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Abstract
This work tackles a rich vehicle routing problem (VRP) problem integrating a
capacitated vehicle routing problem with time windows (CVRPTW), and a service
technician routing and scheduling problem (STRSP) for delivering various equip-
ment based on customers’ requests, and the subsequent installation by a number of
technicians. The main objective is to reduce the overall costs of hired resources, and
the total transportation costs of trucks/technicians. The problem was the topic of the
fourth edition of the VeRoLog Solver Challenge in cooperation with the ORTEC
company. Our contribution to research is the development of a mathematical model
for this problem and a novel hyper-heuristic algorithm to solve the problem based
on a population of solutions. Experimental results on two datasets of small and
real-world size revealed the success of the hyper-heuristic approach in finding opti-
mal solutions in a shorter computational time, when compared to our exact model.
The results of the large size dataset were also compared to the results of the eight
finalists in the competition and were found to be competitive, proving the potential
of our developed hyper-heuristic framework.
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1 INTRODUCTION

VeRoLog, the Euro Working Group on Vehicle Routing and Logistics optimization, has been organizing challenges for the
routing community, where each challenge aims to promote the design and development of an applicable and effective algorithm
for a particular vehicle routing problem (VRP). The organization of the challenges is a collaborative effort with companies, such
as PTV, the leading German company in developing software solutions and consultations in traffic, transportation, and logistics,
who organized the first and second editions in 2014 and 2015. The third edition in 2017 was organized by ORTEC, one of
the largest providers of advanced planning and optimization solutions and services. They provided a real-world VRP problem
involving the pickup and delivery of tools to measure milk quality at a number of farms, for a cattle improvement company.

This paper addresses the problem introduced in the VeRoLog Solver Challenge 2019,1 which was organized by VeRoLog
in cooperation with ORTEC. The challenge presented a new and exciting variant of a vehicle routing problem (VRP), based on

1https://verolog2019.ortec.com/ - last access: February 28, 2020
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a real-world problem of one of ORTEC’s clients. This problem is about the delivery of equipment, such as vending machines,
to satisfy customers’ requests, and the scheduling of a number of technicians each with a certain set of skills, who are required
to install the equipment at least a day after the delivery. More formally, the overall problem is an integrated version of the
capacitated vehicle routing problem with time windows (CVRPTW) [41], and the service technician routing and scheduling
problem (STRSP) [20]. The problem is highly complex, combining two interacting and co-dependent NP-hard routing problems
into a single model, each problem having its own set of constraints, making it a unique and challenging topic for VRP researchers
and practitioners. The key issue in this challenge is to find efficient and low cost routes for both the delivery and installation,
while scheduling the appropriate technicians according to their skills and working days for a given instance. The main objective
is related to the total costs, aiming to reduce the total number of dispatched trucks and hired technicians on a single day, and
within the planning horizon, in addition to minimizing the penalties incurred due to equipment awaiting installation. Many
companies operating in the delivery and equipment installation businesses would benefit significantly from an effective and
efficient solution to the proposed problem.

For such real-world complex problems, exact approaches, such as, mathematical programming often fail to provide solutions
as the size of the instances get larger, and so heuristic-based search methods are preferred. As we have investigated different
solution methods for the integrated problem from the VeRoLog Solver Challenge, we had a similar observation. Hence, in this
study, we provide a mathematical model for the problem and report the results on a number of small instances. Additionally, we
also present a population-based hyper-heuristic approach for the large scale problem instances. The proposed solution methods
indeed provide competitive results with respect to the highest ranked scores for each challenge instance.

The remainder of the paper is organized as follows: Section 2 reviews the previous literature on the VRP, focusing on the
CVRPTW and the technician routing problem. Section 3 provides a description of the tackled problem and Section 4 formulates
the mathematical model, defining the objectives and the problem constraints. Section 5 describes the applied hyper-heuristic
framework. Finally Sections 6 and 7 present the results and conclusion, respectively.

2 RELATED WORK

The problem we deal with from the VeRoLog Solver Challenge 2019 is a unique vehicle routing problem (VRP), that combines a
pickup and delivery problem with time windows with the scheduling of technicians to install the delivered equipment. However,
it has much in common with some well-known variants of the VRP, thus in the following subsection we provide a brief overview
of relevant previous studies. Following this, we cover selection hyper-heuristics in relation to this study.

2.1 An overview of history and variants of VRP
The VRP (vehicle routing problem) is a generic term for a class of combinatorial problems that are concerned with the design
of efficient routes for a number of vehicles serving a set of customers’ requests, originating and ending at a depot location. A
solution to a VRP instance is a tour for every vehicle, such that all customers’ locations are visited, and each vehicle finishes
its tour at a depot. An optimal solution is the one in which the total distance of all tours is minimized along with the associated
costs. The term VRP was first introduced in [23] as a truck dispatching problem, where they modeled the problem of how a
homogeneous fleet of vehicles can serve the oil demand of a number of gas stations from a central hub, with a minimum traveling
distance. This method was then generalized in [19] to a linear optimization problem: how to serve a number of customers located
around a central depot, using a fleet of vehicles with varying capacities. This has been known since then as the VRP problem
which is one of the most researched topics in the field of operations research and logistics. Over the past decades, the VRP has
grown more popular in the literature, and other variations have been developed to model real-life scenarios.

The capacitated VRP (CVRP), which imposes a capacity constraint on the size of vehicles, is considered one of the elemen-
tary variants of VRP from which other variants originated. Among exact mathematical approaches to the CVRP, branch-and-cut
[7,45] and algorithms based on the set partitioning formulation [9,30] are the most popular approaches. Many studies also
applied heuristic methods [29] and genetic algorithms (GAs) have also been widely used, usually by combining them with local
search techniques [46,49,50,55].

A generalization of the CVRP is the CVRP with Time Windows, which imposes a time interval (“time window”) on the
delivery of each customer’s request. Exact methods for the CVRPTW have been successful for cases with up to 100 customers
[39], and as a result heuristic and metaheuristic methods have been preferred for solving instances of larger scale. Examples of
heuristic methods applied to the CVRPTW problem can be found in [54,57,59,60], and other studies that applied metaheuristic
methods such as genetic algorithms, ant colony optimization, tabu search, and simulated annealing are in [10,18,24,62].

In our proposed problem, customers’ deliveries are scheduled within a planning period, with each customer requiring one
or more visits during this period, similar to the multiperiod VRP problem (MPVRP). In contrast to the MPVRP, where service
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days are known and the frequency of customers visits is predetermined, the visits in our case are scheduled within predefined
time windows. The MPVRP is a well-studied variant in the literature of VRP. In a paper by Rahimi-Vahed et al. [56], a path
relinking algorithm is applied to the multidepot periodic vehicle routing problem. This is done by generating a reference set
of elite solutions, and combining characteristics from those solutions to find even better solutions. The computational results
show that this method produces good results in both run-time and solution quality. Archetti et al. [6] present three ways to
formulate the multiperiod vehicle routing problem with time windows, then they solve the problem using a branch-and-cut
algorithm. The algorithm was able to find good solutions for small problems with 10 customer orders, but was unable to find
many good solutions for larger problems. Alonso et al. [2] present a tabu search algorithm for the periodic vehicle routing
problem with multiple trips and accessibility restrictions such that not every vehicle can visit every customer. When tested on
randomly generated test cases, it performed reasonably well with regards to solution quality. Furthermore the computation time
was manageable for instances up to 1000 orders. We refer the reader to [15] for more literature on MPVRP.

The multicompartment VRP, and the multicommodity VRP concentrate on delivering different types of commodities to the
customer either using a single vehicle, or by splitting them to several vehicles, thus requiring multiple visits to the same customer.
Mirzaei and Wøhlk [47] conducted research on two variants of the MCVRP, one concentrates on split deliveries for different
commodities, and the second focuses on delivering all commodities by a single vehicle. They proposed a branch-and-price
method and compared the optimal costs of the two variants. The computational results were presented for instances with up to
100 customers, and the algorithm optimally solved instances with up to 50 customers and four commodities. Heuristic examples
include [16] who proposed an iterated local search algorithm for solving the multicommodity multitrip VRP with the objective
of minimizing the number of used vehicles. In [32] the authors addressed the commodity constrained split delivery VRP, where
multiple commodities can be mixed in a single vehicle while satisfying the capacity constraint, and similar to our problem, each
customer can be visited more than once, and each visit should deliver only one commodity type. They proposed a heuristic based
on adaptive large neighborhood search (ALNS) and tested their approach on benchmark instances. Among the metaheuristic
methods applied to the MCVRP, genetic algorithms are the most common so far. One example can be found in [69], which
describes a VRP encountered in frozen food delivery. Similar to our model, they associated a penalty cost for late delivery based
on the types of products. A GA was proposed for solving the model on instances with real data.

Our problem involves loading-unloading operations from the depot to a customer location, similar to the classical VRP.
The difference in our case is that a single customer demand can be split into several requests, if the customer requires more
than one machine type, thus several visits by different vehicles may be required. This draws a similarity to the class of VRP
problems with split deliveries (SDVRP) [26]. In the SDVRP, the constraint that each customer is visited by only one vehicle
is relaxed, and thus customers’ demand can be split between several vehicles for delivery. The first heuristic approaches to
solve the SDVRP were introduced by Dror and Trudeau [26,27]. After these studies, most of the subsequent work focused on
metaheuristic or hybrid schemes. One example is the work of Archetti and Speranza [3] who applied a tabu search algorithm,
and Boudia et al. [13] used a genetic algorithm combined with a local search procedure. Hybrid algorithms have since grown
in popularity. Examples are found in [4,18]. Many exact models have also been proposed for this problem and one example is
the study in [5]. For further literature on SDVRP we refer to [3].

Recently, attention has been paid to a class of VRPs that model multiple vehicle trips under the name “multiple trips vehicle
routing problem” (MTVRP). A clear improvement can be obtained by allowing a single vehicle to perform multiple trips,
especially when the vehicle capacity is limited and the replenishment of stock is required. The problem assumes that trucks can
visit the depot more than once in the time horizon of the problem. Example of studies that modeled multiple depot visits are
[61,63]. A survey paper on the literature of MTVRP for further details can be found in [16].

Finally, we mention the workforce routing and scheduling problem (WSRP), which is the focus of the second part of our
model that involves the routing of the technicians for the installation of machines at the delivery points. There are some scenarios
where personnel are required to perform tasks in certain locations, and hence require some sort of transportation to these
locations. These scenarios are known as the workforce routing and scheduling problem (WRSP), which has become a widespread
term used by many service providers.

A similar problem to the WRSP, is the service technician routing and scheduling problem (STRSP), which involves designing
the least cost routes for vehicles carrying a number of service technicians. Each task demands the allocation of a technician with
the required skills set, and this may also be associated with a time window. One of the pioneering publications in this field is the
work of Cordeau et al. [20] who solved a real life technician scheduling problem for a large telecommunication company set as a
competition by the French Operational Research Society in 2007. In this paper an adaptive large neighborhood search algorithm
is implemented. In [68], the authors concentrated on a field technician scheduling problem in the telecommunications industry,
and their purpose was to maximize the number of served requests as well as considering the request’s priority and the technician’s
skill level. A local search algorithm, a Greedy randomized adaptive search procedure (GRASP) and a greedy heuristic algorithm
were proposed to solve the problem. Kovacs et al. [40] studied the service technician routing and scheduling problem with
the objective of minimizing the total routing and outsourcing costs. The authors used an adaptive large neighborhood search
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algorithm for solving the problem on artificial and real-world instances. Pillac et al. [52] proposed a parallel matheuristic
approach for solving a variant of the TRSP in which a number of technicians with a set of accompanying skills, tools and spare
parts need to be scheduled and routed within given time windows. The study dealt with the availability of tools and spare parts
for the technicians and routing them to the depot for the replenishment of tools. Xie et al. [67] used an iterated local search
algorithm to solve the TRSP. They studied a variant where it was given which technicians can serve which orders. The algorithm
was benchmarked on instances ranging from 25 to 100 orders and compared to an ALNS algorithm, where it was found that it
performs significantly better on large instances with fast computational times.

In addition to technician routing, similar problems can also be found in other fields where scheduling is important, such as
the home health care [11], and the scheduling of security personnel [48].

The problem studied in this paper is a unique version considering its set of constraints and the integration with the staff
rostering and routing problem. To the best of our knowledge there is no similar version investigated in the literature, and the
best matching study to our problem description is by Bae and Moon [8] where they extended the multidepot vehicle routing
problem with time windows to a problem of service vehicles used for delivery and installation of electronics. They developed a
mixed integer programming model, a heuristic and a genetic algorithm, and compared their performances. There are differences
between this study and our problem, for example we consider a longer planning horizon, and deal with multiple types of
machines. We also allow multiple visits to the customer by different vehicles, while their model only allows a single visit for
both delivery and installation. They also assign a maximum period of time between delivery and installation that must not be
exceeded, while in our model we restrict this time by imposing a penalty.

2.2 Selection hyper-heuristics
Hyper-heuristics are general purpose search methodologies for solving difficult combinatorial problems. They operate at an
abstract and higher level than heuristics, that is, over the low level heuristics space [25]. One of the earliest hyper-heuristic
frameworks proposed requires that hyper-heuristics should not use any specific knowledge from the solution domain [21], a
feature which makes them applicable to problem instances with different characteristics or even different problems, without a
need for further algorithmic or parametric adjustments. This feature forms a principle concept of hyper-heuristics in past and
modern research. Hyper-heuristics are defined as “heuristics to choose heuristics” in [21], although the first attempt to design
hyper-heuristics dates to as early as 1963 [28]. Burke et al. [14] identifies two categories based on the nature of the heuristic
search space: selection and generation hyper-heuristics. In the former class, a heuristic is selected from an existing repository of
heuristics to try to discover the behavior of these heuristics in order to enable/disable some of them during the search process;
while in the latter, new heuristics are built by discovering the characteristics of the input heuristics. The approach in this study
uses the former type of hyper-heuristics, which are based on a single-point based search framework with two consecutive
operations that work iteratively to improve a single initial solution through heuristic selection and move acceptance. With the
existence of a defined number of low level heuristics, the selection method chooses one of these heuristics and applies it to a
solution in hand, generating a new solution. The move acceptance decides on the acceptance of the new solution based on the
fitness/objective evaluation. Heuristic selection can be carried out using simple methods such as random selection or by selecting
from a predefined ordering of the low level heuristics, or it can incorporate learning by defining some probability measures for
the performance of low level heuristics. For the most recent advances and classification of selection hyper-heuristics we refer
to [25].

There are different criteria to classify selection hyper-heuristics, and one of them is the solution nature, where selection
hyper-heuristics are classified based on this measure into single point or multiple point. Multiple point (population) selection
hyper-heuristics utilize multiple current solutions during the search, while single point (single solution) hyper-heuristics are
based on a single current solution that is iteratively improved during the search. The majority of the previous studies on selection
hyper-heuristics present approaches based on single-point-based search, and only a few used a population of solutions or a
mixed approach alternating between using single and multiple solutions for the search. Moreover, those previously proposed
population based approaches are mostly a hybrid between a selection hyper-heuristic and an evolutionary algorithm framework.

Cowling et al. [22] investigated a genetic algorithm based on hyper-heuristics for the personnel scheduling problem. A GA
is implemented and applied as a high level selector, and a set of low level heuristics are used at each generation to locally
improve the quality of each individual, where the low level heuristics are applied in any sequence. Sabar and Kendall [58]
proposed a Monte Carlo tree search hyper-heuristic framework that tries to identify good sequences of heuristics using the
Monte Carlo search tree. A memory mechanism containing a population of solutions is utilized, and at each iteration a solution
from the population is selected, and the population is subsequently updated using several updating rules. Lei et al. [43] proposed
a memetic algorithm based on hyper-heuristics to solve an examination timetabling problem. Their approach constructs several
heuristic lists based on graph coloring heuristics and applies evolutionary operators to generate new lists. A local search method
is used to further optimize the solutions. Hsiao et al. [33] implemented a hyper-heuristic based on variable neighborhood search
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(VNS) iterating in two stages, first using a population of solutions, and the second stage uses only a single solution. Their
approach consists of two main steps, shaking and local search. The shaking phase improves the exploration of the search space,
and the local search step looks for the local optima. A population of solutions is used in the shaking stage, where the authors
argued that the diversity of solutions is important in the first stages of the search to explore the right search path, and after a
period of time the best solution is picked from the population. Tournament selection is used to filter unfit solutions from the
population. Lehrbaum and Musliu [42] introduced a hyper-heuristic that alternates between working on a single solution and
a population of solutions. Their algorithm starts by scoring the available local search heuristics, and a serial phase working
with single solutions starts by applying the heuristics sequentially according to their quality scores. A parallel phase uses a
population of solutions, and a heuristic is applied to each individual in the population. The algorithm switches back to the serial
phase whenever a global improvement is found (i.e., better than the best found solution so far) .

We also discuss here the successful application of hyper-heuristics in different variants of VRP problems, since the VRP is
considered an active research field in hyper-heuristics. In [53] the adaptive very large neighborhood search hyper-heuristic was
successful in finding the state-of-the-art results for many benchmark instances of several variants of VRP. Also the CVRP with
time windows is one of HyFlex (hyper-heuristic flexible framework) problem domains, for which newly developed approaches
in hyper-heuristics are tested [65]. Other VRP problems solved using selection hyper-heuristics include the periodic VRP [17],
dial a ride [64], urban transit routing [1], and inventory routing [34].

The previous VeRoLog challenge 2016-2017 tackled a rich VRP problem related to a cattle improvement company that
regularly measures the milk quality at a number of farms using specialized tools. These tools have to be delivered to a number of
farms (customers) on request and picked up again a few days after delivery. The key challenge is how to schedule the deliveries
to satisfy the requests, while at the same time design efficient routes for the pick-ups and deliveries. The second place winner
on this challenge used a hyper-heuristic approach based on an online selection method [38].

3 DESCRIPTION OF THE PROBLEM

The real-world problem from VeRoLog Solver Challenge 2019 can formally be stated as follows (see Figure 1). There are a
number of customers Cr = {cr1, cr2, …, cr|Cr|} geographically spread at different locations, and a depot located at H0. The
distance between any two locations i and j is given by di, j. The purpose is to respond to customers’ requests by delivering
machines and getting them installed by a technician within a defined time horizon T given as a consecutive number of days.

An unlimited number of identical trucks (i.e., vehicles) K = {k1, k2, …} can be hired to transport the machines to the cus-
tomers. They are located at the depot each with a maximum capacity C. Also, a number of machines M = {m1, m2, …, m|M|}
are available to be delivered to the customers at their request, and there are different types of machines with different sizes
expressed in the same size unit as the truck capacity. The machines are all located in the depot, with enough machines to
satisfy all the demand. A set of customer requests R = {r1, r2, …, r|R|} should be satisfied. The requests are known at the start
of the planning period. A single request ri = {cri, wi, mi, ni} asks for one machine type mi ∈M, of quantity ni, for exactly one
customer cri, and wi is the associated time window to deliver the request, where wi is specified by the earliest day ei and the
latest day li to deliver request ri. A request of the same type of machines cannot be split and should be delivered by the same
truck, and if a customer requires another machine type, a separate request is made. Each truck journey on a day should start
and end at the depot location H0 and can carry different types of machines to satisfy several customers’ requests, and each
request occupies ci of the truck capacity, and should not exceed its maximum capacity C. The truck can return back to the
depot location multiple times during the day to pick up more machines. Also, there is a limit D on the maximum distance a
single truck can travel per day. It does not take any time to load a machine at the depot or to unload a machine at a customer.

There is a fixed number of technicians S = {s1, s2, …, s|S|} who are responsible for installing the delivered machines, at the
customer location, at least 1 day after the delivery. Each technician si ∈ S is located at a certain home location Hsi . A technician’s
daily route starts and ends at his/her home location, and like trucks, there is a maximum distance Dsi the technician can travel
per day. In addition, there is a maximum limit Nsi on the number of requests a technician can carry each day, where carrying
out a request means installing all the machines for that request. The technician can maximally work for five consecutive days,
and must have 2 days off if he/she has worked for five consecutive days.

Each technician has a skill set for installing certain types of machines. asm refers to technician s∈ S installing machine
m∈M, and is equal 1 if the technician is eligible to install this machine, and zero otherwise. Installing a machine does not take
any time. A technician is described with the following entry s = {Hs,Ds,Ns, {asm1

, asm2
,… , asm|M|}} referring respectively to

the technician home location, maximum travel distance per day, maximum number of installations per day, and which machines
they have the skill to install.

The last point to mention, is that the technician should install a delivered machine as soon as possible after the delivery, and
for each delayed installation of request ri, a penalty Cli is added to the cost, and each machine type has a different penalty value.
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The main objective is to reduce the overall costs associated with trucks, technicians and idle machines costs. The
trucks/technicians total cost is constituted of the following parts: the cost of hiring a truck/technician per day, the cost of hiring
a truck/technician within the planning horizon T , and the cost per unit of distance for the traveling of truck/technician. The
distance between coordinates (x1, y1) and (x2, y2) is defined as the ceiling of the Euclidean distance, ⌈√(x1 − x2)2 + (y1 − y2)2⌉.
In addition, there is the cost for penalizing idle machines that remain without installation for more than 1 day. This penalty cost
is dependent on which machine it is and the number of days it was idle. The objective function is described by Equation (1) in
the following section.

A solution gives, for each day in the planning horizon, the routes followed by each truck/technician (see Figure 2). Assuming
that {1,6,7,0,1,2} is the route of a single truck in one of the planning days. The first element in the route “1” is the truck ID,
followed by the requests ID’s that this truck served. The ID “0” refers to the depot, and it means that truck 1 visited the depot
after serving requests “6” and “7” and was loaded to serve requests “1” and “2.” Each series of requests before the truck goes
back to the depot is named “tour”. In this route, there are two tours given as {6, 7} and {1, 2}. The start and end of the truck
journey at the depot is not explicitly written in this route format.

The technician routes are very similar, starting with the technician ID, followed by the ID’s of the requests that this technician
served. Also, the start and end of the technician journey at their home location is not explicitly mentioned in the solution.

3.1 Problem instances
We have used two datasets of instances, one of them has been developed for this work and one, referred to as the hidden dataset,
was used in the competition to evaluate the participants’ algorithms in the VeRoLog Solver Challenge. Each of the instances
provides different types of information such as the weights of the objective function components, the maximum truck capacity,
the number of days in the planning horizon, and the maximum travel distance allowed by each truck. The details of the requests,
locations given as x, y coordinates (i.e., depot, technicians homes, customers) and technicians are also given. The characteristics
of these datasets are provided in Table 1.

The small dataset, which includes instances of sizes varying between 6 and 16 requests, is developed specifically for this
work. The reason for generating this dataset is to provide an ideal size of instances for testing the mathematical model which can
only be applied on instances of such sizes. It is also essential to test our developed hyper-heuristic approach on instances with
different characteristics and scales and to compare its performance to the exact model by its ability of finding optimal solutions
in a short duration of time.

The hidden dataset was used to assess the performance of the competitors algorithms and rank the finalists in the restricted
resource challenge.2 This dataset contains instances of large sizes up to 900 requests. The number of different types of machines
vary between 3 and 7 in each instance, and the number of technicians range from 25 to 125. The highest variation can be found
in the costs of using trucks and technicians, distance costs, and the costs per day that trucks and technicians are used. These
values range from 10 to 100 000. We refer the reader to [31] for a comprehensive description of the problem and the formal
challenge rules.3

4 MATHEMATICAL FORMULATION OF THE CVRP FOR DELIVERY AND
INSTALLATION OF MACHINES

4.1 Sets and indices
R: requests (i, j∈R).
R0: requests and the depot (R0 = H0 ∪R).
K: vehicles (k∈K, |K | = maxt{Mt}).
S: technicians (s∈ S).
Rs: requests that technician s can install and the home location of technician s (Rs = {s, i : asi = 1,∀ i∈R}∪Hs).

4.2 Parameters
T: number of days in the entire planning horizon.
H0: location of the depot.
D: maximum distance a vehicle can travel per day.
Mt: upper bound on the number of visits a vehicle can do to depot on day t.

2The solvers of the finalists were run on the hidden dataset for a limited computational times determined by the challenge rules
3A detailed description of the challenge and the datasets is also provided here: https://verolog2019.ortec.com/

https://verolog2019.ortec.com/
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dij: distance between request/depot/home i and j.
ei: earliest (first) day that request i can be delivered.
li: latest (last) day that request i can be delivered.
C: vehicle capacity.
ci: capacity needed to deliver request i.
asi: 1, if technician s is eligible to satisfy request i; 0, otherwise.
Hs: home location of technician s.
Ds: maximum distance that technician s can travel per day.
Ns: maximum number of installations that technician s can do per day.
CIi: cost of delaying the installation of request i per day.
CV: cost of using a vehicle any day during the planning horizon.
CT: cost of using a technician any day during the planning horizon.
CVU: cost of using a vehicle per day.
CTU: cost of using a technician per day.
CVT: cost of traveling unit distance by a vehicle.
CTT: cost of traveling unit distance by a technician.

4.3 Decision variables
xt

ijk: 1, if vehicle k visits {request j}/depot right after {request i}/depot on day t; 0, otherwise.
zt

ijs: 1 if technician s visits {request j}/home right after {request i}/home on day t; 0, otherwise.
mk: 1 if vehicle k is used during the planning horizon; 0, otherwise.
rs: 1 if technician s is used during the planning horizon; 0, otherwise.
vt

k: 1 if vehicle k is used during day t; 0, otherwise.
pt

s: 1 if technician s is used during day t; 0, otherwise.
wt

i: 1 if request i is delivered on day t; 0, otherwise.
yt

i: 1 if request i is installed on day t; 0, otherwise.
qik: upper bound on the weight of the machines on vehicle k right after leaving {request i}/depot.
gis: number of visits done by technician s before visiting {request i}/home.
bi: number of days installation of request j is delayed after its delivery.

4.4 Mathematical modeling

min

vehicle cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
k∈K

CVmk +
T∑

t=1

∑
k∈K

CVUvt
k +

T∑
t=1

∑
k ∈ K,

i, j ∈ R0, i ≠ j

CVT𝑑ijxt
ijk

+
∑
s∈S

CTrs +
T∑

t=1

∑
s∈S

CTUpt
s +

T∑
t=1

∑
s ∈ S,

i, j ∈ Rs, i ≠ j

CTT𝑑ijzt
ijs

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
technician cost

+
∑
i∈R

CIibi

⏟⏟⏟
idling cost

(1)

subject to ∑
j∈R0,i≠j

xt
ijk =

∑
j∈R0,i≠j

xt
jik ∀i ∈ R0, k ∈ K, t ∈ [1,T] (2)

∑
i∈R

xt
H0ik =

∑
i∈R

xt
iH0k ≤ Mtvt

k ∀k ∈ K, t ∈ [1,T] (3)

∑
i,j∈R0,i≠j

𝑑ijxt
ijk ≤ D ∀k ∈ K, t ∈ [1,T] (4)

vt
k ≤ mk ∀k ∈ K, t ∈ [1,T] (5)
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xt
ijk ≤ vt

k ∀i, j ∈ R0, k ∈ K, t ∈ [1,T] (6)

∑
k∈K,j∈R0,i≠j

xt
ijk = wt

i ∀i ∈ R, t ∈ [ei, li] (7)

li∑
t=ei

wt
i = 1 ∀i ∈ R (8)

qjk ≤ qik − xt
ijk(C + cj) + C ∀i ∈ R0, j ∈ R, i ≠ j, k ∈ K, t ∈ [1,T] (9)

qH0k = C ∀k ∈ K (10)

∑
j∈Rs,i≠j

zt
ijs =

∑
j∈Rs,i≠j

zt
jis ∀i ∈ Rs, s ∈ S, t ∈ [1,T] (11)

∑
i∈R

zt
Hsis =

∑
i∈R

zt
iHss = pt

s ∀s ∈ S, t ∈ [1,T] (12)

∑
i,j∈Rs,i≠j

𝑑ijzt
ijs ≤ Ds ∀s ∈ S, t ∈ [1,T] (13)

∑
i∈Rs,j∈R,i≠j

zt
ijs ≤ Ns ∀s ∈ S, t ∈ [1,T] (14)

pt
s ≤ rs ∀s ∈ S, t ∈ [1,T] (15)

zt
ijs ≤ pt

s ∀i, j ∈ Rs, s ∈ S, t ∈ [1,T] (16)

∑
s∈S,j∈Rs,i≠j

zt
ijs = yt

i ∀i ∈ R, t ∈ [ei + 1,T] (17)

T∑
t=ei+1

yt
i = 1 ∀i ∈ R (18)

gjs ≤ gis − zt
ijs(1 + Ns) + Ns ∀i ∈ Rs, j ∈ R, i ≠ j, s ∈ S, t ∈ [1,T] (19)

gH0s = Ns ∀s ∈ S (20)

t+4∑
u=t

pu
s ≤ 5 − pt+5

s ∀s ∈ S, t ∈ [1,T − 5] (21)

t+4∑
u=t

pu
s ≤ 5 − pt+6

s ∀s ∈ S, t ∈ [1,T − 6] (22)

T−1∑
u=T−5

pu
s ≤ 5 − pT

s ∀s ∈ S (23)

T∑
t=ei+1

tyt
i −

li∑
t=ei

twt
i − 1 = bi ∀i ∈ R (24)

qik ∈ ≥0; xt
ijk, vt

k,mk ∈ {0, 1} ∀i, j ∈ R0, k ∈ K, t ∈ [1,T], i ≠ j (25)
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gis ∈ ≥0; zt
ijs, pt

s, rs ∈ {0, 1} ∀s ∈ S, i, j ∈ Rs, t ∈ [1,T], i ≠ j (26)

bi ∈ ≥0; wt
i, yt

i ∈ {0, 1} ∀i ∈ R, t ∈ [1,T] (27)

The exact model for the given problem is formulated by Equations (1)–(27). The objective function (1) is composed of
three types of costs: the vehicle (first three summations), technician (next three summations), and idling cost (last summation).
The sum of the vehicle hiring cost, the vehicle cost per day, and the vehicle cost per distance is equal to the total vehicle cost.
Similarly the sum of the personnel hiring cost, the personnel cost per day, and the personnel cost per distance is equal to the
personnel cost. The idling cost is calculated by multiplying the cost of idling all the machines at each request by the difference
between the delivery and installation days.

In the mathematical model, constraints (2)–(10) are vehicle, constraints (11)–(23) are technician, and constraints (24) are
idle time related constraints. Constraints (25)–(27) define the domains of the variables.

Constraints (2) and (11) are balance equations for the vehicles and technicians respectively. They ensure that in any day, in
any vehicle and personnel route, the number of arcs entering to a location of a request, depot or home should be equal to the
number of arcs exiting from the same location.

Constraints (3) and (12) ensure that both the vehicles and technicians start/end their routes from/at the depot and home
respectively. For the technicians, the problem dictates upper bounds for the number of installations (Ns) and travel distance (Ds)
for any given day. Therefore, in an optimal solution, if a technician is used on any given day, they should leave and return their
home only once. On the other hand, for the vehicles, in addition to the total travel distance on any given day (D), there is an
upper bound on the weight of the machines that are being carried by the vehicle, defined as vehicle capacity (C), at any given
time of the day. This makes it possible for a given vehicle on any given day to deliver more than its capacity by making multiple
visits to the depot. Because of the difference of the restrictions on the vehicles and technicians, constraints (12) are satisfied
with an equality to pt

s whereas constraints (3) are satisfied with an inequality to vt
k. The former constraints force technicians to

leave and return to their home only once if they are working on day t, whereas the latter constraints force vehicles to have an
equal number of trips that leave from and return to the depot, and these trips can only occur if the truck is operating on day t. Mt
on the RHS of the constraints (3) is calculated by counting the number of orders that can receive a delivery on day t. Note that,
the maximum value that Mt can take on different days also sets the upper bound for the maximum number of hired vehicles in
the planning horizon.

Constraints (4) and (13) restrict the total travel distance for each day of the vehicles and the technicians, respectively. In
addition, constraints (14) set the maximum number of installations for a technician on a single day. Similarly, in the problem
definition, there is a limit set on the total weight of machines a truck can carry. This is ensured by constraints (9) and (10). The
variable qH0k, that represents the weight of the machines right after the vehicle is leaving the depot, is set to be C for any truck
by constraints (10). Since constraints (9) ensure that the weight on the truck decreases at every request stop by the weight of the
delivery of the same request, and the qik’s are defined as nonnegative integer variables, no truck can carry more than its capacity.

Constraints (5) and (15) ensure that in order to use a vehicle or a technician respectively in any day of the planning horizon,
we need to hire them first. Similarly, constraints (6) and (16) ensure that if a vehicle or a technician travel between two requests
on any given day, they are already hired for the day.

Constraints (7) and (17) establish the relationship between the routing (xt
ijk and zt

ijs) and service, that is, delivery (wt
i) and

installation (yt
i) variables for the vehicles and technicians respectively. According to constraints (7), if the location of a request

is visited by a vehicle, then the machines ordered by this request are delivered between the first (ei) and the last (li) days the
delivery can be done. Similarly, according to constraints (17), if the location of a request is visited by a technician, then the
installation that is ordered by this request is done at least 1 day after the earliest day that the request can be delivered.

Constraints (8) and (18) ensure that all the deliveries and installations are done within their predefined times respectively.
Constraints (8) ensure that each request is delivered by one of the vehicles. These constraints restrict each request to be delivered
between their first (ei) and the last (li) days the delivery can be made. Similarly, constraints (18) ensure that each request is
installed by one of the technicians. Since the earliest installation day is 1 day after the delivery of the machines, the constraints
only consider the days after the first day that the request can be delivered.

Constraints (9) and (10) prevent subtours in vehicle routes. Constraints (10) assign the maximum weight (C) a vehicle can
carry when leaving the depot to variables qik on any given day. Constraints (9) subtract the weight of the machines that are being
delivered from qik every time a vehicle visits a request. Keeping track of each qik and forcing qjk less than or equal to qik if request
j is visited immediately after request i or depot by vehicle k (i.e., xt

ijk = 1) prevent the formation of subtours. Note that, since a
vehicle can make multiple visits to the depot on any given day, these constraints are not being forced for the trips to the depot.

Constraints (19) and (20) prevent subtours in technician routes. Constraints (20) assign the maximum number of visits a
technician can make (Ns) to variables gis on any given day. Note that, since the maximum number of installations that a technician
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can make is an upper bound for the maximum number of visits in a day, we use this constant in our model. Constraints (19)
subtract 1 from gis every time a technician visits a node. Similar to vehicle subtour elimination constraints, since gjs is forced to
be less than or equal to gis if request j is visited immediately after request i or home Hs by technician s (i.e., zt

ijs = 1), subtours
never form in technician routes.

Constraints (21) and (22) ensure that the solution complies with the working day restrictions for the technicians. According
to constraints (21) and (22), if a technician works four or fewer consecutive days, that is, LHS is less than or equal to 4, he/she can
work either the next day or the day after the next day unless he/she is working more than five consecutive days. If a technician
works five consecutive days, that is, LHS is equal to 5, the technician cannot work the next two consecutive days. Constraints
(23) ensure that this restriction still holds at the end of the planning horizon and prevents any technician from working more
than 5 days in the last 6 days.

Constraints (24) calculate the idling time, the difference between the delivery day and the installation day, for all requests.
Since bi is defined as a nonnegative integer, these constraints also ensure that machines are installed at least 1 day after the
delivery for every request.

5 HYPER-HEURISTICS METHODOLOGY OF CVRP FOR DELIVERY AND
INSTALLATION OF MACHINES

In this section we describe the hyper-heuristic framework applied to this problem and discuss solution initialization and
representation and the low level heuristics set.

5.1 Population-based hyper-heuristic framework
Following the description of the selection hyper-heuristic framework in Section 2.2, most of the previously proposed solution
methodologies in selection hyper-heuristics utilize a single solution during the search process and iteratively improve it, while
some other methodologies adopt the idea of using a population of solutions during the search as a whole, or during some part
of it. Our proposed framework is based on a population of solutions from which one of them will be selected and applied to a
selection hyper-heuristic at each step in the search. We are motivated in this work to use a population of solutions as we believe
that this provides diversity in the search and allows better exploration of new areas in the search space. The process starts by
initializing a number of solutions using a generation method to create an initial population pop = {sol1, sol2,… , solpopsize}. A
number of selection hyper-heuristics HH = {hh1, hh2, …, hhn} combining different selection and move acceptance methods are
implemented.

A solution soli and a selection hyper-heuristic hhj are randomly selected from pop and HH respectively, where soli will
serve as Scurrent to hhj. The selection hyper-heuristic hhj selects a heuristic (or sequence of heuristics) and applies it to Scurrent

to create new solution Snew, which is checked for feasibility, and rejected if it is not feasible (i.e., violates at least one of the
problem constraints). If Snew is feasible it will be evaluated and the decision of its acceptance is made by the move acceptance
component of hhj. The best found solution Sbest is replaced by Snew if it is better. The iteration between the selection and
acceptance components continues until the termination criteria are satisfied, that is until the global time limit is exceeded or
when there is no improvement on the best obtained solution for a certain number of iterations.

After hhj terminates, Sbest is checked against the best found global solution Sglobal and replaces it if it is better. Afterwards,
Sbest is shuffled by randomly selecting and applying a series of low level heuristics. The number of steps to shuffle a solution
is tuned by the user, and is constant during the search. This shuffling is necessary in order to avoid the possibility of early
convergence and to refresh the population. Next, a solution from the population and a selection hyper-heuristic are randomly
selected and the same steps mentioned above are repeated. This iterates until the specified time for running an instance passes.
Algorithm 1 outlines our applied framework (Figures 1 and 2).

For this framework we have tested a total of eight selection hyper-heuristics combining the selection methods: simple
random (SR), sequence-based selection hyper-heuristic (SS), and the move acceptance methods: record-to-record (RR), Naïve
acceptance (Naïve), great deluge (GD), and simulated annealing (SA).

SR is the most basic heuristic selection method. It randomly selects a low level heuristic at each step according to a uniform
probability distribution. SS on the other hand applies sequences of heuristics to the solution, instead of single applications. This
selection method learns and identifies the sequences of heuristics most likely to improve the current solution. More details of
this method can be found in [35,36].

The move acceptance methods applied accept nonworsening solutions, and worsening solutions are accepted using different
criteria.
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In Naïve and SA, the worsening solutions are accepted with a certain probability. This probability is fixed for Naïve which
is predefined by the user, while in SA, the probability varies in time and it is calculated using the following formula:

pt = e
− Δf

ΔF
(

1− tcurrent
tlimit

)
, (28)

where Δf is the change in the cost at time tcurrent, ΔF is the expected maximum change in the cost, and tlimit is the time limit.
GD is a threshold move acceptance method which allows worsening solutions if their cost (objective) value is less than or equal

C1

C2D

T1

T2

C3

C4 C5

C6

C7

C customer requiring installation C delivery and installation complete

C customer requiring delivery and installation technician route

truck route D depot T technician

Figure 1 Problem description [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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0 6 7 1 2 0

T 1 6 7 1 T 1

(A)

Day = 1
Number of Trucks = 2

1 6 7 0 1 2

2 3 4 5

Number of Technicians = 0

Day = 2
Number of Trucks = 1

1 8 10 0 9

Number of Technicians = 1

1 6 7 1

(B)

Figure 2 Solution example, and the routes of truck 1 in day 1, and technician 1 in day 2. The red and blue arcs represent two different tours. The pink and

gray colored boxes represent the depot and technician Ti respectively [Color figure can be viewed at wileyonlinelibrary.com]

day1 day2 dayT

Truck 1 Truck 2

number of trucks

Tour 1 Tour 2

number of tours

v1 v2

number of visits

(A)

day1 day2 dayT

Tech 1 Tech 2

number of technicians

v1 v2

number of visits

(B)

Figure 3 Solution representation [Color figure can be viewed at wileyonlinelibrary.com]

to a threshold value referred to as “level” (𝜏 t) which gets updated at each time step (t) during the search. The level is initially
set to the initial cost. The update formula for the level is as follows:

𝜏t = f + ΔF ×
(

1 − tcurrent
tlimit

)
, (29)

where f is the final expected cost value, ΔF is the maximum expected change in the cost value, and tcurrent, tlimit is the time at
the current step, and the time limit respectively. RR is a variant of GD which accepts worsening solutions that are not much
worse than the best solution in hand to an extent based on the following formula:

obj(Snew) ≤ obj(sbest) + fr × obj(Sbest), (30)

where fr is a factor that is updated during the search, starting with a large value and gradually decreasing.

5.2 Solution representation scheme
The described hyper-heuristic framework requires initializing a number of solutions to build a population, and this is achieved
using an initial generation method. The structure of each of the initialized solutions is demonstrated in Figure 3. Each solution is
composed of two main components: truck visits, and technician visits. The truck visits component corresponds to the schedule
of trucks during the planning horizon which can be modeled as four levels: days, trucks dispatched on each day, tours performed
by each truck, and the requests to deliver on each tour. Similarly, the technician visits correspond to the technicians’ schedule
composed of three levels: days, technicians scheduled on each day, and visits performed by each technician. The initial generation
method randomly produces these schedules, while ensuring the final constructed solution is feasible. The main focus of the
initial generation method is the feasibility of the solution and not its quality.

The feasibility of the solution must also be maintained during the hyper-heuristic operation. A feasibility test is implemented
to ensure that the constraints described in Section 3 still hold after each application of low level heuristic(s). A single violation

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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1 2 3 0 4 5

(A) Swap same tour

1 2 3 0 4 5

(B) Swap different tour

1 2 0 3 4

5 6 0 7 8

(C) Swap two trucks same day

1 2 3 0 4 5

(D) Insert same tour

1 2 3 0 4 5

(E) Insert different tour

1 2 0 3 4

5 6 0 7 8

(F) Insert different trucks, same day

T1 1 2 3 4 T2

(G) Swap same technician

T1 1 2 3 T2

T2 4 5 6 T2

(H) Swap two technicians same day

T1 1 2 3 4 T1

(I) Insert same technician

T1 1 2 3 T2

T2 4 5 6 T2

(J) Swap two technicians same day

1 2 0 3 4

5 6 0 7 8

(K) Swap tours same day

1 2 0 3 4

5 6 0 7 8

(L) Insert tour same day

Figure 4 Some selected low level heuristic descriptions. Blue and red arrows represent two different tours. Dashed arrows are edges removed by the

application of the low level heuristic [Color figure can be viewed at wileyonlinelibrary.com]

of any of these constraints results in rejecting the solution. This test prevents the evaluation of too many infeasible solutions
which can consume valuable search time.

5.3 Low level heuristics
The hyper-heuristic controls a total of 25 low level heuristics to improve the quality of a given initial solution. These low level
heuristics perform swap and insert operations for requests in truck and technician routes (see Figure 4). Low level heuristics
are restricted, as needed, to only produce routes that respect some of the constraints. For example, some low level heuristics
perform operations between different days in the planning period; in this case if the operation involves delivery requests, the time
windows of these requests must be respected and any installations that as a consequence violate the time windows constraints
must be rescheduled. If it involves installation requests, the delivery of these requests must be ensured at least the day before.

• LLH0: selects a random day, a random truck route and a random tour, and swaps any two randomly selected requests on
this tour.

http://wileyonlinelibrary.com
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• LLH1: selects a random day, a random truck route, and two different random tours, and swaps any two randomly selected

requests on each tour.

• LLH2: selects a random day, two different random truck routes, two random tours from each route, and swaps two

randomly selected requests from each tour.

• LLH3: selects two different random days, two random truck routes from each day, and two random tours from each route,

and swaps two randomly selected requests from each tour.

• LLH4: selects a random day, a random technician scheduled on this day, and swaps two randomly selected requests of

this technician.

• LLH5: selects a random day, two different random technicians scheduled on this day, and swaps two randomly selected

requests of these technicians.

• LLH6: selects two different random days, and two random technicians, and swaps two randomly selected requests of

these technicians.

• LLH7: selects a random day, a random truck route, a random tour, and two random positions on this tour. The request

on the first position is inserted into the second position.

• LLH8: selects a random day, a random truck route, two different random tours on the selected route, and a random

position on each tour. The request on the first position of the first tour, is inserted into the second position of the second

tour.

• LLH9: selects a random day, two different random truck routes, a random tour on each route, and a random position on

each tour. The request on the first position is inserted into the second position.

• LLH10: selects two different random days, a random truck route on each day, a random tour on each route, and a random

position on each tour. The request on the first position is inserted into the second position.

• LLH11: selects a random day, a random technician scheduled on this day, and two random positions on the technician

route. The request on the first position is inserted into the second position.

• LLH12: selects a random day, two different random technicians, and a random position on each technician route, and

inserts the request on the first position into the second position.

• LLH13: selects two different random days, a random technician on each day, and a random position on each technician

route. The request on the first position is inserted into the second position.

• LLH14: selects a random day, two different random truck routes, and a random tour on each route, and swaps the two

selected tours.

• LLH15: selects two different random days, a random truck route on each day, and a random tour on each route, and swaps

the two selected tours.

• LLH16: selects a random day, two different random truck routes, and a random position on each route. The tour on the

first position is inserted into the second position.

• LLH17: selects two different random days, a random truck route on each day, and a random position on each route. The

tour on the first position is inserted into the second position.

• LLH18: selects a random day, two different random truck routes, and two random positions. A block of consecutive

requests starting at the first position is swapped with another block of requests starting at the second position. The size

of the block is randomly selected.

• LLH19: selects two different random days, a random truck route on each day, and two random positions on each route.

A block of visits starting at each of the positions are swapped with each other.

• LLH20: selects a random day and two different random technicians, and swaps two blocks of requests for these

technicians.

• LLH21: selects two random different days and two random technicians from each day, and swaps two blocks of requests

of these technicians.

• LLH22: selects a random day, and two different random truck routes. A block of requests is moved from the first route

to the second route at randomly selected positions.

• LLH23: selects two different random days and two random truck routes. A block of requests is moved from the first route

to the second route at a randomly selected positions.

• LLH24: selects a random day and two different random technicians, and moves a block of requests from the first

technician to the second technician.

• LLH25: selects two different random days and two random technicians, and moves a block of requests from the first

technician to the second technician.
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Table 2 The algorithm parameters and the chosen values

Parameter Tuning irace

Population size (popsize) 2–5 3

Limit on iterations without improvement 105 63 144

Naïve acceptance probability 0.1 0.1

RR factor (fr) starting value 10 10.64

Number of iterations to shuffle solutions 10 7

6 EXPERIMENTAL RESULTS

The experiments were performed on several machines. CPLEX 12.10 and Gurobi 9.0 together with C# and Python were used for
the exact technique and Microsoft Visual Studio 2017 C++ for the heuristic method. The experiments for the heuristic method
on the hidden dataset were performed on a device with the specifications: Intel Core i5 at 2.3 GHz with memory of 8 GB. On
both datasets, the experiments were designed according to the competition rules, which required nine runs per instance with
nine different random seeds also determined by the competition rules. The run time for each instance in both datasets was also
calculated according to the competition rules, where it has been specified that each instance is run for a limited time on the user
machine calculated with the formula: Tlimit = fb× (10+|R| ), where Tlimit is the time limit for running an instance according
to the user local machine, fb is a factor calculated by a benchmark tool provided by the competition to estimate the equivalent
time on any machine compared to the organizers core machine, and |R| is the number of delivery requests in the instance.
To tune these parameters we have followed two approaches: a manual approach where a series of extensive experiments were
performed to fine tune the design parameters. We arrived at a combination of parameter values that resulted in a relatively
better performance across a subset of public instances. The second approach is using the irace package [44] to automatically
tune the parameters on the five instances with the highest variance in the small dataset. Irace performed a maximum of 8000
experiments and ran for about 9 hours to find the top four configurations. The best configuration in the top four was selected to
perform another round of experiments on the small dataset with the same experimental design (i.e., nine runs per instance with
the random seed values set by the competition rules). The parameter settings of the hyper-heuristic using the two approaches
are shown in Table 2. The results of the small dataset reported in the next section are the ones found using the manual tuning.
For convenience, the developed approach is denoted as POHH.

6.1 Results on the small dataset
Table 3 provides the results of the small instances dataset for the exact and the hyper-heuristic method. For the exact model,
the upper and lower bounds are provided for each instance. The lower bound indicates that an optimal solution was not found
for a particular instance. The results of the hyper-heuristic experiments are reported in terms of the minimum and maximum
objective values achieved in the nine runs, the average of the nine runs and the SD. The time in seconds is the time that was
required to find the reported results by the exact model, and the time limit for each run of POHH. The time was normalized to
its equivalent in the standard machine using the calibration tool provided by the competition. We also note that the execution
time of the exact model on any instance was limited to up to 30 minutes.

From Table 3 we can directly compare the performances of the two models in terms of finding optimal solutions and the
time required to find them. The exact model was able to find optimal solutions for 12 instances out of the 25 with CPLEX
and Gurobi, and no feasible solution with CPLEX or Gurobi was found for the instance Small_09. For the rest of the instances
the same upper bounds were found by CPLEX and Gurobi, while we notice that for some instances Gurobi was able to find
better lower bounds. Comparing the results of the exact model to the minimum value in the nine runs, POHH was able to find
the optimal solutions in all 12 instances where the exact model found optimal solutions. In the other cases where no optimal
solution was proved by the exact model, the POHH algorithm either found the same upper bound or, in the case of seven of
the instances, a better upper bound was discovered. Also, a feasible solution for Small_09 was found by POHH. Although the
POHH was able to find the same value for the upper bound as Gurobi and CPLEX in many instances, we cannot yet argue that
this upper bound is the optimal solution to these instances. In terms of run time, POHH achieved improved run times in most
of the cases. The exact model in many instances required more than 3000 seconds to find a solution, while POHH required less
than 30 seconds on the same instances.

We also compared the results on the small dataset using the manually tuned parameters with the best configuration found by
the irace package. The results of the two approaches were very similar using the minimum value in the nine runs as comparison
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base. Both found the same minimum in all the instances, except for Small_18, in which the irace configuration found a new
best result of “479 817 740”, and Small_23, in which the manual configuration was better.

6.2 Results on the hidden dataset
As mentioned previously, the hidden dataset was used to assess the competitors’ algorithms in the restricted resources challenge,
and according to the results of this challenge, eight teams were selected as finalists. We have followed the same competition
rules as the other finalists team, with this set of experiments to fairly compare and justify our results.

Table 4 summarizes the results of the top six teams, including our hyper-heuristic approach, for each instance ranked based
on their best found solution from best to worst. For each instance, the results are reported for the best six teams out of nine using
the average of the nine runs and the minimum objective value.

Considering the minimum and average objective values obtained over nine runs for each hidden instance, POHH is rela-
tively competitive between the finalists. The POHH achieved a position in the top six in 15 instances out of 25. For 11 out of 25
instances, including: Hidden_02, Hidden_07, Hidden_09, Hidden_11, Hidden_13, Hidden_16, Hidden_17, Hidden_19, Hid-
den_21, Hidden_22, Hidden_25, POHH performs better than at least half of the finalist approaches in terms of average objective
value. Except the instances Hidden_13 and Hidden_17, the same phenomena is observed with those instances with respect to
the minimum objective values. The best achieved results are found on instances Hidden_07, Hidden_11, Hidden_16, and Hid-
den_21, where POHH is ranked the fourth based on both the average and the minimum objective values. These instances are
all of different sizes: 150, 450, 600, and 750 requests, reflecting the ability of POHH to perform well on instances with varying
characteristics and complexities (Figure 4).

We have also ranked our approach among the eight finalists using the same method used in the competition. A ranking score
is calculated per instance for each submitted solver by removing the two best and worst solutions found by this solver. We then
take the average objective value of these five solutions as score for the algorithm, and rank all methods accordingly. The average
of all ranking scores for the instances represents the final mean rank of the solver, which was used to order the competitors from
the first to the last. Figure 5 displays the ranking of the POHH algorithm among the eights finalists based on this method. It
is clearly seen that our method was able to produce results competitive with the finalists by achieving a better final mean rank
than three teams, and an insignificant difference from the ranks of the third, fourth, and fifth teams.

Although the proposed algorithm did not succeed in improving any current best known solutions on hidden instances, it
performed well (see Section 6.1) on small instances with few requests, and the results on the hidden instances are considered
reasonably good.

6.3 Performance analysis of POHH
Figure 6 visualizes the six sample instances, including Small_01, 03, 06 and Hidden_01, 03, 06 that we used for the analysis
purposes, reflecting the varying characteristics of each instance. These instances were arbitrarily chosen to represent varying
sizes. The visualization was obtained with the tools provided by the challenge organizers [51]. The large light blue circle
indicates the depot, and this may or may not have technicians on the premises at any given time. Yellow locations, indicated by
medium circles, have technicians, and they may or may not have requests. Green locations have requests, but no technicians.
The large diameter is used when a location (of any color) is open, and the small diameter indicates that a location is not
open for delivery. The depot (blue) is open throughout the planning horizon, and each request location is open on the days
specified. The figure shows only the beginning of day 1 for each instance. Figure 6 also shows semi-transparent green circles
centered on the locations with technicians. The radius of these circles is equal to the half of the maximum daily distance of the
corresponding technician. Because these circles are semitransparent, overlap leads to color intensification, making visually clear
which customer locations are within reach of few or many technicians. One may notice from the clustering, for example, as for
Hidden_06, that the locations are making the shape of the Netherlands. This implies that these are indeed based on real-world
data offered by ORTEC.

Although Figure 6 gives a rough picture of those instances (e.g., some instances are more limiting in terms of number and
action radius of technicians), we must emphasize that it does not describe a given problem instance fully. For example, the
importance of violating a given constraint is not depicted and, as we mentioned before, penalties for violating the different
constraints can differ substantially as a part of the cost function. Table 1 is particularly useful in this case.

The pie charts in Figure 7 depict the utilization rates of the different selection hyper-heuristics applied in our framework. The
utilization is calculated in terms of the ratio between the number of times a selection hyper-heuristic was successful in finding an
improved solution over the best global solution to the total number of improvements made by all the selection hyper-heuristics
in the duration of run time.
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Figure 5 Mean ranks of the finalists teams and the POHH algorithm computed according to the competition rules [Color figure can be viewed at

wileyonlinelibrary.com]

Small_01 Small_03

Small_06 Hidden_01

Hidden_03 Hidden_06

Figure 6 Visualization of sample instances [Color figure can be viewed at wileyonlinelibrary.com]

There are particular selection hyper-heuristic methods that clearly performed better than the rest in making improvements
to the solutions during the search process. The incorporation of the RR-based selection hyper-heuristics in the POHH appears
to play a key role of solving the problem in a relatively effective manner, in particular SS-RR which performed equally well in
the small and hidden datasets. SR-GD was very successful in the larger size instances, where 50% of the improvement rate was
achieved by SR-GD in Hidden_06 that has 900 requests. The least successful selection hyper-heuristics are the ones combined
with the simulated annealing acceptance. The utilization of SR-SA was down to 0% in all instances, except for an insignificant
improvement rate of 5% in Small_03. Also, SS-SA did make much contribution in terms of improvement for the hidden set.
The naïve acceptance is more successful for the small instances than the larger ones, but only when it is combined with the
sequence based selection method.

There seems to be a variation in the performance between the selection hyper-heuristics in instances with different complex-
ities, and we cannot generalize that a certain combination of a selection and a move acceptance methods would be successful
in every instance in this problem. An interesting idea would be to embed a high-level intelligent control mechanism that can
observe these variations, and apply the components of selection hyper-heuristics accordingly during the search time, simi-
lar to the online selection methods. The random selection criteria that we apply currently in our framework was able to find
“reasonable” results as reported, and we expect that the suggested improvements in the selection mechanism could yield even
better results.
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Figure 7 Average utilization rate [Color figure can be viewed at wileyonlinelibrary.com]

6.3.1 Performance comparison to the constituent hyper-heuristics
Another round of experiments have been conducted by applying the eight selection hyper-heuristics employed in our framework
independently on the instances displayed in Figure 6. Each selection hyper-heuristic was run for nine times using the same
rules to calculate the run time of an instance described in this section. The results are displayed in Table 5 using the best and
average objective values from the nine runs, along with the associated SD. The Mann-Whitney-Wilcoxon test is performed with
a 95% confidence level in order to compare pairwise performance variations of two given algorithms statistically. The following
notations are used: (a) “+” denotes that our algorithm (POHH) is better and this performance variance is statistically significant,
(b) “−” denotes that the performance of POHH is worse and this performance variance is statistically significant, and (c) “=”
indicates that there is no statistical significant between the two methods.

The POHH algorithm performed statistically better than each of the constituent hyper-heuristic for all instances, except Hid-
den_03, where the two methods SR-RR and SS-RR found slightly better averages and performed statistically better. Other than
those two cases, the POHH algorithm found the best averages and minimum values in all instances, performing exceptionally
better in particular on the largest instance of Hidden_06. This provides evidence for the success of two proposals: (a) utilizing
multiple solutions allows better exploration and more possibilities for further improvement in new areas of the search space,
instead of focusing on a single solution; (b) applying a sequence of selection hyper-heuristics to a solution might be useful in
utilizing the varying performances of these selection hyper-heuristics. This can lead the search to different directions that can
yield further improvement.

Overall, POHH creates a synergy among the eight selection hyper-heuristics resulting in an improved performance for
almost all instances. Although POHH does not utilize learning, various learning mechanisms embedded into each one of the
low level selection hyper-heuristics potentially contributes to the overall success of the proposed approach when compared to
the performance of each constituent selection hyper-heuristic.

7 CONCLUSION

In this study, we tackled a complex VRP problem which was the subject of the fourth edition of the VeRoLog solver challenge
(2019). The challenge consisted of a novel VRP problem comprising two interdependent stages: a capacitated VRP problem
with time windows (CVRPTW) for delivering various equipment to customers on their requests, and a service technician routing
and scheduling problem (STRSP) for the installation of the delivered equipment. We propose two approaches, and apply them
to the set of instances supplied by the competition organizers, and also to another small set of generated test instances. The
first approach is an exact mathematical approach, which is the first attempt to implement an exact model for such version of
VRP problem. We show that even with small sized instances, the method requires large amounts of computing time to solve
the problem. Moreover we prove that the exact model cannot solve instances of large sizes. In light of this, and due to the large
number of constraints and the wide range of differing instances which make it difficult to create problem-specific algorithms,
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Table 5 The performance comparison of POHH, SS-RR, SS-GD, SS-SA, SS-Naïve, SR-RR, SR-GD, SR-SA and SR-Naïve based on the average
(Avg), associated standard deviation (Std), minimum (Min) of the objective values over nine trials and the pairwise average performance comparison
of POHH vs (SS-RR, SS-GD, SS-SA, SS-Naïve, SR-RR, SR-GD, SR-SA and SR-Naïve) based on Mann-Whitney-Wilcoxon for each instance
produced by each approach

Small_01 Small_03 Small_06

Method vs Avg Std Min vs Avg Std Min vs Avg Std Min

POHH = 36 016 020 0 36 016 020 = 32 085 922 83 32 085 800 = 180 524 0 180 524
SS-RR = 36 016 020 0 36 016 020 + 32 087 251 858 32 085 800 + 247 213 49 513 180 524
SS-GD = 36 016 020 0 36 016 020 + 32 094 142 3088 32 089 068 + 200 911 2055 198 515

SS-SA = 36 016 433 620 36 016 020 + 32 114 432 9290 32 098 239 + 211 280 3317 206 996

SS-Naïve = 36 016 020 0 36 016 020 + 32 087 868 1110 32 086 696 + 183 922 649 182 888

SR-RR + 36 016 847 620 36 016 020 + 32 086 500 533 32 085 800 + 280 221 0 280 221

SR-GD = 36 016 219 395 36 016 020 + 32 092 212 1004 32 090 760 + 199 464 2466 196 666

SR-SA + 36 016 732 554 36 016 020 + 32 109 815 5690 32 104 880 + 210 099 2883 205 800

SR-Naïve = 36 016 020 0 36 016 020 + 32 086 480 462 32 085 900 + 183 029 1056 182 161

Hidden_01 Hidden_03 Hidden_06

Method vs Avg Std Min vs Avg Std Min vs Avg Std Min

POHH = 68 683 339 290 545 68 151 265 = 1 410 411 798 5 353 659 1 399 418 890 = 34 157 264 106 666 34 008 705
SS-RR + 69 197 055 311 273 68 917 615 − 1 389 617 007 3 467 539 1 381 431 185 + 36 409 477 75 941 36 313 420

SS-GD + 85 782 696 778 892 84 218 865 + 1 815 339 912 13 783 473 1 791 026 650 + 41 742 650 251 435 41 235 155

SS-SA + 86 554 467 657 440 85 333 250 + 1 802 310 946 18 417 576 1 773 264 280 + 42 003 434 158 875 41 697 785

SS-Naïve + 73 793 282 565 531 72 767 395 + 1 537 797 289 6 427 024 1 529 124 090 + 36 526 647 154 146 36 315 960

SR-RR + 69 209 684 153 049 69 060 100 − 1 387 767 927 2 077 527 1 385 115 295 + 36 291 840 47 266 36 224 495

SR-GD + 86 004 059 466 746 85 462 365 + 1 811 403 039 8 342 226 1 800 385 550 + 41 963 413 197 981 41 518 920

SR-SA + 86 552 397 462 097 85 483 775 + 1 812 705 973 4 911 482 1 805 213 785 + 42 044 408 139 089 41 796 340

SR-Naïve + 74 076 952 437 930 73 144 995 + 1 527 445 028 5 356 630 1 515 517 920 + 36 719 875 63 682 36 626 675

Note: The hyper-heuristic producing the best value for Avg and Min per each instance are highlighted in bold.

we proposed a problem-independent population-based hyper-heuristic algorithm (POHH). The algorithm maintains a number
of solutions during the search, and a sequence of constituent selection hyper-heuristics together with a large set of low level
heuristics which are applied to one solution at a time. The constituent hyper-heuristics have been proven to tackle a wide
range of problem domains [12,37,66]. Our analysis shows the efficiency of the proposed hyper-heuristic algorithm compared
to the results of the exact model, insofar as optimal solutions where found in shorter computational times. The hyper-heuristic
results also compared well to the results of the eight finalists of the competition. The approach also performed better than the
constituent hyper-heuristics performed on their own, for most of the instances. There is scope for further research into several
aspects of POHH. One example is how to decide on which hyper-heuristic strategies to include into our population-based
algorithm. Additionally, the algorithm does not have the ability to learn from history which strategy performs well. Thus, it may
be beneficial to exclude certain strategies altogether to speed-up the algorithm.
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[67] F. Xie, C.N. Potts, and T. Bektaş, Iterated local search for workforce scheduling and routing problems, J. Heuristics 23 (2017), 471–500.
[68] J. Xu and S.Y. Chiu, Effective heuristic procedures for a field technician scheduling problem, J. Heuristics 7 (2001), 495–509.
[69] Y. Zhang and X. Chen, An optimization model for the vehicle routing problem in multi-product frozen food delivery, J. Appl. Res. Technol. 12

(2014), 239–250.

How to cite this article: Kheiri A, Ahmed L, Boyacı B, et al. Exact and hyper-heuristic solutions
for the distribution-installation problem from the VeRoLog 2019 challenge. Networks. 2020;1–26.
https://doi.org/10.1002/net.21962

https://verolog2019.ortec.com/zips/VSC2019VizAnaTools.zip
https://verolog2019.ortec.com/zips/VSC2019VizAnaTools.zip
https://doi.org/10.1155/2015/707056
https://doi.org/10.1002/net.21962

