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Abstract 

 

The contact system is composed of Factor XII (FXII), prekallikrein (PK) and co-factor 

kininogen (HK). The globular C1q receptor (gC1qR) has been shown to interact with FXII 

and HK. We reveal the FXII fibronectin type II domain (FnII) binds gC1qR in a Zn2+ 

dependent fashion and determined the complex crystal structure. FXIIFnII binds the gC1qR 

trimer in an asymmetric fashion with residues Arg36 and Arg65 forming contacts with two 

distinct negatively charged pockets. gC1qR residues Asp185 and His187 coordinate a Zn2+ 

adjacent to the FXII binding site and a comparison with the ligand free gC1qR crystal 

structure reveals the anionic G1-loop becomes ordered upon FXIIFnII binding. Additional 

conformational changes in the region of the Zn2+ binding site reveal an allosteric basis for 

Zn2+ modulation of FXII binding. Mutagenesis coupled with SPR demonstrate the gC1qR 

Zn2+ site contributes to FXII binding and plasma based assays reveal gC1qR stimulates 

coagulation in a FXII-dependent manner. Analysis of the binding of HK domain 5 (HKD5) to 

gC1qR shows only one high affinity binding site per trimer. Mutagenesis studies identify a 

critical G3-loop located at the center of the gC1qR trimer suggesting steric occlusion as the 

mechanism for HKD5 asymmetric binding. Gel filtration experiments reveal that gC1qR 

clusters FXII and HK into a higher order 500kDa ternary complex. These results support the 

conclusion that extracellular gC1qR can act as a chaperone to cluster contact factors which 

may be a prelude for initiating the cascades which drive bradykinin generation and the 

intrinsic pathway of coagulation. 

 
 
KEY POINTS 
 
 Crystal structure of the Factor XII fibronectin type II domain in complex with gC1qR 
reveals an asymmetric interaction and bound Zn2+ ions 
 
 
 gC1qR clusters Factor XII and kininogen into higher order ternary complexes  
 
KEY WORDS 
 
Plasma kallikrein, Factor XII, Globular complement C1q receptor, Kininogen 
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Introduction  

The contact activation system lies at the crossroads of plasma coagulation and innate immunity and 

consists of proteases factor XII (FXII), prekallikrein (PK) and co-factor high molecular weight 

kininogen (HK)1-3. Binding of contact factors to the cell surface has been shown to be mediated by the 

complement C1q receptor (gC1qR also known as C1QBP, HABP1, P32) and the urokinase receptor 

(uPAR)4-7. gC1qR is a multi-compartmental and multi-functional protein essential for mitochondrial 

function8, but is also present at the surface of stimulated cells9-11. gC1qR has no plasma membrane 

anchor but forms interactions with other cell surface proteins and receptors (cytokeratin-1, β1-integrin, 

DC-specific ICAM-3–grabbing nonintegrin receptor, fibrinogen)4,12-15. The gC1qR crystal structure is 

a doughnut shaped symmetrical trimer with both a highly acidic ligand binding surface and a cell 

binding face16. gC1qR has been characterized as binding a diverse array of structurally distinct 

ligands7,9,15,17,18 and has been proposed to function as a chaperone directing the assembly of 

multiprotein complexes19.  

  The domain structures of FXII, HK and gC1qR are shown in Figure 1a. Crystal structures 

have been determined for the FXII protease domain20-22 and the fibronectin type I (FnI) and epidermal 

growth factor-like domains (EGF)23. As the N-terminal FXIIFnII domain is central to understanding 

processes of FXII conformational regulation24 we determined the crystal structure in complex with 

gC1qR. This revealed an asymmetric FXII binding mode and a novel Zn2+ binding site in the gC1qR 

structure.  

 

Experimental Procedures 

Protein Expression and Purification 

The human gC1qR (residues 74-282 with Leu74 substituted to Met74) E.coli expression vector was a 

gift from Dr Adrian R. Krainer, Cold Spring Harbor Laboratory, USA. Expression and purification of 

gC1qR was performed as described16. gC1qR variants were generated by site-directed mutagenesis 

using the Agilent technologies QuikChange kit. HKD5 was expressed in E.coli using the pET28a 

vector and D5-1, D5-2, HK 401-438 were expressed as GST fusion proteins using the pGEX 4T-1 

vector (Supplemental Figure 1). Untagged FXIIFnII domain (residues 1-71) was cloned into vector 
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pMT-PURO for expression in the insect cell based DES system (Invitrogen) using previously 

described protocols22. FXIIFnII was initially purified from media using a Capto-S column (GE 

healthcare) equilibrated with 0.05 M MES pH 6.0 and a gradient of 0-1.0 M NaCl was used for 

elution. Subsequently, this was applied to a HiTrap Ni2+ column (GE Healthcare) and eluted using an 

imidazole gradient concentration of 0-1.0 M and a final purification step of gel filtration with a 

HiLoad SuperdexTM  75 16/60 column (GE healthcare) in 0.05 M Tris-HCl pH 8.0 and 0.1 M NaCl 

(Supplemental Methods). 

 

Crystallization, data collection and structure determination   

FXIIFnII was mixed with gC1qR and 50 μM ZnCl2 and the complex was isolated using a SuperdexTM 

increase 200 10/300 column equilibrated with 0.02 M HEPES pH 7.4, 0.14 M NaCl (Figure 1c). 

FXIIFnII-gC1qR complex fractions were collected and concentrated to 5.3 mg/ml. Crystals were 

obtained in 0.1 M NaCacodylate pH 5.5, 0.1 M CaAc2, 12% (w/v) PEG 8000 at 10 °C. A dataset for a 

single FXIIFnII-gC1qR complex crystal was collected and processed using the CCP4 suite and the 

structure determined by molecular replacement with Phaser25 and the gC1qR structure (PDB:1P32) as 

a template. Model building (COOT) and refinement (REFMAC)26 provided a final refined model 

containing the gC1qR trimer, FXIIFnII and three Zn2+ (Table 1).  

 

Surface Plasmon Resonance (SPR) 

Plasma purified FXII was purchased from Enzyme Research Laboratories and immobilised onto a 

CM5 chip using an amine coupling kit (GE healthcare) and experiments were performed on a 

Biacore® 3000 instrument. The running buffer was 0.02 M HEPES pH 7.4, 0.14 M NaCl and 50 μΜ 

ZnCl2 and the chip surface was regenerated with 1M NaCl, 0.02 M EDTA. To assess any non-specific 

binding, the analyte (gC1qR) was also injected over an empty flow cell. Binding curves were 

analysed on the basis of the SPR response units recorded at equilibrium for each analyte protein 

concentration and a Hill plot was generated using Prism 6 (GraphPad Software Inc.). 
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Isothermal Titration Calorimetry (ITC) 

A MicroCal VP ITC system (Malvern) was used for all ITC experiments performed at 25°C. The ITC 

cell contained 1.4 mL of wt-gC1qR or gC1qR variant whilst 300 μL of D5 ligand was loaded into the 

syringe. The reference power was set at 5 μcal/sec, and the syringe stirring speed was set at 300 rpm. 

An initial pre-equilibration step of 1 hour was followed by 30 x 10 μL injections. Ligand dilution 

effects were tested by running a ligand to buffer control using the same titration parameters. The 

ligand to buffer control was subtracted from the experimental data, and any anomalous titration points 

were removed. Curves for D5-2 and HK 493-516 were fit to a one binding site model, whereas curves 

for D5 and D5-1 were fit to a three site sequential binding model (Table 2). 

 

Plasma based coagulation assays 

Blood was drawn from healthy volunteers into vacuettes (Greiner Bio-One Ltd) containing 3.2 % 

sodium citrate. To isolate platelet poor plasma, tubes were spun at 1860 x g for 30 min at 4°C. Pooled 

normal plasma (PNP) was derived from at least 20 donors, aliquoted and stored at  -70°C. Ethical 

approval was obtained from the University of Aberdeen College Ethics Review Board.  The activated 

Partial Thromboplastin Time (aPTT) assay was performed in a STart 4 coagulometer (Diagnostica 

Stago). PNP ± gC1qR (50-200 µg/ml) was incubated with PTT Automate reagent (Stago UK, Theale, 

England) and Zn2+ (50 µM) at 37°C for 180 s. Clotting was initiated by addition of CaCl2 (0.0083 M). 

Thrombin generation was measured in Calibrated Automated Thrombinoscope. PNP, FXII or Factor 

XI (FXI) deficient plasma (Hypen Biomed, France) ± gC1qR (50-200 µg/ml) and Zn2+ (50 µM) were 

added to thrombin calibrator and MP reagent (Stago UK, Theale, England) in Greiner 96-well plates.  

The plate was incubated for 10 min followed by addition of FluCa solution, as per manufacturer 

guidelines. Thrombinoscope software package (Synapse Bv, Maastricht, Netherlands) was used to 

quantify real-time thrombin activity. 

 

Data sharing statement 

The FXIIFnII-gC1qR complex crystal structure has been deposited in the PDB (www.rcsb.org) with 

accession code 6SZW.  
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Results 

Structure of the FXIIFnII-gC1qR complex 

 Recombinant FXIIFnII domain (residues 1 to 71) was produced in insect cells and was shown 

using gel filtration to bind gC1qR in the presence of 50μM ZnCl2 (Figure 1b,c). Complex formation 

was not observed at lower ZnCl2 concentrations, consistent with the previous report by Joseph et al. 

on the Zn2+ dependency of FXII binding to gC1qR7. The FXIIFnII-gC1qR structure was determined 

to 3Å resolution (Table 1, Figure 1d). Figure 1e shows FXIIFnII has an asymmetric binding mode and 

unexpected stoichiometry of one FXIIFnII bound to the gC1qR trimer. The asymmetry of binding is 

achieved in part by the Arg36 and Arg65 side chains of FXII reaching out via the guanidinium groups 

to form contacts with distinct gC1qR negatively charged pockets termed G1 and G2 (Video 1,2). 

gC1qR pocket G1 consists of anionic residues 190-202 (termed the G1-loop) together with residues 

Tyr236 from the αB helix and Trp233, Asp229 from the αB-β7 loop burying a surface area of 489Å2. 

The FXIIFnII β2 strand forms main chain to main chain interactions resulting in an anti-parallel β-

sheet contact with gC1qR residues Glu198-Ser201 (Figure 2a,b). Electrostatic complementarity 

occurs via negatively charged side chains from gC1qR (Asp197, Asp229) forming salt bridge 

interactions with FXII side chains Lys45 and Arg36, respectively. At the tip of the FXIIFnII β1-β2 

hairpin the Arg36 side chain forms further hydrogen bonds to the main chain carbonyl of Thr228 and 

a cation-Pi interaction with the side chain of Tyr236. Central hydrophobic contacts are made by the 

side chain of FXII Tyr39 with gC1qR Ala199 and flanking this FXII Gln37 hydrogen bonds to the 

side chain of gC1qR Ser201 (Figure 2b).   

 The FXII Arg65 side chain utilizes the guanidinium group to form interactions with three 

gC1qR residues; a salt bridge to Asp249, a hydrogen bond to the Gly247 main chain carbonyl, and 

hydrogen bonds to the Ser106 main and side chain (labeled G2 pocket in Figure 2c). Additional 

gC1qR G2 pocket interactions occur with FXII residues Asp63, Gln64 forming a salt bridge and 

hydrogen bond to the gC1qR Arg122 side chain and Ser106 main chain nitrogen, respectively burying 
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a total surface area of 238A2. In between the G1 and G2 pockets a hydrophobic contact is formed 

between the FXIIFnII Gln62 and the gC1qR Trp233 side chain (Figure 2d).  

 

Quantitation of FXII-gC1qR ligand binding 

The FXIIFnII-gC1qR structure is consistent with previous ELISA data from Gebrehiwet et al. 

showing the single point mutation of gC1qR Trp233Gly and G1-loop deletion variants disrupted FXII 

binding27. The involvement of the gC1qR G2 pocket residues in the interaction with FXII is novel and 

we developed an SPR assay to quantitate the gC1qR-FXII interaction with a series of gC1qR variants. 

Plasma purified full-length FXII was amine-coupled to a CM5 sensor chip (GE Healthcare) and a 

reference cell was prepared by blank amine-coupling. A recombinant gC1qR wild-type (wt-gC1qR) 

dilution series was conducted and analysis of sensorgrams resulted in a KD of 12012 nM in the 

presence of 50 μM ZnCl2 (Figure 3a). Consistent with the gel filtration data, no complex was observed 

in the absence of Zn2+ or with EDTA in excess (5 mM). To test the contribution of the gC1qR G1 and 

G2 pockets to binding FXII we prepared two gC1qR variants replacing key residues with alanine; 

T228A, D229A, W233A, Y236A (variant gC1qR-G1-4Ala) and S106A, D249A (gC1qR-G2-2Ala). 

The structural integrity of the recombinant gC1qR variants was confirmed by gel filtration revealing 

native-like characteristics of the trimer. Both the gC1qR G1 and G2 pocket variants failed to elicit a 

significant signal response or a clear association binding curve under the same conditions of the SPR 

binding assay to FXII illustrating the contribution of residues from the G1 and G2 pocket to FXII 

binding (Figure 3b,c).  

 

Zn2+ binding to the gC1qR receptor induces a conformational change 

 Kumar et al. showed gC1qR displays specific binding to Zn2+ ions28 and divalent cations such 

as Ca2+ and Mg2+ do not bind or support formation of the complex with FXII. Utilizing the structure 

factors collected for the FXIIFnII-gC1qR complex we observed the three highest peaks in an 

anomalous difference Fourier map were consistent with a Zn2+ coordinated by residues Asp185 and 

His187. The measured bond lengths are consistent with Zn2+ tetrahedral coordination geometry with 

two water molecules also bound. To test the contribution of the gC1qR Zn2+ binding site to FXII 
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binding we prepared a gC1qR H187A variant. SPR experiments were used to assess binding to 

immobilized full-length FXII and revealed attenuated binding of gC1qR H187A compared to wt-

gC1qR which could not be fitted to derive a KD (Figure 3d). The Zn2+ is located close to the base of 

the acidic G1-loop adjacent to the FXIIFnII binding site (Figure 3e). In the previously published 

gC1qR crystal structure (PDB:1P3216) no metal ion is observed bound at the Asp185-His187 site. We 

also determined a 1.7 Å resolution gC1qR structure in the presence of Ca2+ ions and as expected no 

metal ion was bound between residues His187 and Asp185 (unpublished results).  

 A comparison of the ligand free gC1qR structures with the FXII-gC1qR complex reveals that 

the Zn2+ is replaced by the Arg207 side chain which forms a salt bridge with Asp185 (Figure 3f). 

Arg207 does not directly contact FXII but in the FXII-gC1qR complex it forms a salt bridge to 

Glu190 which could indirectly influence FXII binding via the G1-loop. The Trp233 side chain is 

observed to have multiple conformations in the unbound crystal structures and resembles a flexible tip 

of the thumb-like helix αB which can open and close to allow ligand access to the G1-pocket (Video 

3). The other major difference is that the anionic G1-loop becomes ordered upon FXIIFnII binding 

and this loop is not resolved in the unbound gC1qR crystal structures and is assumed to be flexible. 

These two sets of conformational changes in the region of the G1-pocket suggest an indirect/allosteric 

basis for the Zn2+ modulation of FXII binding.  

 

HKD5 binding to gC1qR 

 HK binding to gC1qR has been quantified by a number of different techniques7,29-32 and SPR 

data in the study published by Pixley et al. revealed that binding to full-length HK was in the range 

0.7–0.8 nM which could be abolished in the presence of chelating agent EDTA33. The HKD5 domain 

and constituent peptides have been characterized as the key cell and Zn2+ binding34-36 sites of HK. To 

build on this previous data and conduct fine mapping of HKD5 binding regions and determine the 

stoichiometry of the interaction with the gC1qR trimer we expressed a series of HKD5 constructs 

(Figure 4a). Using gel filtration we were able to detect the co-elution of the HKD5-gC1qR complex 

when applied mixed in a 2:1 ratio whereas a 3:1 ratio revealed excess unbound HKD5 eluting 

separately (Figure 4b). To explore this further we utilized ITC with gC1qR in the sample cell titrated 
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with HKD5. These data confirmed that HKD5 binds to gC1qR in the absence of Zn2+, and binding 

was unaffected by an excess of EDTA in the ligand buffer (Figure 4c). Examination of the binding 

isotherm revealed a multi-step binding curve which could be modeled as three sequential binding 

steps with very different affinities (KDs of~1.9 nM, ~64.9 nM and ~1.01 μM). The symmetrical 

gC1qR trimer is therefore unable to accommodate HKD5 at the three equivalent sites, demonstrating 

allosteric effects between sites resulting in asymmetric binding. The first event is of high affinity (KD 

of ~1.9 nM), and is associated with a strongly exothermic interaction and a compensating negative 

entropy change, typical of the binding and immobilization of a flexible ligand (Table 2). The second 

and third binding events are 35-fold and 500-fold weaker with much diminished enthalpy and entropy 

changes, consistent with partial steric occlusion at these two sites once the first high affinity site is 

occupied.  

 

HKD5 Zn2+ dependent component to gC1qR binding 

 To determine the origin of the allosteric component of the interaction, we expressed 

recombinant N and C-terminal fragments of HKD5 in which D5-1 (residues 401-473) contains the 

His-Gly rich region and D5-2 (residues 474-531) is His-Gly-Lys-rich (Figure 4a). HKD5 has a His-

rich nature (21% of the HKD5 sequence) and has previously been shown to bind Zn2+ ions34,35. Using 

electrospray ionization mass spectrometry (ESI-MS) with the whole HKD5 we detected polypeptide 

species with 1, 2 and 3 bound Zn2+ ions and two Zn2+ bound in each case to D5-1 and D5-2 constructs 

respectively (Supplemental Figure 3-5).  

 We examined the binding of the D5-1 and D5-2 fragments to gC1qR by gel filtration and 

showed that both components could bind independently. The co-elution of the N-terminal D5-1 with 

gC1qR had a Zn2+ ion-dependency, whereas D5-2 did not. Co-elution of D5-1 with gC1qR could be 

eliminated in the presence of EDTA, but D5-2 was unaffected by EDTA (Figure 4d). This was 

confirmed by ITC measurements, in which titrations in buffer containing EDTA, eliminated the 

interaction with D5-1 but had no effect on D5-2 (Figure 4e,f).  

 The binding isotherms of the two fragments also showed highly distinct ITC profiles with 

HKD5-1 retaining the complex 3-phase binding curve observed for full-length HKD5, whereas the C-
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terminal D5-2 fragment could be modeled as a single phase binding event, with an estimated 

stoichiometry of between 2 and 3 (N-value of 2.3) gC1qR sites each with a Kd of ~763.4 nM. The 

three-phase interaction of D5-1 with gC1qR showed a >40-fold reduction in affinity for the first high-

affinity step compared with full-length HKD5, but only a 25 to 3-fold reduction for the lower affinity 

steps 2 and 3. These data show that the allosteric effects are largely associated with the His-Gly-rich 

D5-1 motif and occur in a Zn2+-dependent manner (Table 2). The observation that the D5-2 fragment 

binds in a Zn2+-independent fashion suggests that this basic His-Gly-Lys-rich D5-2 motif may be 

interacting at a different location on the gC1qR structure to D5-1. In the presence of Zn2+ we were 

able to detect a tri-complex between gC1qR, D5-1 and D5-2 by gel filtration with all components co-

migrating in the same fractions (Figure 4d).  

 To further delineate the site of interaction on D5 we considered still shorter peptide motifs 

derived from D5-1 (HK residues 401-438, HK 439-455, HK 457-475) and D5-2 (HK 493-516) and 

studied the interaction by ITC. None of the peptides derived from D5-1 revealed any binding in the 

presence or absence of Zn2+ ions to gC1qR, suggesting that the binding site covers a much larger 

proportion of the D5-1 fragment (Figure 4g). However, the His-Gly-Lys-rich peptide HK 493-516 

derived from D5-2 produced a Zn2+ independent single site binding isotherm comparable to that for 

D5-2, differing by only 2-fold in binding affinity, which similarly indicated ~3 equivalent sites on the 

gC1qR trimer. The HK 493-516 sequence resembles other peptides rich in Gly-Lys which have been 

characterized as binding to gC1qR37,38 without Zn2+ and an alignment of these sequences is shown in 

Supplemental Figure 7c. 

 

A central gC1qR loop is utilized for HKD5 binding 

Ghebrehiwet et al. utilized deletion mutants to identify gC1qR residues 144-148 and 196-202, 204–

218, as being important for whole HK binding27. To determine the location of the recombinant HKD5 

and D5-1, D5-2 fragment binding sites we prepared four similar gC1qR variants removing negatively 

charged residues from the anionic loop regions; gC1qR-G2-5Ala (residues 146-148 and 156-157 

mutated to Ala), gC1qRdelG3 (G3-loop residues 214-224 deleted), gC1qRdelG1 (G1-loop residues 

196-200 deleted), and a G1-loop variant (residues 196-200) with five acidic residues substituted for 
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Ala termed gC1qR-G1-5Ala (Supplemental Figure 6). ITC experiments revealed only the 

gC1qRdelG3 variant had a significant effect in abrogating binding of HKD5 with other variants 

reproducing the multi-phase binding isotherms evident for wt-gC1qR (Figure 5a-c). We repeated the 

titration with the fragments D5-1 and D5-2 and observed no detectable binding to D5-1 and 

significant attenuation of binding to D5-2 (Figure 5b,c). This indicates that the central acidic G3-loop 

which defines an inner pocket (G3-pocket) plays a significant role in the interaction with HKD5, 

particularly for the binding of the N-terminal D5-1 region (Figure 5d, Video4). The placement of the 

G3-loop at the center of the gC1qR trimer is consistent with the allosteric nature of HKD5 and D5-1 

binding as steric occlusion would reduce the ability of subsequent HKD5 ligands to co-bind (Figure 

5e). Overall the anatomy of the gC1qR monomer is such that it resembles a hand with the FXII 

binding site formed between the index finger (G1-loop) and the thumb (αB) and the palm of the hand 

contains the Zn2+ binding site adjacent to which is the little finger (G3-loop), defining the principal 

HK binding site (Figure 5d, Video4). 

  

Isolation of a gC1qR-HK-FXII ternary complex  

 As both HKD5 and the FXIIFnII domain exhibit asymmetric binding to the gC1qR trimer but 

by different mechanisms we next tested whether the FXIIFnII and HKD5 could bind simultaneously 

to gC1qR. If an excess of HKD5 is present then FXIIFnII cannot compete for binding, and this is 

consistent with multiple interaction sites for HKD5 identified by ITC. However, lower stoichiometric 

ratios of HKD5 reveal both HKD5 and FXIIFnII co-eluting in fractions from the gC1qR complex 

peak shown in Figure 6a. We next extended these studies to a series of gel filtration experiments using 

the full-length plasma purified FXII and HK in isolation and in combination with gC1qR. The 

molecular weights of FXII, HK and gC1qR estimated by reducing SDS-PAGE migration are 80kDa, 

110kDa and 33kDa respectively and equivalent gel filtration estimates are 80kDa (FXII monomer), 

200kDa (HK dimer39) and 90kDa (gC1qR trimer). A mixture of full-length FXII, HK and gC1qR in 

the presence of Zn2+ resulted in co-migration of all three proteins in a single peak corresponding to a 

~500kDa complex (Figure 6b). The stoichiometry of the species in this peak is equivalent to a 1:2:6 

ratio of FXII-HK-gC1qR shown schematically in Figure 6c. The concept of a ternary complex formed 
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by FXII-HK-gC1qR is consistent with previous in vitro experiments by Joseph et al. showing that 

efficient gC1qR stimulation of PKa enzymatic activity requires the presence of PK, FXII, co-factor 

HK and Zn2+ ions40. 

 

gC1qR effects on plasma coagulation  

 We next tested the effects of gC1qR on plasma coagulation in the absence of additional 

stimuli and observed a dose-dependent shortening of clotting time with PNP in the presence of Zn2+ 

(Figure 7a). Thrombin generation experiments revealed a significant shortening in the lag time on 

addition of gC1qR and Zn2+ to PNP which influenced several additional parameters, including peak 

thrombin, endogenous thrombin potential and velocity of thrombin generation (Figure 7b-f). The 

lagtime of thrombin generation in the presence of gC1qR and Zn2+ was delayed by a factor of 2.8 in 

FXII-deficient plasma and absent in FXI-deficient plasma indicating a dependence on the intrinsic 

pathway (Figure 7c). Peerschke et al., also showed that gC1qR did stimulate plasma coagulation but 

not in a FXII dependent manner41 and the reason for this discrepancy may relate to the addition of 

Zn2+. Analysis of two gC1qR variants revealed that the gC1qRdelG3 variant (but not gC1qRdelG1) 

was unable to stimulate thrombin generation to the same degree as wt-gC1qR implicating the central 

G3 loop as being functionally important for stimulation of coagulation. It is unkown whether the 

concentration of endothelial cell bound gC1qR is high enough to support thrombin generation on the 

vessel wall.   

 

Discussion 

How the contact factors assemble on the cell surface and become activated remains one of the 

fundamental and unanswered questions underpinning several pathways driving inflammation and 

thrombosis. The FXIIFnII-gC1qR-Zn2+ complex provides the first structural insight into a gC1qR 

ligand interaction and shows a stoichiometry of one FXIIFnII bound to the gC1qR trimer. The 

asymmetry of FXII binding to gC1qR involves two negatively charged surface pockets whereas for 

HKD5 this is driven by the central location of a critical negatively charged loop and steric occlusion.  

Overall the gC1qR ligand binding mode we observe for FXII and HK is consistent with the molecular 
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mechanism observed for the chaperone heat shock protein 90 (HSP90) whereby multiple client 

proteins can be co-localized by asymmetric binding onto the HSP90 dimer42. The parallel with HSP90 

is pertinent as extracellular HSP90 has been described as a chaperokine43 involved in inflammatory 

processes and was shown to initiate PK-HK activation44. gC1qR has a requirement for FXII, PK and 

HK whereas HSP90 does not require FXII but only PK and HK44.   

 FXII and HK binding to gC1qR is Zn2+ dependent and our data show Zn2+ is bound to gC1qR 

residues Asp185 and His187 in between the FXII and HK binding pockets (Video4). These 

observations build on data from Kumar et al. that describes a Zn2+ dependent conformational change 

in gC1qR28 and thus provides an allosteric mechanism for modulation of the interaction with FXII. 

The biological context of Zn2+ modulation of the FXII-gC1qR interaction is proposed to originate 

from activated endothelial cells or secreted platelet granules45,46. How gC1qR is anchored to the cell 

membrane has been reported to occur via interaction with other cell receptors1 or cytokeratin-14. 

uPAR has also been shown to act as a receptor for FXII and this interaction has been studied for 

endothelial46, neutrophil47 and dendritic cell48 function. It is unknown whether gC1qR, uPAR and 

cytokeratin mediated binding of contact factors is functionally aligned.  

 Gel filtration using the full-length proteins identified a FXII-HK-gC1qR complex with an 

overall molecular weight in the 500kDa range which may represent FXII bound to two gC1qR trimers 

and a HK dimer (Figure 6c). The ability of gC1qR to cluster FXII and HK into a planar ternary 

complex is conceptually familiar to the way Vitamin K-dependent hemostatic proteases from the 

extrinsic pathway have their protease domains aligned with the substrate activation loop by a Ca2+-

dependent process on a planar phospholipid surface49. Targeting a chaperone to disable the function of 

client proteins involved in a pathogenic mechanism is established for chaperones protein disulphide 

isomerase50 and HSP9042 and our data provides a scaffold for a similar approach to target gC1qR14. 
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Table 1: Crystallographic data collection and refinement statistics.   

*Values in parentheses are for highest-resolution shell.   
aRmerge = Sum(h) [Sum(j) [I(hj) - <Ih>] / Sum(hj) <Ih> where I is the observed intensity and <Ih> is 

the average intensity of multiple observations from symmetry-related reflections calculated. 
bRwork = Sum(h) ||Fo|h - |Fc|h| / Sum(h)|Fo|h, where Fo and Fc are the observed and calculated 

structure factors, respectively. Rfree computed as in Rwork, but only for (5%) randomly selected 

reflections, which were omitted in refinement, calculated using REFMAC.  

 
  

 FXIIFnII-gC1qR 

Data collection  

Space group I121 

Cell dimensions   

  a, b, c (Å) 106.3, 71.6, 115.9 

  α, β, γ (°) 90, 110.6, 90 

Resolution (Å) 91.0-3.1 

Rmerge (%)a 10.9 (45.5)* 

I / σI 7.1 (4.2)* 

Completeness (%) 99.9 (100.0)* 

Redundancy 3.1 (3.1)* 

Wavelength 0.97949 Å 

Refinement   

No. Reflections 14378  
Rwork

b / Rfree (%) 0.192/0.250 

No. atoms   

   Protein 4752 

Zn2+ 3 

   Water 10 

B-factors (Å2)   

   Protein 76.8 

   Metal 72.1 

   Water 46.7 

R.m.s. deviations  

   Bond lengths (Å) 0.012 

   Bond angles (°) 1.57 
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Binding 

model 

N value KD 

(nM) 

ΔH 

(kJ mol-1) 

ΔS 

(J K-1 M-1) 

ΔG 

(kJ mol-1) 

D5 

 

 

3 Site 

sequential 

binding 

- 1) 1.9 (± 0.1) 

2) 64.9 (± 1.9) 

3) 1011.1 (± 75.8) 

1) -268.8 (± 1.1) 

2) -105.2 (± 1.3) 

3) -23.5 (± 1.4) 

1) -732.7 

2) -214.8 

3) 36.0 

1) -50.5 

2) -41.2 

3) -34.3 

D5-1 

 

 

3 Site 

sequential 

binding 

- 1) 73.0 (± 4.0) 

2) 1579.8 (± 145.3) 

3) 2673.8  (± 257.7) 

1) -200.9 (± 1.4) 

2) -92.2 (± 4.9) 

3) -62.2 (± 5.9) 

1) -535.9 

2) -198.5 

3) -101.7 

1) -41.2 

2) -33.0 

3) -31.9 

D5-2 

 

Single site 2.30  (± 0.01) 763.4 (± 27.5) -1459.1 (± 1.1) -382.7 -35.1 

HK 496-

516 

 

Single site 

 

2.56 (± 0.02) 1612.9 (± 90.3) -164.0 (± 1.8) -439.6 -33.2 

gC1qR 

construct 

D5 

construct 

N value KD1 

(nM) 

KD2 

(nM) 

KD3 

(nM) 

wt D5 - 1.9 (± 0.1) 64.9 (± 1.9) 1011.1 (± 75.8) 

G2-5Ala D5 - 1.2 (± 0.1) 33.4 (± 5.7) 724.6 (± 178.3) 

DelG1 D5 - 1.5 (± 0.2) 44.8 (± 6.0) 1283.7 (± 238.8) 

G1-5Ala D5 - 3.4 (± 0.4) 120.3 (± 11.5) 1083.4 (± 176.6) 

DelG3 D5 No fit 

wt D5-1 - 73.0 (± 4.0) 1579.8 (± 145.3) 2673.8 (± 257.7) 

G2-5Ala D5-1 - 131.1 (± 43.0) 1084.6 (± 517.4) 3663.0 (± 369.1) 

DelG1 D5-1 - 135.8 (± 37.3) 1228.5 (± 407.9) 3690.0 (± 638.4) 

G1-5Ala D5-1 - 120.8 (± 55.4) 680.3 (± 420.0) 1557.3 (± 369.1) 

DelG3 D5-1 No fit 

wt D5-2 2.3 (± 0.01) 763.4 (± 27.5)    

G2-5Ala D5-2 2.1 (± 0.02) 885.0 (± 31.9)    

DelG1 D5-2 2.3 (± 0.03) 724.6 (± 50.0)    

G1-5Ala D5-2 2.3 (± 0.02) 800.0 (± 45.6)    

DelG3 D5-2 0.5 (± 0.02) 2032.5 (± 233.7)    

 
Table 2: ITC binding measurements of the HKD5 interaction with gC1qR. ITC-derived 

thermodynamic properties for the binding of HKD5, D5-1 and D5-2 with gC1qR, and individual KD 

values for the binding of HKD5 to the wt-gC1qR and gC1qR variant proteins. N values are not 

provided for the three site sequential binding fits as the stoichiometry is fixed at three.  
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FIGURE LEGENDS 

 

Figure 1. Structure of FXII, gC1qR and HK. (a) Domain organization of FXII, gC1qR and HK. 

The gC1qR anionic loops are red and residue numbers for domain boundaries are labeled. (b) Gel 

filtration elution profiles for FXIIFnII (blue) and gC1qR (black) in isolation and a gC1qR-FXIIFnII 

mixture (red). (c) Coomassie stained SDS-PAGE gel of the fractions collected from gel filtration of 

the FXIIFnII-gC1qR mixture. Lanes labelled 15-18 correspond to elution volumes 15-18ml from (b) 

showing both proteins co-eluting as a complex with excess FXIIFnII observed at 20ml. The first lane 

labelled M is the protein marker and the second lane is gC1qR in isolation. (d) Cartoon diagram of the 

FXIIFnII-gC1qR complex crystal structure showing the FXIIFnII domain (cyan) in complex with 

gC1qR (wheat, purple, green) with Zn2+ in blue and the anionic G1-loop in red and key interacting 

side chains as sticks. (e) Space filling representation of the gC1qR complex with the FXIIFnII domain 

as spheres (cyan) with residues Arg36 and Arg65 in orange.  

 

Figure 2. Structure of the FXIIFnII domain gC1qR interface. (a) Cartoon diagram of the 

FXIIFnII-gC1qR complex colored as in Figure 1e. The gC1qR G1-loop, residues 196-204 (red) and 

pockets G1 and G2 are labelled interacting with FXII residues Arg36 and Arg65 (orange) shown as 

sticks. Electrostatic interactions are shown as purple dotted lines and the Zn2+ as a blue sphere. (b) 

Interactions of the gC1qR G1-loop with FXII are shown as two different views. (c) gC1qR G2-pocket 

is shown (purple) and key interacting FXII residues are shown as sticks and gC1qR residue Trp233 as 

sticks (wheat). (d) A charged surface representation of the gC1qR G1 and G2-pockets with FXIIFnII 

in cyan as a cartoon diagram with key interacting side chains as sticks.  

 

Figure 3. Quantitation of gC1qR binding to FXII using SPR. Plots of SPR sensorgrams measured 

in response units (RU) on the y-axis are shown illustrating wt-gC1qR (a) and gC1qR variants (b-d) 

binding to immobilized full-length FXII at increasing concentrations indicated. (b) gC1qR variant 

with four Ala substitutions made in the region of the G1-pocket (T228A, D229A, W233A, Y236A). 

(c) gC1qR G2-pocket variant (S106A, D249A) and (d) gC1qR variant H187A (Zn2+ binding site 
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ablation). (e) Cartoon diagram showing a close up view of the gC1qR Zn2+ binding site with key 

residues shown as sticks and electrostatic interactions shown as dashed lines (purple). The Zn2+ (grey) 

and water molecules (red) are shown as solid spheres. (f) Superposition of the FXIIFnII bound gC1qR 

(colored wheat with the FXII side chain Arg36 in orange) with the unbound gC1qR structure (cyan) in 

the region of the G1-pocket illustrating conformational changes. The Arg207 side chain replaces the 

Zn2+ in coordinating the Asp185 side chain in the ligand free gC1qR structure. Black arrows indicate 

gC1qR side chain movements from ligand free to FXIIFnII bound. Electrostatic interactions are 

shown as purple dotted lines. 

 

Figure 4. Analysis of gC1qR binding to HKD5. (a) The recombinant HKD5 construct boundaries 

are shown with residue numbers indicated for D5-1, D5-2 and shorter peptides used in the ITC and 

gel filtration experiments. (b) Gel filtration of HKD5 combined with gC1qR at different molar ratios. 

Elution profiles on the left, and coomassie stained SDS-PAGE gels of the fractions collected are 

shown on the right. The 3:1 ratio of HKD5 to gC1qR reveals excess HKD5 eluting separately 

suggesting the trimer only supports two HKD5 polypeptides. (c) ITC measurements of gC1qR 

binding to HKD5. D5 was titrated into gC1qR in the presence of Zn2+ or EDTA. This was fit to a 

three site-sequential binding model with no difference between curves produced in the presence or 

absence of Zn2+. (d) Gel filtration of D5-1, D5-2 and gC1qR in the presence of 50 μM ZnCl2 (black) 

or 5 mM EDTA (red) revealing D5-1 has a Zn2+ dependence whereas HKD5-2 does not. (e) ITC 

experiments with D5-1 and D5-2 respectively titrated into gC1qR in the presence of Zn2+. Similarly to 

full-length HKD5, D5-1 was fitted to a three site-sequential binding model and binding was Zn2+-

dependent. (f) The binding of D5-2 was Zn2+-independent and was fit to a single site binding model 

with a calculated N value of 2. (g) HKD5 derived shorter peptides titrated into gC1qR. All titrations 

excluding HK 493-516 were performed in the presence of Zn2+. HK 493-516 was the only peptide to 

show binding and the curve resulted in comparable binding affinities and N values to D5-2. 

 

Figure 5. Mapping of the gC1qR binding site for HKD5. (a,b,c) ITC experiments with HKD5, D5-

1 and D5-2, respectively titrated against the gC1qR variants compared with wt-gC1qR. Deletion of 
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the gC1qR G3-loop (gC1qRdelG3) in blue showed no binding to D5-1 and reduced binding to both 

HKD5 and D5-2 whereas the other variants were comparable to wt-gC1qR. (d) The HKD5 binding 

site maps to the region of the G3-loop (blue) which forms the boundary of a pocket (G3, shown as 

blue dashed ellipse) which extends across the β-sheet to the Zn2+ site (grey sphere). The location of 

the G1-pocket is shown (purple dashed ellipse) and G2-loop (orange), G1-loop (red). (e) A schematic 

representation of the proposed D5 binding to gC1qR. The ligand free gC1qR and HKD5 are shown 

top left. D5-1 is represented as a larger circle (blue) connected to a smaller circle representing D5-2 

(red). The larger size of the D5-1 circle is representative that this region binding to gC1qR cannot be 

emulated by short peptides. gC1qR is shown in grey to represent the Zn2+ free form and flexible 

anionic loops are shown colored as in (d) with the G1 and G2-loops radially located and the G3-loop 

in the centre. The binding of D5-1 is sequential whereby tight binding of the first D5-1 (KD1) is 

followed by subsequently reduced affinity second and third binding events (KD2, KD3) suggesting a 

third HKD5 binding is sterically occluded (shown as transparent). The binding of D5-2 to gC1qR is 

not sequential and all binding events to gC1qR have equivalent affinity (KD1). 

 

Figure 6. Ternary complexes of FXII, HK and gC1qR analysed by gel filtration. (a) Analytical 

gel filtration elution profiles showing FXIIFnII, D5 and gC1qR combined with increasing 

concentrations of HKD5 in the presence of Zn2+. On the right coomassie stained SDS-PAGE gels 

showing gC1qR, HKD5 and FXIIFnII in the fractions collected. As the concentration of HKD5 is 

increased, FXIIFnII shifts from the high molecular weight peak to the low molecular weight peak 

suggesting D5 is outcompeting FXIIFnII for gC1qR binding. (b) Analytical gel filtration (Superose 6 

10/300) of full-length proteins HK (green), FXII (blue), gC1qR (black), and the gC1qR-HK-FXII 

ternary complex (red). Coomassie stained SDS-PAGE gel showing the peak fraction of the gC1qR-

HK-FXII ternary complex. (c) Schematic diagram of a hypothetical FXII-HK-gC1qR-PK complex 

with a 1:2:6:2 stoichiometry. In this model gC1qR is capable of stimulating reciprocal FXII-PK 

activation by aligning the activation loops and active sites of the FXII and PK proteases. 
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Figure 7. gC1qR stimulation of plasma coagulation in a FXII dependent manner. (a) PNP was 

incubated with MP reagent for 180 s and increasing concentrations of gC1qR (50-200 µg/ml) with 

Zn2+ (50 µM). Coagulation was initiated by addition of CaCl2 (8.3 mM) and clotting time monitored. 

(b-f) Thrombin generation for PNP with gC1qR (50-200 µg/ml) and Zn2+ (50 µM); (b) raw data 

curves in the presence of gC1qR (orange) and without (grey) (c) lagtime (min), (d) endogenous 

thrombin potential (ETP; nM.min), (e) peak thrombin (nM), and (f) velocity index (nM/min) were 

derived. (g) Lagtime (min) is shown for thrombin generation of PNP, FXII or FXI deficient plasma 

incubated ± gC1qR (100 µg/ml) and Zn2+ (50 µM). In the absence of gC1qR there was no thrombin 

generation evident in FXI or FXII deficient plasma. FXII-deficient plasma with gC1qR shows a 

significant delay in thrombin generation with a lag time of 25 ± 6.7 min versus 9 ± 0.7 min in PNP 

and no thrombin generation in FXI deficient plasma iwth gC1qR indicating a dependence on the 

intrinsic pathway. (h) Lagtime (min) is shown for thrombin generation of PNP, gC1qR (100 µg/ml) 

and gC1qR variants with G1 (cyan) and G3-loops (pink) deleted showing a dependency on the gC1qR 

G3-loop. 
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