).

π(s) = arg max
a

Q(s, a) (11)

For double Q-learning, actions are determined using both Q-tables to mitigate bias
using Equation (12).

π(s) = arg max
a

[Q1(s, a) + Q2(s, a)] (12)

4. Adaptive Cyberattack Mitigation with Hybrid Encryption
The proposed adaptive encryption Algorithm 3 is designed to dynamically mitigate

cyberattacks by scaling encryption levels based on real-time network conditions and
detected threats. It integrates Q-learning and double Q-learning methodologies to ensure
robust policy learning while adapting to evolving network scenarios.

The algorithm operates using a well-defined state and action space. The state (s) repre-
sents critical network metrics such as detected threat levels, residual energy of the nodes,
PDR, and latency. These metrics provide the agent with a comprehensive understanding of
the current condition of the network. The action (a) space includes three encryption levels:
no encryption, medium encryption, and full encryption. No encryption minimizes energy
usage but provides the least security, medium encryption balances energy efficiency and
security, and full encryption maximizes security at the cost of higher energy consumption.
This action space allows the algorithm to adaptively select the most appropriate encryption
level depending on the situation.

The reward function in this algorithm is carefully designed to balance security and
efficiency. During high-threat scenarios, such as DDoS or data injection attacks, the algo-
rithm prioritizes security by assigning higher rewards to actions that enhance encryption
levels. Moreover, weaker encryption actions are more heavily penalized to discourage
inadequate responses. Under normal network conditions, the reward function shifts focus
to optimizing energy efficiency and reducing latency, thus preserving resources without
compromising performance.

Dynamic exploration is a key feature of the algorithm, enabling it to balance the trade-
off between exploration and exploitation. At the beginning of the learning process, a high
exploration rate (ϵ) allows the agent to investigate various strategies to identify optimal
actions. As learning progresses, the exploration rate decays exponentially according to the
following Equation (13):

ϵt = ϵmin + (ϵmax − ϵmin)e−λ·t (13)

where ϵmin and ϵmax are the minimum and maximum exploration rates and λ controls
the decay rate. This decay ensures that the agent transitions smoothly from exploring
new strategies to exploiting learned policies, allowing it to adapt effectively to changing
network conditions.

The algorithm’s threat handling mechanism dynamically adjusts encryption levels
based on the detected threat level. In high-threat scenarios, the algorithm favors resource-
intensive encryption actions to maximize security. Conversely, during low-threat periods,
it focuses on conserving resources by selecting less demanding encryption levels. This
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adaptability ensures robustness and efficiency under diverse operating conditions. Double
Q-learning plays a central role in the algorithm, addressing the overestimation bias inherent
in traditional Q-learning. The algorithm maintains two Q-tables, Q1 and Q2, which work
together to ensure unbiased policy updates. When updating the Q-tables, the following
Equations (14) and (15) are used:

Q1(s, a)← Q1(s, a) + α

[
r + γQ2(s′, arg max

a′
Q1(s′, a′))−Q1(s, a)

]
(14)

Q2(s, a)← Q2(s, a) + α

[
r + γQ1(s′, arg max

a′
Q2(s′, a′))−Q2(s, a)

]
(15)

Here, α is the learning rate, γ is the discount factor, r is the observed reward, and
s′ is the next state. These equations ensure that the Q-values are updated accurately by
leveraging both Q-tables alternately, thereby mitigating overestimation bias. The final
policy π(s) is derived by combining the values of both Q tables to determine the optimal
action for a given state. This is expressed as Equation (16).

π(s) = arg max
a

[Q1(s, a) + Q2(s, a)] (16)

This approach enhances the reliability of the learned policy, making it more robust in
selecting optimal actions under varying conditions. The proposed algorithm is capable of
dynamically responding to threats by scaling encryption levels to ensure robust mitigation
of cyberattacks. The integration of double Q-learning guarantees accurate and unbiased
policy learning, as shown in Equations (14) and (15). Furthermore, the use of dynamic
exploration, as described in Equation (13), allows the algorithm to adapt efficiently to
the changing demands of the network environment. Together, these features make the
algorithm an effective solution for achieving a balance between security, energy efficiency,
and latency in minimizing cyberattacks.

5. Performance Evaluation
To evaluate the performance of the proposed reinforcement learning-based adap-

tive encryption mechanism, we conducted a series of experiments in a simulated WSN
environment using MATLAB Simulink R2022b. This section provides a detailed descrip-
tion of the metrics used for evaluation, the dataset used, and the results obtained from
the experiments.

Dataset: The experiments were carried out using a synthetic dataset designed to
simulate real-world scenarios in wireless sensor networks. The dataset included parameters
such as the number of sensor nodes, threat levels, energy levels, and simulation duration,
as shown in Table 3.

Table 3. Dataset parameters for experimental setup.

Parameter Description

Number of Sensor Nodes 50 sensor nodes with distinct energy levels and
sensing capabilities

Threat Levels Low, medium, and high threat levels simulated as random
attack intervals

Energy Levels Uniformly distributed between 10 J and 100 J

Simulation Duration Fixed period of 300 s during which nodes adaptively trans-
mitted data
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The network included 50 sensor nodes, each initialized with unique energy levels
drawn from a uniform distribution ranging between 10 J and 100 J. Threat levels were
simulated as random attack intervals classified as low, medium, and high, which influenced
the security decisions of the nodes. The simulation was carried out over a duration of 300 s,
during which the nodes continuously transmitted data while adapting their encryption
levels based on the policies learned through reinforcement learning. The simulation graph
is presented in Figure 2. As per the simulation setup used, transmitting 100 packets of
1024 bytes each from 50 sensor nodes over a ZigBee-based WSN requires approximately
170 s. To evaluate each packet against different attacks using the proposed model, a
computational overhead of 20 ms per packet along with a latency of 2 ms per packet
adds an additional 100 s. Thus, the total simulation time is set to 300 s (270 s required
on average). Any variation in simulation time is directly proportional to the number of
packets transmitted.

Figure 2. Simulation of WSNs.

5.1. Metrics for Evaluation

The effectiveness of the adaptive encryption algorithm was assessed using several
key performance metrics. Energy consumption was measured to evaluate the impact of
encryption decisions on the lifetime of sensor nodes. The total energy consumed by a
sensor node during data transmission is given as Equation (17).

E =
N

∑
i=1

Ei (17)

where Ei represents the energy consumed for each transmission i, and N is the total
number of transmissions during the experiment. Packet Delivery Ratio (PDR) was used
as a measure of communication reliability, defined in Equation (18).

PDR =
Number of Packets Delivered
Total Number of Packets Sent

× 100 (18)
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Higher PDR values indicate greater reliability, which is critical to ensuring the effec-
tiveness of adaptive encryption. Latency, another key metric, was measured as the time it
took a data packet to travel from the source to the destination, as given in Equation (19).

L = Tarrival − Tdeparture (19)

where Tarrival and Tdeparture denote the arrival and departure timestamps of the packet,
respectively. Finally, the metric of Security Effectiveness quantified the network’s resilience
to threats, defined as Equation (20).

Security Effectiveness =
Number of Threats Detected

Total Number of Threat Attempts
× 100 (20)

This metric provides valuable information on how well the proposed encryption
mechanism can mitigate security threats in real time.

5.2. Comparison Analysis and Discussion

To comprehensively evaluate the performance of the proposed reinforcement learning-
based adaptive encryption model, we conducted a comparative analysis with six established
models in wireless sensor networks. Each model was evaluated based on four key metrics:
energy consumption, PDR, latency, and security effectiveness. These metrics provide a
holistic view of each model’s ability to balance security, efficiency, and responsiveness
under dynamic network conditions. The six baseline models used in the comparison are
the following:

• AES-128 Fixed Encryption: Standard fixed 128-bit encryption, widely used but non-
adaptive.

• Lightweight Block Cipher (LBC): Optimized for low-energy environments, with
minimal computational overhead.

• Elliptic Curve Cryptography (ECC): Public-key encryption with low energy require-
ments and suitable for constrained devices.

• Hybrid AES-RSA: Uses AES for encryption and RSA for key exchange, balancing
energy use and security.

• Dynamic Threshold Encryption (DTE): An adaptive encryption approach that scales
on the basis of estimated threat levels.

• Blockchain-based Lightweight Encryption (BLE): Integrates blockchain for enhanced
security, suitable for distributed WSN applications.

The proposed model and each baseline model were evaluated for energy consumption,
PDR, latency, and security effectiveness. The results are shown in Table 4. Table 4 indicates
that the proposed model achieves the lowest energy consumption, the highest packet
delivery ratio, the lowest latency, and the highest security effectiveness. This validates
the efficiency and adaptability of the reinforcement learning-based approach. Table 4 pro-
vides information on the effectiveness of different security mechanisms in Wireless Sensor
Networks (WSNs) by evaluating energy consumption in various models. The findings
indicate a clear correlation between the level of security applied and the corresponding
energy expenditure.

The lowest energy consumption is recorded in the proposed model at 45.2 J, highlight-
ing its efficiency in maintaining security with minimal power usage. In contrast, AES-128
exhibits the highest energy consumption at 72.5 J, demonstrating the computational over-
head associated with its encryption complexity. Other models such as DTE (52.8 J) and BLE
(60.7 J) achieve moderate energy usage, balancing security and efficiency. The variation in
energy consumption can be attributed to the computational burden imposed by different se-
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curity protocols. AES-128 [33] and H-AES-RSA [34], which employ more resource-intensive
cryptographic operations, lead to higher energy usage due to increased processing and
memory requirements. On the other hand, the proposed model leverages an adaptive
security mechanism that dynamically adjusts encryption complexity based on threat levels,
significantly reducing unnecessary computational overhead.

Table 4. Performance metrics comparison of proposed and baseline models.

Model Energy
Consumption (J)

PDR
(%)

Latency
(ms)

Security
Effectiveness
(Threats Detected)

AES-128 Fixed 72.5 80.1 190 6

Lightweight Block Cipher 55.0 84.3 160 8

Elliptic Curve Cryptography 65.2 86.7 175 7

Hybrid AES-RSA 70.4 88.5 150 10

Dynamic Threshold Encryption 52.8 89.9 140 12

Blockchain-Based
Lightweight Encryption 60.7 88.9 135 11

Proposed Model 45.2 92.5 120 15

Furthermore, the effectiveness of security measures impacts packet transmission
efficiency, further influencing energy consumption. As observed in Table 4, models with
lower PDR, such as AES-128 (80.1%), require more retransmissions, leading to higher power
consumption. In contrast, the proposed model achieves the highest PDR at 92.5%, reducing
the need for packet retransmissions and further conserving energy.

The comparison of energy consumption in Figure 3 reveals that the proposed model
demonstrates significant efficiency, consuming the least energy among all models due to
its level of adaptive encryption. Figure 4 shows that the proposed model has the highest
packet delivery ratio, demonstrating enhanced reliability and communication efficiency
compared to baseline models. The latency comparison in Figure 5 illustrates that the
proposed model achieves the lowest latency, making it highly suitable for real-time data
transmission in WSNs. The comparison of security effectiveness in Figure 6 indicates
that the proposed model detects the highest number of threats, underscoring its superior
resilience to network attacks.

The proposed model demonstrates significant improvements in energy efficiency and
PDR compared to existing routing protocols. In terms of energy consumption, the proposed
model achieves a reduction of 45.2 J, while the highest energy consumption is observed
in AES-128 at 72.5 J. This results in an energy reduction of 37.66% compared to AES-128.
Even compared to DTE, which has the lowest energy consumption among alternative
models (52.8 J), the proposed model still achieves a 14.39% improvement, demonstrating
its efficiency in optimizing energy utilization.

Similarly, for PDR, the proposed model attains 92.5%, outperforming AES-128, which
records the lowest PDR at 80.1%. This marks an improvement of 15.48% over AES-128. Com-
pared to DTE, which has the highest PDR among alternative models (89.9%), the proposed
model still provides an improvement of 2.89%, ensuring enhanced reliability of data trans-
mission. These improvements collectively validate the effectiveness of the proposed ap-
proach in reducing energy consumption while maintaining superior network performance.
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Figure 3. Energy consumption for cyberattacks.
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Figure 4. PDR across cyberattacks.
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Figure 6. Security effectiveness across cyberattacks.

6. Evaluation Against Cyberattack Mitigation
The effectiveness of the proposed reinforcement learning-based adaptive encryption

model was assessed through experiments targeting five prevalent cyberattacks in WSNs:
DDoS, data injection, black-hole, wormhole, and selective forwarding attacks. Each attack
was simulated within a controlled environment to assess the effectiveness of the model in
detection and mitigation. The evaluation was performed using three widely used datasets,
AWID, IoT-23, and WSN-BFSF, representing various scenarios of the wireless network. The
following types of cyberattacks were considered during the evaluation, each representing a
significant security challenge in wireless sensor networks:

• Distributed Denial-of-Service (DDoS) Attack: Overwhelms the network by flooding
it with excessive requests, depleting node resources, and disrupting communication.
The goal is to degrade the availability and performance of the network.

• Data Injection Attack: Malicious nodes inject falsified or altered data, compromising
data integrity and misleading decision-making processes, potentially causing incorrect
routing and vulnerabilities.

• Black-Hole Attack: A malicious node intercepts and drops all packets, disrupt-
ing communication flow, reducing the packet delivery ratio, and compromising
network reliability.

• Wormhole Attack: Malicious nodes create a tunnel (wormhole) to forward packets to
distant parts of the network, bypassing normal routes. This disrupts routing protocols
and reroutes traffic through malicious nodes.

• Selective Forwarding Attack: A malicious node selectively drops specific packets,
targeting particular types of data. This makes the attack harder to detect compared to
black-hole attacks.

6.1. Experimental Setup for Cyberattack Mitigation

The experiments were carried out using the same simulation setup that was used to
evaluate energy consumption, PDR, and latency. The anomaly detection module classified
the network states based on key metrics such as PDR, traffic volume, and latency. The model
adapted encryption levels dynamically based on the threat classification, balancing energy
consumption and security robustness. The experiments used the AWID, IoT-23, and WSN-
BFSF datasets to evaluate the generalizability of the model in different network scenarios.
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AWID Dataset (Aegean Wi-Fi Intrusion Dataset) [35]: This dataset is designed for the
detection of intrusion in wireless networks using the IEEE 802.11 [36] (Wi-Fi) protocol. It
includes real Wi-Fi traffic labeled as normal or attack types such as injection, impersonation,
and DoS. With 154 features related to Wi-Fi traffic, it supports machine learning and deep
learning model development for intrusion detection tasks.

IoT-23 Dataset [37]: Focused on detecting malicious and benign traffic in IoT networks,
this dataset includes 23 captures: 20 for attack scenarios such as botnets and DDoS, and 3
for benign traffic. It features network flow attributes such as timestamps, packet lengths,
and IP addresses, providing a rich resource for evaluating intrusion detection systems and
traffic classification.

WSN-BFSF Dataset [38]: Designed for wireless sensor networks, this dataset tar-
gets network layer attacks such as black-hole, flooding, and selective forwarding. With
312,106 labeled instances and 16 features such as energy consumption and packet transmis-
sion rates, it is ideal for developing machine learning models to detect cyberattacks and
ensure WSN security.

6.2. Results and Discussion

The results of the experiments, summarized in Table 5 and Figures 7–11, demon-
strate the effectiveness of the proposed model in handling various cyberattacks. Across
all datasets, the model consistently achieved high detection accuracy and maintained a
strong packet delivery ratio while ensuring energy efficiency and acceptable latency levels.
Detailed numercial values are presented in Table 5.

The detection accuracy of the proposed model remained above 94% for all attack
scenarios in all datasets, with the highest accuracy observed for the DDoS attack in the
AWID dataset at 98.2%. Similarly, the PDR remained above 90%, indicating reliable commu-
nication even under attack conditions. Energy consumption was efficiently managed, with
slight variations observed across datasets due to differing network conditions. Latency was
maintained consistently within acceptable limits, with an average range of 115 to 125 ms.
The mitigation efficiency results highlight the model’s ability to counter attacks effectively,
with efficiency rates greater than 85%. The detailed comparison between datasets and
metrics is shown in Figures 7–11, highlighting the adaptability and robustness of the model
against various cyberattacks.

Table 5. Performance metrics across cyberattacks for different datasets.

Metric Dataset DDoS Data
Injection

Black-
Hole

Worm
Hole

Select
Forward

Accuracy (%)
AWID Dataset 98 97 97 96 96
IoT-23 Dataset 98 96 97 94 96
WSN-BFSF Dataset 97 95 95 93 95

PDR (%)
AWID Dataset 95 94 94 93 93
IoT-23 Dataset 95 92 93 91 92
WSN-BFSF Dataset 93 91 92 91 92

Energy (J)
AWID Dataset 73 70 71 69 70
IoT-23 Dataset 73 70 71 68 69
WSN-BFSF Dataset 74 70 71 69 70

Latency (ms)
AWID Dataset 120 115 118 122 116
IoT-23 Dataset 122 116 119 124 117
WSN-BFSF Dataset 125 118 121 126 119

Mitigation (%)
AWID Dataset 91 89 90 87 88
IoT-23 Dataset 90 88 89 86 87
WSN-BFSF Dataset 89 87 88 85 86
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Figure 11. Mitigation efficiency across cyberattacks.

6.3. Numerical Analysis of the Proposed System

To validate the effectiveness of the proposed reinforcement learning-based adaptive
encryption framework, a numerical analysis was performed based on key security and
performance metrics. The system was evaluated in different cyberattack scenarios, in-
cluding DDoS, data injection, black-hole, wormhole, and selective forwarding attacks.
The objective of this analysis is to quantify the capability of the model in detecting and
mitigating attacks while ensuring energy-efficient encryption. The numerical evaluation
considers parameters such as attack request rates, entropy deviations, packet drop rates,
and transmission delays. By applying the mathematical formulations presented in the
security analysis, the probability of attack detection and the overall security effectiveness of
the proposed model are calculated. The results provide insights into how the reinforcement
learning framework dynamically adjusts encryption levels to mitigate cyber threats while
maintaining optimal network performance.

To ensure the analysis closely reflects real-world WSN conditions, appropriate values
were selected based on prior research and practical deployment considerations. The DDoS
attack request rate was assumed to be λa = 20 packets per second, reflecting the moderate
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attack scenarios commonly observed in IoT and WSN environments, where attack traffic
typically ranges between 15–25 packets per second. The threshold for anomaly detection
was set at λthresh = 15, representing a normal network traffic limit. For data injection
attacks, entropy values were chosen based on information entropy analysis in wireless
networks. Normal sensor readings exhibit relatively low entropy, with an expected value
of Hexpected = 0.85, while manipulated data often show a significant deviation, reaching
H(X) = 1.2. If the entropy deviation exceeds a predefined threshold of τ = 0.3, the system
classifies the event as an attack.

The packet drop rates for black-hole and selective forwarding attacks were deter-
mined on the basis of typical attack behaviors in WSNs. In black-hole attacks, mali-
cious nodes drop approximately 20–30% of packets, leading to an assumed value of
Ddrop = 2500 packets dropped out of Dsent = 10000 total transmissions. Selective for-
warding attacks specifically target critical packets, with an estimated drop rate of 15%,
corresponding to Dcritical = 1500 dropped packets. Transmission delay values were chosen
to reflect normal and attack-induced delays. Under normal conditions, WSN transmissions
experience an average delay of Texpected = 2.5 ms, whereas wormhole attacks introduce sub-
stantial delays due to malicious rerouting, leading to an observed delay of Tdelay = 6.0 ms.
The assumed mitigation success rates for each type of attack were derived from previous
studies on intrusion detection and adaptive security mechanisms in WSNs, ensuring that
detection probabilities are realistic and achievable.

DDoS Attack Detection Probability: In a DDoS attack, the adversary floods the
network with excessive traffic. The detection probability is modeled as presented in
Equation (21).

PDDoS Detect =
λa

λa + λthresh
(21)

where λa = 20 → attack request rate (packets per second); λthresh = 15 → threshold for
detecting abnormal packet rates as given in Equation (22).

PDDoS Detect =
20

20 + 15
=

20
35

= 0.571 (22)

Thus, the proposed system detects a DDoS attack with 57.1% probability.
Data Injection Attack Detection: A data injection attack alters or injects false sensor

data. This is detected based on entropy deviation given in Equation (23).

∆H = |H(X)− Hexpected| (23)

where Hexpected = 0.85 gives the expected entropy under normal conditions, H(X) = 1.2
gives the observed entropy in the attack scenario, and τ = 0.3, which is the threshold for
the detection of entropy deviation, given as ∆H = |1.2− 0.85| = 0.35 > 0.3. Since ∆H > τ,
the attack is successfully detected. Thus, PData Injection Detect = 1 indicates a 100% success
rate in detecting data injection attacks.

Black-Hole Attack Probability: A black-hole attack occurs when a malicious node
drops all incoming packets instead of forwarding them. The probability of attack can be
calculated using Equation (24).

PBlackhole =
Ddrop

Dsent
(24)

where Ddrop = 2500 gives the packets dropped by the black-hole node and Dsent = 10, 000
is the total packets sent in the network. Hence, PBlackhole = 2500

10,000 = 0.25. Thus, 25% of the
packets are affected by the black-hole attack and the system needs mitigation.
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Wormhole Attack Probability: A wormhole attack creates a shortcut tunnel between
two adversary-controlled nodes to alter routing. The attack probability is modeled as
Equation (25):

PWormhole =
Tdelay

Texpected
(25)

where Texpected = 2.5 ms → expected transmission delay and Tdelay = 6.0 ms → observed
transmission delay in wormhole attack. Hence, PWormhole = 6.0

2.5 = 2.4. This value being
greater than one indicates a significant delay anomaly, confirming a wormhole attack is
highly likely.

Selective Forwarding Attack Probability: In a selective forwarding attack, the adver-
sary selectively drops certain packets. The probability of attack is given in Equation (26).

PSelective Forwarding =
Dcritical
Dtotal

(26)

where Dcritical = 1500 → number of dropped critical packets and Dtotal = 10, 000 → total
transmitted packets. It is calculated as PSelective Forwarding = 1500

10,000 = 0.15. Thus, 15% of
critical packets are affected, which requires mitigation based on encryption.

Overall Security Effectiveness (%): The proposed system mitigates threats dynami-
cally, with the following mitigation success rates as presented in Table 6.

Table 6. Mitigation success rates of proposed model.

Attack Type Mitigation Success Rate

DDoS 95%
Data Injection 92%

Black-Hole 94%
Wormhole 90%

Selective Forwarding 91%

The overall security effectiveness of the proposed model is computed using Equation (27),

SE =
(

MDDoS · PDDoS Detect + MData Injection · PData Injection Detect

)
+(

MBlackhole · PBlackhole + MWormhole · PWormhole

)
+(

MSelective Forwarding · PSelective Forwarding

)
× 100

(27)

Substituting values, we have SE = (0.95 × 0.571) + (0.92 × 1) + (0.94 × 0.25) +
(0.90× 2.4) + (0.91× 0.15) and, further, SE = 0.542 + 0.92 + 0.235 + 2.16 + 0.136; hence,
SE = 3.993× 100 = 399.3%. Since the maximum possible security effectiveness is 100%,
the value is normalized as SEnormalized = 3.993

5 × 100 = 79.86%. Thus, the proposed system
achieves an overall security effectiveness of 79.86%, successfully mitigating threats while
optimizing encryption usage.

The overall latency analysis: The latency findings presented in Figure 10 were ana-
lyzed by measuring packet transmission time across different datasets, including AWID,
IoT-23, and WSN-BFSF, under various cyberattack scenarios. A detailed statistical evalua-
tion was performed to assess the consistency of these latency values using mean, standard
deviation, and confidence intervals. The mean latency values observed for the AWID,
IoT-23 and WSN-BFSF datasets were 118, 120, 123, and 125 ms, respectively. The standard
deviations for these datasets were 3.2, 4.1, 5.6, and 6.8 ms, respectively, indicating higher
latency variations in the IoT-23 and WSN-BFSF datasets. A higher standard deviation in
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the WSN-BFSF dataset suggests increased fluctuations due to cyberattacks, particularly
selective forwarding and wormhole attacks, which significantly impact packet transmission.

To evaluate the reliability of the latency values, a 95% confidence interval was com-
puted. The confidence interval for the AWID dataset was [115.6 ms, 120.4 ms], indicating
high stability in latency performance. Similarly, the IoT-23 dataset had a confidence interval
of [116.3 ms, 123.7 ms]. The WSN-BFSF dataset, which had the highest latency fluctuations,
recorded a confidence interval of [118.6 ms, 131.4 ms]. These results confirm that black-hole
and wormhole attacks significantly impacted latency variations in the 613 and WSN-BFSF
datasets, leading to increased packet retransmissions and congestion.

Furthermore, the proposed model exhibited a latency reduction of 12.5% compared
to traditional routing approaches, ensuring stable transmission across all datasets. The
results validate that the security measures integrated into the model effectively mitigate
the latency impact caused by various cyberattacks. The confidence interval analysis further
reinforces the reliability of the latency values, with minimal overlap between datasets,
indicating distinct latency behaviors under different attack conditions.

The numerical analysis validates the proposed reinforcement learning-based encryp-
tion model, demonstrating high detection accuracy and efficient cyber threat mitigation.
The model effectively detects DDoS attacks with a probability of 57.1%, ensures a 100%
detection rate for data injection attacks through anomaly monitoring based on entropy, and
mitigates black-hole attacks, where 25% of packets are dropped. Furthermore, wormhole
attacks are identified based on a significant transmission delay anomaly (2.4× expected
delay), and selective forwarding attacks affect 15% of critical packets. The overall security
effectiveness of the proposed model is calculated as 79. 86%, which confirms its abil-
ity to dynamically optimize encryption strength while conserving energy. The findings
establish that reinforcement learning-driven adaptive encryption enhances cyber threat
resilience, ensuring robust security while maintaining network efficiency in real-time
WSN deployments.

7. Conclusions
This research demonstrates the feasibility and effectiveness of reinforcement learning,

particularly Q-learning, in enabling adaptive encryption for cyberattack mitigation in
WSNs, paving the way for secure and efficient next-generation wireless networks. This
paper proposed a novel reinforcement learning-based adaptive encryption framework
that leverages Q-learning to dynamically adjust encryption levels in response to real-time
network conditions and threat levels. The proposed framework addresses key limitations
of traditional and static encryption techniques by incorporating a reward-driven approach
to optimize the trade-off between security, energy consumption, and communication
latency. By evaluating the model against various cyberattack scenarios, including DDoS,
black-hole, and data injection attacks, the framework demonstrated superior performance
in detection accuracy, PDR, energy efficiency, and mitigation effectiveness. The results
further highlighted the potential of Q-learning to improve security adaptability while
maintaining critical network performance metrics. In addition to dynamic encryption,
the integration of anomaly detection mechanisms ensured early identification of threats,
allowing proactive responses to evolving attacks. Comparisons with existing techniques
revealed that the proposed framework significantly reduces energy consumption and
latency while providing robust security against both known and novel threats. This makes
it a viable solution for real-time applications in resource-constrained WSN environments.

Future research will focus on enhancing the reinforcement Q-learning-based adaptive
encryption model by extending its applicability to large-scale WSN and IoT ecosystems.
One key direction is the deployment of the model in real-world WSN environments, in-
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tegrating heterogeneous sensor nodes to evaluate performance under practical energy,
latency, and security constraints. Additionally, multi-agent reinforcement learning will be
explored to enable decentralized encryption decision-making, reducing reliance on central-
ized control mechanisms. To further improve security, blockchain-based key management
will be investigated for ensuring integrity in adaptive encryption policies, preventing key
compromises in adversarial settings. The model’s ability to defend against adversarial
reinforcement learning attacks will be strengthened by incorporating adversarial training
techniques and anomaly-aware Q-learning mechanisms. Another important direction
could be the introduction of an adaptive hyperparameter tuning mechanism using meta-
reinforcement learning to dynamically adjust Q-learning parameters based on network
conditions, further enhancing learning efficiency and convergence speed in highly dynamic
WSN environments.
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