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Abstract  27 

Recent large genome-wide association studies (GWAS) have independently identified a set of 28 

genetic loci associated with lean body mass (LBM) and handgrip strength (HGS). Evaluation 29 

of these candidate single nucleotide polymorphisms (SNPs) may be useful to investigate 30 

genetic traits of populations at higher or lower risk of muscle dysfunction. As such, we 31 

investigated associations between six SNPs linked to LBM or HGS, in a population of elite 32 

master athletes (MA), and age-matched controls, as a representative population of older 33 

individuals with variable maintenance of muscle mass and function. Genomic DNA was 34 

isolated from buffy coat samples of 96 individuals (consisting of 48 MA (71±6yrs; age-35 

graded performance 83±9%) and 48 older controls (75±6yrs)). SNP validation and sample 36 

genotyping was conducted using the tetra-primer amplification refractory mutation system 37 

(ARMS). For the 3 SNPs analysed that were previously associated with LBM (FTO, IRS1 38 

and ADAMTSL3), multinomial logistic regression revealed a significant association of the 39 

ADAMTSL3 genotype with %LBM (P<0.01). For the three HGS-linked SNPs, neither GBF1 40 

nor GLIS1 showed any association with HGS, but for TGFA, multinomial logistic regression 41 

revealed a significant association of genotype with HGS (P<0.05). For ADAMTSL3, there 42 

was an enrichment of the effect allele in the MA (P<0.05; Fisher’s exact test). Collectively, 43 

of the six SNPs analysed, ADAMTSL3 and TGFA showed significant associations with LBM 44 

and HGS, respectively. The functional relevance of the ADAMTSL3 SNP in body 45 

composition, and of TGFA in strength, may highlight a genetic component of the elite MA 46 

phenotype. 47 

 48 
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Introduction 50 

 51 

Lean body mass (LBM) plays an important role in metabolic function, mobility and healthy 52 

ageing, where progressive declines in LBM and concurrent increases in lipid infiltration can 53 

have detrimental impacts related to functional impairments and disability (13, 14, 18, 37). 54 

Similarly, declines in muscle strength with ageing are associated with impaired quality-of-life 55 

in older adults and increased risk of frailty and hospitalizations (2, 34). Reflecting this, 56 

handgrip strength (HGS) is a widely used marker of frailty, and a strong predictor of 57 

morbidities and survival (21, 38). The heritability of muscle strength has been estimated to be 58 

between 30-65% (22, 35), with the heritability of the LBM phenotype estimated to be 52-59 

60% (1, 12). To date, few studies have robustly identified candidate genes associated with 60 

LBM or HGS on a genome-wide level.  61 

 62 

A recent study identified and replicated a set of five loci for total lean body mass (42). Three 63 

of these SNPs (near/in genes for IRS1, ADAMTSL3 and VCAN) were also successfully 64 

replicated for appendicular lean mass. Further analyses reported that for a subset of these 65 

SNPs, LBM increasing alleles were associated with adverse metabolic profiles (such as the 66 

Alpha-Ketoglutarate Dependent Dioxygenase (FTO) SNP rs9936385), whereas some were 67 

associated with metabolic protection (e.g. the rs2287926 SNP associated with the versican 68 

(VCAN) gene) (17). Similarly, a number of recent GWAS have reported multiple loci 69 

associated with HGS (23, 39). Analyses by Matteini et al. (2016) identified one significant 70 

genome-wide association of an intergenic SNP located in a chromosomal region that 71 

regulates muscle repair and differentiation. In a study by Willems et al. (2017), a number of 72 

loci out of the 16 SNPs identified were related to genes involved in muscle 73 

structure/function; (ACTG1), neurotrophic regulation (TGFA) and excitation-contraction 74 
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coupling (SLC8A1). Others were identified with less understood roles in muscle function, 75 

such as Golgi Brefeldin A Resistant Guanine Nucleotide Exchange Factor 1 (GBF1), a 76 

guanine nucleotide exchange factor, and GLIS Family Zinc Finger 1 (GLIS1), Kruppel-like 77 

zinc finger protein that regulates transcription. Thus, further investigation into understanding 78 

the roles of these genes in the context of genetic variability of muscle strength is required. 79 

Despite the growing number of GWAS linking candidate genetic loci to skeletal muscle-80 

related traits in humans, further validation/replication of these SNPs in independent cohorts 81 

has not previously been evaluated, while issues surrounding their reproducibility have also 82 

been highlighted (11).  83 

 84 

Heritable phenotypical traits such as strength and lean mass are undoubtedly associated with 85 

physical performance and thus contribute to elite athletic status (6). Specifically, elite master 86 

athletes (MA; >65yrs) represent a population in which the effects of age may be addressed 87 

independently of the often accompanying disuse (19), and in many cases have displayed 88 

greater neuromuscular function than their age-matched inactive counterparts (24, 27, 29). 89 

However, there are little data available relating genotype to phenotype in these unique 90 

cohorts. In the current study, we first aimed to determine whether associations of SNPs 91 

linked to either LBM or HGS in previous GWAS analyses could be replicated in a smaller 92 

cohort comprising of a mixed population of elite master athletes (MA; both sprint and 93 

endurance) and age-matched non-athlete controls. Secondly, we aimed to compare 94 

allele/genotype frequencies between these two populations in order to gain further insight 95 

into the aforementioned differences in muscular strength and mass between older elite 96 

athletes and their age-matched controls. We hypothesized that the population of MA would 97 

demonstrate greater enrichments in SNPs associated with higher LBM and/or HGS. To 98 

perform targeted genotyping, we used tetra-primer amplification refractory mutation system 99 
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(ARMS) PCR, which has been reported as a rapid, low-cost and reliable method for SNP 100 

genotyping (26, 40).  101 
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Materials and Methods 102 

 103 

Participants and ethical approval 104 

The study was conducted in accordance with the Declaration of Helsinki, except for 105 

registration in a database. The study was approved by the University Research Ethics 106 

Committee and the National Research Ethics Service Committee Northwest (14/NW0275) 107 

and (15/NW/0426). All participants provided written informed consent. The control group 108 

(n=48) were aged 75.3±6.0yrs and were recruited from the local community. The masters 109 

athletes (n=48) were aged 70.6±5.9yrs and were recruited from athletics clubs, from an 110 

advertisement placed in a national athletics magazine, and from two national masters athletics 111 

competitions as part of the wider Vertical Impact of Bone Health in Elderly (VIBE) multiple 112 

cohort study (5, 28). All masters athletes were actively competing in their respective 113 

disciplines, and all completed more than 5 hours of specific training per week at the time of 114 

testing. MAs were classified as sprinters (n=12) if competing in events less than 800 m in 115 

distance, or endurance athletes (n=36) if competing in events greater than or equal to 800 m 116 

in distance. 117 

 118 

The age-graded performance (AGP) of a master athlete allows a comparison of current 119 

performance against world record performance in the same discipline, distance and age-120 

group. Mean age-graded performance (AGP) was determined by taking the athlete’s highest 121 

ranked performance within the last year and expressing it as a percentage of the world record 122 

for that age and distance. The mean AGP of this athletic cohort was 83.4 ± 8.6%. For 123 

example, a 21 min and 20 sec 5000m for a 70-year-old man gives an age-graded performance 124 

of 83%. All males were chosen for the current analysis in order to avoid influences of sex-125 

specific hormones.  126 
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 127 

DXA Scans 128 

Standing height was measured to the nearest millimeter and body mass was measured to the 129 

nearest 0.1 kg. Whole body, total hip and lumbar spine dual energy X-ray absorptiometry 130 

(DXA: Lunar Prodigy Advanced, GE Healthcare, encore version 10.50.086, London, UK) 131 

scans were performed while the participant lay supine wearing a light cotton t-shirt to reduce 132 

measurement errors due to clothing absorption. Lean mass was taken from results of total 133 

body scans and regional analysis of legs and arms. All measurements were recorded after 134 

manual adjustment of the regions of interest. Repeat total body scans were performed in 8 135 

participants within one month of the first scan. Using these repeat scans, the short-term error 136 

for our laboratory was 0.01% for whole body lean mass.  137 

 138 

Muscle function 139 

The investigators provided verbal instructions and a physical demonstration of the muscle 140 

function tests. Participants were allowed one practice immediately before the actual assessed 141 

trials, which acted as a specific warm up and also confirmed that the instructions were 142 

understood. In all cases, the muscle function tests were completed between 10am and 3pm. 143 

 144 

Hand grip strength was measured using the Jamar dynamometer handle (Sammons Preston 145 

Inc, Bolingbrook, IL, USA) as previously described (10). The width of the dynamometer was 146 

adjusted for each participant separately. Participants were instructed to stand upright with the 147 

arm fully extended along the body, maintaining approximately 5 cm gap between the wrist 148 

and the hip or upper leg (so that the hand was not rested against the body). Participants were 149 

instructed to squeeze against the handle as hard possible for three seconds. Grip strength was 150 
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measured three times and recorded in kilograms to the nearest 0.1 kg. For the purpose of this 151 

study, the best of three attempts was included in further analysis.  152 

 153 

A Leonardo Jump Mechanography Platform (Leonardo Software version 4.2: Novotiec 154 

Medical GmbH, Pforzheim, Germany) was used to assess lower limb muscle power during a 155 

countermovement vertical jump, as described previously (10). Results for both absolute (W) 156 

and relative (W/kg) power were recorded. Briefly, a two-footed countermovement jump was 157 

performed starting with feet approximately 30 cm apart (slightly narrower than shoulder 158 

width) and standing upright on the force plates. Force was sampled at 800 Hz. Participants 159 

flexed at the knees before extending as forcefully as possible to take off for the jump. Jumps 160 

were performed with a trained research assistant in close proximity to intervene in case of a 161 

trip or fall. Each participant repeated the jump sequence three times, with approximately 60 162 

seconds rest between efforts. The jump with the highest value for power was used for 163 

statistical analysis. 164 

 165 

Genomic DNA Extraction 166 

Genomic DNA was extracted from buffy coat samples (200 µl) using the QIAamp blood mini 167 

DNA kit (Qiagen, UK), according to the manufacturer’s instructions. Isolated DNA was 168 

quantified on the NanoDrop 2000 (Thermo Fisher Scientific, UK).  169 

 170 

SNP selection and primer design 171 

A set of SNPs were selected, chosen from SNPs previously linked with LBM (42) and HGS 172 

in humans (39). SNPs with very low/high effect allele frequencies (EAFs) in the original 173 

GWAS studies (e.g. VCAN, KANSL1 and POLD3) were avoided due to expected difficulties 174 

in detecting them in relatively low sample sizes. Primer design was performed using the 175 
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PRIMER1 program: http://primer1.soton.ac.uk/primer1.html, using the default primer design 176 

settings. SNPs that yielded primers with very high GC content were avoided due to 177 

anticipated difficulties during amplification, as well as primer sets with very distinct melting 178 

temperatures. A total of 15 SNPs were initially tested for validation, however technical 179 

difficulties meant that a number could not be assessed with the tetra-primer ARMS PCR 180 

method, and the final set of six SNPs, three predicted to be associated with LBM and three 181 

with HGS, are presented in Table 1. 182 

 183 

Tetra-primer ARMS PCR and gel electrophoresis 184 

Validation of SNP primers and genotyping was performed using the tetra-primer ARMS PCR 185 

technique (40). The sequences of primers used for the genotyping of the selected SNPs are 186 

shown in Table 1. SNP primers were initially validated and optimised using the guidelines set 187 

out in (26). Initially, amplification was performed using the outer primers only, using a 188 

gradient annealing temperature PCR to determine the optimal annealing temperature for each 189 

primer set. Subsequent validation involved incorporating the inner primers in varying 190 

amounts to produce detectable bands for each allele-specific amplicon via agarose gel 191 

electrophoresis (see below). PCR reactions with a final volume of 18 µl including 30 ng 192 

genomic DNA, SYBR™ Select Master Mix (Applied Biosystems) and primers in ratios 193 

according to Table 1. Amplification was performed using a Viia™ 7 real-time PCR machine 194 

(Applied Biosystems), using the following cycling conditions: 1 cycle of initial denaturation 195 

at 95oC, 2 min; 35 cycles of denaturation at 95oC for 30s, annealing at 61-62oC (see Table 1 196 

for SNP-specific annealing temperature) for 45s and extension at 72oC for 45s, with a final 197 

extension for 5 min at 72oC on standard cycling conditions. PCR products were mixed with 4 198 

µl gel loading buffer (Sigma-Aldrich, UK) and 10 µl was electrophoresed on 3% (w/v) 199 

agarose gels for 120 min at 80V.  200 
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 201 

Statistical analyses 202 

Multinomial logistic regression was performed in R (version 3.6.1) using the nnet package 203 

(16) to examine associations between GBF1, GLIS1 and TGFA genotypes and maximal grip 204 

strength, and to examine associations between IRS1, FTO and ADAMTSL3 and total lean 205 

mass, appendicular lean mass, and percentage body lean mass. Strength of associations were 206 

assessed by p values calculated from z values provided from the regression model 207 

coefficients and standard errors for each predictor variable. Fisher’s exact test was used for 208 

comparison of allele distributions and genotype distributions between MA and control 209 

groups, while one-way ANOVA was used for multi-group comparisons, with Tukey’s test to 210 

correct for multiple comparisons. Comparisons between two groups were made using 211 

unpaired t tests. P<0.05 was taken to be statistically significant. Data were analysed using 212 

GraphPad Prism software version 7.0.   213 
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Results 214 

 215 

Associations between genotype and functional parameters in MA and non-athletes 216 

We first aimed to identify any associations of the selected SNP genotypes with lean mass or 217 

HGS in a mixed population of older MA and non-athletes (i.e., irrespective of groupings). 218 

Within this cohort, total LBM ranged from 36.6 to 69.4 kg, while HGS ranged from 20.6 to 219 

54.7 kg. In relation to the SNPs previously linked to HGS (GBF1 (rs2273555; effect allele 220 

A), GLIS1 (rs4926611; effect allele C) and Transforming Growth Factor Alpha (TGFA; 221 

rs958685; effect allele A)), there was no significant association of either GBF1 or GLIS1 222 

genotype with HGS (Figure 1), but with TGFA, there was a significant association between 223 

HGS and genotype (mean difference between AA and CC 6.32; 95% CI 0.43-12.1; P<0.05, 224 

Figure 1A), with the AA genotype (A being the effect allele) having higher HGS. In relation 225 

to SNPs that were previously associated with LBM, multinomial logistic regression showed 226 

no significant association of total lean mass, % LBM or appendicular lean mass with insulin 227 

receptor substrate 1 (IRS1; rs2943656; effect allele A), FTO (rs9936385; effect allele T) or A 228 

Disintegrin-Like And Metalloprotease Domain With Thrombospondin Type I Motifs-Like 3 229 

(ADAMTSL3; rs4842924; effect allele T) genotypes (Figures 2-4). For ADAMTSL3 however, 230 

there was a significant association with % LBM (mean difference between TT and CC 5.36; 231 

95% CI 1.38-9.34; P<0.01; Figure 4A), where the TT genotype was associated with higher % 232 

LBM. Since LBM and HGS are biologically closely related, we also determined whether any 233 

of the LBM-associated SNPs were linked to HGS, and vice-versa. However, none of the 234 

HGS-associated SNPs were significantly associated with LBM (TGFA; β=-4.88, p=0.305 235 

GLIS1; β=-18.64, p=0.641, GBF1; β=2.433, p=0.354), and none of the LBM-associated SNPs 236 

were associated with HGS (FTO; β=-1.716, p=0.354, IRS1; β=-3.242, p=0.059, ADAMTSL3; 237 

β=-1.432, p=0.378). There were also no genotype associations of any of the SNPs measured 238 
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with muscle power measurements (maximum power relative to body weight, Pmax rel) 239 

(TGFA; β=-0.079, p=0.714, GLIS1; β=-0.002, p=0.911, GBF1; β=-0.006, p=0.891, FTO; β=-240 

0.021, p=0.358, IRS1; β=-0.002, p=0.905, ADAMTSL3; β=0.015, p=0.423).  241 

 242 

Allele frequencies in individuals grouped according to the highest and lowest quartile for % 243 

LBM or HGS. 244 

Following on from this, we aimed to determine whether there were any differences in allele 245 

frequencies in individuals that had been grouped according to the highest and lowest quartiles 246 

for % LBM or HGS. Comparing the upper and lower quartiles for %LBM (irrespective of 247 

groupings) there was no difference in allele frequency for the IRS1 or FTO SNPs (Table 2). 248 

For ADAMTSL3, comparing the upper and lower quartiles for %LBM (irrespective of 249 

groupings), there was an enrichment in the effect allele in the upper quartile for %LBM 250 

(P<0.05; Fisher’s exact test) (Table 2). For TGFA, comparing the upper and lower quartiles 251 

for HGS (irrespective of groupings), there was an enrichment in the effect allele in the upper 252 

quartile for HGS (P<0.05; Fisher’s exact test) (Table 2). There were no significant 253 

differences in either GBF1 or GLIS1 alleles between the upper and lower quartiles for HGS 254 

(Table 2). 255 

 256 

Allele/genotype distributions for LBM or HGS-associated SNPs in MA versus non-athletes 257 

In subsequent analyses, we sought to compare allele/genotype distributions for the LBM and 258 

HGS-associated SNPs between the elite MA and older non-athlete groups, first comparing 259 

participant muscle-related characteristics between MA and control groups. Since multiple 260 

group analyses were limited by the relatively low number of available samples from 261 

participants in the sprint category (n=12), sprint and endurance MA were grouped for the 262 

majority of our analyses. While total lean mass and appendicular lean mass (ALM) was not 263 
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different across groups (Figure 5A & B), LBM as a percentage of total body weight (%LBM) 264 

was significantly lower in controls than MA (P<0.001 by unpaired t test; Figure 5C). 265 

Likewise, percentage fat mass was significantly higher (P<0.001 by unpaired t test) in 266 

controls than MA (Figure 5D). HGS and Pmax rel were no different between MA and 267 

controls (Figure 5E and 5F).  268 

 269 

Genotype distributions for 3 SNPs that were previously associated with LBM (IRS1, FTO 270 

and ADAMTSL3) and 3 SNPs that were previously associated with HGS (TGFA, GBF1 and 271 

GLIS1) were analysed in the 48 MA and 48 older controls. For the SNP associated with the 272 

ADAMTLS3 gene, genotype distributions were significantly different between MA and 273 

controls (P<0.05; Fisher’s exact test; Figure 6). For the SNPs associated with IRS1, FTO, 274 

TGFA, GLIS1 and GBF1, there was no difference in genotype frequencies between MA and 275 

control groups (Figure 6). While analyses focused on the master athletes as a group, 276 

compared to non-athlete control, we also assessed allele distributions for the 6 SNPs between 277 

sprint and endurance MA relative to controls (Table 3). Similar to the genotype distributions 278 

between MA and controls, allele distributions for the SNPs associated with IRS1, FTO, 279 

TGFA, GLIS1 and GBF1 were not significantly different between groups, while for 280 

ADAMTSL3, there was an enrichment in the effect allele for both sprint and endurance 281 

athletes, relative to non-athlete controls (P<0.05 vs. Control (Fisher’s exact test); Table 3).  282 

  283 
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Discussion 284 

 285 

While LBM and HGS represent two highly heritable traits in humans (1, 22, 35), only 286 

recently have studies begun to explore the specific genes that contribute to the underlying 287 

inter-individual variability in skeletal muscle traits such as these (30, 39, 42). Evaluation of 288 

these candidate SNPs could prove useful in investigating underlying genetic traits of 289 

individuals at variable risk of muscle dysfunction. In the present study, our aim was to 290 

determine whether SNPs linked to either LBM or HGS in previous GWAS analyses could be 291 

replicated in a smaller cohort comprising of elite MA and age-matched controls. We also 292 

aimed to determine whether genotype/allele distributions for these SNPs were different 293 

between elite MA in comparison to age-matched non-exercising controls, as a representative 294 

population of older individuals with greater maintenance of muscle mass and function. By 295 

comparing allele/genotype frequencies between these two populations using the tetra-primer 296 

ARMS technique we aimed to gain greater insights into the underlying genetic component of 297 

the MA muscle phenotype. 298 

 299 

We chose to use the tetra-primer ARMS technique as a rapid approach to SNP genotyping as 300 

it provides a cost-effective and accurate methodology, (40) but alternative methods are 301 

available. The restriction fragment length polymorphism (RFLP) typing method involves 302 

restriction endonuclease digestion of PCR products to discriminate between alleles (25), 303 

while microarray approaches (32) and matrix-assisted laser desorption/ionisation time-of-304 

flight (MALDI-TOF) mass spectrometry (8) allow high-throughput genotyping. We found 305 

the tetra-primer ARMS technique robust, but requiring substantial optimisation, and some 306 

primer sets for SNPs could not be validated; potentially due to the SNPs loci i.e. in a high 307 
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GC-rich region, giving rise to difficulties due to incomplete denaturation of DNA and less 308 

than optimal primer annealing (26).  309 

 310 

We began by investigating associations between genotype and functional parameters in older 311 

MA and non-athletes as a collective cohort. In terms of their predicted associations with 312 

either LBM or HGS, out of the six SNPs analysed, four failed to show any significant 313 

association with LBM or HGS (even when analysing those individuals with the highest and 314 

lowest quartiles for %LBM or HGS). In contrast, the SNP associated with TGFA showed 315 

significant associations with HGS, while the SNP linked with ADAMTSL3 was associated 316 

with LBM (independent of exercise discipline), as predicted by the original GWAS’. These 317 

findings provide further support to the previous data indicating the potential importance of 318 

the TGFA SNP in muscle strength, and of ADAMTSL3 in body composition. Interestingly, we 319 

found that none of the HGS-associated SNPs were associated with LBM, and vice-versa, nor 320 

were there any significant associations with Pmax rel. The reason for this lack of overlap is 321 

not clear and requires further investigation of the potential roles of these genes in muscle 322 

function. For the SNP associated with TGFA, there was an association between HGS and 323 

genotype, with the AA genotype (A being the effect allele promoting increased HGS), having 324 

a significantly higher HGS. The consequence of the polymorphism with rs958685 is an intron 325 

variant. The potential functional relevance of the TGFA in muscular strength remains to be 326 

evaluated, but other intronic SNPs have been shown to be associated with functional 327 

elements, including intron splicing enhancers/silencers that regulate alternative splicing 328 

events as well as other transcriptional regulatory elements (4). The TGFA gene encodes a 329 

growth factor which plays a key role in cellular proliferation, differentiation and development 330 

(33). TGF-α also plays a neurotrophic role and promotes neuronal survival during acute 331 

injury of motor neurons (15, 20).  332 



16 
 

 333 

A further important finding was that for rs4842924, the SNP related to the ADAMTSL3 gene, 334 

the TT genotype was associated with higher %LBM amongst all volunteers. Initial analyses 335 

aimed to replicate the original GWAS (42), which identified SNPs associated with total 336 

LBM, with subsequent analysis demonstrating higher associations when adjusting for total fat 337 

mass (17). We found instead that for ADAMTSL3 (and other SNPs), there was no association 338 

to LBM in either unadjusted or after adjusting for fat mass or for height. We also found no 339 

associations of any of the SNPs to appendicular lean mass. There was, however, a significant 340 

association of the ADAMTSL3 genotype to LBM as a percentage of whole-body mass, 341 

demonstrating it may have importance in terms of body composition. As with TGFA, the 342 

consequence of the ADAMTSL3 SNP is an intron variant, and the functional effect (if any) on 343 

gene expression is not currently known. Little is understood about the biological functions of 344 

ADAMTSL3, but it is a glycoprotein that is related to the ADAMTS family of 345 

metalloproteases, that may have functions in extracellular matrix regulation (9). The 346 

ADAMTSL3 gene has also consistently been linked to height (36) in genome-wide association 347 

analyses. Further in vitro experiments will be required to understand the mechanisms 348 

underlying ADAMTSL3 gene variants in muscle physiology, and relation to LBM in vivo.  349 

 350 

We next investigated allele/genotype distributions for LBM or HGS-associated SNPs in MA 351 

versus non-athletes. Elite MA represent a unique population of individuals that in general 352 

display greater maintenance of neuromuscular function than age-matched inactive 353 

populations (24), and while undoubtedly environmental factors play a large role in the MA 354 

phenotype (7), there are little conclusive data available related to any underlying genetic 355 

components. Whether the high-functioning characteristics of master athletes is more 356 

influenced by heritable factors regulating muscle composition/performance, or whether the 357 
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environmental component (i.e. continued high levels of training over the years) is more 358 

important for the master athlete phenotype, remains to be fully understood. For the present 359 

group of individuals studied, while total LBM or ALM were not different between MA and 360 

controls, %LBM was significantly higher in the MA population. While HGS or Pmax Rel 361 

were not different between MA and non-athlete controls, this is likely due to the fact that the 362 

majority of the cohort were endurance athletes, which is in line with previous observations 363 

with regards to strength differences in endurance versus power MA (24). Although HGS does 364 

not always correlate with strength of other functionally important muscle groups such as the 365 

quadriceps (41), it is a useful predictor of a number of health outcomes in middle to older age 366 

(3), including all cause mortality (31). In the present study, of the six SNPs measured, five 367 

were not different between MA and control; however, for ADAMTSL3, there was an 368 

enrichment of the effect allele (T) in the group of MA. Further work investigating these 369 

candidate SNPs, and the mechanisms by which they may influence muscle function, could 370 

prove useful in understanding the genetic basis of populations with increased/decreased 371 

susceptibility of muscle dysfunction (such as frailty and sarcopenia). 372 

 373 

Perspectives and Significance 374 

While there are difficulties associated with studying a cohort such as that of the MA in terms 375 

of gaining sufficient sample numbers, clearly larger MA sample sizes will be needed to 376 

explore MA, on a genome-wide basis, or in a targeted fashion. Indeed, the lack of individuals 377 

with the GG genotype for IRS1 in the present study is also a limitation in the context of the 378 

relatively small sample size of this study. There is also a potential that the lack of replication 379 

for some of the SNPs analysed in the present study was partly due to the the elite athletes 380 

having a different phenotype to those of the general population (as used in the original 381 

GWAS analyses). Additionally, effect sizes in the original analyses would be viewed as being 382 
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small, with standardized beta of  -0.12 - -0.14 for LBM and 0.13 – 0.16 for HGS. More work 383 

is required to determine the biological significance of these SNPs in LBM and/or muscular 384 

strength across different populations of individuals. Nonetheless, in a targeted fashion, we 385 

demonstrate that a SNP related to the ADAMTSL3 gene was enriched in elite MA and had 386 

significant associations with % LBM. We also confirmed data from previous GWAS’ of an 387 

association of the TGFA SNP with HGS. Future work elucidating the mechanisms by which 388 

these gene variants influence muscle mass and function are required to facilitate our 389 

understanding of the genetic basis of, not only the MA phenotype, but also the genetic basis 390 

underlying a range of conditions such as frailty and sarcopenia.  391 

  392 
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Figure Legends 623 

 624 

Figure 1. Genotype versus Grip Strength for TGFA (rs958685; effect allele = A), GLIS1 625 

(rs4926611; effect allele = C) and GBF1 (rs2273555; effect allele = A) in a mixed 626 

population of older elite athletes (sprint and endurance) and non-athletes. Grip strength 627 

according to genotype for (A) TGFA, (B) GLIS1 and (C) GBF1 (irrespective of groupings). 628 

*=P<0.05 versus AA (multinomial logistic regression analysis). 629 

 630 

Figure 2. Genotype versus Total Lean Mass for ADAMTSL3 (rs4842924; effect allele = 631 

T), IRS1 (rs2943656; effect allele = A) and FTO (rs9936385; effect allele = T) in a mixed 632 

population of older elite athletes (sprint and endurance) and non-athletes. Total Lean 633 

Mass according to genotype for ADAMTSL3 (A), IRS1 (B) and FTO (C; irrespective of 634 

groupings).  635 

 636 

Figure 3. Genotype versus Appendicular Lean Mass for ADAMTSL3 (rs4842924; effect 637 

allele = T), IRS1 (rs2943656; effect allele = A) and FTO (rs9936385; effect allele = T) in 638 

a mixed population of older elite athletes (sprint and endurance) and non-athletes. 639 

Appendicular Lean Mass according to genotype for ADAMTSL3 (A), IRS1 (B) and FTO (C; 640 

irrespective of groupings).  641 

 642 

Figure 4. Genotype versus Percentage Lean Mass for ADAMTSL3 (rs4842924; effect 643 

allele = T), IRS1 (rs2943656; effect allele = A) and FTO (rs9936385; effect allele = T) in 644 

a mixed population of older elite athletes (sprint and endurance) and non-athletes. 645 

Percentage Lean Mass according to genotype for ADAMTSL3 (A), IRS1 (B) and FTO (C; 646 

irrespective of groupings). **=P<0.01 versus CC (multinomial logistic regression analysis). 647 
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 648 

Figure 5. Phenotype characteristics of older elite athlete (sprint and endurance) and 649 

non-athlete (Control) populations. Total lean mass (A), appendicular lean mass (ALM; B), 650 

% lean mass (C), % fat mass (D), grip strength (E) and maximum power relative to body 651 

weight (F) in master athletes and non-athlete controls. ***=P<0.001 (unpaired t test). 652 

 653 

Figure 6. Genotype distributions of selected single nucleotide polymorphisms (SNPs) 654 

previously associated with lean body mass or grip strength in master athlete (MA) and 655 

non-athlete (Ctrl) populations. Balloon plot displaying frequencies of genotypes for three 656 

lean mass-associated SNPs (IRS-1, FTO and ADAMTSL3) and three grip strength-associated 657 

SNPs (TGFA, GLIS1 and GBF1) between elite older athletes and non-athlete controls. 658 

*=P<0.05 (Fisher’s exact test). 659 
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Table 1: Single nucleotide polymorphism (SNP) and primer information for tetra-primer ARMS PCR. 
 
SNP Closest 

Gene 
Allele 
1/2 

EAF Primer sequences (5’-3’) Annealing 
temperature 

Ratio of 
FO:RO:RI:FI 

rs2943656 IRS1 A/G 0.38 FO: CTGAGAGCCTGCTCCTTACTCTTGTCTT
RO: CGGCATGTTGGAGAGTTACTCTACATGT 
FI: TTCACCTAAAATTCTCCTCTAAAAACACAG 
RI: CTCTCTCCATCACCATGGCTTCACCT 

62oC 1:1:3:3 

rs4842924 ADAMTSL3 T/C 0.52 FO: CAGTTGGAGTACTGAGAATGAGACAGGG
RO: AGTCTTAGGACTCAGACTTGCCATCACA 
FI: GGAAAGGATAAGGATGTTGTGAGCGT 
RI: GAATAGGCAATAGCTTCCTATGTGAGCG 

61oC 2:1:6:2 

rs9936385 FTO T/C 0.61 FO: TGTGTGACCAGCCTCAATAGATTTTATTCA
RO: CCATCCTATCAAAAACAGCACTCTCACC 
FI: TGCATATGAAGAGGGATTTTTTTGCATC 
RI: TACTGGGAATATGCAGTGAACCACGA 

62oC 1:1:3:3 

rs958685 TGFA A/C 0.52 FO: TCCACCCTTAGGAAAAAATGCTTCCTCT
RO: TCACATCTTTGTCATGGGACATAGTCCC 
FI: TTTTTTCATCGGCAGTTTGCAGATACC 
RI: AGGAGTATCCTTCTTCCACCCACGCT 

62oC 1:2:2:6

rs2273555 GBF1 A/G 0.61 FO: CACAACCACAATGTTCGTAAACAGAATG
RO: TCTAAAAACTGGGAAAGGAAGCAATGTG 
FI: TTTCCTAAGTCCTATTTACTGAAAACCAAG 
RI: ACACTGAAGCCCCACCTAAGGAACGCT 

61oC 1:1:3:3

rs4926611 GLIS1 C/T 0.64 FO: GCAGAGCTGGATTTTCAAGAGTCTACCT
RO: TTCATCCCTGCTTACCCACTAGAGGTAA 
FI: TAGAGACACCTGCAACATCCAGCAAAAT 
RI: CTGAGATTTGCTTTTTAAATTCAGCAGTG 

61oC 1:2:3:6 

 



Table 2. Allele frequencies of selected single nucleotide polymorphisms (SNPs) previously associated with lean body mass or grip strength in 
individuals grouped according to the highest and lowest quartile for % LBM or HGS.  
 

SNP Closest 
Gene 

Allele 
1/2 

Lowest 
Quartile for 
%LBM 

Highest 
Quartile for 
%LBM SNP Closest 

Gene 
Allele 
1/2 

Lowest 
Quartile for 
HGS 

Highest 
Quartile for 
HGS 

Allele 
1 

Allele 
2 

Allele 
1 

Allele 
2 

Allele 
1 

Allele 
2 

Allele 
1 

Allele 
2 

rs2943656 IRS1 A/G 28 20 28 20 rs958685 TGFA A/C 19 29 30 18* 
rs4842924 ADAMTSL3 T/C 15 33 27 21* rs2273555 GBF1 A/G 22 26 21 27 
rs9936385 FTO T/C 34 14 29 19 rs4926611 GLIS1 C/T 28 20 34 14 
 
Frequencies of alleles for three lean mass-associated SNPs (IRS-1, FTO and ADAMTSL3) between the highest and lowest quartile for LBM 
(irrespective of groupings), and three grip strength-associated SNPs (TGFA, GLIS1 and GBF1) between the highest and lowest quartile for HGS 
(irrespective of groupings). *=P<0.05 vs. Lowest Quartile (Fisher’s exact test). 



Table 3. Allele frequencies of selected single nucleotide polymorphisms (SNPs) previously associated with lean body mass or grip strength in 
elite athletes (sprint and endurance) versus non-athlete controls.  
 

SNP Closest Gene Allele 1/2 
Control (n=48) Sprint (n=12) Endurance (n=36) 

Allele 1 Allele 2 Allele 1 Allele 2 Allele 1 Allele 2 
rs2943656 IRS1 A/G 57 (59%) 39 (41%) 13 (54%) 11 (46%) 42 (58%) 30 (42%) 
rs4842924 ADAMTSL3 T/C 38 (40%) 58 (60%) 15 (62%)* 9 (38%)* 42 (58%)* 30 (42%)*

rs9936385 FTO T/C 60 (62%) 36 (38%) 10 (42%) 14 (58%) 51 (71%) 21 (29%) 
rs958685 TGFA A/C 51 (53%) 45 (47%) 13 (54%) 11 (46%) 39 (54%) 33 (46%)

rs2273555 GBF1 A/G 44 (46%) 52 (54%) 7 (29%) 17 (71%) 31 (43%) 41 (57%) 
rs4926611 GLIS1 C/T 68 (71%) 28 (29%) 15 (62%) 9 (38%) 46 (64%) 26 (36%) 

 
Frequencies of alleles for three lean mass-associated SNPs (IRS-1, FTO and ADAMTSL3) and three grip strength-associated SNPs (TGFA, GLIS1 
and GBF1) between non-athlete controls and elite athletes (split into sprint and endurance types). *=P<0.05 vs. Control (Fisher’s exact test). 
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