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Abstract: Adaptive optics is a technique for correcting aberrations and improving image quality.
When adaptive optics was first used in microscopy, it was common to rely on iterative approaches
to determine the aberrations present. It is advantageous to avoid iteration, and therefore there has
been a shift to deep learning for aberration prediction. However, issues remain regarding the
practicalities of machine learning for adaptive optics, an important one being the requirement for
a large training dataset. Here, we explore transfer learning to overcome this need for data by
pre-training a network on a large simulated dataset and fine-tuning it with reduced experimental
data for application in an experimental setting. We demonstrate that the pre-trained network can
make noticeable improvements with fine-tuning on just 24 experimental samples. To further
enhance practicality, we significantly extend the range of aberrations present, predicting up to 25
Zernike modes with each coefficient ranging from −1 to 1, and perform a thorough analysis of
the type and magnitude of phase-diversity required in the input data for a successful network.
Our approach demonstrates substantial aberration reduction on experimental data for 10 Zernike
modes, with an average 73% decrease in RMS wavefront error from 1.81 to 0.48 rad when
correction is applied. This method achieves complete experimental image capture and aberration
inference at rates comparable to the image acquisition time of a typical laser scanning microscope.
Additionally, we consider the benefits of further improvements via an iterative step. As such,
this work addresses some of the key practical hurdles that remain in the use of deep learning for
aberration prediction and correction.
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1. Introduction

Adaptive Optics (AO) is a technique used to enhance image quality in optical systems by
correcting aberrations that arise from both imperfections in the optical system, and variations
within the sample being imaged [1,2]. AO works by dynamically shaping the wavefront of the
light using correction devices such as spatial light modulator [3] or deformable mirror [4] to
cancel out the aberrations present [5,6]. To obtain the appropriate wavefront correction, and so
optimise the system reducing aberration, it is necessary to either measure the aberration directly
or use an indirect measure, such as image intensity. Traditional wavefront sensors, including
the Shack Hartmann [7] or interferometer [8], require access to a guide star. Modal wavefront
sensing uses intensity as an indirect measure and therefore no additional hardware is required;
instead, Zernike modes are applied in turn and intensity is measured, here iteration is required [9].
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By comparison, optimisation methods search for the appropriate wavefront correction by using
algorithms such as stochastic parallel gradient descent [10], simulated annealing [11], random
search [12], genetic algorithm [13], Gerchberg-Saxton [14] or the Extended Nijboer-Zernike
theorem [15]. These conventional search algorithms are iterative, slow and computationally
demanding. Recently, Johnson et al. [16] demonstrated a promising phase diversity approach for
fluorescence microscopy, using multiple images with known diversity aberrations and Gauss-
Newton optimisation to estimate wavefronts. This advancement significantly enhances correction
efficiency, while operating within the broader framework of optimisation approaches where
computational considerations naturally scale with aberration complexity. Speed is particularly
crucial when working with biological samples, where minimizing photon dose is essential to
reduce photo-damage risk. Moreover, samples are often not static and aberrations can vary
spatially across the field of view, so for a practical application it is vital to make the correction
quickly.

Alongside the development of computer vision, deep learning has emerged as a promising
technique for addressing a range of image-based inverse problems. A comprehensive review
summarizing the advances of classical and modern computational AO techniques applied to
optical microscopy can be found in [17]. Researchers have applied deep learning approaches for
aberration retrieval through either direct reconstruction of the phase of the aberrated wavefront
[18,19] or recovery of Zernike coefficients [20–31] from the input aberrated images.

However, there remain significant challenges in this field. Collecting a large amount of
experimental data for training deep learning models, where often hundreds of thousands of
data are needed, is impractical and time-consuming. The domain gap between simulated and
experimental data, primarily due to imaging with a high numerical aperture lens [32] and minor
imperfections in alignment, although small, hinders the direct application of models trained
purely on simulated data to an experimental setting. Jin et al. addressed this challenge by
proposing a weight-sharing dual-stream Convolutional Neural Network (CNN) framework for
Zernike coefficient prediction, training on a large amount of labeled simulated data with domain
adaptation to unlabeled target-domain experimental data [33]. Their approach showed promising
results for 9 Zernike modes in simulations and was validated on phantom samples. However, they
did not report overall average accuracy for the experimental data, limiting insights into real-world
performance. In this paper, we explore the use of transfer learning to address the requirement for
a large training dataset and bridge the domain gap without comprehensive system characterisation
or computationally expensive simulations. A network is pre-trained using hundreds of thousands
of simulated samples and then fine-tuned with decreasing amounts of experimental data before
being tested in an experimental setting. As such, we systematically explore the impact of using
varying amounts of experimental Point Spread Function (PSF) data for fine-tuning, aiming to
optimise performance on real-world aberrations with minimal data requirements.

Beyond the challenge of data requirements, deep learning models may encounter additional
complexities in aberration retrieval due to the inherent ambiguity associated with determining
the Zernike coefficients solely from an aberrated image without phase information. In particular,
angularly-even Zernike modes can produce identical PSF images at focus for oppositely-signed
Zernike coefficients, thus posing difficulties in model training and prediction due to this ambiguity
[27,34]. To address this issue, Siddik et al. [34] proposed to predict the absolute values for
the specific Zernike modes that are susceptible to this ambiguity. However, this method does
not represent a complete wavefront sensing approach, because the sign of the coefficient is not
recovered. Alternatively, Nishizaki [20] explored the use of a single image acquired through
preconditioners such as overexposed, defocused, or scattered images to enhance estimation
accuracy. To further improve accuracy, researchers [19,22–29,35] have leveraged using several
phase-diverse images typically obtained from two or more image planes. Notably, Zhang et al.
[35] have shown that using two symmetrical defocused planes demonstrated higher accuracy



Research Article Vol. 33, No. 6 / 24 Mar 2025 / Optics Express 14433

than traditional phase diversity methods using focused and single defocused planes, especially
for large-scale and high-frequency wavefront sensing. When working with extended 2D images,
Xin et al. [30] created a metric that was independent of the object being imaged and enabled
aberration retrieval from any extended images. Building on Xin et al.’s concept [30], Hu et
al. [31] extracted the PSF information from astigmatic image pairs and introduced a CNN to
demonstrate the method’s generalisability on various microscopy modalities. Xin et al.’s and Hu
et al.’s work [30,31] both benefit from the input to the network being independent of the object
being imaged.

The majority of the studies discussed above have concentrated on relatively small aberrations
with either a limited number of Zernike modes present, or Zernike coefficients of small amplitude.
Here we look to push this boundary by considering cases of severe aberration. We work with 25
Zernike modes where each Zernike coefficient is in the range between −1 to 1 rad. We consider
this problem for PSF images, predicting directly from the images without any pre-processing
steps. As noted by others, we find that using a set of phase-diverse input images is important,
and we present a detailed study of the different bias modes, the amplitude of bias mode, and the
minimum number of phase-diverse images required for a satisfactory prediction of the Zernike
coefficients.

This paper aims to address some of the practical issues that remain when using machine
learning to predict and ultimately correct aberrations in an imaging system. In particular,
we address: i) the requirement for a large dataset when training a network, ii) the ability to
correct for large amounts of aberrations and improve severely distorted images, and iii) the type
and magnitude of phase-diversity required, and the minimum number of input images needed.
In addition, we explore the potential of iterative correction to further enhance image quality,
particularly in cases where significant residual aberrations persist after the initial correction.

By addressing these challenges collectively, we move towards more practical approaches to
deep learning for aberration prediction. These combined improvements enable faster aberration
correction with adaptive optics, reducing both sample photon exposure and multiple corrections
per image.

2. Materials

2.1. Simulated dataset

We represented aberrations as a series of Zernike modes randomly sampled from a uniform
distribution within the amplitude range of [−1,1] rad per Zernike. The Zernike modes were
used to simulate an aberrated point source image. To simulate severe aberrations, 25 Zernike
modes were used. These were Z3 − Z27 (ANSI indices), excluding Z0 (piston), Z1 (tip), and Z2
(tilt), as these could be easily corrected in hardware or software using centroiding algorithms or
other registration methods. A bias mode (e.g. defocus Z4) with coefficient 1 rad was added or
subtracted from the Zernike coefficients to generate the phase-diverse images I−1, I0, I+1. This
first data set, consisting of 128x128 pixel resolution images synthesised using Python code,
was referred to as SD25 throughout the paper and served to explore the optimal parameters of
different bias modes, the amplitude of the bias mode, and the minimum number of phase-diverse
images required for accurate Zernike coefficient prediction.

A second set of simulated PSF images, referred to as SD10, was generated for pre-training
purposes to be used for fine-tuning on experimental data. This dataset included 10 Zernike
modes (Z3, Z5, Z6, Z7, Z8, Z9, Z11, Z12, Z13, Z24). We did not include tip, tilt, piston and defocus,
and added second-order spherical. This subset was selected due to its common use in literature
[31,36]. Following the same procedure as SD25, the Zernike modes were randomly sampled
from [−1,1] rad, and here the phase-diverse images were generated using only the defocus mode,
Z4. The generated images were processed to better simulate real experimental conditions through
multiple transformations: multiplication with a Gaussian kernel of size 128, sigma 30, the
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addition of Poisson noise (noise level = 1000), and Gaussian noise (zero mean and standard
deviation of 0.02). An example of the simulated PSF image and the experimental data with the
same nominal aberration coefficients applied are shown in Fig. 1.

Fig. 1. An example of (a) simulated and (b) experimentally aberrated PSFs captured at
focus when a set of Zernike modes, presented in (c) are applied.

2.2. Experimental dataset

Two datasets of experimental images were acquired from the adaptive optics system described
in Section 3.2. The first dataset, which was referred as ED10, comprised 3000 aberrated PSF
sets. Each aberrated PSF set was represented by three phase-diverse images captured above,
below, and at the focal plane. This dataset was randomly generated from 10 Zernike modes
Z3, Z5, Z6, Z7, Z8, Z9, Z11, Z12, Z13, Z24.

The second set of experimental images, denoted as ED24, was created to predict a larger set of
24 Zernike modes Z3, Z5 − Z27. The defocus mode Z4 was excluded from the datasets due to
the 3D nature of real samples and to avoid the network returning values relating to an unwanted
imaging plane. This dataset contained 15,000 PSF sets, each of 3 images.

Similar to the simulated dataset, for both datasets, each value of Zernike modes was randomly
sampled from a uniform distribution within the range of [−1, 1] rad. To create the phase-diverse
images, a defocus mode, Z4 with coefficient 1 rad was added or subtracted from the Zernike
coefficients.

3. Methodology

3.1. Framework overview

We adopted a residual network (ResNet50) [37], a widely used backbone network for various
computer vision tasks, to predict the Zernike coefficients from the phase-diverse images. To
accommodate the specific requirements of each experiment and the differing number of input
images, we adapted the network to accept nz-channel input, with the value of nz not exceeding
three in this work. The last fully connected layer was modified to output N Zernike coefficients,
corresponding to the specific task. The overall framework is illustrated in Fig. 2. More training
details can be found in Section 1 of Supplement 1.

3.2. Adaptive optics imaging system and model deployment

To demonstrate the capabilities in an experimental setting and to collect the experimental training
datasets, we used the optical layout shown in Fig. S2 of Supplement 1. This system used
a Ti:Sapphire laser (Spectra-Physics) operating at 690 nm in pulsed mode to minimize laser
speckle. A spatial light modulator (SLM) was placed at a conjugate plane to the back aperture of

https://doi.org/10.6084/m9.figshare.28607381
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Fig. 2. Overview of framework: The ResNet50 is trained to predict the Zernike coefficients
from nz phase-diversity images captured at different planes (nz not more than three in this
study). The predicted Zernike coefficients are used to correct the aberration on the image.

the microscope objective lens, serving as an adaptive correction device. To obtain quantitative
performance of the proposed network, the SLM was used to both introduce and correct for
aberrations, ensuring ground truth values were known. A mirror was placed at the focal plane of
the objective lens, and images of the reflective focal spot were collected using a CMOS camera
(Thorlabs) placed at the exit port of the microscope body. The shape of the focal spot was used
to represent the PSF of the microscope.

For aberration correction using the network deployed on the imaging system, we first captured
a dataset of phase-diverse images using the CMOS camera. To do this known, but randomly
generated, Zernike modes were applied to the SLM referred to as the ground truth Zernike
coefficients. These images and the corresponding ground truth Zernike modes were used to
either fine-tune a network pre-trained on a simulated dataset or to train a network from scratch.
Once trained, the network reads in three phase-diverse images of the focal spot with unknown
aberrations and predicted the Zernike coefficients present. To determine how successful an
aberration correction would be, the residual Zernike coefficients were determined by subtracting
the predicted coefficients from the ground truth coefficients. These residual Zernike coefficients
could then be applied as a phase map to the SLM to obtain an image of the corrected focal
spot for comparison. In the case of the iteration experiments, these corrected focal spot images
served as the starting point for further correction. This implementation was automated through a
MATLAB script that controlled all optical hardware and obtained Zernike coefficient predictions
through integration of the models in Python.

3.3. Evaluation metrics

To facilitate future comparisons across different implementations, we have chosen to report both
Strehl ratio and Root Mean Square Wavefront Error (RMSWFE). These metrics are universal,
relevant regardless of the type of microscope modality being used, and their values can be directly
linked to diffraction-limited resolution, enabling standardised evaluation of aberration correction
effectiveness across diverse optical systems.

To assess the accuracy of the Zernike predictions, we used RMSWFE to quantify the residual
wavefront error by subtracting the predicted Zernike modes, ypred from the ground truth Zernike
modes, ytrue:

RMSWFE =

⌜⃓⎷ M∑︂
j=1

1
N

N∑︂
i=1

(︂
ypredij − ytrueij

)︂2
(1)

where N is the number of samples and M is the number of Zernike modes.
We calculated the Strehl ratio to quantify the quality of the corrected PSF. The Strehl ratio was

obtained by comparing the peak intensity of the corrected PSF to that of the ideal, aberration-free,
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PSF. A Strehl ratio exceeding 0.8 and a RMSWFE < 0.5 are generally considered indicative of
diffraction-limited imaging performance [38].

4. Experimental design

4.1. Exploring optimal phase-diversity parameters

Building upon prior works that primarily employed defocus as the standard bias mode for
phase-diverse imaging [19,22–29], as well as the work by Hu et al. [31] that proposed the
astigmatism mode as the most effective bias mode, we explored the use of different bias modes.
Given the inherent ambiguity associated with single-channel inputs, we examined the minimum
number of phase-diverse images required for good performance and investigated the different
values of amplitude of the imposed phase applied. We further verified the performance of the
model on experimental data. The experiments were as follows:

• Bias mode: Using the simulated PSF dataset, SD25, we compared the bias modes employed
to generate our standard 3-channel phase-diverse images, I−1, I0, I+1. The considered bias
modes included oblique astigmatism Z3, defocus Z4, primary spherical Z12, and vertical
secondary trefoil Z16. These modes were selected to cover a range of circularly symmetric
and non-symmetric modes plus higher and lower-order distributions. For comparison
purposes, we also present a baseline model that utilised a 1-channel input without any bias
modes.

• Amplitude of bias mode: Following our identification of defocus as the optimal bias
mode, we compared the different amplitudes of defocus within a 3-channel input on the
simulated PSF dataset, SD25.

• Number of input channels: We investigated the minimum number of phase-diverse
images required to predict the Zernike coefficients and explored the different combinations
of phase-diverse inputs (negative, positive or at focus) for the 2-channel input on the
simulated PSF dataset, SD25. We then trained separate networks from scratch on the
experimental dataset, ED10, to validate the findings and confirm the generalisability of our
approach.

4.2. Correcting for severe aberrations

To validate the model’s performance with severe aberrations in an experimental setting, we
evaluated the network using the optimal phase-diversity parameters determined from experiments
in subsection 4.1 on the ED24 experimental dataset, which encompassed 24 Zernike modes.

4.3. Minimizing experimental data for aberration correction and the role of transfer
learning approach on limited experimental data

Here we investigated the minimum amount of experimental data required to achieve satisfactory
aberration correction and explored the potential benefits of pre-training a model on a large
simulated dataset followed by fine-tuning on experimental data. We compared models with and
without pre-training, fine-tuned on varying training subsets of the ED10 experimental dataset for
300 epochs: 24 (1%), 72 (3%), 120 (5%), 240 (10%), 480 (20%), 720 (30%), 1200 (50%), and
the full training set of 2400 (100%) samples.

4.4. Iterative aberration correction

To further enhance aberration correction, we evaluated the potential benefits of an additional iter-
ative correction step, wherein phase-diverse images of the residual aberrations were subsequently
captured and used as the input for a second correction iteration. This step aimed to remove any
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remaining aberrations that were not fully corrected for the initial iteration. As a proof of concept,
we applied this approach to the best-performing model trained on the ED10 experimental dataset
to demonstrate the potential effectiveness of iterative correction.

5. Results and discussion

5.1. Exploring optimal phase-diversity parameters

• Bias Mode: Based on Table 1, the network using defocus to introduce phase-diversity
demonstrates the best performance, exhibiting an improvement of approximately 82% in
terms of RMSWFE compared to the pre-correction level (2.89 rad). In contrast, 1-channel
input without phase diversity shows the poorest performance, consistent with previous
studies [27,34] that identify the challenges associated with single-image ambiguity. Our
investigation of higher-order bias modes, including primary spherical (Z12) and vertical
secondary trefoil (Z16), revealed no additional performance benefits and in fact, the vertical
secondary trefoil mode is only slightly better than the 1-channel baseline. These findings
differ from others, where astigmatism was found to perform slightly better when imaging a
3D object rather than a 2D plane [31].

• Amplitude of bias mode: As shown in Table 2, the 3-channel defocus phase-diverse
input with an amplitude of ±1 rad achieves the best performance. This suggests that an
amplitude of ±1 rad provides a good balance between introducing enough distortion to
predict the Zernike coefficients and maintaining a manageable defocus effect. Interestingly,
the performance for the amplitude of 0.5 is very close to the optimal value, while the
amplitude of 1.5 leads to a significantly worse performance. This might indicate that a
range of amplitudes below the optimal value remains informative for prediction, while
larger amplitudes introduce excessive distortions, making it difficult to accurately determine
the Zernike coefficients.

• Number of input channels: Results in Table 3 demonstrate that for pre-correction levels
of 2.89 and 1.81 rad in SD25 simulated data and ED10 experimental data, respectively,
the model employing 3-channel phase-diverse input with an amplitude of 1 rad achieves
superior aberration correction compared to both 1-channel input and all 2-channel input
combinations with varying plane configurations. However, in the ED10 experimental
dataset, the improvement when increasing the number of channel inputs is less pronounced
compared to SD25, possibly due to factors such as noise and real-world variations.
As previously discussed, the 1-channel input has the worst performance due to the ambiguity
inherent in using a single image for aberration correction. In the SD25 simulated dataset,
further analysis reveals that with 1-channel input, the network predominantly predicts
values around zero mean, indicating its inability to effectively correct image aberrations.
However, in the ED10 experimental dataset, the model with 1-channel input achieves a
Strehl ratio approaching diffraction-limited quality (0.76). While the reduced number of
Zernike modes likely contributes to this improved performance by reducing ambiguity, we
suggest that the rich information present in the experimental data is the primary factor.
This is supported by additional evaluation on the ED24 experimental data with a larger
number of Zernike modes, which shows that the model with 1-channel input successfully
corrects much of the image aberration (see Section 2 of Supplement 1 for details).
Across both datasets, the 2-channel input showed slightly lower performance compared to
the 3-channel input. For the more aberrated starting point (SD25), it is important that one
of the two input channels is recorded at focus. Indeed, when using 2-channel input for
SD25, the symmetric defocus [−1,1] configuration performed the worst, contrasting with
findings where symmetric defocused planes have sometimes yielded higher accuracy than

https://doi.org/10.6084/m9.figshare.28607381


Research Article Vol. 33, No. 6 / 24 Mar 2025 / Optics Express 14438

using a single defocused plane plus focus [35]. This discrepanc ymay be attributed to the
distinct nature of our deep learning approach compared to conventional phase diversity
algorithms. In contrast, for the less challenging starting point (ED10), all 2-channel
configurations performed very similarly, with the configuration [−1,0] performing best,
while the symmetric defocus is no longer the worst. This similarity in performance
across configurations for lower aberrations suggests that the PSF distortion is sufficiently
moderate to allow informative signal capture across multiple defocus configurations,
thereby diminishing any significant performance differences. Conversely, in the case of
very severe aberrations (i.e. SD25), less information can be extracted from the out of focus
planes as the PSF becomes highly distorted, causing the intensity to spread across the
entire field of view—potentially missing the detector—and leading to low signal-to-noise
ratios.
In summary, when image acquisition time and sample photon exposure are critical
constraints, the 2-channel input ([−1, 0]) presents a viable alternative, achieving Strehl
ratios of 0.78 and 0.82 for SD25 and ED10, respectively. For applications prioritizing
precision, particularly with increased ambiguity from a higher number of Zernike modes,
the 3-channel input provides substantial advantages in terms of robustness and correction
accuracy.

Table 1. Comparison of using the different bias modes for the
3-channel phase-diverse input on the simulated PSF dataset,

SD25, where the average uncorrected RMSWFE and Strehl ratio are
2.89 rad and 0.06 respectively. The average RMSWFE and average

Strehl ratio of the models on the test set are reported.

Bias mode RMSWFE (rad) Strehl ratio

Oblique Astigmatism, Z3 0.73 0.71

Defocus, Z4 0.51 0.82
Primary spherical, Z12 0.85 0.66

Vertical secondary trefoil, Z16 2.41 0.09

None/1-channel (baseline) 2.51 0.08

Table 2. Comparison of using the different amplitudes of the defocus mode within the 3-channel
input on the simulated PSF dataset, SD25, where the average uncorrected RMSWFE and Strehl ratio
are 2.89 rad and 0.06 respectively. The average RMSWFE and average Strehl ratio of the models on

the test set are reported.

Amplitudes of the defocus mode, Z4 (channels) RMSWFE (rad) Strehl ratio

[−0.5, 0, 0.5] 0.52 0.82

[−1, 0, 1] 0.51 0.82
[−1.5, 0, 1.5] 0.72 0.73

Overall, the 3-channel phase-diverse input with a ±1 rad defocus amplitude represents the
optimal configuration for robust and accurate aberration correction. When evaluated using
experimental data characterised by 10 Zernike modes, these phase-diversity settings achieved an
average reduction in RMSWFE of 73% from 1.81 to 0.48 rad, which would result in a diffraction-
limited image (see Table 3). The complete image acquisition process required an average of
2.2 seconds per image, while neural network inference on a CPU averaged 0.9 seconds. A key
advantage of our approach is its consistent inference time, unaffected by aberration magnitude or
complexity. When accelerated with GPU hardware, inference time is reduced to 0.02 seconds,
enabling rapid and efficient processing even in the presence of severe aberrations. These timings
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Table 3. Comparison of using different number of channels on the simulated PSF dataset, SD25
and experimental dataset, ED10. The average RMSWFE and average Strehl ratio of the models on the

test set are reported. Note the average uncorrected RMSWFE and Strehl ratio are 2.89 rad/0.06 for
SD25 and 1.81 rad/0.15 for ED10, respectively.

Defocus mode, SD25 ED10

Z4 (channels) RMSWFE (rad) Strehl ratio RMSWFE (rad) Strehl ratio

1-channel [0] 2.51 0.08 0.59 0.76

2-channel
[−1,0] 0.61 0.78 0.49 0.82

[0,1] 0.62 0.77 0.53 0.79

[−1,1] 0.89 0.65 0.50 0.81

3-channel [−1,0,1] 0.51 0.82 0.48 0.83

are faster or comparable to image acquisition times in the majority of microscopes, and help to
limit photodamage whilst enabling several corrections per imaging volume.

5.2. Correcting for severe aberrations

Evaluation on ED24 experimental dataset shows that using the model with optimal parameters
(3-channel defocus phase-diverse input) effectively corrects substantial aberrations present in the
distorted images. The model reduces the average uncorrected RMSWFE from 2.82 to 1.68 rad
when corrected, and the Strehl ratio increases from 0.06 to 0.29. While aberrations remain on
this more challenging dataset with higher-order Zernike modes (24 Zernike modes), the model
consistently reduces the wavefront error across the best, mean and worst performance scenarios,
as demonstrated in Fig. 3.

5.3. Minimizing experimental data for aberration correction and the role of transfer
learning approach on limited experimental data

Analysis of the model performance across varying experimental training dataset sizes depicted
in Fig. 4 reveals that the best-performing model requires a minimum of 2,400 training sets to
achieve near diffraction-limited imaging quality (RMSWFE < 0.5 rad). Furthermore, the analysis
highlights the advantages of transfer learning in data-limited scenarios: models initialised with
pre-trained weights consistently achieve lower RMSWFE values compared to models trained
from scratch when the training set size is less than 720 sets of images. Despite noticeable
differences between the simulated and experimental aberrated images (as shown in Fig. 1),
the transfer learning approach remains effective, demonstrating its robustness even with large
amplitude aberrations. This transfer learning approach effectively overcomes inevitable day-
to-day experimental variations—in focal plane position, SLM alignment, sample flatness, and
illumination conditions-by allowing an existing network to be quickly adapted to new conditions
using a small number of experimental images.

The advantages of transfer learning are most evident when training with extremely limited ex-
perimental data. With only 24 experimental training samples, the pre-trained model demonstrates
more meaningful learning by reducing wavefront error through capturing directional trends in
Zernike coefficients despite occasional overshooting (Fig. 5(a)). In contrast, model without
pre-training exhibits zero-mean predictions rather than actual aberration correction capability.
The pre-trained models effectively leverage representations learned from simulated data to provide
robust initial estimates, maintaining their performance even with reduced experimental training
sets of up to 720 (Fig. 4 and 5(a),(b)).

In the overall performance, as the experimental training set size expands beyond 720 images,
as shown in Fig. 4, the performance gap between models with and without pre-training narrows,
with the latter eventually surpassing the former. This crossover in performance can be attributed
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Fig. 3. The representative examples of Zernike coefficient predictions on the ED24 test set,
correspond to the (a) best, (b) mean, and (c) worst Strehl ratio performances. The ground
truth and predicted Zernike coefficients are compared for each example.

Fig. 4. Comparison of RMSWFE on test set using the models with and without pre-training
fine-tuned on varying subsets of ED10 experimental dataset. Note the average uncorrected
RMSWFE and Strehl ratio are 1.81 rad and 0.15 respectively.
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Fig. 5. Real-time aberration correction: the models, with and without pre-training on
simulated data, were fine-tuned on varying training subsets of ED10 experimental dataset
prior to evaluation on the unseen experimental data. The models predict the Zernike
coefficients from the phase-diverse aberrated images (negative defocus, at-focus and positive
defocus) to correct the aberrations. The top row shows examples of ground truth and
aberrated images, with the corresponding ground truth Zernike coefficients shown in the
bar graphs in subsequent rows. Each subsequent row presents (from left to right columns):
the predicted Zernike coefficients, the corrected image using a pre-trained model, and the
corrected image without pre-training.
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to initialisation bias, where simulation-based pre-training weights may constrain the model to a
suboptimal local minimum reflecting the simulated data rather than the characteristics of the
real-world data.

5.4. Iterative aberration correction

Figure 6 illustrates the iterative aberration correction process using the best model trained solely
on ED10 experimental dataset. In cases where the initial correction by the deep learning model
is insufficient, a second correction can further improve image quality, bringing it closer to the
diffraction limit, as demonstrated in Fig. 6(a). However, when the initial correction is highly
effective, leaving minimal residual aberration, a second iteration may lead to overcorrection, as
depicted in Fig. 6(b). This phenomenon likely occurs because small residual aberrations produce
subtle PSF deformations that become difficult to distinguish from noise and imaging artifacts,
resulting in less accurate prediction. In future, training a separate model specifically for small
aberrations and using this network for a second iteration, could potentially address this issue.

Fig. 6. Iterative aberration correction using the best model trained solely on ED10
experimental dataset. The fourth and fifth columns show the corrected images after
Zernike prediction at 1st and 2nd iterations. (a) shows an example of improvement through
iterative corrections, while (b) demonstrates potential overshoot in the 2nd iteration, as
diffraction-limited quality is already achieved after the 1st correction.
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6. Conclusion

This study addressed some of the underlying challenges when using deep learning to predict
and correct aberrations in practical experimental settings. We demonstrated the ability of deep
learning to tackle severe aberrations from highly distorted wavefronts and investigated a number
of different phase-diversity options to establish best practices. The successful application of
deep-learning for aberration prediction in experimental data involving up to 24 Zernike modes
validates its practical utility in real-world scenarios. Our investigation into phase-diversity
identified that a 3-channel input using defocus-based phase-diversity with an amplitude of ±1 rad
provides the most robust configuration for accurate Zernike coefficient prediction. Additionally,
while our exploration of iterative correction demonstrated potential for further image quality
improvement, our results indicated the need for careful consideration to avoid overcorrection
effects.

A key contribution of this work addressed the challenge of large datasets required for training
deep networks through transfer learning. Using a network pre-trained on simulated data and
fine-tuned with experimental datasets, we demonstrated successful prediction of aberrations with
minimal experimental data. Interestingly, while experimental datasets containing more than 720
image sets showed minimal benefit from pre-training, datasets with fewer than 720 image sets
demonstrated clear advantages from the pre-trained network’s initial representations.

Moving forward, the use of machine learning for wavefront correction shows promising
potential to speed up the correction process and enable real-time adaptive optics of live biological
samples. With our developed approaches, the entire experimental image capture and inference
process completes in under 8 seconds, paving the way for practical computational-based aberration
prediction that reduces both correction time and optical system complexity. Although the current
implementation achieves substantial improvements in PSF image quality, future work could
extend this approach to extended two-dimensional objects, consider a double pass through the
aberrating medium and develop more sophisticated strategies for aberration correction with
minimal data requirements.
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