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Magnetic dopants in ferroelectric oxide host materials provide a platform for electric field con-
trol of isolated spins, facilitated by tuning of the magnetocrystalline anisotropy energy (MCAE).
We present first-principles calculations of the MCAE experienced by isolated Fe3+ dopants in the
tetragonal, orthorhombic, and rhombohedral phases of the prototypical ferroelectric BaTiO3. We
identify an order-of-magnitude decrease in the MCAE in the rhombohedral phase, relative to the
tetragonal and orthorhombic phases. We explain this dramatic decrease, as well as the formation of
a spin-easy plane in the tetragonal phase and spin-easy axes in the orthorhombic and rhombohedral
phases, using crystal field theory arguments. Building a superposition model from crystal field the-
ory, we show how a set of simple criteria based on crystalline environment can be used to estimate
the MCAE. We suggest this as a route to rapidly screen candidate ferroelectric hosts and magnetic
dopants that possess phases with spin easy axes and maximal MCAE tunability.

I. INTRODUCTION

Controlling the spin degree of freedom with electric fields in materials is appealing for its potential in spintronics[1, 2]
and quantum information processing [2–4]. The electric-field control over spin offers several advantages to magnetic-
field control: they typically require less energy for switching, and they enable control over smaller length- and time-
scales [5, 6]. This has driven substantial research into the fundamental physics of magnetoelectric coupling mechanisms
as well as materials that exhibit and enhance this property. Examples of electric control of spin properties include
the electric field modulation of spin-spin interactions [7] and spin transitions[8], and the field of magnetoelectric
multiferroics [9–11]. Recent studies have pushed towards the atomic-scale limit, considering electric field control of
molecular and even single-atom magnets [12–15] with the ultimate goal of electric field-based single spin processing
for both classical and quantum computing.

Complementing molecular magnets where design of ligand fields provide exceptional tunability over spin function-
ality [16], oxides with dilute magnetic dopants provide offer highly tunable crystal-field environments. In particular,
if these are ferroelectric oxides, electric-field-induced structural changes can result in the modification of the magne-
tocrystalline anisotropy energy (MCAE), enabled by magnetoelectric coupling. A combination of the magnetic ion’s
spin-orbit coupling strength together with its local crystalline environment provided by the ferroelectric host deter-
mines its MCAE. This gives the magnetic dopant spin an energetic preference for certain orientations with respect to
the lattice, which in principle can be modified by local crystal field changes induced by electric field-based polarization
switching in the ferroelectric host. Recent investigations of Fe3+ dopants in ferroelectric PbTiO3 and Bi2WO6 hosts
demonstrated the feasibility of this approach by showing that 90◦ flips in the ferroelectric polarization direction can
control the orientation of spin-easy planes and axes, respectively [17, 18].

Due to their rich chemical and structural diversity, ferroelectric oxide hosts hold great potential for designing
MCAEs to enable electric field control of spin directionality. Tunable MCAEs are particularly desirable, whereby
large MCAE values can enable information storage with stable spin directionality, followed by lowering of the MCAE
to manipulate to spin direction with minimal energetic cost. However, there is still limited understanding of how
modulations to the local crystalline symmetry environment of a single magnetic ion translates into its MCAE.

Here, we address this problem using first-principles calculations on the model system of Fe3+-doped ferroelectric
BaTiO3. BaTiO3 is an ideal ferroelectric host for this study because it has three distinct ferroelectric phases, thus any
changes to the MCAE of a magnetic dopant as the material traverses these phases can be tied directly to the changes
in crystalline environment. At room temperature, bulk BaTiO3 crystallizes in a tetragonal (T ) phase with P4mm
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symmetry (space group #99), and as temperature lowers it transitions to an orthorhombic (O) Amm2 phase (s.g.
#38) at 278 K, followed by a rhombohedral (R) R3m phase (s.g. #160) at 183 K [19, 20]. The polarization arises
from an off-centering of the Ti4+ cation with respect to the oxygen sublattice due to the second-order Jahn-Teller
effect [21]. As shown in Figure 1(a-c), the polarization in the tetragonal, orthorhombic, and rhombohedral phases
lies along ⟨001⟩, ⟨110⟩, and ⟨111⟩, respectively. In thin films, these three ferroelectric phases are also accessible via
epitaxial strain [22].

Previous Electron Paramagnetic Resonance (EPR) studies of Fe3+ dopants in BaTiO3 showed a spin-easy plane
in the T phase oriented perpendicular to its ferroelectric polarization, a spin-easy axis in the O phase along ⟨001⟩
perpendicular to its ferroelectric polarization along ⟨110⟩, and a spin-easy axis in the R phase parallel to its ferroelectric
polarization along ⟨111⟩ [23–25]. The magnitude of the MCAE decreases as BaTiO3 traverses between these phases,
with the MCAE in the R phase being an order of magnitude smaller than it is in the other two phases. This drastic
reduction of the MCAE in the R phase is surprising because all three phases have roughly the same polarization
and Ti displacement. Subsequent theoretical work explained this phenomenon using the semi-empirical Superposition
Model method [26, 27], assuming a significant reduction in the ferroelectric displacement of the Fe3+ ion, compared
to that of Ti4+ [28]. Such a reduction of the ferroelectric distortion at the magnetic dopant site is plausible, because
the partially filled d orbitals of the dopant (in the case of Fe3+, half-filled) reduce the magnitude of the second-order
Jahn-Teller effect [21]. This contrasts with previous work on Gd3+-doped BaTiO3, which showed little variation
in its MCAE between the T , O, and R phases [28, 29], which can be understood because the unfilled d shells in
lanthanides allow for the retention of the ferroelectric distortion. These results suggest that transition metal dopants,
despite exhibiting lower spin-orbit coupling strengths compared to lanthanides, provide a promising pathway to highly
controllable MCAEs.
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FIG. 1. (a-c) Primitive unit cells and polarization vector for (a) tetragonal P4mm, (b) orthorhombic Amm2, (c) rhombohedral
R3m BaTiO3. (d-f) Local octahedral environment about the Fe3+ dopant, with symmetry-equivalent oxygens denoted by
oxygen coloration: (d) tetragonal P4mm, (e) orthorhombic Amm2, (f) rhombohedral R3m. The shortest bond lengths are
coded with yellow O atoms, intermediate with blue, and longest with purple.

II. COMPUTATIONAL METHODS

We use Density Functional Theory (DFT) to calculate the MCAE surfaces Fe3+ in BaTiO3, using supercells to
model a dilute concentration. We employ the PBEsol [30] exchange-correlation functional in a plane-wave basis
with the Vienna Ab initio Simulation Package [31–35]. We substitute Fe3+ for Ti4+, adding one electron for charge
compensation, and include a Hubbard U correction of 4.0 eV on the 3d orbitals of Fe within the Dudarev scheme [36].
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This U choice is within the range of appropriate U values for Fe obtained by linear response calculations on a
database of transition metal oxides [37]. It also is consistent with prior work on Fe3+ dopants in similar systems[17].
Fe3+ substitutions for Ti4+ in ABO3 perovskites [23, 38] can also be accompanied by an oxygen vacancy to give a
defect complex with an overall neutral charge. DFT+U calculations in Ref. [17] indicate the Fe3+-VO complex has
qualitatively similar MCAE surfaces to the individual substitutional defect studied here.

We employ a 600 eV plane-wave basis cutoff, which converges total energies for the T phase to within 10 meV/f.u.
compared to an 800 eV cutoff. Structural relaxations of undoped BaTiO3 are performed in a 5-atom primitive cell
with a Γ-centered 6×6×6 k-point grid, which gives relaxed lattice parameters within 0.001 Å of those computed
with an 8×8×8 k-point grid. Agreement with experiment[39, 40] for the lattice parameters is within 1%. Doping
calculations are performed by replacing one Ti atom with a Fe atom in a 3×3×3 supercell of BaTiO3 (135 atoms).
Calculations in the supercells employ a Γ point-centered 2×2×2 k-grid. Induced magnetic moments are not observed
on any of the non-Fe ions in the supercell.

We employ VASP pseudopotentials with Fe 3p 3d 4s (Fe pv), Ba 5p 6s (Ba sv), Ti 3p 3d 4s (Ti pv), O 2s 2p (O), K
3s 3p 4s (K sv), Nb 4s 4p 5s 4d (Nb sv), and Pb 6s 5d 5p (Pb d) states treated as valence. Total energies are converged
to 10−6 eV within the self-consistent field (SCF) loop, and forces are converged to 1 meV/Å and 10 meV/Å during
structural relaxation for the undoped primitive cells and doped supercells, respectively. The volume of the supercell is
held fixed during structural relaxation. SCF total energies for the non-collinear calculations are converged to 10−7 eV.

The DOS calculations are performed without spin-orbit coupling, using a k-grid sampling of 3×3×3. The supercell
axes for these calculations are chosen such that the c axis coincides with the z axis, and the a and b axes are oriented
as closely as possible to the x and y axes, respectively.

The MCAE is computed from the total energies from non-collinear SCF calculations that incorporate spin-orbit
coupling, with a Γ point-centered k-grid sampling of 2×2×2. The spin axes are oriented on 194 points on the unit
sphere from 23rd order Lebedev quadrature [41, 42], by PyMatGen using available symmetries as found from the
spglib library [43, 44].

The FINDSYM software [45] from the ISOTROPY Software Suite is used for group theoretic analysis and VESTA
[46] is used for crystal structure visualization.

III. RESULTS

A. Magnetocrystalline anisotropy energy

Figure 2 presents our DFT-computed MCAE surfaces for the T , O, and R phases of BaTiO3. The MCAE of each
phase is given by the energy difference between maximum and minimum values on the MCAE surface. For the T
phase, the MCAE is 82 µeV with a spin-easy plane, consistent with previous calculations of Fe3+-doped PbTiO3 [17].
In the O phase, the MCAE reduces to 33 µeV with a spin-easy axis along [001], and in the R phase the MCAE is
further reduced to 4 µeV with a spin-easy axis along [111]. We fit the MCAE surfaces in Fig. 2 to functions suitable
to each crystal symmetry in order to obtain the magnetic anisotropy constants K for each phase (given in Appendix
A).

To compare our computed MCAEs to experimental values, we recast them in a form accessible from the zero-field
spin Hamiltonian [27], used to extract magnetic anisotropies from experimental EPR spectra:

HS =
∑
k,q

bqk fk Ô
q
k(S) , (1)

where k and q are the major and minor ranks, respectively, for the tensorial Stevens operators Ôq
k(S) with coefficients

bqk (see Ref. [27] for a compilation of the Stevens operators through rank k = 6). fk is a numerical factor, with
f2 = 1/3. Magnetic anisotropy energies, to leading order, come from the k = 2, q = 0 term in Eq. 1 [27]:

Haniso
S ≈ 1

2
b02 (S

2
z − 1

3
S(S + 1)) . (2)

Obtaining the MCAE within this framework requires calculating the energy difference between evaluating Eq. 2 with
the spin oriented along the ⟨0 0 1⟩ axis (⊥, by convention) and along the ⟨1 0 0⟩ axis (∥). For a S = 5/2 ion such as



4

µeV
(a) (b) (c)

[001]

[010]

[100]

[001]

[110]

[110]

[111]

[011]

[011]
_

_

_

FIG. 2. MCAE surfaces for the (a) tetragonal, (b) orthorhombic, and (c) rhombohedral phases of BaTiO3. The spin-easy plane
in (a) is denoted by a red plane, and the spin-easy axes in (b,c) are denoted by red arrows. Polarization vectors are denoted
by black arrows. The coordinate axes refer to lattice vectors particular to each phase of BaTiO3

Fe3+, this requires evaluating the matrix elements (with the assistance of tables from Ref. [47]):

E⊥ − E∥ (3)

= ⟨S = 5/2, ⊥ | b02 f2 Ô0
2(S) |S = 5/2, ⊥⟩

− ⟨S = 5/2, ∥ | b02 f2 Ô0
2(S) |S = 5/2, ∥⟩

= 5 b02 .

The key result here is that to lowest order in the spin Hamiltonian, the MCAE is 5 times the anisotropy constant b02
(b02 is often reported as D in literature). Full details of the derivation are provided in the SI [48] (see also references
[49–54]).

Table I compares the spin Hamiltonian parameter b02 obtained from our DFT+U calculations for each of the three
phases of BaTiO3 with experimental values taken from Ref. [55]. We observe good agreement between the computed
and experimental values, with DFT providing a slight overestimate for the T and R phases. In both DFT and
experiment, b02 is positive in the T phase and negative in the O and R phases, indicating a spin-easy plane and
spin-easy axis, respectively. This level of agreement between theory and experiment is particularly impressive given
the small energy scale of the MCAE.

TABLE I. Spin Hamiltonian parameter b02 calculated with DFT+U in the present work and reported experimental values for
the tetragonal [23–25, 56–61], orthorhombic [24], and rhombohedral [25, 62] phases.

b02 (10−4 cm−1) Tetragonal Orthorhombic Rhombohedral

DFT+U 1315 -608 -36
Experiment 890 – 991 -530 – -640 -19 , -23

TABLE II. Comparison of the B-site transition metal displacement ∆ away from the central position in the octahedron for the
three phases of BaTiO3. ∆Ti is computed for an undoped primitive unit cell, and ∆Fe is computed in the Fe-doped supercell.
Values of ∆ for all Ti4+ ions in the supercells are presented in the SI [48].

phase ∆Ti (Å) ∆Fe (Å) ∆Fe −∆Ti (Å)

Tetragonal 0.400 0.368 -0.032
Orthorhombic 0.098 0.034 -0.064
Rhombohedral 0.084 0.003 -0.081
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B. Origin of MCAE reduction

We next seek to understand the origin of the large reduction in MCAE upon going between the three phases of
BaTiO3. Figure 1(d-f) indicates the symmetry of the local crystalline environment about the Fe3+ dopant in each of
these three phases, with symmetry-equivalent oxygen atoms denoted by the same color. The atoms that lie in planes
perpendicular to the polar displacement form one symmetry-equivalent set (e.g. the equatorial oxygens O1-O4 in the
T phase and the apical oxygens O5 and O6 in the O phase in Fig. 1). The oxygens which the Ti displaces towards
and away from are symmetry-distinct. The T and O phases have three symmetry-distinct oxygen positions, whereas
the R phase has just two. The symmetries of the pristine crystal are preserved for the defected supercells, so the
point groups at the Fe3+ defect site are C4v, C2v, and C3v for the T , O, and R phases, respectively.

One approach to arrive at the MCAE values for these three phases of different symmetry is to use conventional
perturbation theory to evaluate corrections to the total energy of the (spin-collinear) supercells upon inclusion of
spin-orbit coupling matrix[52, 63]. Such an approach involves the evaluation of matrix elements between occupied
and unoccupied Fe d states, so that the projected density of states (pDOS) can be used to quickly estimate the MCAE.
Figure 3 shows the DOS and pDOS for the T , O, and R phases of BaTiO3, with the eg and t2g states highlighted
in green and blue, respectively. We find that the eg and t2g states are qualitatively very similar in the three phases,
indicating that the the cubic electrostatic field of the oxygen ligands about the Fe3+ defect is similar in all the phases,
despite the changes to the local crystalline environment discussed above (this also is consistent with experiment[55]).
We thus seek an alternative approach for understanding the order of magnitude reduction of the MCAE value, as well
as the influence of the symmetry of the crystalline environment in determining a spin-easy axis or plane. Although
approaches based on treating the axial crystalline electrostatic potential as a perturbation to the cubic field provide
physical insight[64], we instead prefer a direct approach, evaluating the axial coefficients of the spin Hamiltonian using
methods developed in Crystal Field Theory, including the Superposition Model[26].

As noted in Sec. I, Ref. [28] successfully explained experimental trends in the sign and magnitude of b02 (and hence
the MCAE) in Fe3+-doped BaTiO3 using a Superposition Model analysis with a “centered” Fe3+ dopant with no
polar displacement (and no oxygen displacements). Motivated by this result, we computed the displacement ∆ of the
Ti and Fe ions away from the octahedral center position using our DFT+U -optimized supercells for the three phases
of BaTiO3. Table II shows that our computed ∆ for Fe3+ is less than that for Ti4+ in all three phases. Compared to
the Ti4+ displacements, the Fe3+ ion loses 0.03 Å, 0.06 Å, and 0.08 Å of displacement, which corresponds to a 8%,
65% and 96% reduction, in the T , O, and R phases, respectively. Strikingly, the Fe3+ ion in the R phase returns very
nearly to the center of the octahedron. The larger center-seeking displacements in the O and R phases are consistent
with the diminished MCAE in these phases, compared to the T phase [28]. To our knowledge, experimental values
for these local Fe displacements are not available, so our first-principles results provide confirmation of Ref. [28]’s
proposed explanation linking the significant differences in b02 values in the three phases of Fe3+-doped BaTiO3 to the
centering of the magnetic ion.

Our computational confirmation of the Fe3+ dopant-centering behavior suggests that we may be able to analytically
determine trends in MCAE values for different combinations of ferroelectric hosts and magnetic dopants using a Su-
perposition Model analysis analogous to that performed in Ref. [28]. Compared to computationally expensive DFT+U
MCAE surface calculations, the Superposition Model approach only requires experimental (or DFT-calculated) lat-
tice parameters and ionic coordinates as input. The Superposition Model [26, 27] is a phenomenological approach
which yields physical insight, although perturbative approaches for calculating b02 for 6S magnetic ion dopants also
have been determined [64–66]. This model assumes that the contribution to b02 from each ligand may be considered
independently with each initially oriented along the quantization axis, and then finally the metal ion–ligand bonds
are rotated to constitute the actual polyhedron. The Superposition Model was initially developed for crystal electric
fields, where vector rotations are appropriate. With L = 0 for a 6S magnetic ion such as Fe3+, the tensor prod-
uct of the spin operator with the ground state transforms as a vector, and the Superposition Model also applies
for the spin Hamiltonian [27]. The Superposition Model’s assumption that the crystal field at a magnetic ion is a
superposition of the contributions from each ligand is strictly true if the interactions are between electrostatic point
charges. In the presence of quantum mechanical effects such as overlap between the magnetic ion orbitals and those
of its neighboring ligands, this assumption remains valid in the limit of small inter-ligand charge penetration. This
is a reasonable assumption because the stronger electrostatic repulsion between the ligands prevents an appreciable
contribution from the inter-ligand charge penetration. An additional assumption of the Superposition Model is that
only nearest-neighbor ligands make a contribution, since further neighbors have minimal orbital overlap with the
magnetic ion [27].

Figure 4 summarizes the key features of the Superposition Model relevant for our analysis. To obtain b02 values
from crystal structure parameters, the Superposition Model requires a scaling of the single-ligand parameter with
respect to distance. A common choice is to assume a simple power-law scaling with respect to the transition metal
ion–ligand bond length Ri:
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FIG. 3. Total and projected density of states. Tetragonal P4mm: (a-f). Orthorhombic Amm2: (g-l). Rhombohedral R3m:
(m-r). Total density of states: a, g, and m. Fe atomic orbital resolved projected density of states with eg states in green and
t2g states in blue.

b02 =
∑

i∈Ligands

b̄2(R0)

(
R0

Ri

)t2 1

2
(3 cos2 θi − 1) . (4)

Here b̄2 is an intrinsic parameter that depends primarily on the species, charge, and spin-orbit coupling strength of
the transition metal ion and its ligand, R0 is a typical ion–ligand distance at which b̄2 is evaluated (Fig. 4(a)), t2 is
the power law constant, and the last term is the k = 2, q = 0 form factor that accounts for the angle θi between the
transition metal–ligand bond Ri and the z axis (Fig. 4(b)) [67].
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FIG. 4. Key components of the Superposition Model. (a) The magnetic ion–ligand bond, with length R0, is taken to be along
the z axis. The coefficient b02 for the spin Hamiltonian from this isolated ion–ligand bond defines the intrinsic parameter b̄2(R0).
(b) Now considering multiple ligands, each ion–ligand bond gives a contribution to b02 determined by the particular bond length
Ri (dashed line) and polar angle θi (dashed-dotted line). The z-axis must be chosen to coincide with the axis of maximal
symmetry [67].

For an Fe3+ ion with O ligands, Ref. [28]’s Superposition Model analysis fit experimental data to obtain b̄2(R0) =
−0.412 cm−1 with R0 = 2.101 Å [68] and t2 = 8. Using our DFT+U -computed b02 from Table I together with
DFT-relaxed Ri values for the T phase, and assuming the same values of R0 and t2 as given above, we solve Eq. 4 to
obtain a first principles-based b̄2(R0) = −0.437 cm−1, in good agreement with the value fitted from experiment.
In a centered model, where the transition metal ion is not displaced from its high-symmetry position at the center

of the transition metal-oxygen octahedron, Eq. 4 reduces to the following analytic expressions [28]

b02(T ) = 2b̄2(R0)

(
R0

c/2

)t2 (
1− (c/a)

t2
)

(5)

b02(O) = 2b̄2(R0)

(
R0

a/2

)t2
(
1−

(
2a√

b2 + c2

)t2
)

(6)

b02(R) = 6b̄2(R0)

(
R0

a/2

)t2 (
2 cos2(α/2)− 1

)
(7)

for the T , O, and R phases, respectively. Here a, b, and c are the lattice parameters appropriate for each phase (with
the convention that the c axis is the polarization direction in the T and O phases), and α is the rhombohedral angle.
Equations 5-7 provide insight into the MCAE evolution in the three phases of BaTiO3. From Eq. 7 we can explain

the small MCAE in the R phase because the rhombohedral angle α is a small deviation ϵ ≈ 0.13◦ from π/2 (that
is, α = π/2 − ϵ) for BaTiO3. Rewriting the angular factor in Eq. 7 as (2 cos2(α/2) − 1) = sin ϵ, it is immediately
clear for small ϵ, this term is proportional to ϵ and hence b02(R) ∝ ϵ. In addition, the strain-polarization coupling in

ferroelectrics will always yield (c/a) > 1 in the T phase and 2a/
√
b2 + c2 < 1 in the O phase, which imply a spin-easy

plane and axis, respectively. These expressions also make clear how changing the lattice parameters can tune the
MCAE value, for example to create large MCAEs in the T phase one should target ferroelectric hosts with large c/a
ratios.

Table III presents centered model estimates of b02 for the three phases of BaTiO3, computed from Eqs. 5-7 using
experimental lattice constants for the T and O phases from Ref. [69] and for the R phase from Ref. [40], and our
first principles-based b̄2 value given above. The centered model reproduces the sign of b02 for all three phases. The b02
magnitudes are quite close to the experimental values, and the reduction in magnitude going from the T to R phase
is captured. We note that the level of agreement between the centered model and first-principles b02 values for the T
phase is striking, given that the Fe ion retains a significant ferroelectric displacement in this phase (Table II). This can
be understood as arising from a fortuitous cancellation of errors in the centered model for the T phase, because both
the Fe offcentering as well as the accompanying oxygen displacements are neglected (see the SI for further discussion).

We also construct centered-model b02 estimates using DFT-computed lattice parameters (see Appendix B), and find
that they also reproduce the MCAE trends. However, care must be taken because the t2 exponential in Eqs. 5-7 makes
the results highly sensitive to small changes in lattice parameter values, and therefore dependent on the choice of
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TABLE III. Estimates of b02 (in 10−4 cm−1) from the centered model for specified magnetic dopants in specified hosts. For Fe3+

dopants we use our first principles-computed b̄2(R0)=-0.437 cm−1 and t2=8, and for Mn2+ dopants we use b̄2(R0)=-0.1575
cm−1 and t2=7, taken from Ref. [28].

Ion Host Geometry Centered model Experiment

Fe3+ BaTiO3 (T ) a = 3.986 Å, c/a = 1.01 [69] 1023 890 – 991 [23–25, 56–61]
Fe3+ BaTiO3 (O) a = 3.990 Å, b = 5.669 Å, c = 5.682 Å [69] -599 -530 – -640 [24]
Fe3+ BaTiO3 (R) a = 4.004 Å, α = 89.87◦ [40] -88 -19, -23 [25, 62]

Fe3+ KNbO3 (T ) a = 3.996 Å, c/a = 1.017 [70] 1628
Fe3+ KNbO3 (O) a = 3.971 Å, b = 5.692 Å, c = 5.719 Å [70] -1635 -1776 [71]
Fe3+ KNbO3 (R) a = 4.016 Å, α = 89.817◦ [70] -120

Mn2+ BaTiO3 (T ) a = 3.986 Å, c/a = 1.01 [69] 307 215 [72]
Mn2+ BaTiO3 (O) a = 3.990 Å, b = 5.669 Å, c = 5.682 Å [69] -180
Mn2+ BaTiO3 (R) a = 4.004 Å, α = 89.87◦ [40] -29

Fe3+ PbTiO3 (T ) a = 3.905 Å, c/a = 1.063 [73] 6070 5300 [74]

exchange-correlation functional. Taking the example of tetragonal BaTiO3, the lattice parameters calculated with the
PBEsol functional are are a = 3.970 Å, c/a = 1.020, yielding b02=2019×10−4cm−1 which is a significant overestimate.
In contrast, the LDA lattice parameters are a = 3.943 Å, c/a = 1.013, yielding b02=1384×10−4cm−1 which is in better
agreement with the experimental value in Table III. In summary, these results show that the b02 spin Hamiltonian
coefficients, and therefore the magnitude and sign of the MCAE for each phase can in principle be reconstituted from
a small set of parameters and the geometric information of the oxygen ligands.

C. Extension to other ferroelectric hosts and magnetic dopants

We next test whether the Superposition Model with a centered magnetic dopant can explain MCAE trends in
other ferroelectric host materials. As a first test case, we consider an Fe3+ dopant in KNbO3, which exhibits the
same sequence of three ferroelectric structures as BaTiO3 [75]. Table III shows our estimated b02 values, obtained
with experimental lattice parameters from Ref. [70] (see the SI for analogous results using DFT lattice parameters).
We observe good agreement between the centered model estimate of the O-phase MCAE and the experimental value
(Table III). Like BaTiO3, the T phase displays a spin-easy plane (positive b02) whereas the O and R phases display
spin easy axes (negative b02), and there is an order-of-magnitude diminution of the MCAE going from the O to the R
phase. As a second test case, we consider a Fe3+ dopant in tetragonal PbTiO3 (Table III). The MCAE is significantly
larger than in tetragonal BaTiO3 and the centered model prediction shows reasonable agreement with experiment.
This increased MCAE can be attributed to the larger c/a ratio in PbTiO3 compared to BaTiO3.

The level of agreement between the experimental and centered-model MCAEs in Table III for Fe-doped KNbO3

and PbTiO3 is quite remarkable, given that the centered model does not explicitly depend on the spin-orbit coupling
strength λSOC of the ferroelectric host material: changing the host just modifies the lattice parameters in Eqs. 5-7.
Compared to BaTiO3, Nb5+ has a larger spin-orbit coupling than Ti4+, and Pb2+ has a significantly larger spin-orbit
coupling than Ba2+. Although the host’s spin-orbit coupling does implicitly help determine the experimental lattice
parameters, one would naively expect that the lack of explicit λSOC dependence in the centered model would yield b02
estimates that are significantly lower than the experimental values. This is not the case, however, demonstrating the
unexpectedly large impact of the local crystal field environment of the host in determining MCAE surfaces.

As a final test case, we consider Mn2+ dopants in the three phases of BaTiO3. The intrinsic parameter b̄2 for Mn2+

is roughly one-third that of Fe3+ for oxygen ligands at the same distance [68] due to the reduction of the spin-orbit
coupling strength[76], so we may expect a reduction in the MCAE by a similar factor. Using the Superposition Model
parameters b̄2, R0, and t2 from Ref. [68], our centered-model estimates for b02 with Mn2+ are indeed roughly one-third
of those of Fe3+, for all three phases (Table III). The experimentally determined MCAE value for a Mn2+ dopant in
tetragonal BaTiO3 is nearly five times smaller than Fe3+ (see Table III). This may be because the centered model
estimates do not take into account the dopant ionic size: Ti4+ and Fe3+ have similar ionic radii, whereas Mn2+ is
larger, which would lead to an expansion of the lattice parameters.

IV. DISCUSSION

Finally, we use our results to formulate criteria for selecting combinations of magnetic dopants and ferroelectric
hosts that exhibit large MCAE magnitudes together with high tunability. The small (<100 µeV) MCAE energy scale
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for Fe3+ dopants in BaTiO3 would require very low temperature operation (≈1 K) in order to avoid thermally-induced
spin switching. This is above the typically mK operating temperature of some quantum devices, however, in general
higher temperature operation is desirable for applications. In addition, larger MCAEs would be easier to disentangle
from other physical processes in materials that occur at low energy scales. Although lanthanide ions provide large
spin-orbit coupling strengths, they retain the ferroelectric displacements of their hosts and therefore do not provide
tunable MCAEs [28, 29], thus leading us to focus on transition metal dopants with partially filled d shells. Fe3+ and
Mn2+ are both L = 0 dopants which have large effective magnetic moments due to their half-filled d-shells. However,
they have fairly small spin-orbit coupling strengths [76] (HSOC = λSOC L · S), which limits the magnitude of their
MCAE values. Transition metal dopants with L ̸= 0 as free ions may exhibit a larger magnitude MCAE, for example,
a neutral Co adatom has been reported to exhibit the atomic limit of magnetic anisotropy energy [77]. Transition
metal ion candidates with relatively large effective magnetic moments [78], non-zero L as free ions, ionic radii close
to that of Ti4+, and a spin-orbit coupling larger than Fe3+ [76] include Ni3+, Co3+, and Co2+ (see the SI for more
details [48]). We note that the Superposition Model no longer formally applies for the L ̸= 0 ions, so first-principles
calculations are needed to assess the MCAEs of these dopants.

In selecting ABO3 ferroelectric hosts for magnetic dopants, materials that maximize the geometric factors in Eqs. 5-
6 will provide large MCAEs in tetragonal and orthorhombic phases. For tetragonal ferroelectrics, a large c/a ratio
is desirable. In this context, several bulk “super-tetragonal” ferroelectric phases with large c/a ratios may be of
particular interest, such as BiFeO3 [79] with c/a=1.23 and BiCoO3 with c/a=1.27 [80]. Similar c/a ratios can be
obtained in PbTiO3 thin films through strain engineering [81]. For orthorhombic ferroelectrics, materials with the ratio

2a/
√
b2 + c2 as small as possible is desired. In addition, choosing A and/or B cations with sizeable spin-orbit coupling

will further increase the MCAE. Theoretical approaches that compute the admixture of the spin-orbit coupling from
the A-site orbitals with that of the magnetic ion [82] can aid in optimizing the choice of A-site cation.

In summary, we have determined the influence of the local crystalline environment on the MCAE of a Fe3+ dopant
in the ferroelectric BaTiO3. The polar displacement of Fe3+ is substantially reduced compared to that of Ti4+,
allowing the application of a Superposition Model with a centered dopant position to predict MCAEs. We test the
centered model on several other ferroelectric oxide hosts and magnetic dopants and show that it successfully captures
experimental MCAE trends. The implication of this result is that the local crystalline environment provided by the
host, rather than its spin-orbit coupling strength, is key for determining the MCAE. This insight can be utilized
to construct high-throughput screening of databases such as the Materials Project for promising ferroelectric hosts
and magnetic dopants. Estimations of sign and magnitude of the MCAE from such a screening could guide towards
ferroelectric oxide hosts which facilitate dramatic changes of MCAE near phase-change boundaries.
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Appendix A: Appendix A: Magnetic anisotropy constants

We fit the DFT-computed MCAE surfaces from Fig. 2 to sums of products of trigonometric functions, appropriate
for the particular crystalline symmetry[84]. The coefficients are the magnetic anisotropy constants K (distinct from
the constants b02 = D, 1/3b22 = E, 2/5b44 = a, from the spin Hamiltonian). The MCAE fitting function for the T phase
is

Uaniso =K1 sin
2 θ +K2 sin

4 θ +K2′ sin
4 θ cos(4ϕ) (A1)

+K3 sin
6 θ +K3′ sin

6 θ cos(4ϕ) ,

with magnetic anisotropy constants K1 = −78.0, K2 = −6.4, K2′ = 1.1, K3 = 3.2, K3′ = −1.1 (all µeV), all obtained
by fitting the DFT-computed MCAE presented in the main text.

For the O phase, Ref. [85] arrives at a form of a fitting function from squares of standard Cartesian direction cosines.
We instead derive a fitting function based on the expansion of the MCAE with a basis set of spherical harmonics, and
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then expand the elementary trigonometric functions. This gives, to sixth order in sin θ, the fitting function

Uaniso =K1 sin
2 θ +K1′ sin

2 θ cos(2ϕ) +K2 sin
4 θ (A2)

+K2′ sin
4 θ cos(2ϕ) +K2′′ sin

4 θ cos(4ϕ)

+K3 sin
6 θ +K3′ sin

6 θ cos(2ϕ)

+K3′′ sin
6 θ cos(4ϕ) +K3′′′ sin

6 θ cos(6ϕ) .

The values of these anisotropy constants are K1 = 41.2, K1′ = −0.8, K2 = −12.7, K2′ = 10.2, K2′′ = 0.4, K3 = 7.6,
K3′ = −7.7, K3′′ = −0.2, and K3′′′ = 0.2 (all µeV).
This function for the magnetic anisotropy energy is in fact equivalent (to fourth order in sin θ) to that from Ref.

[86],

Uaniso =sin2 θ(K ′
1 cos

2 ϕ+K ′
2 sin

2 ϕ) (A3)

+ sin4 θ(K ′
3 cos

4 ϕ+K ′
4 sin

2 ϕ cos2 ϕ+K ′
5 sin

4 ϕ)

+ sin2 θ cos2 θ(K ′
6 cos

2 ϕ+K ′
7 sin

2 ϕ) ,

using K ′ to denote the convention for anisotropy constants in that work. However, the convention in the present work
explicitly indicates only five independent anisotropy constants through fourth order in sin θ, and the method easily
generalizes to any point group[87].

The small magnitude for the rhombohedral R3m phase is nearly the convergence criterion for total energies
(0.1 µeV), so the surface in Fig. 2(c) is fit to a function that is second order in sin θ, appropriate for rhombohe-
dral systems[88, 89]

MCAE(θ, ϕ) = sin2(θ − θ0)[K +K ′ cos(2(ϕ− ϕ0))] . (A4)

The values of the fitting parameters are K = −6.1 µeV, K ′ = 2.1 µeV, θ0 = −0.52◦, ϕ0 = −1.13◦.
The surface with as-computed values is presented in the SI[48].)

Appendix B: Appendix B: Centered model calculation of b02 with DFT lattice parameters

Table A1 shows centered model calculations of b02 from Eqs. 5-7, performed using DFT-relaxed lattice parameters.
Both PBEsol and LDA functionals are considered. Trends in b02 values from Table III are reproduced.

TABLE A1. Estimates of b0
2 from the centered model for specified magnetic dopants in specified hosts. We use the same

b̄2(R0) and t2 parameters as in Table III of the main text: for Fe3+ dopants we use b̄2(R0) = −0.437 cm−1 and t2=8, and for
Mn2+ dopants we use b̄2(R0) = −0.1575 cm−1 and t2=7. Lattice parameters are given in Å and b02 values are given in units of
10−4 cm−1.

Ion Host Geometry (PBE) b02 (PBE) Geometry (LDA) b02 (LDA)
Fe3+ BaTiO3(T ) a=3.970, c= 4.049 2008 a=3.943, c=3.992 1382
Fe3+ BaTiO3(O) a=3.963, b=5.683, c= 5.705 -1662 a=3.939, b=5.613, c=5.623 -953
Fe3+ BaTiO3(R) a=4.006, α= 89.86◦ -94 a=3.962, α= 89.93◦ -50
Fe3+ KNbO3(T ) a=3.970, c= 4.057 2210 a=3.945, c=3.990 1269
Fe3+ KNbO3(O) a=3.962, b=5.679, c= 5.695 -1554 a=3.941, b=5.613, c=5.62 -879
Fe3+ KNbO3(R) a=4.002, α= 89.91◦ -64 a=3.962, α= 89.96◦ -32
Mn2+ BaTiO3(T ) a=3.970, c= 4.049 604 a=3.943, c=3.992 411
Mn2+ BaTiO3(O) a=3.963, b=5.683, c= 5.705 -498 a=3.939, b=5.613, c=5.623 -283
Mn2+ BaTiO3(R) a=4.006, α= 89.86◦ -32 a=3.962, α= 89.93◦ -16
Fe3+ PBTiO3(T ) a=3.878, c= 4.186 7587 a=3.865, c=4.033 4935
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