
R E S E A R CH AR T I C L E

Real-time detection of regimes of predictability in the US
equity premium

David I. Harvey1 | Stephen J. Leybourne1 | Robert Sollis2 | A.M. Robert Taylor3

1School of Economics, University of
Nottingham, Nottingham, UK
2Newcastle University Business School,
Newcastle upon Tyne, UK
3Essex Business School, University of
Essex, Colchester, UK

Correspondence
A. M. Robert Taylor, Essex Business
School, University of Essex, Wivenhoe
Park, Colchester CO4 3SQ, UK.
Email: rtaylor@essex.ac.uk

Summary

We propose new real-time monitoring procedures for the emergence of end-

of-sample predictive regimes using sequential implementations of standard

(heteroskedasticity-robust) regression t-statistics for predictability applied over

relatively short time periods. The procedures we develop can also be used for

detecting historical regimes of temporary predictability. Our proposed methods

are robust to both the degree of persistence and endogeneity of the regressors

in the predictive regression and to certain forms of heteroskedasticity in the

shocks. We discuss how the monitoring procedures can be designed such that

their false positive rate can be set by the practitioner at the start of the moni-

toring period using detection rules based on information obtained from the

data in a training period. We use these new monitoring procedures to investi-

gate the presence of regime changes in the predictability of the US equity pre-

mium at the 1-month horizon by traditional macroeconomic and financial

variables, and by binary technical analysis indicators. Our results suggest that

the 1-month-ahead equity premium has temporarily been predictable, dis-

playing so-called “pockets of predictability,” and that these episodes of predict-

ability could have been detected in real time by practitioners using our

proposed methodology.

1 | INTRODUCTION

A large body of empirical research has been undertaken investigating stock return predictability, with a wide array of
financial and macroeconomic variables considered as putative predictors for returns. These include valuation ratios
such as the dividend–price ratio, earnings–price ratio, book-to-market ratio, various interest rates and interest rate
spreads, and macroeconomic variables including inflation and industrial production; see, for example, Fama (1981),
Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988a, 1988b), Fama and French (1988, 1989),
and Fama (1990). Focusing on the in-sample predictability of US stock index returns these studies find relatively weak
statistical evidence on predictability over short horizons, but as the forecasting horizon increases the evidence on pre-
dictability strengthens, and for longer horizons is strongly statistically significant. Finding that stock returns are predict-
able using financial ratios and macroeconomic variables does not necessarily mean that stock markets are inefficient.
From a linearization of the standard present value model, if the dividend–price ratio for a stock varies over time then it
must forecast either the dividend growth rate or returns, to some extent; see, among others, Campbell and Shiller
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(1988a, 1988b) and Cochrane (2008). More generally, if a stock market is efficient then the expected excess return for
the relevant stocks might be predictable using a variety of financial and macroeconomic variables if investors' risk
premia are time varying and correlated with the business cycle.

Although consistent with orthodox financial theory, it has been argued that there are statistical reasons to suspect
that the strong support for predictability obtained in earlier studies could be spurious. Nelson and Kim (1993) and
Stambaugh (1999) showed that high-persistence predictors led to biased coefficients in predictive regressions if
the innovations driving the predictors were correlated with returns, as is known to be the case for many of the
popular macroeconomic and financial predictors used. Goyal and Welch (2003) showed that the persistence of
dividend-based valuation ratios increased significantly over the typical sample periods used in empirical studies of pre-
dictability, and argue that as a consequence out-of-sample predictions using these variables are no better than those
from a no-change strategy. When estimation and inference techniques are used that take account of the high degree of
persistence of the typical financial and macroeconomic predictors used, the statistical evidence of short- and long-
horizon predictability is considerably weaker and in some cases disappears completely; see, among others, Ang and
Bekaert (2007), Boudoukh, Michaely, Richardson, and Roberts (2007), Welch and Goyal (2008), and Breitung and
Demetrescu (2015).

The vast majority of empirical studies of stock market predictability are based on the assumption of a constant
parameter predictive regression model. However, there are several reasons to suspect that if stock returns are predict-
able, then it is likely to be a time-varying phenomenon; for example, significant changes in monetary policy and finan-
cial regulations could lead to shifts in the relationship between macroeconomic variables and the fundamental value of
stocks, via the impact of these changes on economic growth and the growth rates of earnings and dividends. A growing
body of empirical evidence is also supportive of this view. For example, Henkel, Martin, and Nardari (2011) found that
return predictability in the stock market appeared to be closely linked to economic recessions with dividend yield and
term structure variables displaying predictive power only during recessions. Timmermann (2008) argued that for most
time periods stock returns are not predictable but that there are “pockets in time” where evidence of local predictability
is seen. In particular, if predictability exists as a result of market inefficiency rather than because of time-varying risk
premia, then rational investors will attempt to exploit its presence to earn abnormal profits. Assuming that a large
enough proportion of the total number of investors are rational, this behavior will eventually cause the predictive power
of the relevant predictor to be eliminated. If a variable begins to have predictive power for stock returns, then a short
window of predictability might exist before investors learn about the new relationship between that variable and
returns, but it will eventually disappear; see, in particular, Paye and Timmermann (2006) and Timmermann (2008). It
therefore seems reasonable to consider the possibility that the predictive relationship might change over time, so that
over a long span of data one may observe some, possibly relatively short, windows of time during which predictability
occurs. In such cases, standard predictability tests based on the full sample of available data will have very low power
to detect these short-lived predictive episodes.

Several empirical studies find evidence suggesting that parameter instability is a feature of return prediction models.
Lettau and Ludvigsson (2001) found instability in the predictive ability of the dividend and earnings yield in the second
half of the 1990s. Goyal and Welch (2003) and Ang and Bekaert (2007) found instability in prediction models for US
stock returns based on the dividend yield in the 1990s. Paye and Timmermann (2006) undertook a comprehensive anal-
ysis of prediction model instability for international stock market indices using the Bai and Perron (1998, 2003) struc-
tural change tests. They found evidence of structural breaks for many of the countries considered, arguing that
“Empirical evidence of predictability is not uniform over time and is concentrated in certain periods” (Paye and
Timmermann, (2006), p. 312). They found some evidence of a common break for the USA and UK in 1974–1975, and
for European stock markets linked to the introduction of the European Monetary System in 1979. However, it is impor-
tant to stress that conventional parameter instability tests such as Chow tests and Bai–Perron tests are not valid for use
with highly persistent, endogenous predictors. Indeed, Paye and Timmermann (2006) used Monte Carlo simulations to
show that in such cases this can cause substantial size inflation in the Bai–Perron tests coupled with a lack of
power because of the large amount of noise typically present in predictive regression models. Moreover, traditional
regression t-tests for predictability and structural break tests are an ex post tool for detecting the statistical significance
of regressors and structural breaks in a historical sample of data. They are less useful in monitoring for change in real
time because their repeated application in prediction models can lead to size distortions (with the probability of at least
one of the tests rejecting tending to unity as the number of tests in the sequence increases) and, as a consequence,
spurious evidence of in-sample predictive ability; see Inoue and Rossi (2005) for a detailed discussion of this problem in
relation to t-tests.
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Motivated by this, we develop new statistical monitoring techniques, specifically designed to avoid the spurious
detection problems discussed in Inoue and Rossi (2005). We use these methods to monitor the stability of predictive
regression models for the US equity premium. As putative predictors we consider various commonly used traditional
macroeconomic and financial variables as well as a range of technical analysis rules where only price or volume data is
used to predict returns. In an early paper in this direction, Brock, Lakonishok, and LeBaron (1992) studied the ability
of moving average and trading range break trading rules to predict the Dow Jones Industrial Average (DJIA) index
using daily data from 1897 through to 1986, finding strongly significant evidence that the trading strategies generated
abnormal returns that could not be explained by serial correlation or conditional heteroskedasticity in the returns. Sulli-
van, Timmermann, and White (1999) analyzed a longer data sample on the DJIA, and found that the rules employed
by Brock et al. (1992) were unable to identify profitable trading strategies for the period 1987–1996, although there was
some evidence that they managed to do so prior to this period. Hudson, Dempsey, and Keasey (1996) undertook a simi-
lar analysis to Brock et al. (1992) for UK stock index returns and found that, although the rules examined do have pre-
dictive power, their use would not enable investors to make abnormal returns once trading transaction costs were
accounted for. More recently, Neely, Rapach, Tu, and Zhou (2014) investigated the in-sample and out-of-sample predic-
tive power of binary technical analysis indicators in a predictive regression-based context. Indicators are constructed
from moving-average rules, momentum rules, and on-balance volume rules. They found that the indicators had predic-
tive power that emulated that of the traditional financial and macroeconomic variables. They also showed that combin-
ing information from technical analysis indicators and macroeconomic variables significantly improved equity risk
premium forecasts versus using either type in isolation.

The real-time monitoring procedures we propose are designed with the aim of detecting, as soon as possible after
their inception, relatively short windows of predictability arising from shifts in the parameter on the predictor variable
in the predictive regression. The presence of short pockets of predictability among long periods of no predictability in
US stock returns has recently been documented by Farmer, Schmidt, and Timmermann (2019), using nonparametric
methods and employing an R2-type statistic to measure predictability strength. Our analysis is also related to work by
Dangl and Halling (2012), who use Bayesian methods to investigate gradual changes in return predictability. Although
our procedures are designed to detect short regimes of predictability when the regime change is discrete, they can also
be used to detect predictive regimes when the regime change is gradual and we investigate this issue with Monte Carlo
simulations. Our focus is on the real-time detection of such regimes, but the methods we use can also be used for an
historical analysis of the stability of predictive regression models. Our detection procedures are based around the
sequential application of simple heteroskedasticity-robust regression t-statistics for the significance of the predictor vari-
able calculated over a subsample of fixed length m. When used as simple one-shot tests these statistics can be compared
with estimated critical values obtained from a training period using the subsampling-like method of Andrews (2003)
and Andrews and Kim (2006). It is important to note that these resulting one-shot tests will be able to detect general
structural change in the slope parameter on the predictor variable (in that particular subsample, relative to the rest of
the sample), not just a change to predictability within the given subsample. This is because a rejection will occur where
the estimated slope coefficient on the predictor differs significantly between the subsample over which the one-shot test
is based and the subsamples used in the critical value generation. Based on the arguments above and the work of Paye
and Timmermann (2006) and Timmermann (2008), among others, it seems reasonable to focus attention on the null
model of no predictive relationship, such that structural change where it should occur is between no predictability and
a short window of predictability. It is this interpretation that we will focus on in motivating and outlining our proce-
dure. In our application to US equity data we first apply standard predictability tests to the full data sets (and indeed
the training periods used to obtain the estimated critical value) to check for any evidence of sustained predictability in
those samples.

Our approach is based on the sequential application of these one-shot subsample test statistics commencing from a
given start date. Because this is based on a sequence of subsample statistics, we need to avoid the issue of spurious
detections highlighted by Inoue and Rossi (2005) by allowing the practitioner to control the overall false positive detec-
tion rate for the resulting procedure. To this end, we suggest two possible detection procedures, both of which are based
on information obtained from the data in the training period. Applied using end-of-sample forms of the subsample pre-
dictability tests, both of these approaches can be used to provide a real-time monitoring procedure for the emergence of
a regime of predictive ability of a regressor for returns data. The first procedure involves comparing the sequence of sta-
tistics in the monitoring period with the extremal value of the statistic (either the most negative, most positive or largest
in absolute value, as appropriate to the alternative hypothesis being tested) within the training period. A predictability
regime is signaled if one obtains an outcome of the predictability statistic that exceeds this extreme value from the
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training period. Under the second procedure we discuss, a predictability regime is deemed to have occurred if and when
the number of consecutive rejections (at a given marginal significance level using a critical value estimated by
subsampling from the training period) by the one-shot tests observed in the monitoring period exceeds the longest run
of such rejections in the training period. Both procedures can also be used to form estimates of the locations of the sig-
naled predictive regimes.

The remainder of the paper is organized as follows. Section 2 outlines the time-varying predictive regression model
forming the basis for our analysis. Section 3 details our proposed approach to detecting windows of predictability and
for dating any predictive regimes signaled, showing how to implement real-time detection procedures whose false posi-
tive detection rates can be controlled in practical applications. Section 4 reports the results from Monte Carlo simula-
tions to investigate the finite-sample behavior of our proposed procedures. Section 5 presents an applied investigation
into the predictability of the 1-month-ahead equity premium on the S&P Composite index. Section 6 concludes. An
online Supporting Information Appendix contains a proof of Proposition 1 as well as additional Monte Carlo results
(these results are summarized in Section 4.2) and additional material relating to the empirical application discussed in
Section 5.

2 | THE PREDICTIVE REGIME MODEL

We assume a relationship between the equity premium, yt, and a single predictor variable1 xt that can be described by
the following data-generating process (DGP):

yt = μy +
Xn
j=1

βjdtðej,mjÞxt−1 + ϵy,t, t=1,…,T, ð1Þ

where the (putative) predictor is generated by

xt = μx + sx,t, t=0,…,T, ð2Þ

sx,t = ρsx,t−1 + ϵx,t, t=1,…,T, ð3Þ

with sx,0 = 0 and where dt(ej, mj) is a dummy variable defined such that dt(ej,mj) takes the value 1 for mj> 0 consecutive
values of t, ending with t= ej. The innovation vector ϵt: = [ϵy,t, ϵx,t]0, where the notation “x: = y” denotes that x is
defined by y, is assumed to be a strictly stationary and uncorrelated mean zero process with unconditional covariance
matrix given by

Eðϵtϵ0tÞ=
σ2y rxyσyσx

rxyσyσx σ2x

" #
,

where rxy, rxy
�� ��<1, is the correlation between ϵy,t and ϵx,t. Note that our assumption on ϵt allows for the presence of con-

ditional heteroskedasticity, such as generalized autoregressive conditional heteroskedasticity (GARCH) or stationary
autoregressive stochastic volatility, in both ϵy,t and ϵx,t.

In the context of Equation 1, if βj≠ 0, then we have a predictive regime of yt by xt− 1 of length mj observations run-
ning from t= ej−mj+ 1 through to t= ej. The model in Equation 1 allows for n≥ 0 such predictive regimes. Consistent
with the discussion in the Introduction and Paye and Timmermann (2006) and Timmermann (2008), we have in mind

1For lucidity, we outline our procedure for the case of a single predictor. Our approach can be extended to the case where multiple predictors feature
in Equation 1. Here individual subsample t-statistics, of the form discussed in section 3.1, associated with each of the predictor variables could be
considered along with multiparameter heteroskedasticity-robust regression F-statistics. Consideration would need to be given to the appropriate
statistics and decision rules to adopt, and to the usual issues surrounding multiple (significance) testing. Moreover, although we focus on the case
where a constant term is included in both Equations 1 and 2, our approach is also valid for a more general deterministic component, such as a
polynomial deterministic trend, appearing in both components provided it is included in the test regression in Equation 4 and the t-statistic, τe,m, in
Equation 5 is commensurately redefined.
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scenarios where such regimes are relatively scarce and short lived, so that both the number of predictive regimes, n,
and their durations, mj, j= 1,… , n, are taken to be small relative to the sample size, T. We assume ej< ej+ 1−mj+ 1 such
that the regimes where predictability holds are ordered (i.e., dt(e1, m1) is the earliest regime) and nonoverlapping. Our
proposed predictive regime detection procedure will consider the quantities ej and mj, which delimit the start and end
dates of the predictive regimes, and the number of regimes, n, to be unknown to the practitioner. Outside of these
n predictive regimes the slope parameter in Equation 1 is zero and the DGP is such that yt= μy+ ϵy,t and, hence, yt is
unpredictable (in mean) due to the ϵy,t being serially uncorrelated (a standard assumption in this literature). Where
n = 0 in Equation 1, yt is unpredictable at all time periods.

As is standard in this literature, we have adopted an AR(1) specification for sx,t, and hence for xt, in Equation 3. As
we will discuss in Section 3, the predictive regime detection procedures we propose in this paper can be applied regard-
less of whether the autoregressive root, ρ, in Equation 3 is such that ρ= 1 (a unit root predictor) or ρj j<1 (a stationary
predictor). Moreover, ρ is also allowed to be T-dependent such as occurs, for example, in cases where the predictor is
strongly persistent displaying either local or moderate deviations from a unit root; for full-sample predictability tests
directed at the latter, see Kostakis, Magdalinos, and Stamatogiannis (2015). The AR(1) specification in Equation 3 is not
critical for our analysis, and it could be generalized to allow ϵx,t to be a weakly autocorrelated process without affecting
the validity of our proposed procedures; see Remark 3 in Section 3.2.1.

In what follows, to facilitate our later analysis of real-time monitoring for the emergence of predictive regimes, we
make a distinction between the end of the monitoring period, which we denote by t= E, and the notional future end of
the DGP for yt; that is t= T, such that E≤ T.

3 | PREDICTIVE REGIME DETECTION

3.1 | Subsample regression t-statistics

We are interested in detecting the presence of a predictive regime for yt in real time and propose a way of doing this
using subsample regression t-statistics. To that end, consider first selecting a subsample of m observations running from
t= e−m+ 1 to t= e, where m is a fixed value (independent of the sample size, T) chosen by the user, and run the
(generic) ordinary least squares (OLS) regression:

yt = a+ bxt−1 + ut, t= e−m+1,…,e: ð4Þ

We then calculate the regression t-statistic, based around a heteroskedasticity-robust variance estimate (see White,
1982), for the significance of xt− 1 in Equation 4; that is,

τe,m : = b̂=½V̂ðb̂Þ�1=2, ð5Þ

where

b̂ : =

Pe
t= e−m+1ðxt−1−�x−1Þðyt−�yÞPe

t= e−m+1ðxt−1−�x−1Þ2
, V̂ðb̂Þ : =

Pe
t= e−m+1ðxt−1−�x−1Þ2û2tPe
t= e−m+1ðxt−1−�x−1Þ2

� �2 ð6Þ

ût : = ðyt−�yÞ− b̂ðxt−1−�x−1Þ

�y : =m−1
Xe

t= e−m+1

yt, �x−1 : =m−1
Xe

t= e−m+1

xt−1:
ð7Þ

Detection of a predictive regime holding between yt and xt− 1 for the given subsample t= e−m+ 1,… , e can be
based on τe,m. As a particular example, suppose we have data available for t= 1,… , T∗+m≤ T; a test for the presence
of a predictive regime in the last m available sample observations would therefore be based on the statistic τT∗ +m,m:

Standard regime detection tests, such as those outlined in Paye and Timmermann (2006) use asymptotic (in the sample
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size T) distribution theory to approximate the test's critical value, but this approximation is based on the assumption
that the sample window m used in constructing the statistic is a positive fraction of T. This assumption is clearly not
consistent with our aim of detecting predictive regimes of short duration. Moreover, even if we were to assume m to be
a function of T, the limiting distribution of τe,m will depend on nuisance parameters in the DGP in Equations 1–3; spe-
cifically, the degree of persistence of the predictor variable, xt, and the correlation, rxy, between ϵy,t and ϵx,t. Without
knowledge of these, valid asymptotic critical values could not be obtained.

An alternative approach, which we will consider further in the context of the detection procedure proposed in
Section 3.2.2, robust to the degree of persistence and endogeneity of the predictor, can be based on the subsampling
approach of Andrews (2003) and Andrews and Kim (2006). In the end-of-sample example above, suppose we have a
sample of size T∗+m and we form the predictability statistic τT∗ +m,m . To obtain a critical value, one uses the training
period t= 1,… , T∗, to compute the T∗ −m analogous statistics {τe,m}, e=m+ 1,… , T∗. The (1 − π) sample quantile of
these statistics is the estimated significance level-π critical value for the end-of-sample predictability test. By construc-
tion, the resulting test is (asymptotically in T) robust to nuisance parameters in Equations 1–3 because the training
period statistics have the same functional dependence on those nuisance parameters as τT∗ +m,m . This test will have
nontrivial power whenever there is predictability in the last m observations, but not in the training period.

Crucially though, the discussion above relates to a one-shot predictability test. However, our goal in this paper is to
develop real-time monitoring procedures for the emergence of an end-of-sample predictive regime. To that end, we will
construct a sequence of τe,m statistics, of the form given in Equation 5, calculated for each possible end-of-subsample
date e= T∗+m,… , E, recalling that E denotes the end of the monitoring period, a parameter set by the practitioner.
The predictive regime detection procedures we propose below are based on comparing the behavior of this sequence of
statistics with corresponding sequences within the training period and will be designed such that the theoretical
(i.e., large-sample) false positive rate (FPR) of the procedures is known and can be properly controlled, where the FPR
represents the probability of incorrectly signifying the presence of at least one predictive regime in the monitoring
period.

3.2 | The detection procedures

We now detail our predictive regime detection approaches. For transparency, these are presented in the context of
upper tail testing (i.e., for predictability regimes where βj> 0), but can be adapted to lower tailed or two-tailed testing
in an obvious way. We will discuss two procedures, each of which forms a decision rule for rejecting the null of no pre-
dictability in the monitoring period based on specific properties of the sequence of τe,m statistics within the given train-
ing period. The first procedure we consider will be based on the largest of the τe,m statistics observed in the training
period, and the second will be based on the longest run of outcomes of the τe,m statistics in the training period that
exceed a given (critical) value.

For both of the procedures that follow, we define the training period as t= 1,… , T∗. We assume that no predictive
regime occurs within the training period; that is, T∗< e1−m1 + 1; further discussion relating to where this assumption
might be violated is given in Section 3.4. In what follows we assume that T∗ and E are such that T∗: = bλ1Tc, and
E: = bλ2Tc, b�c denoting the integer part of its argument, and where 0 < λ1 < λ2≤ 1.

3.2.1 | The MAX procedure

The first detection procedure we propose, which we will denote by MAX, is based on the maximum value of the
sequence of τe,m statistics taken across the training and monitoring periods (cf. Astill, Harvey, Leybourne, Sollis, &
Taylor, 2018). More precisely, with fτe,mgT

∗

e=m+1 and fτe,mgEe=T∗ +m constituting the statistics obtained from the training
and monitoring periods, respectively, we consider a detection procedure whereby a predictive regime in the monitoring
period is signaled if maxe2½T∗ +m,E�τe,m exceeds maxe2½m+1,T∗�τe,m; that is, the largest τe,m in the monitoring period exceeds
the largest τe,m in the training period.

We now establish the theoretical (as T!∞) FPR of the MAX procedure when run out to the end of monitoring
date, E. This is done by evaluating the limiting probability that maxe2½T∗ +m,E�τe,m >maxe2½m+1,T∗�τe,m under the null
hypothesis that no predictability is present in the DGP. This result is now given in Proposition 1.

50 HARVEY ET AL.



Proposition 1. Let (yt,xt) be generated according to Equations 1–3 under the conditions stated in Section 2. Let the
MAX decision rule be as given above. If n= 0, such that no predictability is present in the DGP, then as T!∞,

lim
T!∞

P max
e2½T∗ +m,E�

τe,m > max
e2½m+1,T∗�

τe,m

� �
= α∗, ð8Þ

where α∗ : = ðλ2−λ1Þ=λ2 = limT!∞α where, for the stated choices of monitoring and training periods,

α : =
E−T∗−m+1
E−2m+1

� �
: ð9Þ

Remark 1. The result in Proposition 1 provides an expression for the theoretical FPR of the MAX decision rule—that is,
the limiting probability that the maximum of the τe,m statistics in the monitoring period exceeds the maximum of
the τe,m statistics in the training period in the case where no predictability occurs. This is seen to be simply the
limiting value of the ratio formed by dividing the total number of τe,m statistics computed in the monitoring
period (here E− T∗ −m+ 1) by the total number of τe,m statistics calculated in the training and monitoring
periods combined (here (E− T∗ −m+ 1) + (T∗ −m) = E− 2m+ 1). This result holds more generally when com-
paring the maxima of the sequences of τe,m statistics obtained from any two disjoint subintervals of the data whose
lengths are both functions of T.

Remark 2. The result in Proposition 1 holds regardless of the degrees of persistence and endogeneity of the regressors
in the predictive regression and holds for all conditionally heteroskedastic innovations that satisfy the condition
of strict stationarity. In particular, the result in Proposition 1 holds regardless of whether the putative predictor xt
in Equation 3 is: weakly dependent (|ρ| < 1); strongly persistent (ρ= 1− c/T with the constant c≥ 0, where c= 0
yields the pure unit root case, while c> 0 corresponds to the local-to-unity case); or moderately persistent (ρ= 1
− cT−θ with c> 0 and θ 2 (0,1), the moderate deviations from unity case of Kostakis et al. (2015).

Remark 3. As demonstrated in the proof of Proposition 1, the stated result follows using an application of theorem 2.1
of Ferreira and Scotto (2002, p. 478), with r= s= 1 in their notation, which applies to strictly stationary sequences
of mixing random variables. To do so we establish that under the conditions given in Section 2 {τe,m} forms a
strictly stationary and (m− 1) dependent sequence, the latter therefore satisfying the required mixing condition
stated in Ferreira and Scotto (p. 476). We have assumed for simplicity that ϵt is serially uncorrelated, which yields
the (m− 1) dependence result. Weakening this assumption to allow for stationary serial correlation in ϵx,t would
not alter this result. It is standard in this literature to assume that ϵy,t is serially uncorrelated. However, this could
be weakened to allow finite MA(k), 0≤ k<∞, behavior in ϵy,t in which case {τe,m} would be a (k+m − 1) depen-
dent sequence but would still satisfy the required mixing condition. We cannot formally allow for unconditional
heteroskedasticity in ϵt because {τe,m} would not then form a strictly stationary sequence and so we could not
appeal to theorem 2.1 of Ferreira and Scotto. However, we have still based our approach on heteroskedasticity-
robust t-statistics because although not exact invariant to any unconditional heteroskedasticity present (which is
what would be needed as m is finite) we expect them to be considerably more robust than the corresponding
t-statistics based on OLS standard errors. In Section 4 we will investigate the impact of unconditional hetero-
skedasticity in ϵt on the finite sample FPRs of the procedures discussed in this section.

For given values of T∗ and m, we can use Equation 9 to approximate the empirical FPR that would be obtained in
practice for any monitoring horizon E. We observe that α is a monotonically increasing function of E as
∂α
∂E =

T∗ −m
E−2m+1ð Þ2 > 0. Hence, other things being equal, the longer the monitoring period, the greater the likelihood of spu-

riously finding a predictive regime. To illustrate, Figure 1 graphs this approximation for the case of T∗= 400 and
m= 30. So, for example, reading from Figure 1, if we wish to monitor out to E= 680, then the FPR will be about 0.40.

We can also rearrange Equation 9 as

E=
T∗ +m−1−αð2m−1Þ

1−α
, ð10Þ
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which is useful if we wish to know the maximum monitoring horizon E such that the FPR for the MAX procedure is
(approximately) controlled at α. For the current illustration, Equation 10 shows that E should be chosen to be no more
than about 520 for a choice of α= 0.20 (which is also apparent from Figure 1).

3.2.2 | The SEQ procedure

Our second detection procedure, which we denote by SEQ, is based on comparing the length of the longest contiguous
sequence of exceedances of some value preset by the practitioner by the statistics τe,m in the monitoring period, with the
corresponding measure taken over the training period. An obvious choice for this threshold value, which we will adopt
in what follows, would be to use a relevant marginal critical value for some significance level π for the one-shot τe,m
test.2 In doing so we will follow the subsampling approach of Andrews (2003) and Andrews and Kim (2006) and calcu-
late an empirical critical value, denoted by cvπ in what follows, from the training period. Recalling that the sequence of
τe,m statistics that make use of data within the training period is given by τe,m for e=m+ 1,… , T∗, then cvπ is defined
such that cvπ : = τðbð1−πÞðT∗ −mÞcÞ where τ( j ), j= 1,… , T∗ −m are the ascending order statistics of τe,m, e=m+ 1,… , T∗

(i.e., τ( j+ 1) > τ( j) for j= 1,… , T∗ −m − 1). Under the conditions on the DGP considered by Andrews and Kim, cvπ is a
consistent (as T!∞) estimate for the true π significance-level critical value. However, it should be stressed that the
SEQprocedure we propose does not rely on this consistency property holding on cvπ.

Based on cvπ, we then consider the maximum number of contiguous values of τe,m within the training period that
exceed cvπ. To this end, define Rπ,e: = 1(τe,m> cvπ), where 1(�) denotes the indicator function, and consider the following
measure over e= L to e=U with U≥ L:

RπðL,UÞ : = ðU−L+1Þ
YU
e=L

Rπ,e:

FIGURE 1 FPR as a function of E

2Any sensible threshold value could in principle be used. A benefit of using such a critical value is that, where the training period contains no
predictive regimes, each individual test in our monitoring sequence can be interpreted marginally as a test for predictability in that particular
subsample. As such, it makes sense in practice to set π to a conventional significance level; for example, π = 0.05 or π = 0.10.
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Here, when Rπ(L, U) is nonzero, its value, U− L+ 1, represents the length of a sequence of contiguous exceedances.
The maximum length of contiguous exceedances in the training period is then given by maxL,U2½m+1,T∗�RπðL,UÞ .
The corresponding measure for the monitoring period is given by maxL,U2½T∗ +m, E�RπðL,UÞ. Our proposed SEQ proce-
dure is then to signal a predictive regime in the monitoring period if maxL,U2½T∗ +m, E�RπðL,UÞ>maxL,U2½m+1,T∗�RπðL,UÞ.
Paralleling the result in Proposition 1, when there is no predictability in the training or monitoring periods we
conjecture that

lim
T!∞

Pr max
L,U2½T∗ +m,E�

RπðL,UÞ> max
L,U2½m+1,T∗�

RπðL,UÞ
� �

≤α∗, ð11Þ

where α∗ is as defined in Proposition 1. Note here that, in contrast to the result for the MAX monitoring procedure,
where the large-sample FPR when monitored up to E is exactly α∗, the corresponding quantity for the SEQ procedure is
bounded by α∗. This arises because maxRðL,UÞ can only assume integer values, so there is a nonzero probability of a
tied value in the training and monitoring periods, even asymptotically. Hence the strict equality obtained for the MAX
procedure from Proposition 1 is replaced by the weak inequality in Equation 11. The (approximate) relationship in
Equation 10 can also still be considered to hold, but interpreted to be the maximum monitoring horizon E such that the
FPR for the SEQ procedure is bounded by α.3

It will be convenient to denote the training period maximum length of contiguous exceedances,
maxL,U2½m+1,T∗�RπðL,UÞ, as lπ. Note that the first time period at which it would be possible for SEQ to signal a predictive
regime is t= T∗+m+ lπ, because this is the first occasion where Rπ(L, U) in the monitoring period can exceed lπ. In
contrast, it is possible for the MAX procedure to signal a predictive regime as early as t= T∗+m. However, we can con-
trol lπ via the choice of π. The larger is π then the smaller is cvπ, so we would naturally expect the larger is lπ. This
relationship is important, as choosing a large value of π might lead to what is considered an unacceptable delay before
being able to detect a predictive regime. This is not a consideration with MAX, however. In fact, MAX can be thought of
as an extreme case of SEQ, where we choose cvπ =maxe2½m+1,T∗�τe,m (the smallest value of cvπ such that π = 0) and
hence lπ = 0.

3.3 | Dating of predictive regimes

In a real-time monitoring context, if the procedure signaled the presence of a predictive episode at time E∗ ≤ E then the
monitoring procedure would of course terminate at that point, given that the procedure would have signaled the pres-
ence of a predictive regime at that time. However, one could also consider continuing the monitoring procedure up
until E. It is therefore possible for both of our proposed MAX and SEQ procedures to detect more than one predictive
regime before the notional end-of-monitoring date, E.

Although our focus on this paper is on real-time detection we can, where at least one predictive regime has been sig-
naled by one of our procedures when run out until the end of the monitoring period, E, provide approximate dates for
the location of these predictive regime(s). This should be viewed more as a historical dating exercise rather than some-
thing that would be done in the context of a real-time monitoring procedure. Detailing this first in the context of the
MAX procedure, for e= T∗+m,… , E define R0,e : =1ðτe,m >maxs2½m+1,T∗�τs,mÞ . Next, let D denote an E × 1 vector of
zeros, and set De= 1 whenever R0,e= 1. Now suppose that D has h consecutive 1s in positions e= j,… , j+ h− 1, where
j is the earliest date for which R0,j= 1. Here R0,j is based on data over the period j−m+ 1,… , j, so we might therefore
consider j−m+ 1 to represent a feasible start date for the first predictive regime. With R0, j+ h− 1 representing the final
exceedance in D, and this being based on data over the period j−m+ h,… , j+ h− 1, we might similarly consider j+ h
− 1 to represent a feasible end date for this predictive regime. By this categorization, then, the predictive regime covers
the contiguous set of dates j−m+ 1,… , j+ h− 1. In some sense, this set of dates is liberal, or weak, in that it is possible

3We are unable to provide a formal proof of the result of Equation 11—hence our conjecture on the basis of extant, but much more limited theoretical
results. A formal proof would be extremely involved, if even tractable, given the complexity of the arguments needed in Ferreira and Scotto (2002) to
establish theoretical results relating to the much simpler case of subsample maxima. However, this conjecture is not without foundation. We have
also conducted extensive Monte Carlo simulation experiments that appear to support it. Furthermore, these simulation results reveal that the
empirical FPR of the SEQ procedure is always below but very close to α, implying that the probability of tied values in the training and monitoring
periods is very small.
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that the predictive regime started after j−m+ 1 and ended before j+ h− 1; for example, only the later data used in R0, j

may be responsible for triggering that exceedance, and only the earlier data used in R0, j+ h− 1 responsible for triggering
that exceedance. We might therefore consider an alternative dating approach where the predictive regime is character-
ized by the subset of dates for which every time that date is present in the subsample of data being tested, an exceed-
ance is obtained. This subset, which we will refer to as strong, is the contiguous set of dates j,… , j−m+ h; note that if
h≤m− 1, the strong set will be empty. A second predictive regime is deemed to exist if R0, j+ h= 0 but R0, j+ h+ s= 1 for
some s≥ 1, and weak/strong dates for the second regime can be determined in the same manner as for the first regime.
This extends to more than two regimes in an obvious way. In situations where more than one predictive regime has
been detected, it is possible that weak dates associated with consecutive regimes can overlap, although this possibility
cannot arise with the strong dates.

For the SEQ procedure, the dating method follows the same process as for the MAX procedure, but with the non-
zero elements of the D vector defined according to the following: for e= T∗+m+ lπ,… , E, if

Qe
k= e− lπ

Rπ,k =1 , set
De− lπ ,…,De to 1. That is, for all end-of-window dates e that form part of a contiguous run of at least lπ + 1 exceedances
Rπ,e, we set the eth element of D to one. The weak and strong dates can then be categorized in exactly the same way as
for the MAX, based on the Rπ,e exceedances involved in the D vector.

3.4 | Additional discussion

We conclude this section with some observations, which apply in equal part to the MAX and SEQ procedures.

1. Suppose now that, in contradistinction to our maintained assumption so far, one or more predictive regimes in
Equation 1 are present within the chosen training period. Provided such regimes are of finite length and finite in
number, then the asymptotic (in T and T∗) properties of the MAX and SEQ procedures are unaffected by this. For a
finite-length training period, if predictability regimes existed within it, we would expect both maxe2½m+1,T∗�τe,m and

lπ to be increased relative to the case where no predictability is present in the training period, other things being
equal. We might therefore anticipate some reduction in the ability of our procedures to detect genuine predictive
regimes present in the monitoring period. We will explore the impact on our proposed procedures of a predictive
regime holding in the training period as part of our Monte Carlo simulation study in Section 4.

2. Although not consistent with the interpretation we are placing on the DGP in Equation 1, as discussed in the Intro-
duction it is possible in practice that the training period could potentially exhibit predictability throughout its dura-
tion, or a large part of its duration. In this case, an upper tail rejection arising from MAX or SEQ in the monitoring
period should be taken to indicate a statistically significant increase in the magnitude of the slope parameter on
xt − 1 (and, hence, in the strength of the predictability of yt by xt− 1) vis-à-vis its value in the training period. In practi-
cal applications, we therefore recommend prior application of standard full-sample predictability tests to the training
period to investigate whether the assumption of no predictability holds in the training period, and this will be done
in the empirical data analysis undertaken in Section 5.

3. Our discussion thus far has implicitly assumed that the training period runs from the earliest available time period
in the data set to the point immediately before the desired start of monitoring. This essentially makes the training
period as large as possible, which ensures that, through the role of T∗ in Equations 9 and 10, the FPR is as small as
possible for a given E, or, equivalently, E is as large as possible for a given FPR. In cases where a very long history of
data is available, it may be prudent to use only relatively recent data, to avoid including historical predictive regimes
in the training period. In practice, such regimes might be detected by prior pretesting—an approach we adopt in the
empirical application in Section 5. Furthermore, we have so far focused, for simplicity, on the case where there is no
separation between the data period used for the training period and the data used for monitoring, with the former
spanning t= 1,… , T∗ and the latter starting at t= T∗+ 1. More generally, the last time period included in the train-
ing period could be T∗ − k for some k> 0, allowing for a separation between the training period and the start of the
monitoring period. This might be relevant in cases where a predictive regime was thought to have occurred towards
the end of the training period, so that the training period could be redefined to exclude this regime. As noted in
Remark 1, an analogous result to Proposition 1 also holds here and the expressions for α and E in Equations 9 and
10 in this case become, respectively,
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α=
E−T∗−m+1
E−2m+1−k

and E=
T∗ +m−1−αð2m−1+ kÞ

1−α
:

4 | FINITE-SAMPLE PROPERTIES OF THE MONITORING PROCEDURES

We now report the results from four Monte Carlo simulation experiments designed to study the finite-sample properties
of our MAX and SEQ procedures. These investigate the FPRs of the two procedures and their power to detect a predic-
tive regime of given length. Extensive additional simulations were also undertaken to study the detection power of
MAX and SEQ as a function of m1 (the length of the predictive regime in the DGP), and to study the robustness of our
procedures to different error term assumptions, patterns of heteroskedasticity, to higher order autocorrelation in the
predictor, and to gradual regime change. We present these additional results in an online Supporting Information
Appendix and briefly discuss the key findings in Section 4.2.4

In all of the experiments we generated the simulation data according to the DGP given by Equations 1–3and set
μy= μx= 0 (without loss of generality) using negatively correlated error terms with rx,y=−0.90.5 For the four sets of
experiments reported in the main text we generate ϵy,t�N(0, 1), ϵx,t�N(0, 1). All of the simulation experiments and
the empirical application in Section 5 employ the upper-tailed version of our procedure.6 In each simulation experiment
the sample period when monitoring starts (T∗+m) is the same as in the empirical application, T∗+m= 302, and for
the main experiments, m= 30.7 All of the experiments are undertaken using MATLAB, employing the Mersenne
Twister random number generator function and 10,000 replications.

The first set of experiments studies the power of MAX and SEQ to detect a single predictive regime as a function of
β1 = {0.05, 0.10,… ,0.45, 0.50} for ρ= {0.965, 0.995}, setting π = 0.10.8 When β1 = 0 (so that n= 0 and, hence, there are no
predictive regimes in the data) the detection frequency obtained from the simulations is equivalent to an empirical
FPR, and we also report simulation results for this case. In this first set of experiments we assume a short monitoring
period that ends at E= 327, which, given the values used for T∗ and m, is consistent with α= 0.10 (this can be verified
using Equation 9). Therefore, when β1 = 0, the empirical FPR obtained for each procedure should be approximately
equal to 0.10. If a predictive regime does occur during the monitoring period, then the power of our procedures to
detect its presence will depend not only on how long the relevant predictive regime continues for (m1) and its strength
(measured by the magnitude of β1), but also on when the predictive regime occurs relative to the start of monitoring.
To investigate this issue in more detail, separate results are computed for five different predictive regime start dates:
(a) t= 287 (15 observations before the start of monitoring), (b) t= 297 (five observations before the start of monitoring),
(c) t= 302 (at the same time as the start of monitoring), (d) t= 307 (five observations after the start of monitoring), (e) t
= 317 (15 observations after the start of monitoring). In each case the length of the predictive regime in the DGP is set
to m1 = 30.9

In empirical applications, while there might be a particular reason for favoring a short monitoring period, for pre-
dictive regimes that start towards the end of a short monitoring period the power of our procedure to detect their

4The online Supporting Information Appendix is available from www.sites.google.com/view/pr-supplementary, which also contains the data and
MATLAB code used for the paper.
5In predictive regression models for the equity premium employing valuation ratios as predictors (e.g., the dividend–price ratio, earnings–price ratio)
the relevant error terms are strongly negatively correlated—hence our choice of rx,y=−0.90.
6For the majority of the macroeconomic and financial variables and for all of the technical analysis indicators used in the empirical application in
Section 5, financial theory suggests a positive relationship with the equity premium. For those of the macroeconomic and financial variables where
financial theory suggests a negative relationship with the equity premium (e.g., interest rates) we use −xt− 1 rather than xt− 1 when testing for a
predictive regime so that an upper-tailed test is applicable. This is consistent with recent research on detecting equity premium predictability using
orthodox t-tests (e.g., Campbell & Thompson, 2008; Neely et al., 2014).
7The data sample used for the equity premium application below is monthly, covering the period December 1974 to December 2015 (T= 493). In the
application we monitor from January 2000 (hence T∗+m= 302). In addition to m= 30, in the empirical application results are also computed for
m= 15 and m= 60.
8This range of values for ρ and β1 was chosen following a preliminary analysis of the data used for the empirical application in Section 5. Typically,
when AR(1) models are estimated for the traditional predictors used in Section 6 (e.g., the valuation ratios), the AR(1) coefficient estimates lie in the
range 0.965–0.998.
9Therefore, in these experiments m=m1. In the additional simulation experiments discussed in Section 4.2, we investigate the performance of our
monitoring procedure when the values of m and m1 differ.
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presence could be significantly improved if we monitor for a longer period of time. To investigate this issue in more
detail, in the second set of experiments we repeat the first set of experiments employing the same simulation DGP and
predictive regime dates, but extending the monitoring period to E= 361, which is consistent with α= 0.20. Hence the
empirical FPR obtained from the simulations in this case (when β1 = 0) should be approximately equal to 0.20.

The first two sets of experiments assume no predictability in the training period. As discussed in Section 3.4, our
procedure can still be used for detecting predictive regimes during the monitoring period if predictability exists during
the training period, although the FPR and power of the procedure could be affected. If our procedure is applied to data
where a regime of positive predictability exists in the DGP during the training period, both the largest value of τe,m over
the training period, and the longest contiguous sequence of right-tailed τe,m exceedances over the training period, are
likely to be larger than the values obtained if the DGP had contained no predictability over the training period but was
otherwise identical. It follows straightforwardly in this case that the power of our procedures to detect a predictive
regime over the monitoring period (and also the empirical FPRs) will be reduced relative to the case of no predictability
over the training period.

The third and fourth sets of experiments investigate this issue in more detail. In these experiments we repeat the
first two sets of experiments again using the DGP given by Equations 1–3, but in addition to the original predictive
regime at locations (a)–(e), an earlier predictive regime is imposed in the DGP during the relevant training periods. Spe-
cifically, the full DGP for each set of experiments contains two predictive regimes (i.e., we set n= 2 in Equation 1),
where the first predictive regime is set to occur during the training period at t= bT∗/2c+ 1, and we set m1 = 15 and
β1 = 0.25 (hence the associated predictive regime in the training period continues for 15 observations). The second pre-
dictive regime mirrors the original predictive regime in the first two sets of experiments. The length of this second
regime, m2, and the strength of the predictability, β2, are set to the same values as the relevant parameters in the first
two sets of experiments (m1 and β1, respectively). Note that in the third and fourth sets of experiments the predictive
regime in the training period is relatively short (being half the length of the predictive regime in the monitoring period
for the first two sets of experiments). It is particularly important to assess the finite sample performance of our proce-
dures when there is a short predictive regime in the training period, since short predictive regimes are more difficult to
identify than long predictive regimes. If a long predictive regime exists over the initial training period chosen by a
researcher using our procedures, then it is more likely that the researcher would be aware of its presence (e.g., via a
preliminary analysis of the data).

4.1 | Main results

The results from the first set of experiments are given in Figure 2, which, as with Figures 3–5, graphs the empirical fre-
quencies with which at least one predictive regime is signaled by our monitoring procedures MAX (solid and dotted red
lines) and SEQ (solid and dotted blue lines) when run across the whole monitoring period under consideration. Recall
that the end of the monitoring period for the set of experiments relating to Figure 2 is chosen using Equation 9 to be
such that α= 0.10. Therefore, when β1 = 0 we would expect the simulated predictive regime detection frequencies of
our procedures to be close to 0.10. It can be seen that each of the curves reported in Figure 2 indeed starts from approxi-
mately 0.10. For both the MAX and SEQ procedures, when the predictive regime starts before or at the same time as the
start of monitoring (cases (a)–(c)), power rises rapidly with β1. When the predictive regime starts after the start of moni-
toring (cases (d)–(e)), a higher proportion of the subsamples used when computing τe,m will be data from the period of
the DGP when no predictability exists. Furthermore, in these two cases monitoring ends shortly after the predictive
regime starts (e.g., for case (e), monitoring ends 11 observations after the predictive regime starts). Therefore, as
expected, for both procedures power rises with β1 at a lower rate than for cases (a)–(c) and ultimately flattens out at a
lower value.

Interestingly, these experiments show that the relative finite sample performance of the MAX and SEQ procedures
is sensitive to the strength of the predictability (as measured by the magnitude of β1), the location of the predictability
regime relative to the monitoring period, and the persistence of the predictor (as measured by the value of ρ). For case
(a), when predictability starts 15 observations before the start of monitoring, and for ρ= 0.965, SEQ has more power
than MAX, but the difference in power declines as the strength of the predictability increases. Eventually, the power
curve for MAX moves above the curve for SEQ (at approximately β1 = 0.37). For case (a) with ρ= 0.995, the crossing
point of the power curves occurs earlier (at approximately β1 = 0.23). For case (b) the results have a similar pattern to
case (a), although MAX has even more power than SEQ when the predictability is strong compared with case (a).

56 HARVEY ET AL.



FIGURE 2 Predictive regime detection frequency as a function of β1 for different values of ρ: T
∗+m= 302, E= 327, m1 = 30, m= 30;

MAX, ρ= 0.965, ;MAX, ρ= 0.995, ; SEQ, ρ= 0.965, ; SEQ, ρ= 0.995, [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Predictive regime detection frequency as a function of β1 for different values of ρ: T
∗+m= 302, E= 361, m1 = 30, m= 30;

MAX, ρ= 0.965, ;MAX, ρ= 0.995, ; SEQ, ρ= 0.965, ; SEQ, ρ= 0.995, [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Detection frequency for a second predictive regime when a predictive regime with β1 = 0.25 also exists in the training

period, as a function of β2 for different values of ρ: T
∗+m= 302, E= 327, m1 = 15, m2 = 30, m= 30; MAX, ρ= 0.965, ; MAX, ρ= 0.995,

; SEQ, ρ= 0.965, ; SEQ, ρ= 0.995, [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Detection frequency for a second predictive regime when a predictive regime with β1 = 0.25 also exists in the training

period, as a function of β2 for different values of ρ: T
∗+m= 302, E= 361, m1 = 15, m2 = 30, m= 30; MAX, ρ= 0.965, ; MAX, ρ= 0.995,

; SEQ, ρ= 0.965, ; SEQ, ρ= 0.995, [Colour figure can be viewed at wileyonlinelibrary.com]
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Similar results are found for case (c), although power is noticeably lower for all values of β1. This is to be expected
because in this case the predictability regime starts at the same time as the monitoring, and therefore the initial sub-
samples used to compute τe,m contain very few observations from the predictability regime (by definition, the subsam-
ples used to compute τe,m contain more observations from the period when there is no predictability until half way
through the monitoring period). For case (d), and ρ= 0.965, MAX and SEQ have very similar power when the predict-
ability is weak, although as the predictability strengthens the power curve for MAX moves above the curve for SEQ.
The same general pattern exists for ρ= 0.995, although the power of both procedures when the predictability is weak is
higher than for ρ= 0.965. For case (e), MAX has more power than SEQ for all values of β1, and the difference in power
increases as the predictability strengthens.

The results from the second set of experiments are given in Figure 3. As expected, when the monitoring period is
extended from E= 327 to E= 361 the predictive regime detection frequency as a function of β1 increases for both MAX
and SEQ. Indeed, the detection frequency and relative finite-sample performance of MAX and SEQ are now virtually
identical for each of the predictive regime start dates considered here. This reflects the fact that because of the longer
monitoring period, each set of sequential τe,m statistics now includes a run of statistics computed using subsamples
where a high proportion of each subsample is data from when predictability exists in the DGP. When β1 = 0 the empiri-
cal FPRs of MAX and SEQ both increase to approximately 0.20, again as expected. A further interesting feature of our
monitoring procedures can be seen by comparing Figures 2a and 3a relating to the case where the predictive regime
starts 15 observations before monitoring begins (of the cases considered, the one where detection power is least depen-
dent on the start date of the predictive regime). Although, as discussed above, the FPR in Figure 3a is roughly double
that in Figure 2a for each procedure, very little differences (for a given value of ρ) are seen between the two different
cases in terms of the efficacy of MAX and SEQ to detect a predictive regime, except where β1 is close to zero. Equation 9
shows that, other things being equal, the longer is the length of the training period relative to the monitoring period,
the smaller is the theoretical FPR of the procedure. But as these simulation results highlight, a lower FPR from a
longer training period does not entail a decrease in the efficacy of the procedures to detect a true predictive regime in
the monitoring period.

The results for the third and fourth sets of experiments are given in Figures 4 and 5. We find that, as expected, due
to the presence of a predictive regime during the training period, in each of the individual experiments both
maxe2½m+1,T∗�τe,m and lπ are increased relative to the case where no predictability is present in the training period and,
as a result, the power curves are generally lower in these experiments than the corresponding curves in Figures 2 and 3.
For both MAX and SEQ, when β2 = 0 and E= 327 (consistent with α= 0.10), the detection frequency in Figure 4 is
approximately 0.05. When β2 = 0 and E= 361 (consistent with α= 0.20), the detection frequency for both procedures in
Figure 5 is approximately 0.10. Similarly, it can be seen in Figures 4 and 5 that for β2 > 0 the curves are approximately
0.05–0.10 lower than the corresponding curves in Figures 2 and 3. The curves in Figure 4 for E= 327 are sensitive to
where the second predictive regime is located. However, it can be seen in Figure 5 that, as in Figure 3, extending the
monitoring period to E= 361 reduces the sensitivity of the curves to the exact location of the predictive regime.

4.2 | Additional simulations

The first set of additional simulations studies the detection power of the MAX and SEQ procedures as a function of m1

(the length of the predictability regime in the DGP), employing the same DGP used in the main experiments and
assuming the other parameters are fixed at their original values. The results are graphed in Figure S1 for E= 327 and in
Figure S2 for E= 361. Increases in m1 from a low value initially lead to an increase in detection power. For larger values
of m1 the power curves flatten out. This occurs because, as m1 increases, eventually the end of the predictability regime
in the DGP lies beyond the end of the monitoring period, which in these experiments is assumed to be fixed. When
monitoring ends at E= 327 the point at which the power curves flatten out occurs earlier as we move from start dates
(a) to (e), because the value of m1 such that the end of the predictive regime lies beyond the end of the monitoring
period E gets smaller. For the longer monitoring period E= 361 there is very little difference in detection power for the
different start dates.

We also carried out an extensive set of robustness checks for MAX and SEQ. The first checks concern the error
terms in the DGP. An attractive feature of our monitoring procedure, as Proposition 1 shows, is that for sufficiently
large T, in addition to being robust to any degree of contemporaneous correlation of the error terms in the DGP, it is
also robust to conditional heteroskedasticity and non-Gaussianity in the errors. To investigate how well these
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robustness properties hold in finite samples, we repeated the first set of main simulation experiments discussed above
using the same DGPs but for a range of error distributions and heteroskedasticity patterns for ϵy,t in Equation 1: (i) t(10)
error terms; (ii) t(5) error terms; (iii) normally distributed GARCH(1,1) error terms with conditional variance
σ2y,t = α0 + α1ϵ2y,t−1 + β1σ

2
y,t−1 , where α0 = 0.10, α1 = 0.10 and β1 = 0.80, and (iv) t(5) GARCH(1,1) error terms with the

same GARCH parameters. Although not formally allowed under the conditions of Proposition 1, we also considered:
(v) t(5) error terms with an unconditional volatility shift from σy= 1 to σy= 2 halfway through the monitoring period
(at t= T∗+m+ b(E− T∗ −m)/2c+ 1). Reassuringly, the results, which are graphed in Figures S3–S7, are very similar to
the first set of main simulation results reported in Figure 2. As discussed in Remark 3, the AR(1) specification for the
predictor in Equations 1–3 is not critical for our analysis, and for large T, both the MAX and SEQ procedures remain
valid for higher order autoregressive predictors. To investigate this issue in finite samples we report the results from
repeating the first set of main simulation experiments given in Figure 2, but using an AR(2) predictor rather than an
AR(1); that is, replacing the AR(1) process in Equation 3 by sx,t= ρ1sx,t− 1 + ρ2sx,t− 2 + ϵx,t, t= 1,… , T, setting ρ1 = 0.595,
and allowing ρ2 = {0.30, 0.40}. The results are given in Figure S8, and again they are very similar to the main simulation
results reported in Figure 2.

As a final robustness check, we investigated the detection power of MAX and SEQ when the regime change in
Equations 1–3 is gradual rather than discrete. Specifically, we used the DGP for the first set of main simulation experi-
ments but redefined the dummy variable dt(e1,m1) to be the exponential function dtðe1,m1Þ :=expð−γðt−sÞ2Þ , which
allows for smooth regime change centered around s, where γ controls the speed of the change. We set s= e1− 0.50m1 +
1 and γ = 0.01, so that the main part of the regime change for cases (a)–(e) starts at approximately the same point as in
Figure 2 and lasts for approximately 30 observations. The results are given in Figure S9 and show that, as β1 increases,
both MAX and SEQ have good detection power for this form of regime change. Generally, the rate of increase in power
with increases in β1 is slower than in Figure 2 and the curves are slower to flatten out, which occurs because increases
in β1 are effectively being weighted by a factor less than one for most of the predictability regime; hence the β1 that
maximizes power (assuming the other parameters in the DGP are fixed) is higher than for the results in Figure 2.

5 | EMPIRICAL APPLICATION

5.1 | Data and preliminary analysis

The data set used for the empirical application of our monitoring procedure consists of monthly observations on the
equity premium for the S&P Composite index calculated using CRSP's month-end values and on 20 different predictors
for the period 1974:12–2015:12 (T= 493). We define the equity premium as in Welch and Goyal (2008) and Neely et al.
(2014) as the log return on the value-weighted CRSP stock market index minus the log return on the risk-free Treasury
bill: yt = logð1+Rm,tÞ− logð1+Rf ,tÞ where Rm,t is the CRSP return and Rf,t is the Treasury bill return. Ten of the predic-
tors are traditional macroeconomic and financial variables (MFVs) and 10 are binary technical analysis indicators
(TAIs) also used by Neely et al. (2014) in their analysis of equity premium predictability. Some of the traditional MFVs
are in log form (as in Welch & Goyal, 2008; Neely et al., 2014) and each of the predictors is lagged one period. We con-
sider the log dividend yield (dyt− 1), the log dividend–price ratio (dpt− 1), log earnings–price ratio (ept− 1), book-to-
market ratio (bmt− 1), short-term yield (stt− 1), long-term yield (ltt− 1), long-term–short-term yield spread (spt− 1 = ltt− 1

− stt− 1), BAA–AAA corporate bond yield spread (dspt− 1), net equity expansion (ntist− 1), and inflation (inft− 1). The
TAIs used are four moving average indicators (MAIs), two momentum indicators (MOIs), and four on-balance volume
(OBV) indicators. The four moving-average rule indicators (MAIs,l,t) are defined such that MAIs,l,t: = 1 if MAs,t≥MAl,t,
indicating a buy signal, and are defined to be zero otherwise, where MAj,t : = ð1=jÞPj−1

i=0Pt− i for j= {s,l} and s= {1, 2}, l
= {9,12} and where Pt is the level of the S&P Composite index. The two l-period momentum rule indicators (MOIl,t) are
defined such that MOIl,t: = 1 if Pt≥ Pt− l, indicating a buy signal, and are defined to be zero otherwise, where l= {9, 12}.
The four on-balance volume rule indicators (OBVs,l,t) are defined such that OBVs,l,t: = 1 if MAOBV

s,t ≥MAOBV
l,t , indicating a

buy signal, and are defined to be zero otherwise, where MAOBV
j,t : = ð1=jÞPj−1

i=0obvt− i for j= {s, l} and s= {1, 2}, l= {9, 12},
and obvt : =

Pt
k=1VOLkDk , where VOLk is trading volume for the S&P Composite index in period k and Dk is a binary

variable such that Dt: = 1 if Pt≥ Pt− 1 and Dt: =−1 otherwise.
The data used to construct the equity premium and the predictors are taken from the updated monthly data set on

Amit Goyal's website (http://www.hec.unil.ch/agoyal/), which is an extended version of the data set used by Welch and
Goyal (2008). A full list of the predictors is given in Table S1 of the Supporting Information Appendix.

62 HARVEY ET AL.

http://www.hec.unil.ch/agoyal/


We begin with a preliminary analysis using some popular orthodox methods for detecting predictability. Table S2 in
the Supporting Information Appendix reports, for each predictor variable considered, the estimated slope parameter (β̂),
a right-tailed Newey–West t-test of significance (tNW) and the standard and adjusted R2 values for orthodox bivariate
regression models applied to the full sample of data using OLS for parameter estimation. For both the MFVs and the
TAIs, consistent with many of the previous empirical studies discussed in Section 1, very little evidence of predictability
is provided by the tNW tests run at conventional significance levels and in all cases the R2 values are under 1%. It is
important to recognize that, although popular in studies of equity premium predictability, orthodox t-tests (including
tNW) can be misleading in this case because of the highly persistent lagged regressors used (see again the discussion in
Section 1); therefore also reported in Table S2 is the IVcomb test of Breitung and Demetrescu (2015). This statistic has a
standard normal asymptotic null distribution, such that the test is valid, irrespective of the persistence of the predictor
and any heteroskedasticity present in the errors. As discussed in Remark 4 of Breitung and Demetrescu ((2015), p.364),
the IVcomb test can only be validly implemented as a two-tailed test. For the MFVs there is no statistically significant
evidence of predictability from IVcomb at conventional significance levels, and only a single rejection at the 0.10 signifi-
cance level for the TAIs.10

Recall that in outlining our monitoring procedure in Section 3 we assumed in generating the empirical critical
value, cvπ, that there was no predictability over the training periods. To assess how this assumption sits with our data
sets we apply the same methods used for obtaining the full-sample results in Table S2 to the training periods employed
in the monitoring application below. Although we present the results for all of the methods used in Table 2, to assess
the presence of predictability in these training periods we focus on the IVcomb test. For the monitoring application
below, our initial choice of training periods is 12/74–10/98 (for m= 15), 12/74–07/97 (for m= 30), and 12/74–01/95 (for
m= 60). These are the implied training periods given by T∗= 302−m, where observation t= 302 is the date at which
monitoring starts in the application below, 01/00. If there is statistically significant evidence of predictability for an ini-
tial choice of training period, but this is thought to be due to a period of predictability towards the end of that training
period, then we recommend ending the training period at an earlier date so as to reduce the likelihood that it contains
predictability. Thus the final training periods employed when monitoring could finish earlier than the initial choice of
training period; see the discussion in Section 3.4.11

Our preliminary analysis of the data over the implied training periods reveals that for the two interest rate series
stt − 1 and ltt− 1, and for the bond yield spread dspt− 1, there is statistically significant evidence of predictability at con-
ventional significance levels from IVcomb for one or more values of m. Furthermore, the rejections obtained do not
appear to be driven by predictability at the end of these implied samples. Therefore, in the monitoring application
below we continue to use the implied training periods for these three predictors despite the rejections from IVcomb. Sta-
tistically significant evidence of predictability from IVcomb is also obtained for ntist− 1, for all values of m. In this case,
we find that predictability is concentrated in the data from 01/92 through to the end of the training periods. Hence, for
this predictor and for all values of m, we end the relevant training periods at 12/91 in the monitoring application below.
For all of the other MFV and TAI predictors no statistically significant evidence of predictability is found from IVcomb

using the implied training periods. The full set of results from the preliminary analysis of the data over the training
periods (using the adjusted training period for ntist− 1) are given in Tables S3 and S4 in the Supporting Information
Appendix for the MFVs and TAIs, respectively.

5.2 | Monitoring results

We assume that a practitioner applies our MAX and SEQ procedures to monitor for the emergence of predictive regimes
from 01/00 (so in all cases T∗+m= 302). Results are presented assuming that monitoring continues through to the
final data observation: 12/15. In real-world applications it is not envisaged that our procedures would be used for con-
tinuous monitoring over anything like such a long period, but it is helpful to present the results through to 12/15 to

10Financial theory suggests negative predictive power for stt− 1, ltt− 1, ntist− 1, and inft− 1. We therefore multiply each of these predictors by −1 so that
a right-sided test (excepting the IVcomb test which, as discussed above, is implemented as a two-tailed test) is appropriate for detecting predictability.
See footnote 5 for further details.
11If predictability is present during the training period, as the simulations in Section 4 demonstrate, our procedure can still be useful for detecting
positive predictability over the monitoring period. Note that if negative predictability exists over the training period and a predictability regime
change is detected using the upper-tailed version of our procedure, we cannot conclude that the change is to a period of positive predictability without
further analysis, because it could be due to a change to a period of no, or less negative, predictability.
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illustrate the relationship between the length of the monitoring period and the FPR. Results are computed for m= {15,
30, 60}. For the SEQ procedure we have computed results for both 0.10 and 0.05 level estimated critical values; that is,
cvπ for π = {0.10, 0.05}, but we concentrate here on the results for π = 0.10. The results for π = 0.05 are given in
Tables S5 and S6 of the Supporting Information Appendix.

Table 1 reports the number of predictive regimes detected by MAX and SEQ (with π = 0.10) respectively. For each
predictor where one or more predictive regimes are detected, Table 2 reports the date at which the first regime is
detected and the associated empirical FPR for both MAX and SEQ (using cv0.10). Note that the TAI predictors are 0–1
dummy variables that will often take the same value for several consecutive observations, and consequently the sub-
sample τe,m values can be undefined when the TAI does not change over the subsample. If τe,m is undefined during the
monitoring period it simply means that at the relevant observation when this occurs the test statistic is uninformative
about the presence of predictability, but the τe,m values that are defined can still be used for monitoring. However, a
large number of undefined test statistics in the training period could have a detrimental impact on the finite-sample
performance of the procedure. For completeness, the results for m= {15, 30} are reported in these tables, although for
some of the TAIs undefined test statistics occur quite frequently over the training period with these values of m. In prac-
tice, we recommend using m≥ 60 when using our procedure with these particular TAIs to minimize the number of
undefined test statistics over the training period. Alternatively, for a given value of m, reducing the value of l when con-
structing the TAIs will result in fewer undefined test statistics. In the application here we report results for l= {9, 12} to
be consistent with the regression-based analysis of TAIs in Neely et al. (2014), even though for some of the MOIs and
OBV indicators with m= 60 and these values of l, τe,m is occasionally undefined over the training and/or monitoring
period. For the MAIs with l= {9, 12} and m= 60 there are no undefined test statistics.

It can be seen from Table 1 that, in total, employing the three subsample sizes m= {15, 30, 60} leads to one or more
predictive regimes being detected by MAX for eight of the 10 MFVs. MAX finds no evidence of predictability for spt− 1

TABLE 1 Number of predictive regimes detected

by MAX and SEQ
MAX SEQ, π= 0.10

m= 15 m= 30 m= 60 m= 15 m= 30 m= 60

MFVs

dyt− 1 0 2 1 1 0 2

dpt− 1 0 1 1 1 0 3

ept − 1 1 2 1 2 3 1

bmt− 1 1 0 2 1 0 1

stt− 1 0 1 1 0 0 0

ltt− 1 0 3 1 3 1 2

spt− 1 0 0 0 0 0 0

dspt− 1 1 2 1 1 0 0

ntist− 1 0 1 0 0 0 0

inft− 1 0 0 0 2 0 0

TAIs

MAI1,9,t− 1 0 3 3 0 1 2

MAI1,12,t− 1 2 1 3 0 2 3

MAI2,9,t− 1 1 3 2 0 1 2

MAI2,12,t− 1 1 1 3 0 2 3

MOI9,t− 1 0 0 3 0 3 2

MOI12,t− 1 0 3 3 0 2 2

OBV1,9,t− 1 0 2 0 0 1 1

OBV1,12,t− 1 1 0 2 1 2 1

OBV2,9,t− 1 1 0 1 0 0 2

OBV2,12,t− 1 0 0 3 1 1 3
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and inft− 1. Note that the total number of MFVs found to have predictive power is lower for m= 15 than for the larger
values of m considered. In total, one or more predictive regimes are detected for all 10 of the TAIs considered, and the
number of TAIs found to have predictive power increases with m: from five for m= 15, to six for m= 30, and nine for
m= 60.

Consider now the results from using the SEQ procedure, also given in Table 1. In total, employing the three subsam-
ple sizes m= {15, 30, 60}, one or more predictive regimes are detected by SEQ for seven of the 10 MFVs, and for all of
the TAIs. Note that, in contrast to MAX, the total number of MFVs found to have predictive power is largest for m= 15:
predictive regimes are detected for seven MFVs when m= 15, two when m= 30, and five when m= 60. The total num-
ber of TAIs found to have predictive power increases with m, from two for m= 15, to nine for m= 30, and 10 for
m= 60. Our results from both MAX and SEQ are, in general, consistent with the findings in Neely et al. (2014), that
stronger evidence of predictability is found for the TAIs than for the MFVs.

It can be seen in Table 2 that for many of the MFV and TAI predictors a predictive regime is first detected around
the time of the dot-com bubble/crash in the late 1990s/early 2000s, or the global financial crisis in 2008–2009. Table 2
also shows that, as might be expected, for some of the predictors our procedures detect a predictability regime around
the same date and, in some cases, in the same month. Consider, for example, the results using MAX with m= 30. For
both dyt− 1 and dpt− 1, predictability is first detected in 02/01. For dspt− 1 and ntist− 1, in both cases predictability is first
detected in 08/11.

The dating procedures discussed in Section 3.3 also provide useful information on the location of the regimes. As an
example, Figure 6 graphs τe,m along with the weak set of dates obtained using MAX with m= 30 for the dividend–price
ratio dpt− 1 as a predictor (note that the strong set of dates is empty in this case). Figures 7 and 8 graph the MAX results

TABLE 2 First month where a predictive regime is detected by MAX and SEQ

MAX SEQ, π= 0.10

m= 15 m= 30 m= 60 m= 15 m= 30 m= 60

MAX FPRMAX MAX FPRMAX MAX FPRMAX SEQ FPRSEQ SEQ FPRSEQ SEQ FPRSEQ

MFVs

dyt− 1 N/A N/A 02/01 0.055 02/14 0.483 09/07 0.255 N/A N/A 02/02 0.125

dpt− 1 N/A N/A 02/01 0.055 02/14 0.483 05/15 0.405 N/A N/A 01/02 0.121

ept− 1 07/11 0.338 01/08 0.286 01/09 0.375 09/03 0.142 01/04 0.168 12/04 0.248

bmt− 1 07/00 0.025 N/A N/A 07/01 0.095 10/00 0.035 N/A N/A 02/02 0.125

stt− 1 N/A N/A 03/11 0.358 10/12 0.458 N/A N/A N/A N/A N/A N/A

ltt− 1 N/A N/A 04/03 0.142 03/05 0.257 10/03 0.145 08/04 0.188 08/05 0.272

spt− 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

dspt− 1 07/12 0.357 08/11 0.366 02/14 0.483 05/12 0.354 N/A N/A N/A N/A

ntist− 1 N/A N/A 08/11 0.444 N/A N/A N/A N/A N/A N/A N/A N/A

inft − 1 N/A N/A N/A N/A N/A N/A 06/04 0.166 N/A N/A N/A N/A

TAIs

MAI1,9,t− 1 N/A N/A 12/07 0.284 10/08 0.368 N/A N/A 11/09 0.330 06/04 0.229

MAI1,12,t− 1 11/00 0.039 01/08 0.286 09/02 0.153 N/A N/A 01/04 0.168 09/02 0.153

MAI2,9,t− 1 01/08 0.263 11/08 0.307 10/08 0.368 N/A N/A 07/10 0.344 10/05 0.278

MAI2,12,t− 1 01/08 0.263 01/08 0.286 09/01 0.103 N/A N/A 02/04 0.171 04/02 0.133

MOI9,t− 1 N/A N/A N/A N/A 10/00 0.052 N/A N/A 10/03 0.160 02/02 0.125

MOI12,t− 1 N/A N/A 08/03 0.154 12/00 0.062 N/A N/A 06/04 0.182 12/01 0.117

OBV1,9,t− 1 N/A N/A 11/08 0.307 N/A N/A N/A N/A 06/09 0.320 05/10 0.407

OBV1,12,t− 1 01/08 0.263 N/A N/A 02/09 0.377 11/09 0.304 06/04 0.182 12/09 0.397

OBV2,9,t− 1 01/08 0.263 N/A N/A 02/09 0.377 N/A N/A N/A N/A 06/10 0.409

OBV2,12,t− 1 N/A N/A N/A N/A 11/08 0.370 11/09 0.304 03/10 0.337 10/01 0.108
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with m= 30 for the short-term and long-term interest rates, stt− 1 and ltt− 1. A selection of graphical results for the other
predictors for which at least one predictive regime is signaled for either the MAX or SEQ procedures are provided in the
Supporting Information Appendix in Figures S10–S13. For presentational purposes, in these graphs we do not display
τe,m over the entire training period and instead start the horizontal axis 5 years before the end of each training period.

FIGURE 6 dpt− 1 , MAX procedure, m= 30: (τe,m), (maxe2½m+1,T∗�τe,m), (T∗), (T∗+m), (first rejection), (weak

set of dates), (false positive rate), (NBER indicator) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 stt− 1 , MAX procedure, m= 30: (τe,m), (maxe2½m+1,T∗ �τe,m), (T∗), (T∗+m), (first rejection), (weak

set of dates), (false positive rate), (NBER indicator) [Colour figure can be viewed at wileyonlinelibrary.com]
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Also indicated on these graphs are the end of the training period T∗, the date when monitoring starts T∗+m, the
largest τe,m in the training period (maxe2½m+1,T∗�τe,m ), the date of the first significant rejection for the ith predictive
regime ji (for the MAX procedure, this is the date at which the ith predictive regime is detected), and the FPR, based on
Equation 9, as a function of E.

Figure 6 shows that for dpt− 1 the MAX procedure with m= 30 detects a single predictive regime in 02/01 and the
weak set of dates covers the period 09/98–03/01. Thus our results suggest that dpt− 1 had predictive power for equity
returns during the latter years of the dot-com bubble period. Note that the weak set of dates starts before the monitoring
period, which can happen for early rejections because the rejection itself is indexed on the end date of the subsample
window. For stt− 1, the MAXprocedure with m= 30 detects one predictive regime, and Figure 7 shows that the weak set
of dates covers the period 10/08–03/11. However, for ltt− 1 the MAXprocedure with m= 30 detects three predictive
regimes. Figure 8 shows that in this case the weak set of dates covers the periods 11/00–11/04, 03/11–08/13, and
05/11–11/13. Therefore, the weak set of dates associated with the second and third regimes overlap—suggesting a single
period of predictability that begins in 03/11 and ends in 11/13. Figure 8 shows that the first regime detected by MAX for
ltt− 1 in 04/03 follows a gradual increase in τe,m that began after the dot-com crash and continued through to late 2004.
Over this period US interest rates gradually fell and equity markets recovered after the dot-com crash and 2001 reces-
sion. Our results suggest that the long-term interest rate had predictive power over this period but the short-term inter-
est rate did not. The second and third regimes for ltt− 1 are shorter in duration than the first and are largely driven by a
rapid and short-lived increase in τe,m during 2013.

Neely et al. (2014) investigated differences in predictability between macroeconomic recession and expansion
periods by computing separate R2 statistics for predictive regression models using the NBER indicator of recessions and
expansions to partition the relevant data. They found that for both the MFVs and TAIs predictability was substantially
higher over recessions than over expansions. In the light of these findings it is interesting to compare the subsample
τe,m values over the monitoring period with the NBER indicator to see if our procedure finds a similar pattern of sup-
port for predictability over the business cycle. Hence the NBER indicator is also plotted in Figures 6–8. There are two
US recessions over the monitoring period 01/00–12/15: one short recession in early 2001 (March 2001–November
2001), and one major recession associated with the global financial crisis (December 2007–June 2009). Figure 6 shows

FIGURE 8 ltt− 1 , MAX procedure, m= 30: (τe,m), (maxe2½m+1,T∗ �τe,m), (T∗), (T∗+m), (first rejection),

(second rejection), (third rejection), (weak set of dates), (false positive rate), (NBER indicator) [Colour figure can be viewed

at wileyonlinelibrary.com]
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that for dpt− 1 predictability peaks at the start of the 2001 recession but declines during the course of the recession; for
stt− 1 and ltt− 1 the predictive regimes detected do not appear to be correlated with the business cycle. As shown in the
Supporting Information Appendix, for the other predictors, while there is some evidence suggesting that, consistent
with the findings in Neely et al. (2014), predictability is stronger during recessions than during expansions, it is not a
pattern obtained for all of the predictors.12 It is interesting to relate our results to recent research by Farmer et al.
(2019), who also focused on detecting short pockets of in-sample predictability in US equity returns. While the sample
sizes and the number of predictors they analyzed differ from ours, there are some similarities between their results and
ours. For example, for the dividend yield, Farmer et al. found evidence of pockets of predictability in the early 2000s
and the early/mid 2010s; and for the Treasury bill rate in the late 2000s and the early/mid 2010s. These dates are similar
to the predictive regime dates obtained for these predictors using our MAXprocedure.

The predictive regimes in Figures 6–8 often end quite shortly after each regime is first detected (e.g., in Figure 7, the
weak set of dates ends immediately after the regime is detected). Indeed, this general pattern was observed for all of the
MFVs and for the majority of the TAIs. Hence the strong set of dates for most of the predictors is empty. This suggests
that, although investors using our procedure in real time would have been able to detect predictability in these cases,
there may have been very little time after the point of detection to exploit the predictability before it no longer existed.
To investigate this point using traditional forecasting methods, for each MFV predictor where one or more predictive
regimes are detected by MAX and/or SEQ with m= 30 we computed out-of-sample forecasts exploiting the information
from the monitoring procedures. Specifically, for each of these predictors we move forward through the monitoring
period 1 month at a time, computing MAX and SEQ at each month along with one-step-ahead forecasts. To compute
the forecasts we use a fixed mean benchmark model estimated using an expanding sample of data that starts at the first
observation, until the relevant monitoring procedure detects a first predictive regime. When this occurs we use the rele-
vant regression model to compute the forecast for the next month, estimated using an expanding sample of data that
starts at the weak start date for the relevant predictive regime. When the first predictive regime ends, we stop forecast-
ing. We compared the forecasts computed in this way with the forecasts obtained using the fixed mean benchmark
model for the whole forecasting period. The mean squared forecast error (MSFE) for each procedure, along with the
Diebold and Mariano (1995) test of equal forecasting accuracy (employing the Harvey, Leybourne, & Newbold, 1997,
bias correction and Student's t critical values), and the out-of-sample R2 value for the procedure are reported in
Table S7 in the Supporting Information Appendix. As expected, because the predictive regimes end so quickly after they
are discovered, for the majority of predictors there is very little difference between the MSFE obtained exploiting our
MAX and SEQ procedures in this way and the MSFE for the benchmark model. In some cases the MSFE using our test
in this way is lower than the benchmark model, but the differences are not statistically significant. Paye and Tim-
mermann (2006) and Timmermann (2008) argue that if predictability reflects market inefficiencies then it is only ever
likely to be a short-lived phenomenon because, when it exists, investors will quickly allocate capital to exploit its pres-
ence. Our finding of short pockets of predictability that end quickly after being detected is entirely consistent with
this view.

6 | CONCLUSIONS

We have developed new real-time monitoring procedures for detecting the emergence of predictive regimes. Our detec-
tion procedures are based on the sequential application of standard heteroskedasticity-robust (predictive) regression
t-statistics for predictability to end-of-sample data. We have suggested two possible detection rules, both of which are
designed to be robust to both the degree of persistence and endogeneity of the regressors in the predictive regression
and are such that their false positive rates can be controlled, for a given monitoring period length, by using information
obtained from data in a training period. We have applied our proposed monitoring procedures to investigate for the
presence of regime changes in the predictability of the US equity premium at the 1-month horizon by traditional macro-
economic and financial variables, and by binary technical analysis indicators. Our results suggest that the 1-month-
ahead equity premium has displayed episodes of temporary predictability and that these episodes could have been
detected in real time by practitioners using our proposed methodology.

12We note that Neely et al. (2014) studied a longer sample of the data than the sample used here that ends earlier (12/50–12/11) and their empirical
work is fundamentally different from ours, being an ex post analysis of predictability (in-sample and out-of-sample) rather than a real-time
monitoring application.
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