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Abstract  

Double electron-electron resonance (DEER) and other pulse electron paramagnetic 

resonance (EPR) techniques are valuable tools for determining distances between paramagnetic 

centres. DEER theory is well developed for a scenario where relative orientations of 

paramagnetic centres do not affect the DEER data. In particular, such theory enables a number 

of approaches for extracting distance distributions. However, in a more general case, when 

orientation selection effects become substantial, the analytical theory of DEER is less well 

developed, therefore quite commonly researchers rely on a comparison of some model-based 

simulations with experimental data. This work elaborates the theory of DEER with orientation 

selection effects, focusing on a scenario of a moderate conformational disorder, leading to an 

orientation distribution in a pair of paramagnetic centres. The analytical treatment based on 

expansions into spherical harmonics, provides important insights into the structure of DEER 

data. As follows from this treatment, DEER spectra with orientation selection can be 

represented as a linear combination of modified Pake pattern (MPP) components. The 

conformational disorder has a filtering effect on the weights of MPP components, specifically 

by significantly suppressing MPP components of higher degrees. The developed theory 

provides a pathway for model-based simulations of DEER data where orientation distribution 

is defined by analytical functions with parameters. The theory based on spherical harmonics 

expansions was also applied to develop an iterative processing algorithm based on Tikhonov 

regularization, which disentangles the distance and orientation information in a model-free 

manner. As an input, this procedure takes several DEER datasets measured at various positions 

of an EPR line, and outputs a distance distribution and orientation distribution information 

encoded in a set of coefficients related to the weights of MPP components. The model-based 

and model-free approaches based on the developed theory were validated for a nitroxide 

biradical and a spin-labelled protein.  
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Introduction. 

Double electron-electron resonance (DEER) and other pulse electron paramagnetic 

resonance (EPR) techniques have become widely used for measuring inter-spin distances in a 

typical range of 2-8 nm[1,2], which can be extended up to 10 nm in deuterated samples[3]. 

Such experiments are particularly instrumental for structural studies of biomolecules, such as 

proteins and nucleic acids[4–6]. There, the measurements are carried out to determine distances 

between pairs of paramagnetic species, such as intrinsic paramagnetic sites in a biomolecule or 

between chemically linked spin labels. In principle, the data produced by pulse DEER 

experiments encodes information both on the distance between paramagnetic species and on 

their orientations with respect to a biomolecule[7]. More generally, due to a conformational 

flexibility of linkers tethering the spin labels to a biomolecule, and a conformational flexibility 

of a biomolecule itself, the DEER data collected in such systems encodes information both on 

the distance and orientation distributions in pairs of spins.  

The theory of DEER is rather well developed and enables calculation of DEER traces for a 

given inter-spin distance and orientation of a spin pair[4,8,9]. A scenario, where distance 

orientations do no have an effect on the DEER data, is the most commonly encountered in the 

EPR literature (e.g. for many nitroxide spin-labelled proteins at X-band and Q-band). There, 

the distance distribution can be obtained by solving an inverse problem. The distance 

distribution can then be found from an integral equation with a known kernel using Tikhonov 

regularization, fitting to a particular distance model or by processing using neural networks[10–

13]. In general, however, DEER traces actually do depend on the relative orientation 

distributions of paramagnetic species in a molecule, because microwave (MW) pulses of a 

DEER sequence excite (or select) only a subset of molecular orientations contributing to an 
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EPR line. For brevity this phenomenon is further referred to as orientation selection effect in 

DEER. Extracting distance and orientation information is this case is more complicated. 

For nitroxide spin-labels often used in biomolecular studies, the inhomogeneously 

broadened EPR spectrum has a moderate width (~200 MHz and ~300 MHz at the base in the 

magnetic fields of ~0.35 T and ~1.2 T respectively). Therefore at X-band pulse EPR 

spectrometers with wide enough resonator bandwidth, the pump pulse may be set to the 

maximum of the spectrum, while the observer pulses can be applied at almost any position 

across the EPR line. For such a scenario Marko et al.[14] have previously demonstrated a 

model-free approach for extracting distance and orientation information. The distance 

distribution can be obtained then using Tikhonov regularization from a synthetic dataset made 

by a summation over many DEER traces, which were collected with an observer pulse set to 

many possible spectral positions of the EPR line. The orientation information encoded in a so 

called orientation intensity function �̃�(cos 𝜃) can also be obtained using Tiknonov 

regularization from the corresponding integral equation. However, for systems where their EPR 

spectrum is too wide and the resonator bandwidth is too narrow for setting DEER pulses in this 

manner (e.g. Cu2+ centres at X-band[15] or nitroxides at some W-band spectrometers[16]), such 

an approach is generally not applicable.  

The orientation selection effects can also be studied by direct numerical simulations of 

DEER traces, which are then compared with experimental results[15–24]. While numerical 

approaches are useful, using analytical treatment is often a preferred way for obtaining 

revealing insights. Previously, DEER data with orientation selection were studied theoretically 

to obtain an angle between rigid labels in a DNA molecule[25]. However, no further developed 

analytical treatment of DEER with orientation selection has been presented so far.  
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This work elaborates the theory of DEER experiments with orientation selection. The 

treatment focuses on a scenario where orientations of paramagnetic species with respect to a 

molecular frame have a moderate degree of disorder, such as common in spin-labelled 

biomolecules. The necessary degree of this disorder will later be detailed quantitatively, while 

at this stage it is defined as neither too large to render DEER data independent of the 

orientations, nor too small as in a rigid biradical. At the basis of this approach are rotational 

transformations of excitation probability density functions 𝑓(𝜃, 𝜙), defined on a spherical 

surface and represented as their spherical harmonic series. The developed theory enables both 

model-based and model-free analysis of DEER data with orientation selection as demonstrated 

using a nitroxide biradical and a spin-labelled τC14 protein. 

The paper is organized as follows. First, it demonstrates that representation with spherical 

harmonics enables analytical calculation of effects produced by orientation distributions, 

described by parametrized analytical functions. In addition, DEER spectra are shown to consist 

of a linear combination of components, further referred to as modified Pake patterns (MPPs). 

The weights of MPP components encode the orientation distributions and quite importantly, a 

moderate conformational disorder suppresses MPP components of higher degrees.  

Second, model-based simulations using this theory are shown to provide a very good 

agreement with experimental data obtained for a model nitroxide biradical. Such simulations 

use orientation distribution parameters, such that a search in the parameter space is enabled. 

The theory then is applied to treat the same nitroxide biradical DEER in a model-free manner, 

using a Tikhonov regularization-based iterative processing algorithm for finding both the 

distance and orientation information. This approach yields orientation information, which is 

encoded in the form of coefficients, related to MPP component weights, and a separate distance 

distribution using as an input several DEER datasets collected at various positions of the EPR 

line.  
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Finally, the model-based approach is applied to simulate DEER data of a spin-labelled τC14 

protein, the conformational space of which is obtained using the MMM software[26]. The 

simulations and the experiment are shown to agree fairly well with one another. The model-

free approach then is applied to obtain the distance distribution and the encoded orientation 

information for the protein.  

Theoretical background 

DEER experiment 

In a DEER experiment[2] the refocused echo intensity produced by the observer pulses is 

recorded as a function of the time delay between the pump pulse and a primary echo position, 

denoted as 𝑡. For an electron spin pair where one of the spins is observed, while the other one 

is inverted by a pump pulse, the DEER sequence produces a signal[8]: 

 𝑠(𝑡) = cos[𝜔dd(𝑟, 𝜃)𝑡]. (1) 

In a point-dipole approximation, the frequency of the dipolar interaction 𝜔dd(𝑟,  𝜃) depends 

on a distance 𝑟 between the two electron spins, and a polar angle 𝜃 determining the orientation 

of the magnetic field in the dipolar frame:  

 𝜔dd(𝑟, 𝜃) =
𝜇0𝑔1𝑔2𝛽𝑒

2

4𝜋ℏ

(1 − 3 cos2 𝜃)

𝑟3
= 𝜔dd,0(1 − 3 cos

2 𝜃), (2) 

where 𝑔1 and 𝑔2 are 𝑔-factors of the two spins respectively. The 𝑧-axis of the dipolar frame 

here is aligned with a vector connecting the two spins, while the 𝑥-axis and 𝑦-axis can be chosen 

in an arbitrary manner.  

In a typical EPR experiment, the sample usually consists of many molecules containing pairs 

of paramagnetic species. The DEER signal 𝑆(𝑡), also referred to as a DEER trace, arises due 



7 

 

to an excitation of spin pairs within one molecule (intramolecular contribution), and due to an 

excitation of spin pairs in different molecules (intermolecular contribution): 

 𝑆(𝑡) = ∏ 𝑠𝑗(𝑡) = 𝑆inter(𝑡)𝑆intra(𝑡).

𝑗,   all pairs

 (3) 

The intermolecular contribution denoted as 𝑆inter(𝑡) is referred to as a background signal in 

EPR literature[8,27]. It often has a known shape and is usually removed during DEER data 

processing. The intramolecular part 𝑆intra(𝑡) depends on the geometry of spin systems within 

a molecule and when orientation selection effects are negligible it is also referred to as a form-

factor in EPR literature. However, in a more general scenario 𝑆intra(𝑡) encodes both the 

molecular geometry and the excitation probabilities by various pulses of the DEER sequence. 

If a sample consists of molecules containing only two spin systems labelled 𝐴 and 𝐵 (e.g. a 

biradical or a pairwise spin-labelled protein) the intramolecular part 𝑆intra(𝑡) in turn can be 

written as: 

 𝑆intra(𝑡) = ∑ [𝑝A(1 − 𝜆AB
(𝑖) cos𝜔dd

(𝑖)𝑡) + 𝑝B(1 − 𝜆BA
(𝑖) cos𝜔dd

(𝑖)𝑡)]

𝑖,   molecules

, (4) 

where 𝑝A and 𝑝B are probabilities for the observer pulses to excite spin systems A and B 

respectively and summation proceeds over all the molecules in a sample. Symbol 𝜆AB
(𝑖)    denotes 

a probability that in a particular intramolecular spin pair “i” the pump pulse excites the spin 

system B, given that the spin system A is already excited by an observer pulse, whereas 𝜆BA
(𝑖)

 

denotes the same thing with the swapped A and B. Finally, 𝜔dd
(𝑖)

 is a dipolar interaction in a pair 

of A and B.  

The summation over all intramolecular pairs can be replaced with an integration over all 

possible orientations of the external magnetic field, which direction in the dipolar frame is 

given by a polar angle 𝜃 and an azimuthal angle 𝜙. The probabilities to excite a particular pair 
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λAB
(𝑖)

 and λBA
(𝑖)

 can then be replaced with continuous functions 𝜆AB(𝜃, 𝜙) and 𝜆BA(𝜃, 𝜙), thus 

giving an intramolecular signal:  

 

𝑆intra(𝑡) =
𝑆(𝑡)

𝑆inter(𝑡)
=

= 1 −∫ 𝑑𝜙
2𝜋

0

 ∫ sin 𝜃𝑑𝜃
𝜋

0

 ∫ 𝜆(𝜃, 𝜙)[1 − cos𝜔dd (𝑟, 𝜃)𝑡 ]𝑓(𝑟)𝑑𝑟
∞

0

, 

𝜆(𝜃, 𝜙) = 𝑝A𝜆AB(𝜃, 𝜙) + 𝑝B𝜆BA(𝜃, 𝜙), 

 

(5) 

where 𝑓(𝑟) is a distance distribution. The distance and orientation distributions here are 

assumed to be independent from one another, which means that a distribution 𝑓(𝑟) has no 

dependence on angles 𝜃 and 𝜙. While strictly speaking unphysical in many cases, this 

assumption helps to provide useful insights as will be shown further. Functions 𝜆AB(𝜃, 𝜙) and 

𝜆BA(𝜃, 𝜙) in Eq.(5) have a physical meaning of a probability density that a pair, where magnetic 

field is directed at (𝜃, 𝜙) is excited by both the pump and the observer pulses. Thus for brevity 

 𝜆(𝜃, 𝜙) is referred to as a pair excitation probability density function (PDF). When orientation 

selection effects are significant, this function 𝜆(𝜃, 𝜙) ≠ const and as follows from the 

definition, its shape depends on the probabilities 𝑝A and 𝑝B , i.e. on the positioning of the MW 

pulses within an EPR spectrum.  

A model of a fictitious biradical consisting of two nitroxide radicals tethered via a flexible 

linker, shown in Fig. 1, is used to visualize and highlight the meaning of the PDF 𝜆(𝜃, 𝜙). The 

orientations of the two nitroxide spin systems labelled A and B are somewhat disordered as 

schematically shown in Fig. 1a. The specific disorder model in this example will be explained 

further in this paragraph.  Generally each conformer “𝑖” in the resulting conformational 

ensemble can be characterized by their Euler angles (𝛼𝑖
(𝐴), 𝛽𝑖

(𝐴), 𝛾𝑖
(𝐴)) and (𝛼𝑖

(𝐵), 𝛽𝑖
(𝐵), 𝛾𝑖

(𝐵)) 

transforming the principal axes frame of the 𝑔-anisotropy tensor of A and B (called 𝑔-frame for 



9 

 

brevity) into the principal axes frame of the dipolar interaction (called dipolar frame for 

brevity). The EPR spectra of A and B nitroxide spin systems at W-band are dominated by the 

𝑔-anisotropy and the nitrogen nucleus hyperfine coupling. The EPR spectrum shown in Fig. 1b 

is simulated with the EasySpin software[28] using the 𝑔-anisotropy and hyperfine couplings 

reported earlier by Savitsky et al.[29] The observer and pump pulses, which frequencies are set 

as shown by arrows in Fig. 1b, excite (or select) a subset of molecular orientations of spin 

systems A and B respectively, i.e. such system features orientation selection by the MW pulses. 

The probability of this excitation can be given by the excitation probability density functions 

(PDF) 𝑓pump
(A,g) (𝜃, 𝜙) and 𝑓obs

(B,g)(𝜃, 𝜙), which depend on the angles 𝜃 and 𝜙 determining the 

direction of the external magnetic field in the 𝑔-anisotropy tensor frames of the two spin 

systems. The values of both these PDFs are plotted as various colours in a surface plot shown 

in Fig. 1c. For illustration purposes it is convenient to split the coordinate transformations from 

A and B 𝑔-frames to the dipolar frame in two parts. The first part, carries out some average 

transformation by the three Euler angles (�̅�(𝐴), �̅�(𝐴), �̅�(𝐴))  for the spin system A and 

(�̅�(𝐵), �̅�(𝐵), �̅�(𝐵))  for B respectively. The second part contains the remaining random rotation 

with the angles (Δ𝛼𝑖
(𝐴), Δ𝛽𝑖

(𝐴), Δ𝛾𝑖
(𝐴)) and (Δ𝛼𝑖

(𝐵), Δ𝛽𝑖
(𝐵), Δ𝛾𝑖

(𝐵)). In this example, they are 

distributed according to Gaussian distributions (vide infra) centred at zero with the widths 

chosen as (𝜎𝛼
(A/B)

, 𝜎𝛽
(A/B)

, 𝜎𝛾
(A/B)

) = (30°, 30°, 30°) for both A and B. PDFs 𝑓obs
(A,g)(𝜃, 𝜙) and 

𝑓pump
(B,g) (𝜃, 𝜙) after the first average transformation are shown in Fig. 1c(ii). Then the second 

rotation is applied and the result is summed up over all the conformers “𝑖”, giving PDFs 

𝑓obs
(A,dip)(𝜃, 𝜙) and 𝑓pump

(B,dip)(𝜃, 𝜙) in the dipolar frame, shown in Fig. 1c(iii). While the PDFs 

𝑓obs
(A,g)(𝜃, 𝜙) and 𝑓pump

(B,g) (𝜃, 𝜙) have some noticeable sharp features, after summing up over the 

conformers the resulting PDFs 𝑓obs
(A,dip)(𝜃, 𝜙) and 𝑓pump

(B,dip)(𝜃, 𝜙) are significantly smoothed. In 
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the following sections of this paper, it will be shown that such smoothing effect is a rather 

general property and its mathematical description will be presented. Finally, assuming that 

orientations of spin systems A and B are independent from one another, the probability to excite 

both spins in a pair for which the magnetic field is directed at 𝜃 and 𝜙 is given by: 

 𝜆AB(𝜃, 𝜙) = 𝑓obs
(A,dip)(𝜃, 𝜙)𝑓pump

(B,dip)(𝜃, 𝜙). (6) 

Since the EPR spectra of the nitroxide spin systems A and B are the same, the observer and 

pump pulses also excite spins B and A respectively with the same probabilities and 

corresponding excitation PDFs 𝑓pump
(A,g) (𝜃, 𝜙) and 𝑓obs

(B,g)(𝜃, 𝜙). The pair excitation PDF is then 

given by: 

 

𝜆(𝜃, 𝜙) =
1

2
(𝜆AB(𝜃, 𝜙) + 𝜆BA(𝜃, 𝜙))

=
1

2
(𝑓obs

(A,dip)(𝜃, 𝜙)𝑓pump
(B,dip)(𝜃, 𝜙) + 𝑓pump

(A,dip)(𝜃, 𝜙)𝑓obs
(B,dip)(𝜃, 𝜙))  , 

(7) 

which is plotted in Fig. 1c(iv). 

As follows from Eq.(5), a DEER signal at very long times 𝑡 → ∞, consists of a large number 

of components oscillating with 𝑡, which cancel each other out upon the integration. For that 

reason, a DEER signal levels out for large 𝑡, i.e. 𝑆intra(∞) = 𝑆(∞)/𝑆inter(∞) = (1 − 𝜆), 

where 𝜆 is a total probability to excite any spin by a pump pulse, among pairs in which the first 

spin is already excited by observer pulses. It is related to the pair excitation PDF 𝜆(𝜃, 𝜙) as: 

 𝜆 = ∫ 𝑑𝜙
2𝜋

0

∫ 𝜆(𝜃, 𝜙)
𝜋

0

sin 𝜃 𝑑𝜃. (8) 

Experimentally, the value of 𝜆 can be determined as a modulation depth of a DEER trace, 

when 𝑡 → ∞. 
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Eqs. (5) and (6) show that calculations of DEER traces require knowledge of the pair 

excitation PDF 𝜆(𝜃, 𝜙) which in turn depends on the dipolar frame excitation PDFs 

𝑓pump
(A,dip)(𝜃, 𝜙) and 𝑓obs

(B,dip)(𝜃, 𝜙). Those PDFs emerge as a result of rotations of coordinate 

systems between the 𝑔-frame and the dipolar frame, transforming the PDFs 𝑓pump
(A,g) (𝜃, 𝜙) and 

𝑓obs
(B,g)(𝜃, 𝜙). The next section focuses on a technique for carrying out such rotations. 

Excitation of molecular orientations by a microwave pulse 

The shape of an EPR spectrum in a frozen solution is mostly determined by the 𝑔- and 

hyperfine-tensor anisotropies. The strength of an oscillating magnetic field attainable in a 

typical pulse EPR spectrometer is often sufficient to excite only a fraction of the spectrum, i.e. 

microwave (MW) pulse there excite (or select) only a subset of molecular orientations.  

Let’s consider the effect of this orientation selection in the principal axis frame of the 𝑔-

anisotropy tensor (i.e. 𝑔-frame as defined above) of one of the spin systems. For all the spin 

systems in an ensemble, in their 𝑔-frames the probability for an external magnetic field to point 

in the direction (𝜃, 𝜙) is described by a uniform probability density function (PDF), i.e. 

𝑓(𝜃, 𝜙) = const. However, among the spin systems excited by a MW pulse, the probability for 

a certain direction of the magnetic field is no longer uniform, i.e. 𝑓(𝜃, 𝜙) ≠  const. In practice, 

this excitation PDF 𝑓(𝜃, 𝜙) can be found by solving numerically the system spin Hamiltonian, 

in which the spin system parameters, such as a g-tensor and hyperfine coupling (and excluding 

the dipolar coupling term) should be obtained elsewhere. In particular, for DEER measurements 

between pairs of nitroxide spin-labels, the spin Hamiltonian parameters are usually well 

known[30].  

The same excitation PDF can be also be expressed in another frame, which arises as a result 

of a coordinate system rotation. Using an operator �̂�(𝛼, 𝛽, 𝛾) which rotates the coordinate 
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system by the three Euler angles (𝛼, 𝛽, 𝛾), between the old a new coordinate systems (𝜃, 𝜙) 

and (𝜃′, 𝜙′), in a new frame the result of rotation can be written as[31]: 

 𝑓′(𝜃, 𝜙) = �̂�(𝛼, 𝛽, 𝛾)𝑓(𝜃, 𝜙) = 𝑓(𝜃′, 𝜙′) = 𝑓(𝜃′(𝜃, 𝜙, 𝛼, 𝛽, 𝛾), 𝜙′(𝜃, 𝜙, 𝛼, 𝛽, 𝛾)). (9) 

Carrying out this rotation is easier by using an expansion of 𝑓(𝜃, 𝜙) into a series of complex 

spherical harmonics 𝑌𝑙𝑚(𝜃, 𝜙). Any function 𝑓(𝜃, 𝜙) can then be represented as:  

    𝑓(𝜃, 𝜙) =∑ ∑ 𝑓𝑙𝑚 𝑌𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

∞

𝑙=0

, (10) 

where 𝑓𝑙𝑚 are complex spherical harmonic coefficients (SHC). Generally, a function 𝑓(𝜃, 𝜙) 

can be said to be uniquely represented by a set of its SHCs 𝑓𝑙𝑚. The Supplementary Information 

section “Spherical harmonics basics” outlines some basic properties of spherical harmonics and 

provides expressions for obtaining 𝑓𝑙𝑚.  

An individual spherical harmonic in the rotated frame transforms into:  

 �̂�(𝛼, 𝛽, 𝛾)𝑌𝑙𝑚(𝜃, 𝜙) = ∑ 𝐷
𝑚′,𝑚

(𝑙) (𝛼, 𝛽, 𝛾)𝑌𝑙𝑚′(𝜃, 𝜙)

𝑙

𝑚′=−𝑙

, (11) 

where 𝐷
𝑚′,𝑚

(𝑙) (𝛼, 𝛽, 𝛾) is an element of the Wigner 𝐷-matrix. It is important to note, that 

coordinate system rotation produces a linear combination of spherical harmonics with the same 

value of 𝑙, i.e. spherical harmonics of degree 𝑙 form a subspace upon rotations. The matrix 

elements for a rotation matrix in this subspace 𝐷
𝑚′,𝑚

(𝑙) (𝛼, 𝛽, 𝛾) are given by:  

 𝐷
𝑚′,𝑚

(𝑙) (𝛼, 𝛽, 𝛾) = 𝑒𝑖𝑚
′𝛼𝑑

𝑚′,𝑚

(𝑙) (𝛽)𝑒𝑖𝑚𝛾, (12) 

where 𝑑
𝑚′,𝑚

(𝑙) (𝛽) is an element of the Wigner (small) 𝑑-matrix which analytical form is 

known[32]. 

Combining Eq.(10) and (11) allows expressing a function 𝑓(𝜃, 𝜙) in a new frame:  
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𝑓′(𝜃, 𝜙) = �̂�(𝛼, 𝛽, 𝛾)𝑓(𝜃, 𝜙) = 

     =  ∑ ∑ ∑ 𝑓𝑙𝑚𝑌𝑙𝑚′(𝜃, 𝜙)𝐷
𝑚′,𝑚

(𝑙) (𝛼, 𝛽, 𝛾)

𝑙

𝑚′=−𝑙

𝑙

𝑚=−𝑙

∞

𝑙=0

= 

=∑ ∑ 𝑌𝑙𝑚′(𝜃, 𝜙) ∑  𝐷
𝑚′,𝑚

(𝑙) (𝛼, 𝛽, 𝛾)𝑓𝑙𝑚

𝑙

𝑚=−𝑙

𝑙

𝑚′=−𝑙

.

∞

𝑙=0

 

(13) 

After swapping the indices 𝑚 and 𝑚′, 𝑓′(𝜃, 𝜙) can be rewritten as a linear combination of 

spherical harmonics:  

 𝑓′(𝜃, 𝜙) =∑ ∑ 𝑓𝑙𝑚
′ 𝑌𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

∞

𝑙=0

,       (14) 

which SHCs 𝑓𝑙𝑚
′  can be obtained using: 

 𝑓𝑙𝑚
′ = ∑ 𝐷

𝑚,𝑚′
(𝑙) (𝛼, 𝛽, 𝛾)𝑓𝑙𝑚′

𝑙

𝑚′=−𝑙

.      (15) 

To summarize, the SHCs 𝑓𝑙𝑚
′   of a function 𝑓′(𝜃, 𝜙) transformed into a rotated frame from 

a function 𝑓(𝜃, 𝜙), can be obtained by multiplying the Wigner 𝐷-matrix by a vector consisting 

of the SHCs 𝑓𝑙𝑚. Such transformation scrambles the 𝑓𝑙𝑚 coefficients within a subspace with 

the same value of 𝑙 to produce SHCs 𝑓𝑙𝑚
′ .  

Averaging due to distributed rotations  

In most  EPR measurements, the sample consists of many molecules having some degree of 

conformational disorder. It means that the relative orientation between any two frames in a 

molecule (for instance, between a 𝑔-frame and a dipolar frame) varies from one molecule to 

another due to differences of the molecular conformations. In other words, a rotation operator 

�̂�(𝛼𝑖, 𝛽𝑖 , 𝛾𝑖) for each molecule "𝑖" in an ensemble is characterized by its own Euler angles 

(𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖). The excitation PDF 𝑓′(𝜃, 𝜙) in the rotated frame can be calculated from the initial 

PDF 𝑓(𝜃, 𝜙) by summing over all molecules of the conformational ensemble:  
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 𝑓′(𝜃, 𝜙) = ∑ 𝑓𝑖
′(𝜃, 𝜙)

𝑖,   molecules

= ∑ �̂�(𝛼𝑖, 𝛽𝑖 , 𝛾𝑖)𝑓(𝜃, 𝜙).

𝑖,   molecules

  (16) 

The SHCs 𝑓𝑙𝑚,𝑖
′  for each molecule "𝑖" can be found by applying Eq.(15): 

 𝑓𝑙𝑚,𝑖
′ = ∑ 𝐷

𝑚,𝑚′
(𝑙) (𝛼𝑖, 𝛽𝑖 , 𝛾𝑖)𝑓𝑙𝑚.

𝑙

𝑚′=−𝑙

 (17) 

The PDF 𝑓′(𝜃, 𝜙) can also be expanded into a series of spherical harmonics:  

 𝑓′(𝜃, 𝜙) =∑ ∑ 𝑓𝑙𝑚
′ 𝑌𝑙𝑚(𝜃, 𝜙)., 

𝑙

𝑚=−𝑙

∞

𝑙=0

 (18) 

Using brackets <> as a shorthand for averaging, SHCs 𝑓𝑙𝑚
′  can be compactly written as:  

 

𝑓𝑙𝑚
′ =∑ ∑ 𝐷

𝑚,𝑚′
(𝑙) (𝛼𝑖, 𝛽𝑖 , 𝛾𝑖)𝑓𝑙𝑚′

𝑙

𝑚′=−𝑙𝑖

= ∑ (∑𝐷
𝑚,𝑚′
(𝑙) (𝛼𝑖, 𝛽𝑖 , 𝛾𝑖)

𝑖

)𝑓𝑙𝑚′

𝑚′=−𝑙

= ∑ < 𝐷
𝑚,𝑚′
(𝑙) (𝛼, 𝛽, 𝛾) >

𝑙

𝑚′=−𝑙

𝑓𝑙𝑚′ . 

(19) 

The effect of averaging due to random rotations can be illustrated using as an example the 

fictitious biradical in Fig. 1a mentioned above. The excitation PDFs for the pump and observer 

pulses 𝑓obs
(A,g)(𝜃, 𝜙) and 𝑓pump

(B,g) (𝜃, 𝜙), plotted in Fig. 1c(i), can be expanded as a series of 

spherical harmonics. The power carried by a set of spherical harmonics with the same degree 𝑙 

can be calculated from their SHCs as 𝑃𝑙 = ∑ |𝑓𝑙𝑚|
2 𝑙

𝑚=−𝑙 , as explained in the  “Spherical 

harmonics basics” section of the SI. This quantity serves as a measure of 𝑙-th degree harmonics 

contribution to the total function. Fig. 1d shows power spectra, where the power of the 𝑙-th 

degree harmonics is plotted as a function of 𝑙 for the PDFs 𝑓obs
(A,g)(𝜃, 𝜙) and 𝑓pump

(B,g) (𝜃, 𝜙) in the 

fictitious biradical. As seen from this graph, most of the contribution to 𝑓obs
(A,g)(𝜃, 𝜙) and 

𝑓pump
(B,g) (𝜃, 𝜙) arises from the harmonics with degrees 𝑙 < 10. Conformational disorder in the 
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biradical produces dipolar frame PDFs 𝑓obs
(A,dip)(𝜃, 𝜙) and 𝑓pump

(B,dip)(𝜃, 𝜙), which are shown in 

Fig. 1c(iii). For these PDFs, their power spectra, shown in Fig. 1e, demonstrate a rather 

significant suppression of the harmonics with higher degrees of 𝑙, more specifically, most of 

the intensity arises only in the degrees up to 𝑙 ≤ 4. As will be shown later this suppression of 

higher degree harmonics, leading to a significant “smoothing” of PDFs, is a rather common 

property arising due to the conformational disorder. In addition, the PDFs 𝑓obs
(A,dip)(𝜃, 𝜙) and 

𝑓pump
(B,dip)(𝜃, 𝜙) (together with their pairs 𝑓obs

(B,dip)(𝜃, 𝜙) and 𝑓pump
(A,dip)(𝜃, 𝜙)) are used to calculate 

𝜆(𝜃, 𝜙), which is shown in Fig. 1c(iv). Its power spectrum shown in Fig. 1e, demonstrates that 

most  intensity in 𝜆(𝜃, 𝜙) also arises from harmonics with 𝑙 ≤ 4. Note that any excitation PDF 

must be even with respect to a sign change of the external magnetic field, due to a symmetry 

of the spin Hamiltonian. This means that their spherical harmonics expansions can only contain 

functions 𝑌𝑙𝑚(𝜃, 𝜙) with even 𝑙 due to symmetry properties of the latter (shown in “Spherical 

harmonics basics” of the SI). Rotations retain this symmetry because 𝐷-matrix can only 

produce linear transformations in a subspace of spherical functions 𝑌𝑙𝑚(𝜃, 𝜙) with the same 

value of 𝑙.  

As evident from Eq. (12), the Wigner 𝐷-matrix elements can be expressed in a form of 

analytical functions. Therefore for conformational distributions known in an analytical form, 

the rotated and averaged SHCs 𝑓𝑙𝑚
′  can also be calculated analytically using Eq. (19). The 

averaging can be done by replacing the summation in Eq. (19) with an integration over all 

possible rotations:  

 < 𝐷
𝑚,𝑚′
(𝑙) (𝛼, 𝛽, 𝛾) > = ∫ 𝑑𝛾∫ 𝑑𝛽 ∫ 𝐷

𝑚,𝑚′
(𝑙) (𝛼, 𝛽, 𝛾)𝑔(𝛼, 𝛽, 𝛾)𝑑𝛼

2𝜋

0

𝜋

0

2𝜋 

0

 (20) 

where 𝑔(𝛼, 𝛽, 𝛾) is a probability to find a molecule where the transformation between its 

coordinate systems (such as between a 𝑔-frame and a dipolar frame) is given by the three Euler 
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angles 𝛼, 𝛽, 𝛾. In the following, three common scenarios of random rotations will be considered 

in more detail. 

Uniformly distributed random rotation is a trivial case. In this scenario the two frames 

(such as a 𝑔-frame and a dipolar frame) have a random relative orientation with respect to one 

another. This may be the case for spin-labels tethered to a biomolecule via sufficiently long and 

flexible linkers. Taking into account all possible orientations is done by using the weighting 

function:  

 𝑔(𝛼, 𝛽, 𝛾) =
1

8𝜋2
sin(𝛽) (21) 

Averaging the 𝐷-matrix elements over angles 𝛼 and 𝛾 produces zeros for all elements <

𝐷
𝑚,𝑚′
(𝑙)

>  except those with 𝑚 = 𝑚′ = 0. Since the Wigner 𝑑-matrix element 

𝑑00
(𝑙)
(𝛽)~𝑌𝑙0(𝛽, 0), the integration over 𝛽 also produces zeros for all 𝑙 values except 𝑙 = 0[32]. 

Therefore, as follows from Eq.(19) and (20), the only non-zero SHC remaining  after the 

integration is 𝑓00
′  =  𝑓00. Physically, it means that as a result of such random rotations any PDF 

𝑓(𝜃, 𝜙) in the initial frame (e.g. 𝑔-frame) is equivalent to a uniform PDF in the rotated frame 

(e.g. dipolar frame), i.e. 𝑓′(𝜃, 𝜙) = 𝑓00𝑌00(𝜃, 𝜙) = const. The PDF 𝑓′(𝜃, 𝜙) can then be 

regarded as a result of applying a low-pass filter to the PDF 𝑓(𝜃, 𝜙), such that only a single 

spherical harmonic component with 𝑙 = 𝑚 = 0 is retained. 

Uniformly distributed rotation about one axis. The Wigner rotation 𝐷-matrix dependent 

on the three Euler angles (𝛼, 𝛽, 𝛾) can be represented as three consecutive rotations about axis 

𝑧, 𝑦′ and 𝑧′′: 

 �̂�(𝛼, 𝛽, 𝛾) = �̂�(0,0, 𝛾)�̂�(0, 𝛽, 0)�̂�(𝛼, 0,0), (22) 

thereby making it easier to consider the effect of individual random rotations about the 

corresponding axis. 
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1. First, consider only the rotation �̂�(𝛼, 0,0), where an angle 𝛼 is uniformly distributed in 

a range 0 < 𝛼 < 2𝜋, i.e. 𝑔(𝛼) = 1/2𝜋. Substituting Eq. (12) into Eq. (20) produces 

non-zero < 𝐷
𝑚,𝑚′
(𝑙) (𝛼, 0,0) > only for 𝑚 = 0. Furthermore, since 𝑑

𝑚,𝑚′
(𝑙) (0) = 𝛿𝑚,𝑚′ , 

where 𝛿𝑚,𝑚′ is a Kronecker symbol, the averaged values become <

𝐷
𝑚,𝑚′
(𝑙) (𝛼, 0,0) >= 𝛿0,𝑚𝛿0,𝑚′. As follows from Eq. (19), the only remaining non-zero 

SHCs in this case are 𝑓𝑙0
′  =  𝑓𝑙0. In other words, the averaged PDF 𝑓′(𝜃, 𝜙) in Eq. (18) 

can be regarded as a result of filtering out all spherical harmonics with 𝑚 ≠ 0 in the 

initial PDF 𝑓(𝜃, 𝜙).  

2. Averaging the rotation �̂�(0,0, 𝛾) over an angle 𝛾 uniformly distributed in a 

range 0 < 𝛾 < 2𝜋 can be done in a similar manner with the same result, i.e. such 

averaging suppresses all the spherical harmonics with 𝑚 ≠ 0.  

3. Averaging the rotation �̂�(0, 𝛽, 0) over a uniformly distributed angle 𝛽 can be 

qualitatively evaluated by noticing that rotation about 𝑦-axis is the same as rotation about 

𝑧-axis in some other frame, specifically:  

 �̂�(0, 𝛽, 0) = �̂�(−𝜋/2,0,0)�̂�(0, −𝜋/2,0)�̂�(𝛽, 0,0)�̂�(0, 𝜋/2,0)�̂�(𝜋/2,0,0). (23) 

Averaging the above expression over angle 𝛽 has already been done in item 1, giving 

< 𝐷
𝑚,𝑚′
(𝑙) (𝛽, 0,0) >= 𝛿0,𝑚𝛿0,𝑚′. This means that 𝑙 × 𝑙 subspace matrix <

𝐷
𝑚,𝑚′
(𝑙) (𝛽, 0,0) > has only a single non-zero element < 𝐷0,0

(𝑙)(𝛽, 0,0) >. The 

transformation under �̂�(0, 𝜋/2,0)�̂�(𝜋/2,0,0) then scrambles the elements with the 

same 𝑙 value, meaning that the value of < 𝐷0,0
(𝑙)(𝛽, 0,0) >  is “spread” over the entire 

𝑙 × 𝑙 matrix. As a result, when < 𝐷
𝑚,𝑚′
(𝑙) (0, 𝛽, 0) > is used to calculate SHCs, their values 

will effectively be reduced by a factor of ~1/𝑙2, i.e. 𝑓𝑙𝑚
′ ~𝑓𝑙𝑚/𝑙

2. In other words, the 

spherical harmonics with larger degrees 𝑙 are suppressed by such averaging. The exact 
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expressions for 𝑓𝑙𝑚
′  are rather cumbersome, however Eq. (23) provides a straightforward 

way of implementing them in a numerical computation using a precalculated matrix 

𝑑
𝑚,𝑚′
(𝑙)

(𝜋/2)[31]. 

Narrow distribution of Euler angles. In this scenario Euler angles 𝛼, 𝛽, 𝛾 transforming 

between some frames are distributed according to a zero-centred Gaussian distribution 

following:  

 𝑔(𝛼, 𝛽, 𝛾) =
1

𝑁𝑔
exp [−(

𝛼2

𝜎𝛼2
+
𝛽2

𝜎𝛽
2 +

𝛾2

𝜎𝛾2
)] , (24) 

where 𝑁𝑔 is a normalization factor, such that ∫𝑔(𝛼, 𝛽, 𝛾)𝑑𝛼𝑑𝛽𝑑𝛾 = 1. Parameters 

𝜎𝛼, 𝜎𝛽, 𝜎𝛾 characterize the width of the angle distribution. For the case of a sufficiently narrow 

distribution with parameters 𝜎𝛼, 𝜎𝛽, 𝜎𝛾 ≪ 2𝜋, the average values of  < 𝐷
𝑚,𝑚′
(𝑙)

(𝛼, 𝛽, 𝛾) > can 

be obtained analytically by substituting Eq.(12) and Eq. (24) into Eq.(20). The exact analytical 

expressions derived in the “Notes on averaging due to random rotations” section of the SI, show 

that the averaged values of Wigner 𝐷-matrix elements < 𝐷
𝑚′,𝑚

(𝑙) (0, 𝛽, 0) > rapidly decay with 

an increase of 𝑚,𝑚′, 𝑙. This means that SHCs 𝑓𝑙𝑚
′  rapidly decay with an increase of 𝑙 and 𝑚.  

As can be seen in all the described scenarios, a transformation of a PDF 𝑓(𝜃, 𝜙) into another 

frame via random rotations is equivalent to applying a low-pass filter suppressing spherical 

harmonics with large values of 𝑙 and 𝑚. This has already been visualized for the case of a 

fictitious biradical Fig. 1, where the conformational disorder smooths the PDFs in Fig. 1c(i) to 

produce those in Fig. 1c(iii). In the language of SHCs, it means that the spherical harmonic 

components of 𝑓obs
(A,g)

(𝜃, 𝜙) and 𝑓pump
(B,g) (𝜃, 𝜙) which power spectra are shown in Fig. 1d, are 

being suppressed for larger values of 𝑙 to produce PDFs 𝑓obs
(A,dip)

(𝜃, 𝜙) and 𝑓pump
(B,dip)

(𝜃, 𝜙) with 

power spectra shown in Fig. 1e. 
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Modulation depth and DEER spectra 

Once the excitation PDFs  𝑓obs
(A/B,dip)(𝜃, 𝜙) and 𝑓pump

(B/A,dip)(𝜃, 𝜙) are known, they can be used 

to find 𝜆(𝜃, 𝜙), which expansion into spherical harmonics is given by:  

 𝜆(𝜃, 𝜙) =∑ ∑ 𝜆𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

∞

𝑙=0

. (25) 

Therefore, as follows from Eq. (8), the modulation depth is simply: 

 𝜆 = 𝜆00. (26) 

Calculation of DEER signals as a function of time delay 𝑡 can be done using Eq. (5). This 

expression contains terms oscillating with frequencies 𝜔dd(𝑟, 𝜃) weighted by a function 

𝜆(𝜃, 𝜙). However, it is more convenient to carry out the calculation in the frequency domain, 

i.e. for DEER spectra. 

For brevity of mathematical expressions, consider the case of a definite distance 𝑟 between 

the two spins, i.e. when the distance distribution is very narrow. The spectrum of a DEER trace 

𝑆intra(𝑡), further referred to as a DEER spectrum, can be obtained by taking a Fourier transform 

of the time dependent part in Eq.(5):  

 𝑆(ω) = ∫ ∫
1

2
[𝛿(𝜔 − 𝜔dd(𝜃, 𝜙)) + 𝛿(𝜔 + 𝜔dd(𝜃, 𝜙))]𝜆(𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙

π

0

,
2π

0

 (27) 

where 𝛿(𝜔) is a Dirac 𝛿-function. Using the spherical harmonic expansion of 𝜆(𝜃, 𝜙), the 

DEER spectrum 𝑆(𝜔) can be rewritten as a linear combination of individual spectral 

components: 
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𝑆(𝜔) =∑𝜆𝑙𝑚∫ ∫
1

2
[𝛿(𝜔 − 𝜔dd(𝜃, 𝜙))

𝜋

0

2𝜋

0𝑙,𝑚

+ 𝛿(𝜔 + 𝜔dd(𝜃, 𝜙))]𝑌𝑙𝑚(𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙 =∑𝜆𝑙𝑚𝑆𝑙𝑚(𝜔).

𝑙,𝑚

 

(28) 

Due to the symmetry of 𝜔dd(𝑟, 𝜃) only some of the 𝑆𝑙𝑚(𝜔) components have non-zero 

contribution. First, since 𝜔dd(𝑟, 𝜃) is independent of azimuthal angle 𝜙, the integration over it 

in Eq. (28) removes all the components with 𝑚 ≠ 0. In addition, since 𝜔dd(𝜃) = 𝜔dd(−𝜃), 

the integration over 𝜃 retains only components with even 𝑙 = 2𝑘, where 𝑘 = 0, 1, 2… etc. As 

shown in the “DEER spectra” section of the SI, the spectral components 𝑆2𝑘,0(𝜔) can be 

expressed as: 

 
�̃�2𝑘,0(𝜔) =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜋√4𝑘 + 1√
3

1 −
𝜔

𝜔𝑑𝑑,0

𝑃2𝑘
0 (

√
1 −

𝜔
𝜔𝑑𝑑,0
3

)  ,   for − 2 ≤
𝜔

𝜔𝑑𝑑,0
< −1

𝜋√4𝑘 + 1√
3

1 +
𝜔

𝜔𝑑𝑑,0

𝑃2𝑘
0 (

√
1 +

𝜔
𝜔𝑑𝑑,0
3

)+ √
3

1 −
𝜔

𝜔𝑑𝑑,0

𝑃2𝑘
0 (

√
1−

𝜔
𝜔𝑑𝑑,0
3

)

 𝜋√4𝑘 + 1√
3

1 +
𝜔

𝜔𝑑𝑑,0
 
𝑃2𝑘
0 (

√
1 +

𝜔
𝜔𝑑𝑑,0
3

) , for 1 <
𝜔

𝜔𝑑𝑑,0
≤ 2.

, for − 1 ≤
𝜔

𝜔𝑑𝑑,0
≤ −1 

 

(29) 

where 𝑃𝑙
𝑚(𝑧) denotes an associated Legendre polynomial with a degree 𝑙 and an order 𝑚. Fig. 

2a shows plots of 𝑆2𝑘,0(𝜔)  for several values of 𝑘 = 0, 1,… , 5. For 𝑘 = 0 the component 

𝑆0,0(𝜔) has a shape of a regular Pake pattern. Components with 𝑘 > 0 represent the same Pake 

patterns modulated by the corresponding polynomial functions, and for brevity such 

components are further referred to as modified Pake patterns (MPPs). The DEER traces 

corresponding to each of these DEER spectra are shown in Fig. 2b. 

Any DEER spectrum can therefore be represented using a linear combination of modified 

Pake pattern components:  
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𝑆(𝜔) =∑𝑤𝑘
MPP𝑆𝑘

MPP(𝜔),

∞

𝑘=0

 

 where 

(30) 

 

𝑤𝑘
MPP = 𝜆2𝑘,0 

  

(31) 

is a weight of the 𝑘-th degree MPP component 𝑆𝑘
MPP(𝜔) = 𝑆2𝑘,0(𝜔). Obviously, since 𝑤𝑘

MPP =

𝜆00 is a total probability to excite any pair, it is always positive, while the signs of other weights 

may have either positive or negative signs. 

To summarize, if the distance and orientations distributions are independent from one 

another and orientations are moderately distributed, the DEER spectra have three important 

properties: 

1. MPP components 𝑆𝑘
MPP(𝜔) themselves depend only on the dipolar interaction, and 

consequently on the underlying distance distribution, whereas orientation information is 

encoded only in the weights 𝑤𝑘
MPP. In other words, distance and orientation information 

can be mathematically disentangled. 

2. As shown above, a conformational disorder significantly suppresses spherical harmonics 

with large degrees 𝑙 in the PDFs for the pump and observer pulses. Since 𝜆(𝜃, 𝜙) is a 

result of their product, its SHCs 𝜆2𝑘,0 = 𝑤𝑘
MPP also rapidly decay with an increase of 𝑘. 

3. The presence of a distance distribution broadens the MPP spectra and smooths their 

discontinuities. As an example Fig. 2c shows the MPP components, where the distance 

is distributed according to a Gaussian distribution. The components have several 

common features: a) sharp horns at 𝜔/𝜔0,dd = ±1, b) a broad intense feature filling the 

interval |𝜔/𝜔0,dd| ≤ 1 and c) small intensity shoulders spanning 1 < |𝜔/𝜔0,dd| < 2. 

Individual MPP components are not orthogonal to one another. For that reason, a linear 
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combination of the first three components with 𝑘 = 0, 1, 2 can be used to approximate 

MPP components with higher degrees 𝑘 ≥ 3. 

Overall, these properties form a basis for a procedure for disentangling the distance and 

orientation information from the DEER data, which will be outlined further in the text. 

Methods 

EPR. The sample of a nitroxide biradical dissolved in o-terphenyl matrix is a courtesy of 

Prof. Gunnar Jeschke[33]. The DEER datasets for this biradical were collected using a W-band 

pulse EPR spectrometer described elsewhere[34]. There, the 𝑡90/𝑡180 = 100/200 ns observer 

pulses of a DEER experiment sequence were used to produce a refocused echo, while the 180° 

pump pulse frequency is offset by +20 MHz and its duration is set to 𝑡pump =200 ns. The τC14 

protein was spin-labelled with 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl 

methanethiosulfonate (MTSL) at Cys56 and via site-directed mutagenesis at Ser31. The DEER 

measurements with τC14, which results were reported earlier in ref.[35], were obtained using a 

W-band spectrometer at the Weizmann Institute of Science (Rehovot, Israel). The 𝑡90/𝑡180 =

30/60 ns pulses were used to produce the refocused echo in the DEER experiment sequence. 

The pump pulse frequency is offset by +65 MHz and it has a duration of 𝑡pump = 25 ns. These 

experimental parameters were used for simulations of excitation PDFs 𝑓obs
(A/B,g)(𝜃, 𝜙) and 

𝑓pump
(B/A,g)(𝜃, 𝜙).  

Simulations. All simulation programs were written in Python programming language. The 

simulations of EPR spectra were verified by comparing with results obtained using the 

EasySpin software[28]. The PDFs 𝑓pump
(A/B,g)(𝜃, 𝜙) and 𝑓obs

(B/A,g)(𝜃, 𝜙)  at various positions within 

an EPR spectrum were precalculated for further use. These PDFs were calculated on a uniform 
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grid of 400 × 400 points in 𝜃 and 𝜙, 0° < 𝜃 < 180° and −180° < 𝜙 < 180°, which is 

necessary for a proper functioning of the spherical harmonics expansion algorithm[36].  

The spherical harmonics expansions and rotation routines were imported from SHTools 

package, which was originally designed to provide tools for spherical harmonic analysis in 

geosciences[37]. The routines of SHTools are essentially Python wrappers around Fortran-

compiled libraries, which ensures their fast runtime. The spherical harmonics expansion 

algorithm used in SHTools employs the scheme by Driscoll and Healy[36], which is based on 

the fast Fourier transform. Spherical harmonic expansion of a function defined on a simple 

Driscoll-Healy 400 × 400 grid mentioned above, yields spherical harmonics coefficients up to 

a degree of 𝑙max = 200. After the effects of random averaging are calculated, the spherical 

harmonics expansions are only conservatively truncated to the degree 𝑙max = 50, which is 

possible due to a described low-pass filtering effect. This truncation is necessary because the 

size of some temporary data structures involved in the calculation of 𝜆(𝜃, 𝜙) scale as ~𝑙max
3 , 

which takes up a lot of computer RAM. Note, that theory outlined in the “Theoretical 

background” section uses complex spherical harmonics, thereby making mathematical 

expressions rather compact, whereas SHTools operates with real spherical harmonics, which 

relationship to the complex ones is described in the “Spherical harmonics basics” section of the 

SI. The effects of random rotations described in the “Theoretical Background” were rewritten 

and coded accordingly, as sketched in the “Notes on averaging due to random rotations” section 

of the SI. All the calculations were performed using a desktop computer equipped with Intel® 

Core™ i3-4150 CPU running a virtual machine with Ubuntu 16 operating system.  

Model biradical 

Model-based simulation of nitroxide biradical DEER traces.  A model biradical, which 

structure is shown in Fig. 3a is used to demonstrate applicability of the spherical harmonics-
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based theory. There, the two nitroxide radicals are tethered via a rigid linker making a distance 

of 3.75±0.13 nm between paramagnetic centres[16]. The N-O bond in each radical is tilted by 

≈25° with respect to the axis of the rigid linker. In a simple geometric model suggested 

earlier[16], the distribution of conformations arises due to unrestrained rotation around 

acetylene bonds of the linker, which is schematically shown by dashed cones in Fig. 3a. The 

bending angle of the linker is responsible for an additional contribution to the conformational 

space. Earlier molecular dynamics simulations have demonstrated a slight flexibility in the rigid 

linker[19], producing a Gaussian distribution of bending angles with a characteristic width of 

about ≈5°,  as shown schematically by dashed red lines in Fig. 3a. 

A field-sweep EPR spectrum of the biradical, shown in Fig. 3b, shows a very good 

agreement with an EasySpin simulation, which uses spin Hamiltonian parameters reported for 

a similar system by Savitsky et al.[29]. For that reason, the same spin Hamiltonian parameters 

were used for calculations of excitation PDFs. Calculation of modulation depth values and 

weights of modified Pake patterns is then carried out using the following steps. 

Step 1. For each value of the experimental magnetic field, orientations excited by the pump 

and observer pulse are described by the PDFs 𝑓obs
(A/B,g)(𝜃, 𝜙) and 𝑓pump

(B/A,g)(𝜃, 𝜙), which are 

calculated numerically.  

Step 2. For these PDFs, defined on a grid of 𝜃 and 𝜙 angles, the sets of SHCs are calculated 

using routines from the SHTools package.  

Step 3. Now, as the PDFs 𝑓obs
(A/B,g)(𝜃, 𝜙) and 𝑓pump

(B/A,g)(𝜃, 𝜙) are represented by their SHCs, the 

effect of random rotations transforming them from their 𝑔-frames into a dipolar frame, 

described by the PDFs 𝑓pump
(A/B,dip)(𝜃, 𝜙) and 𝑓obs

(B/A,dip)(𝜃, 𝜙) is calculated numerically. This is 

coded using a combination of SHC rotation routines provided by SHTools and some home-
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written routines based on analytical expressions for SHC transformations as explained already 

in the section “Averaging due to random rotations”. In particular for the nitroxide biradical, 

such calculation involves averaging due to random rotations around the biradical axis and 

accounting for a Gaussian distribution of the linker bending angles.  

Step 4. The PDFs 𝑓pump
(A/B,dip)(𝜃, 𝜙) and 𝑓obs

(B/A,dip)(𝜃, 𝜙) represented by their SHCs are used to 

calculate the SHCs of 𝜆(𝜃, 𝜙) using a multiplication routine from SHTools. These SHCs are 

used to produce modulation depth values and weights of MPP components 𝑤𝑘
MPP(𝐵𝑗) for each 

value of the experimental magnetic field 𝐵𝑗 as shown by Eqs. (26) and (31). 

Step 5. DEER traces are produced based on a given distance distribution and the weights of 

modified Pake patterns calculated at the previous step. 

Fig. 3c shows the background-corrected experimental DEER traces, normalized to unity, 

while their corresponding modulation depth values are shown in Fig. 3b. The background 

correction of DEER datasets was done manually, which gives an uncertainty of about 20% as 

displayed in the error bars of the experimental modulation depth values. The orientation 

selection effect is prominent both in the DEER trace shape and in their modulation depths. As 

seen in Fig. 3b the shape of the DEER traces varies as a function of the external magnetic field, 

i.e. it depends on the position where MW pulses are applied. In addition, as seen in Fig. 3b, the 

experimental modulation depth values are rather distinct from the ones expected for a pair of 

nitroxide radicals with entirely random relative orientations, which is another signature that 

orientation selection is prominent. Simulation carried out using the simple geometric model in 

Fig. 3a according to the procedure outlined in steps 1 to 5, produces DEER traces and 

modulation depth values depicted in Fig. 3c and b respectively. Both represent a rather good 

agreement with experimental results, thus showing the validity of model-based simulations 

using spherical harmonics approach.  
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The intermediate step 4 of the simulation procedure calculates the weights of MPP 

components 𝑤𝑘
MPP(𝐵𝑗) contributing to the DEER spectra at each specific value of the 

experimental magnetic field 𝐵𝑗. As shown in Fig. 3d, the coefficient values rapidly decrease 

with an increase of 𝑘, which means that the number of MPP components contributing to a 

DEER trace in this case is actually rather small. This result agrees with the filtering effect 

described in the “Theoretical Background”, where the distribution of orientations is shown to 

act as a low-pass filter applied to excitation PDFs. As a result, the contributions of higher degree 

MPP components is also significantly reduced.  

Exploring the parameter space in model-based simulations. The orientation 

distributions can often be easily parametrized and the corresponding filters affecting SHCs 

as described in step 3, can be calculated using analytical expressions. For that reason, 

calculations using SHCs provide a convenient tool for exploring many models, where 

distribution parameters are varied.  In contrast, a more conventional approach presented in 

EPR literature[18–21,38], generates individual members of a conformational ensemble, and 

sums up their contributions to produce a DEER trace. The approach based on SHCs in turn 

accounts for the distributions using analytical expressions. 

To demonstrate this, the simple geometric model shown in Fig. 3a is modified to include 

two parameters: 1) a NO bond angle Ψ with respect to the linker axis, and 2) a characteristic 

width ΔΦ of a Gaussian distribution for the backbone bending angle. Fig. 4 shows a 2D map 

plotting a goodness of fit, expressed in a form of a reduced chi-square 𝜒𝑟
2 [39], as a function of 

Ψ and ΔΦ, where the parameters vary in a very generous and physically unrealistic range 0° <

Ψ < 90° and 0° < ΔΦ < 180°. As can be seen from the graph, the angles Ψ = 30° and ΔΦ =

15° are close to the original model with Ψ = 25° and ΔΦ = 5° and provide a slightly better 
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agreement with the experimental data than the latter. The DEER traces simulated with Ψ = 30° 

and ΔΦ = 15°  are shown in Fig. S1.  

Since the smallest value of 𝜒𝑟
2 ≈ 3.5 > 1, it means that even though the overall quality of 

fit is fairly good, such a model still does not perfectly fit the experimental data. This points to 

the fact that orientation distributions cannot be adequately described by the simple geometric 

model presented in Fig. 3a and the molecular conformational space most likely has a somewhat 

more complicated structure. Fig. 4 also demonstrates that 𝜒𝑟
2 has a rather large flat region, 

where 𝜒𝑟
2 < 4.5, showing that experimental data can be fit with a similar quality by rather 

different sets of model parameters. This result generally agrees with findings of Marko and 

Prisner[18], who pointed out to a similarity of some DEER traces corresponding to rather 

different geometries of a spin pair. For that reason, interpretation of orientation information in 

general cannot be done without employing a comparison with some physically realistic model. 

Nevertheless, the presented results demonstrate well how the spherical harmonics-based theory 

can be applied to exploring the space of parameters describing orientation distributions. 

Model-free disentangling of the distance and orientation information. As shown in Fig. 

3d the number of MPP components contributing to the DEER spectra of the nitroxide biradical 

is rather small, with components 𝑘 = 0, 1, 2 having the greatest contributions. As mentioned in 

the “Modulation depth and DEER spectra” section, the shape of MPP components with 𝑘 ≥ 3 

can also be approximated to a certain degree with a linear combination of the first three 

components with 𝑘 = 0, 1, 2. Given that experimental data always contain some finite noise, 

the difference between the actual component and its approximation is likely to be 

indistinguishable. 

Further evidence for the small number of contributing MPP components can be obtained 

using principal component analysis (PCA). The experimental DEER traces of the biradical 



28 

 

measured at various magnetic fields were subjected to the PCA using singular value 

decomposition[40]. PCA treats each DEER trace recorded at a certain value of the magnetic 

field as a linear combination of so called principal components. If the number of DEER datasets 

in the analysis is 𝑁, the PCA produces 𝑁 principal components and their contributing weights. 

Fig. S2a shows all 6 principal components extracted from the 6 experimental DEER traces, 

shown in Fig. 3c. As seen from the graph, only the first three principal components are 

distinguishable from the noise level. Fig. S2b demonstrates that reconstructing the DEER traces 

using only the first two principal components produces a rather good representation of original 

data. Adding a third component as shown in Fig. S2c, produces only a slight improvement. 

Overall the PCA shows that most of the variation in the DEER dataset arises due to the first 

three principal components, which implies that only three MPP components with degrees 𝑘 =

0, 1, 2 would be necessary to describe the biradical DEER traces. 

As follows from Eqs. (5) and (25), the background corrected and normalized to unity DEER 

trace 𝑆𝑗(𝑡) recorded at a magnetic field 𝐵𝑗 can be found using a distance distribution 𝑓(𝑟) and 

an infinite series of kernels 𝐾𝑘(𝑟, 𝑡): 

 

𝑆𝑗(𝑡) = ∑ 𝑝𝑘(𝐵𝑗)∫ 𝐾𝑘 (𝑟, 𝑡)𝑓(𝑟)𝑑𝑟
𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

𝑘max =∞

𝑘=0

, 

𝐾𝑘(𝑟, 𝑡) = 2𝜋∫ cos(𝜔(𝑟, 𝜃)𝑡) 𝑌2𝑘,0(𝜃, 𝜙) sin 𝜃𝑑𝜃 .
𝜋

0

 

(32) 

The coefficients 𝑝𝑘(𝐵𝑗) encode orientation information and converge to the MPP component 

weights at the magnetic field 𝐵𝑗, i.e. 𝑝𝑘(𝐵𝑗) → 𝑤𝑘
MPP(𝐵𝑗) when 𝑘max → ∞. As discussed 

above, the number of contributing MPP components is limited, therefore the largest 

contributing component degree can be set to some 𝑘max ≠ ∞ , specifically, for reasons 

discussed above, for the biradical DEER data it is most practical to truncate the sum in Eq. (32) 

to 𝑘max = 2. Both the distance distribution 𝑓(𝑟) and the orientation encoding coefficients 
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𝑝𝑘(𝐵𝑗) , can be found by minimizing a functional arising from Eq. (32). However, it is more 

convenient to split minimization with respect to 𝑓(𝑟) and 𝑝𝑘(𝐵𝑗) into two parts, and treat them 

in an iterative manner. This produces a Tikhonov regularization-based iterative processing 

algorithm, which consists of repeating the following two steps: 

Step 1. The distance distribution satisfying Eq. (32) for all the experimental magnetic fields 𝐵𝑗 

simultaneously, can be found by finding 𝑓(𝑟) which minimizes the following expression:  

 ∑ [∫ ∑ 𝑝𝑘(𝐵𝑗)𝐾𝑘(𝑟, 𝑡)

𝑘max

𝑘=0

𝑓(𝑟)𝑑𝑟
𝑟max

𝑟min

− 𝑆𝑗(𝑡)]

2

𝑗 over all 𝐵𝑗

+ 𝜁∫ |𝑓(𝑟)|2𝑑𝑟
𝑟max

𝑟min

→ min,   (33) 

where a regularization parameter 𝜁 is introduced to limit the norm of 𝑓(𝑟), thereby stabilizing 

the found solution. Essentially, this is a version of a Tikhonov regularization procedure for 

solving all the integral equations in Eq. (32). The coefficients 𝑝𝑘(𝐵𝑗) are taken as some random 

numbers between 0 and 1 at the first iteration and for further iterations they are produced at 

step 2.   In practice, finding a minimum of the expression in Eq. (33) is carried out using a non-

negative least squares fit, because a physically realistic distance distribution 𝑓(𝑟) cannot be 

negative. 

Step 2. The resulting 𝑓(𝑟) is plugged into the equations Eq. (32), where 𝑝𝑘(𝐵𝑗) are now treated 

as parameters in a linear regression with Tikhonov regularization, minimizing the following: 

  ∑ [∫ ∑ 𝑝
𝑘
(𝐵𝑗)𝐾𝑘(𝑟, 𝑡)

𝑘max

𝑘=0

𝑓(𝑟)𝑑𝑟
𝑟max

𝑟min

− 𝑆𝑗(𝑡)]

2

𝑗 over all 𝐵𝑗

+ 𝜂 [ ∑ ∑(𝑝
𝑘
(𝐵𝑗) )

2

𝑘max

𝑘=0𝑗 over all 𝐵𝑗

] → min.  (34) 

Here, 𝜂 is a regularization parameter required for restraining the overall amplitude of all the 

coefficients 𝑝𝑘(𝐵𝑗)  , because without regularization the iterative procedure diverges with 

𝑝𝑘(𝐵𝑗)  → ∞ and 𝑓(𝑟) → 0. This happens because the products of 𝑝𝑘(𝐵𝑗)  × 𝑓(𝑟) contribute 

to the first term in both Eqs. (33) and (34). Note, that in contrast to step 1, values of 𝑝𝑘(𝐵𝑗)  
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coefficients are allowed to be negative. The new values of 𝑝𝑘(𝐵𝑗)  are then used as an input for 

step 1 and the calculation is repeated iteratively until convergence. The convergence always 

proceeds towards the same result regardless of the weight values chosen at the first step 

Note that this iterative processing algorithm does not take into account the magnitude of 

modulation depth values, because of a rather large uncertainty in determining those from the 

experimental data. However, when the quality of data is better, the algorithm can also use non-

normalized DEER data as an input.  

The best regularization parameter 𝜁 was determined using an L-curve criterion, shown in 

SFig. 3a. The second regularization parameter 𝜂 can be set to an arbitrary value (𝜂 = 1 was 

chosen for definiteness), because it only affects the scaling of solutions for 𝑓(𝑟) and 𝑝𝑘(𝐵𝑗)  

emerging from the processing. 

Fig. 5a,b shows a distance distribution and 𝑝𝑘(𝐵𝑗) values obtained using the processing 

algorithm. The distance distribution shows a single peak centred at 3.75 nm with a full width 

and half height (FWHH) of about 0.3 nm, which provides a fairly good agreement with the 

expected values. Since these experimental DEER traces were collected up to 𝑡 = 2.3 us, the 

largest meaningful distances are limited to ~5 nm. The small intensity feature appearing at ~5 

nm is most likely a signature of an imperfect background correction. Confidence bounds for 

the distance distribution were obtained using a version of a bootstrap method[41]. There, 

resampling with replacement is used to produce an ensemble of a 1000 resampled DEER 

datasets. For convenience, the distance distribution and the orientation encoding coefficients 

minimizing both functionals in Eqs. (33) and (34) are labelled as 𝑓min(𝑟) and 𝑝𝑘
min(𝐵𝑗). For 

each “𝑞”-th dataset of the resampled ensemble the corresponding distance distribution 𝑓(𝑞)(𝑟) 

is produced using a procedure described in step 1, where coefficients 𝑝𝑘(𝐵𝑗) are assigned to 

𝑝𝑘
min(𝐵𝑗). The shaded areas in Fig. 5a represent 95% bounds for the ensemble of all 𝑓(𝑞)(𝑟) 
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distance distributions generated in this manner. As can be seen from the graph, the intensity 

variation of small peaks around 4.4 nm and 5 nm is very large, meaning a very low likelihood 

that they are physically meaningful. In a similar manner, the bootstrap method was used to 

determine the uncertainties in the coefficients 𝑝𝑘(𝐵𝑗) using a procedure described in step 2, 

where 𝑓(𝑟) is assigned to 𝑓min(𝑟). The error bars in Fig. 5b represent 95% confidence bounds 

for 𝑝𝑘(𝐵𝑗). The DEER traces simulated using the best fit 𝑓(𝑟) and 𝑝𝑘(𝐵𝑗) are shown in Fig. 

S3b. It should be emphasized, that the presented uncertainties in 𝑓(𝑟) and 𝑝𝑘(𝐵𝑗) have a limited 

meaning of variance of one quantity given a certain value of the other quantity. At the moment 

only a full treatment using Bayesian approach was shown to provide all variances independent 

of one another, including those in a regularization parameter[42]. Such approach however, 

would be computationally too demanding here, given that the iterative processing for obtaining  

𝑓(𝑟) and 𝑝𝑘(𝐵𝑗) takes about a 0.5-1 minute to converge on a regular desktop PC. 

The coefficients 𝑝𝑘(𝐵𝑗) obtained using the processing algorithm can be compared with the 

corresponding weights 𝑤𝑘
MPP(𝐵𝑗) predicted for various values of the magnetic field 𝐵𝑗 for the 

simple geometric biradical model shown in Fig. 3a. The comparison shown in Fig. S3c.  

provides the coefficient of determination 𝑅2 ≈ 0.53, which means that only 53% of the 

variation in 𝑝𝑘(𝐵𝑗) values can be explained by this model. This is not surprising because the 

simple geometric model does not fully account for the complexity of the conformational space. 

Furthermore, the iterative processing algorithm takes into account only MPP components up to 

a degree 𝑘max = 2, so the orientation information contained in the MPP weights 𝑤𝑘
MPP(𝐵𝑗) 

with 𝑘 ≥ 3 is folded into the coefficients 𝑝𝑘(𝐵𝑗).  

Overall, the results in Fig. 5 demonstrate that iterative processing algorithm is capable of 

disentangling the distance distribution 𝑓(𝑟) and the orientation information in a model-free 

manner. While the physical meaning of the distance distribution is straightforward, the 
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orientation information encoded in 𝑝𝑘(𝐵𝑗) has no obvious interpretation and such interpretation 

most likely cannot be obtained without some appropriate molecular models.  

Model protein 

MMM model-based simulation of spin-labelled protein DEER traces. The model-based 

approach employing spherical harmonics can also be applied to simulating DEER data obtained 

for a spin-labelled protein. The molecular model of τC14 protein, shown in Fig. 6a, was 

previously obtained by solution NMR spectroscopy (PDB ID: 2AYA)[43]. The MMM 

software[26] was used to calculate the cryogenic (temperature 175 K) conformations and 

relative populations of MTSL rotamers in τC14, where R1 spin-labels, shown in the bottom of 

Fig. 6a, are introduced at Cys56 and Ser31 replaced with a cysteine via site-directed 

mutagenesis. Some of the R1 residue rotamers are shown attached to the structure of τC14 in 

Fig. 6a. An ensemble of conformers is composed of all proteins models (20 models in the 

2AYA structure) with associated MTSL rotamers at C56R1 and Ser31R1 (216 rotamers for 

each site). Each one out of 216×216×20 conformers is characterized by its probability and Euler 

angles connecting nitroxide 𝑔-frames and the dipolar frame. The distance distribution between 

the two nitroxides is assumed to be a Gaussian with a centre at 2.9 nm and FWHH of 0.6 nm, 

as arises from both the MMM modelling and the molecular dynamics simulations done 

previously[35]. 

Using an ensemble of conformers generated in this manner, the calculation of DEER traces 

and modulation depths at various magnetic fields can then be carried out using a procedure 

similar to the one used above to obtain the results for the model biradical.  

The EPR spectrum of the spin-labelled τC14 and its EasySpin simulation is shown in Fig. 

6b. The spin Hamiltonian parameters, such as a 𝑔-anisotropy tensor and a nitrogen hyperfine 

anisotropy tensor, were obtained by an automated fitting routine in the EasySpin software[28]. 
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As seen in Fig. 6b, the simulation with these best fit parameters provides a very good agreement 

with the experimental spectrum. The spin Hamiltonian parameters thus obtained, are then used 

to calculate the PDFs 𝑓pump
(A/B,g)

(𝜃, 𝜙) and 𝑓obs
(B/A,g)

(𝜃, 𝜙), which in turn are used to produce the 

PDFs 𝑓pump
(A/B,dip)

(𝜃, 𝜙) and 𝑓obs
(B/A,dip)

(𝜃, 𝜙)  by a weighted summation over an ensemble of 

conformers. Finally, those are used to obtain 𝜆(𝜃, 𝜙) and its SHCs, enabling the calculation of 

the modulation depths and DEER traces, which are shown in Fig. 6b and c. The DEER traces 

calculated in this manner show a fairly good agreement with the experiment as seen in Fig. 6c. 

The orientation selection in these is evident from the dependence of the trace shape on the 

experimental magnetic field. In addition, the theoretical modulation depths for the protein 

model obtained by MMM and for randomly oriented nitroxides are somewhat different as 

shown in Fig. 6b, which is another signature of orientation selection presence. The MMM-

based theoretical modulation depth values mostly agree with the experiment, except at the field 

3378.7 mT, which may stem from the following three factors, listed below in the order of 

decreasing effect: 

1. The conformational space produced by MMM may be somewhat different from what 

is actually present in the sample. Previously, it was shown that an ensemble of 

rotamers produced by MMM is significantly wider than what is observed in X-ray 

protein structures[44]. If not properly accounted, the excitation PDFs 

𝑓pump
(A/B,dip)

(𝜃, 𝜙) and 𝑓obs
(B/A,dip)

(𝜃, 𝜙) calculated by MMM will be distinct from the 

experimental ones, thereby affecting the modulation depth and MPP weights. 

2. Inaccurate 𝑔-anisotropy and hyperfine tensors may be an additional source of error, 

because they were determined solely based on the EPR spectrum fitting, i.e. without 

additional restraints from other experiments, such as done for example by Savitsky 

et al.[29]. Furthermore, the two MTSL labels in τC14 may be located in slightly 
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different polar environments, which affects their spin Hamiltonian parameters[30], 

whereas the EPR spectrum simulation assumes the same parameters for both radicals 

in the pair. This factor affects only the PDFs 𝑓pump
(A/B,g)

(𝜃, 𝜙) and 𝑓obs
(B/A,g)

(𝜃, 𝜙). For 

example, the EasySpin fits of the EPR spectrum are not entirely unique, because 

about 5% different (𝑔𝑥𝑥 − 𝑔𝑦𝑦) with correspondingly adjusted values of 𝐴𝑥𝑥 still 

provide a reasonably good agreement with the experimental data. Such error 

translates into about 5% uncertainty in the values of SHCs. However, the PDFs 

𝑓pump
(A/B,dip)

(𝜃, 𝜙) and 𝑓obs
(B/B,dip)

(𝜃, 𝜙), determining 𝜆(𝜃, 𝜙) and consequently the 

modulation depth and the MPP weights, are  produced by averaging, which should 

significantly mask this error. For that reason, an inaccuracy in the input spin 

Hamiltonian parameters should be much less significant than inaccurate accounting 

of the conformational space (factor 1). 

3. Various experimental parameters, such as inaccurately set magnetic field or errors in 

setting MW pulse durations and a cavity tuning in a DEER experiment may also lead 

to somewhat different PDFs 𝑓pump
(A/B,g)

(𝜃, 𝜙) and 𝑓obs
(B/A,g)(𝜃, 𝜙). Here, as in factor 2, 

the same argument about the masking effect of averaging applies, making it less 

likely to affect the results than inaccurate accounting of the conformational space 

(factor 1). 

Fig. 6d shows the weights of MPP components contributing to the τC14 DEER data. Similar 

to the model biradical example discussed above, the rather significant conformational 

distribution effectively acts here as a low-pass filter retaining only the MPP components with 

degrees 𝑘 ≤ 2. The principal component analysis, shown in Fig. S4a,b, also demonstrates that 

only a single principal component needs to be added to the average to describe all the traces in 
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the τC14 DEER dataset. All this points to the fact that higher degree MPP components have 

rather small contributions.  

Model-free disentangling of the distance and orientation information. Since only MPP 

components with degrees 𝑘 ≤ 2 contribute, a model-free disentangling of the orientation and 

the distance information can be performed by applying the Tikhonov regularization-based 

iterative processing algorithm outlined in the “Model biradical” section. Analogously, the 

highest degree components are truncated to 𝑘max = 2. The optimal regularization parameter 𝜁 

in Eq. (33) was obtained using an L-curve criterion, as shown in Fig. S5a, while the 

regularization parameter 𝜂 in Eq. (34) is kept constant 𝜂 = 1. The distance distribution and the 

𝑝𝑘(𝐵𝑗)  coefficients resulting from the iterative algorithm are shown in Fig. 7a,b. The DEER 

data fits show a rather good agreement with the experiment, with the best-fit DEER traces 

shown Fig. S5b. The distance distribution is centred at 2.8 nm with a spread at the half height 

of 𝑟 = 2.6…3.2 nm, which is in fairly good agreement with the distribution obtained using 

molecular dynamics simulations[35]. The uncertainties for the distance distributions and MPP 

weights were found via a bootstrap method using resampling with replacement as described 

above in the “Model biradical” section. The values of orientation encoding coefficients 

𝑝𝑘(𝐵𝑗) were also compared with the MPP weights 𝑤𝑘
MPP(𝐵𝑗) produced by the MMM model of 

τC14. The comparison shown in Fig.S5c provides the coefficient of determination 𝑅2 ≈ 0.54, 

which means that about 54% of variation in coefficients 𝑝𝑘(𝐵𝑗)  can be explained by the MPP 

weights 𝑤𝑘
MPP(𝐵𝑗). This disagreement most likely stems from a somewhat inaccurate 

accounting of the rotamer conformational space by the MMM software[44] as already 

discussed above. 
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Discussion 

As demonstrated in this paper, the analysis of DEER data using the spherical harmonics-

based theory provides a number of very important insights. The theory shows that DEER 

spectra can be described using a linear combination of the modified Pake pattern components. 

The weights of these MPP components encode orientation information in a spin system. The 

distribution of orientations in an ensemble of conformers acts as a low-pass filter retaining only 

the lower degree components, as was illustrated using a nitroxide biradical and a spin-labelled 

protein. 

The theory using spherical harmonics formalism enables model-based simulations of the 

nitroxide biradical and the spin-labelled τC14 protein DEER data, where a simple geometric 

model and a MMM-based model were used respectively. In addition, in the case of the nitroxide 

biradical the orientation distributions can be described by analytical functions with parameters, 

describing the NO-bond tilt angle and the rigid linker bending angle. This helps with analytical 

calculation of random rotations, and enables a search in a parameter space for a model biradical. 

The calculations using SHCs are rather quick, even though no special effort was taken to 

optimize the Python code. In particular, calculations of DEER traces for Fig. 4, where the 

parameter space was scanned, employed harmonics up to 𝑙max = 50. They were performed 

using a regular desktop personal computer, where the runtime takes about 33 ms per DEER 

trace, while for all 6 positions of the magnetic field, it takes ~200 ms. The home-written 

routines used to calculate the effect of SHC rotations can be further optimized using some 

lower-level programming language. Furthermore, the calculations can be significantly sped up, 

if some a priori knowledge of the nature of conformational disorder suggests that spherical 

harmonics series can be truncated to even smaller degrees. 
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As pointed out earlier, a direct approach for simulating DEER traces uses summation over 

many conformers to produce a complete DEER trace[18–21,38]. In some situations, such 

summation may be somewhat long computationally. For example, in order to calculate the 

DEER traces for a nitroxide biradical with distributed conformers Abdullin et al.[19] employs 

a Monte-Carlo-based integration using 105 conformers. A significant level of redundancy in 

the number of used conformers is essential, because a large portion of these conformers are not 

excited by the MW pulses and therefore their contribution to the DEER trace is null. In contrast, 

the spherical harmonics-based approach calculates the effect of orientation distributions 

analytically, i.e. using a method that is potentially quicker, and that may be further improved 

when spherical harmonics of higher degrees can be truncated. The spherical harmonics-based 

simulation may therefore be a computationally more advantageous approach for searching the 

best fits in a space of parameters defining a conformational model using techniques such as 

simulated annealing or genetic algorithms[19]. However, a side-by-side comparison of the 

direct and spherical harmonics-based methods goes beyond the scope of this paper. 

The findings of the spherical harmonics-based theory were also applied for model-free 

analysis of DEER datasets recorded at various locations within an EPR spectrum. The approach 

is based on a Tikhonov regularization-based iterative processing algorithm, which can 

disentangle the distance and orientation information from the data. It is important for the 

datasets to be recorded at many positions of an experimental magnetic field, such that 

substantially different sets of orientations are being selected by the pump and observer pulses. 

Application of this method however, requires some a priori knowledge about the system under 

study: 

1. The orientation distribution needs to be “moderate” enough to produce a substantial 

low-pass filtering, thereby allowing to truncate the largest MPP degree included in 

the calculation. A significant suppression of MPP components with degrees 𝑘 ≥ 3 
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was demonstrated in the model-based simulations of the nitroxide biradical and the 

spin-labelled τC14 protein. However, if no model pointing to such suppression is 

available, experimentally, it can be tested by carrying out the principal component 

analysis of the collected dataset. Small number of contributing MPP components 

may also be the case when MW pulses excite a large portion of an EPR spectrum, 

e.g. in DEER experiments with nitroxide radicals carried out using X-band and Q-

band EPR spectrometers. Under such conditions this model-free analysis may also 

be applicable, even for spin systems with a fixed orientation with respect to one 

another, such as a rigid biradical. 

2. No significant correlation between the distance and orientation distributions is 

assumed to be present in a molecule. However, as will be shown further, even if this 

condition is not satisfied exactly, the model-free analysis can still provide 

meaningful results in the presented examples. If the correlation between distances 

and orientations is non-negligible, it means that a function 𝑓(𝑟, 𝜃, 𝜙) replaces 𝑓(𝑟) 

in Eq. (5). The former, however, can still be expanded as a series of spherical 

harmonics:  

 𝑓(𝑟, 𝜃, 𝜙) =∑ ∑ 𝑓𝑙𝑚(𝑟)𝑌𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

∞

𝑙=0

, (35) 

where coefficients 𝑓𝑙𝑚(𝑟) are not constants but some functions of the distance 𝑟. The 

iterative procedure for finding the weights can be adjusted accordingly to find all 

𝑓𝑙𝑚(𝑟). However, such approach requires validation with proper model systems, which 

goes beyond the scope on this paper. 

As an output the iterative algorithm provides a distance distribution 𝑓(𝑟), which has a 

straightforward interpretation, and orientation encoding coefficients 𝑝𝑘(𝐵𝑗), which 

interpretation is less obvious. While the orientation distribution maps into the values of these 
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encoding coefficients, reconstruction of orientation distributions from these coefficients cannot 

be done without a good physical model. As demonstrated in the biradical example, variation of 

the distribution model parameters, shown in Fig. 4, can produce rather similar DEER traces.  

Applicability of the main assumptions. The notion of a “moderate” conformational disorder 

was used so far without a reference to any numerical value. The outlined theory allows to put 

this on a more quantitative basis. Based on how it is constructed, the iterative processing 

algorithm for determining the distances produces the most reliable results when MPPs with 

degrees 𝑘 ≥ 3 do not contribute significantly. In the language of spherical harmonics, it implies 

that spherical harmonics with a degree greater or equal to 𝑙 = 2𝑘 = 6 have very small 

coefficients in the expansion of 𝜆(𝜃, 𝜙), shown in Eq. (25). These coefficients are suppressed 

due to a conformational disorder, implying some distribution in Euler angles determining the 

orientation of a nitroxide. The intervals between the "latitudinal" zeros of functions 𝑌𝑙𝑚(𝜃, 𝜙) 

are separated by about 𝛿𝜃~180°/𝑙, which for 𝑙 = 2𝑘 = 6 gives about 𝛿𝜃~180°/6~30°. The 

angle distributions broaden the excitation PDFs, therefore, if the Euler angles 

(𝛼𝑖
(𝐴/𝐵)

, 𝛽𝑖
(𝐴/𝐵)

, 𝛾𝑖
(𝐴/𝐵)

) have Gaussian distribution widths of about (𝜎𝛼
(A/B)

, 𝜎𝛽
(A/B)

, 𝜎𝛾
(A/B)

) =

(30°, 30°, 30°), the averaging should produce 𝜆(𝜃, 𝜙) with significantly suppressed harmonics 

𝑌6𝑚(𝜃, 𝜙). This provides a crude estimate from above for the required distribution widths of 

the Euler angle values. 

When the MW pulse has a wide enough excitation bandwidth, i.e. its excitation PDFs 

𝑓pump/obs
(A/B,g)

(𝜃, 𝜙) do not contain large degree spherical harmonics, this requirement may be 

relaxed. If a MW pulse excites a total fraction of the spectrum Δ (where a full excitation has 

Δ = 1), the excitation PDF will contain spherical harmonics up to a degree of about 𝑙max~1/Δ . 

Therefore, if the pulses excite a fraction Δ > 1/6th of the spectrum, then 𝜆(𝜃, 𝜙) should in 

principle have significantly suppressed harmonics 𝑌6𝑚(𝜃, 𝜙). When the bandwidth of the 



40 

 

excitation pulses is so wide, the model-free approach can be applied even to an entirely rigid 

system.  

Another important underlying assumption concerns a lack of correlation between orientations 

and distances. In the presented examples with the nitroxide biradical and the spin-labelled τC14 

protein, the orientations and distances of the nitroxides are actually correlated, i.e. the 

assumption that the distance distribution function 𝑓(𝑟, 𝜃, 𝜙) is independent on the angles 𝜃 and 

𝜙 is not valid in the strict physical sense. It is important therefore, to explain why ignoring this 

fact in the model-free and model-based analysis still provides reasonably good answers. The 

expression for the orientation-entangled distance distribution 𝑓(𝑟, 𝜃, 𝜙) in Eq. (35) can be 

rewritten as:  

 𝑓(𝑟, 𝜃, 𝜙) = 𝑓(𝑟) +∑ ∑ 𝑓𝑙𝑚(𝑟)𝑌𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

∞

𝑙=1

, (36) 

where  𝑓(𝑟) =
1

4𝜋
∫ 𝑑𝜙 ∫ 𝑓(𝑟, 𝜃, 𝜙)

𝜋

0

2𝜋

0
sin 𝜃𝑑𝜃  is the actual distance distribution, and 

𝑓𝑙𝑚(𝑟) =
1

4𝜋
∫ 𝑑𝜙 ∫ 𝑓(𝑟, 𝜃, 𝜙)

𝜋

0

2𝜋

0
𝑌𝑙𝑚
∗ (𝜃, 𝜙) sin 𝜃𝑑𝜃  . 

If a real physical distance distribution 𝑓(𝑟) has non-zero values in an interval between 𝑟min and 

𝑟max, then functions 𝑓𝑙𝑚(𝑟) should also be limited to the same interval.  They can be rewritten 

as 𝑓𝑙𝑚(𝑟) = 𝑓(𝑟)𝐵𝑙𝑚(𝑟), where 𝐵𝑙𝑚(𝑟) is a smooth function defined in the interval 

𝑟min…𝑟max.  Its values may be positive or negative, and it may also have maxima and minima 

in the interval 𝑟min…𝑟max. The product of 𝜆(𝜃, 𝜙) and 𝑓(𝑟, 𝜃, 𝜙)  in Eq. (5) can be calculated 

using expansions of spherical harmonics products into linear combinations with Clebsch-

Gordan coefficients. After collecting all terms related to the same spherical harmonics, one 

obtains: 

𝑓(𝑟)[1 + 𝐵10(𝑟)𝑌10(𝜃, 𝜙) + ⋯][𝜆00 + 𝜆10𝑌10(𝜃, 𝜙) + ⋯] = 
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= 𝑓(𝑟) [𝜆00 +∑ ∑ (𝜆𝑙𝑚 + 𝜆𝑙𝑚
′ (𝑟))𝑌𝑙𝑚(𝜃, 𝜙)

𝑚

𝑙=−𝑚

∞

𝑙=1

], 

where functions 𝜆𝑙𝑚
′ (𝑟) are some linear combinations of 𝐵𝑙𝑚(𝑟), which weights depend on 𝜆𝑙𝑚 

and Clebsch-Gordan coefficients. In other words, in a general case of the correlated distance 

and orientation distributions,  the coefficients in the spherical harmonics expansion in Eq.  (25) 

for 𝑙 ≥ 1 do depend on 𝑟.  

At the same time, the recorded DEER trace has a finite length 𝑇. Therefore, if the dipolar 

frequencies differ by a value smaller than 1/𝑇  they cannot be distinguished. As a result, 

distances differing smaller than  𝛿𝑟 = √
1

52 MHz × 𝑇 (μs)
 

3
nm,  cannot be resolved. For the 

nitroxide biradical, the actual physical distance distribution is rather narrow 𝑟 =3.75±0.13 nm. 

At the same time, the DEER trace is truncated at 2.3 us, giving a resolution of 𝛿𝑟 =0.2 nm. 

Such resolution of course would mask any effect arising due to the distance dependence of 

 𝜆𝑙𝑚
′ (𝑟). Similarly, for the spin-labelled τC14 protein, the distance distribution is about  

𝑟 =2.9±0.3 nm. At the same time, the resolution due to a finite DEER trace is of 𝛿𝑟 =0.25 

MHz, which again masks any effect of  𝜆𝑙𝑚
′ (𝑟). As a result, the approximation of DEER spectra 

with MPP components still applies, and the model-based and model-free simulations provide 

reasonably good results in the presented examples. Effectively, this is a consequence of the 

truncated DEER traces and sufficiently narrow distance distributions.  

Comparison with Marko et al.’s approach[14]. The model-free analysis presented in the 

current work and the approach previously proposed by Marko et al. are very closely related. In 

the latter, the distance distribution is obtained from a synthetic dataset made by a summation 

of many DEER traces, which were collected with an observer pulse set to many possible 

spectral positions within an X-band EPR line. In the language of the spherical harmonics 

theory, this means that upon summation, all higher degree components (𝑘 > 0) cancel each 
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other out, because they have MPP weights of opposing signs, while the only remaining MPP 

component is 𝑘 = 0, because its MPP weight always stays positive. The datasets required for 

this summation need to be collected using an EPR instrument where the pulse frequencies can 

be set far enough apart to cover the width of an EPR line. For the nitroxide radicals at W-band 

this can be achieved using a bimodal[45] or a broadband[46] cavity. 

However, the distance can be obtained from a synthetic dataset even when this requirement is 

not satisfied. For example, Jarvi et al.[47] summed DEER data collected with the pump and 

observer pulses set at various positions of a wide Cu2+ EPR line at Q-band, while the pulse 

frequencies being only 100 MHz apart. The obtained distance distribution agreed well with the 

results of their X-band experiments, where orientation selection is not so strong. The spherical 

harmonics-based theory suggests why the analysis of a summed dataset is a meaningful 

shortcut.  Most likely, the summation still helps to suppress the MPP components with degrees 

𝑘 > 0 strongly enough to become undetectable with a given experimental noise level.  

The data in the current report also falls into this category as shown in Fig. S6 of the 

Supplementary Information. The distance distributions obtained by Tikhonov regularization of 

the summed datasets of the nitroxide biradical and the protein, are quite similar to the ones 

obtained by the iterative processing algorithm. From the point of view of an experimentalist 

who wishes to get a rough estimate of a distance, the analysis of a summed dataset may 

therefore in many situations provide a quick yet accurate enough answer, even though the 

instrumental conditions needed for Marko’s approach are not satisfied exactly. However, it 

would still be prudent to compare that answer with the one obtained using the iterative 

processing procedure, because it is unknown a priori whether the synthetic dataset contains 

any significant contributions of higher degree MPP components or not. 
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If the data quality is very high, the instrumental requirement of setting the pulse frequencies far 

apart from one another becomes essential. The datasets for the iterative processing algorithm, 

however, do not even need to be collected in this manner. The iterative nature of the processing 

helps to produce a reliable distance distribution, because it involves a functional minimization 

by searching for both the optimal distance and the orientation distributions simultaneously, 

while in Marko et.al’s approach only orientation encoding functions �̃�(cos 𝜃) =

∫ 𝜆(𝜃, 𝜙)𝑑𝜙
2𝜋

0
 are used for minimization. In other words, iterations can be viewed as a way of 

refining the initial guess obtained from a synthetic summed dataset.  

In addition, Marko et al.’s application of Tikhonov regularization to obtain orientation encoding 

functions �̃�(cos 𝜃), in principle, can be viewed as a generalization of step 2 of the iterative 

processing algorithm. However, in the case of a moderate conformational distribution such 

generalization is unnecessary, because the meaningful information on the orientations is 

contained only in a limited number of MPP components. Indeed, the visual inspection of 

�̃�(cos 𝜃) graphs for a model biradical presented in ref.[14], reveals that they can be described 

by some small degree polynomials of cos 𝜃. It means that spherical harmonics series in Eq.(25) 

has only a few contributing terms, and therefore only small degree MPPs have contributions to 

the DEER traces under such experimental conditions.  

 

To conclude, the presented spherical harmonics-based theory demonstrates applicability for a 

model-based and a model-free analysis of DEER data with a moderate conformational 

distribution (or potentially for rigid systems with large pulse excitation bandwidth). Therefore, 

the approaches presented here are very promising for studying a rather wide class of systems, 

in particular those at high magnetic fields where orientation selection effects become 

prominent.  
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Figure Captions 

Fig. 1 Illustration for excitation PDFs and their power spectra using a fictitious biradical. (a) A 

fictitious biradical, consisting of two flexibly linked nitroxides. A transformation from a spin 

system 𝑔-frame to a dipolar frame is done by three Euler angles (𝛼𝑖
(𝐴), 𝛽𝑖

(𝐴), 𝛾𝑖
(𝐴)) and 

(𝛼𝑖
(𝐵), 𝛽𝑖

(𝐵), 𝛾𝑖
(𝐵)) for the spin systems A and B respectively. The red and green arrows represent 

average orientations of the principal axes of the two frames, such that (�̅�(𝐴), �̅�(𝐴), �̅�(𝐴)) =

(0°, 90°, 180°) and (�̅�(𝐵), �̅�(𝐵), �̅�(𝐵)) = (90°, 90°, 0°). The light red and green arrows 

represent a distribution of principal axis orientations, such that Euler angles 

(Δ𝛼𝑖
(𝐴), Δ𝛽𝑖

(𝐴), Δ𝛾𝑖
(𝐴)) and (Δ𝛼𝑖

(𝐵), Δ𝛽𝑖
(𝐵), Δ𝛾𝑖

(𝐵)) are distributed according to zero-centred 

Gaussian distributions with widths (𝜎𝛼
(A,B)

, 𝜎𝛽
(A,B)

, 𝜎𝛾
(A,B)

) = (30°, 30°, 30°) for both A and B. 

(b) Simulated EPR spectrum of the biradical shown in (a). The Red and green arrows mark the 

positions of the observer and pump pulses respectively, which frequencies are separated by 20 

MHz. (c)(i) Excitation PDFs 𝑓obs
(A,g)(𝜃, 𝜙) and 𝑓pump

(B,g) (𝜃, 𝜙), corresponding to the observer pulse 

excitation of the spin system A and the pump pulse excitation of the spin system B respectively 

(ii) The result of the 𝑔-frame coordinate systems transformation by the average rotation with 

angles (�̅�(𝐴), �̅�(𝐴), �̅�(𝐴)) and (�̅�(𝐵), �̅�(𝐵), �̅�(𝐵)). (iii) Excitation PDFs 𝑓obs
(A,dip)(𝜃, 𝜙) and 

𝑓pump
(B,dip)(𝜃, 𝜙) resulting from a rotation by the random Euler angles followed by a summation 

over all conformers, giving 𝑓obs
(A,dip)(𝜃, 𝜙) and 𝑓pump

(B,dip)(𝜃, 𝜙). (iv) Pair excitation PDF 𝜆(𝜃, 𝜙). 

Surface plots in (c)(i), (c)(ii), (c)(iii), (c)(iv) are normalized by their own specific factors to 

provide a better visual colour gradient.   (d) Power spectrum of the PDFs 𝑓obs
(A,g)(𝜃, 𝜙)  (red) and 

𝑓pump
(B,g) (𝜃, 𝜙) (green) as a function of a spherical harmonic degree 𝑙. (e) Power spectrum of the 
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PDFs 𝑓obs
(A,dip)(𝜃, 𝜙)  (red), 𝑓pump

(B,dip)(𝜃, 𝜙) (green) and 𝜆(𝜃, 𝜙) (blue) as a function of a spherical 

harmonic degree 𝑙. Total power in (d) and (e) is normalized to unity. 

Fig. 2 DEER spectra consist of modified Pake pattern components. (a) Modified Pake pattern 

spectra for the degrees 𝑘 = 0 (blue), 𝑘 = 1 (orange), 𝑘 = 2 (green), 𝑘 = 3 (red), 𝑘 = 4 

(purple), 𝑘 = 5 (brown) and a fixed distance 𝑟 = 3.73 nm. (b) Time-domain DEER traces 

corresponding to the spectra shown in (a). Colour legend is same as (a). (c) The modified Pake 

pattern spectra corresponding to the degrees 𝑘 = 0,… , 5  with a Gaussian distributed distance 

of an average value �̅� = 3.73 nm, and a variance √< (𝑟 − �̅�)2 >= 0.11 nm.  

Fig. 3 Model-based simulation of the nitroxide biradical DEER datasets shows a good 

agreement with the experiment. (a) Structure of the nitroxide biradical molecule. A simple 

geometric model is used to produce an ensemble of conformers. Unrestrained rotation around 

acetylene bond makes the NO bond to trace a surface of a cone with an angle Ψ = 25° (blue 

dashed lines). Bending of the rigid linker (red dashed lines) produces a Gaussian distribution 

of angles with a width ΔΦ = 5°. (b) Experimental (blue) and simulated (orange) biradical EPR 

spectra, overlaid with modulations depth values corresponding to specific magnetic fields. The 

EPR spectra are normalized, the left vertical axis represents the modulation depth values. The 

blue crosses (with error bars) represent experimental modulation depth values, the green 

circles – theoretical values calculated using the simple geometrical biradical model, illustrated 

in (a), the red squares – theoretical values obtained using a model with randomly oriented 

nitroxides. (c) Experimental background corrected and normalized DEER traces recorded at 

the magnetic fields marked in (b) and overlaid with simulations using the model in (a). The 

DEER traces were measured at the magnetic fields 𝐵𝑗: 3374.7 mT (black), 3376.6 mT (red), 

3378.5 mT (green), 3380.2 mT (blue), 3382.0 (purple), 3385.2 mT (yellow). (d) MPP 

component weights 𝑤𝑘
MPP(𝐵𝑗) as a function of a degree 𝑘, according to the model in (a). The 
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magnetic fields 𝐵𝑗 and the corresponding colour legend are the same as in (c). The weights 

𝑤𝑘
MPP(𝐵𝑗) are normalized so that 𝑤0

MPP(𝐵𝑗) = 1 for ease of comparison. 

Fig. 4 Exploring the parameter space for model-based simulations of the nitroxide biradical 

DEER data. Reduced chi-square 𝜒𝑟
2 as a function of angles Ψ and ΔΦ, shows a minimum 

marked with a white arrow. The angles are defined for the simple geometrical biradical model 

shown in Fig. 3a.  

Fig. 5 Model-free iterative processing of the nitroxide biradical DEER datasets provides (a) a 

distance distribution and (b) orientation encoding coefficients 𝑝𝑘(𝐵𝑗). The light blue shaded 

areas in (a) correspond to 95% confidence bounds. The orientation encoding coefficients 

𝑝𝑘(𝐵𝑗) correspond to the DEER traces measured at the magnetic fields: 3374.7 mT (black), 

3376.6 mT (red), 3378.5 mT (green), 3380.2 mT (blue), 3382.0 (purple), 3385.2 mT (yellow). 

The error bars in (b) mark the 95% confidence bounds.  

Fig. 6 MMM model-based simulation of the spin-labelled τC14 protein DEER datasets shows 

a good agreement with the experiment. (a) (top) τC14 structural model (model #1 from PBD: 

2AYA) with attached R1 rotamers calculated using MMM-software. (bottom) The structure of 

MTSL-labelled cysteine R1. (b) Experimental (blue) and simulated (orange) τC14 EPR spectra, 

overlaid with the modulations depth values corresponding to specific magnetic fields. The EPR 

spectra are normalized, the left vertical axis represents the modulation depth values. The blue 

crosses (with error bars) represent experimental modulation depth values, the green circles – 

theoretical values calculated using the MMM-model in (a), the red squares – theoretical values 

calculated using a model with randomly oriented nitroxides. (c) Experimental background 

corrected and normalized DEER traces recorded at the magnetic fields marked in (b) and 

overlaid with simulations using the MMM-model in (a). The DEER traces were measured at 

the magnetic fields 𝐵𝑗: 3378.7 mT (black), 3380.4 mT (red), 3383.0 mT (green), 3385.5 mT 
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(blue), 3386.5 (purple). (d) MPP component weights 𝑤𝑘
MPP as a function of a degree 𝑘, 

according to the model in (a). The magnetic fields 𝐵𝑗 and the corresponding colour legend are 

the same as in (c). The weights 𝑤𝑘
MPP(𝐵𝑗) are normalized so that 𝑤0

MPP(𝐵𝑗) = 1 for ease of 

comparison. 

Fig. 7 Model-free iterative processing of the spin-labelled τC14 protein DEER datasets provides 

(a) a distance distribution and (b) orientation encoding coefficients 𝑝𝑘(𝐵𝑗). The light blue 

shaded areas in (a) correspond to 95% confidence bounds. The orientation encoding 

coefficients 𝑝𝑘(𝐵𝑗) correspond to the traces measured at the magnetic fields 𝐵𝑗: 3378.7 mT 

(black), 3380.4 mT (red), 3383.0 mT (green), 3385.5 mT (blue), 3386.5 (purple). The error 

bars in (b) mark the 95% confidence bounds.  
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Spherical harmonics basics

The definitions of complex spherical harmonics Ylm(θ, φ) and their main properties are described in detail
elsewhere[1]. Below is a brief summary of the most important aspects relevant to the theory presented in
the main text.

Spherical harmonics series. A complex function f (θ, φ) defined on a spherical surface (i.e. 0 ≤ θ ≤ π,
0 ≤ φ ≤ 2π) and satisfying a condition:∫ 2π

0

dφ

∫ π

0

dθ sin θ |f (θ, φ)|2 < ∞, (1)

can be represented as a series of spherical harmonics Ylm(θ, φ) as follows:

f (θ, φ) =
∞∑
l=0

l∑
m=−l

flmY lm(θ, φ). (2)

The complex coefficients flm can be found using:

flm =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ Y ∗
lm(θ, φ)f(θ, φ). (3)

Normalization. Note, that in contrast to the convention typically used in many quantum mechanics text-
books, this work uses 4π-normalization of the spherical harmonics, because calculations using SHTools
package use such definition by default[2]. The orthogonality of spherical harmonics can be written then as:∫ 2π

0

dφ

∫ π

0

dθ sin θY ∗
lm (θ, φ)Yl′m′ (θ, φ) = 4πδl′,lδm′,m , (4)

where δi,j is a Kronecker symbol.

Other properties. The spherical harmonics can also be expressed using other analytic functions, in particular:

Ylm (θ, φ) =

√
(2l + 1) (l −m)!

(l +m)!
Pm
l (cos θ) eimφ, (5)

where Pm
l (x) denotes an associated Legendre polynomial of a degree l and an order m. In addition, the

complex conjugates of spherical harmonics are:

Y ∗
lm (θ, φ) = (−1)

m
Yl,−m(θ, φ). (6)

Upon inversion of a coordinate system, spherical harmonics transform as:

Ylm (−θ,−φ) = (−1)
l
Ylm (θ, φ) , (7)

which means that only harmonics with even degree l are invariant upon such transformation.

Power. Defining the power of a function f(θ, φ) as an integral over its modulus squared, the generalized Par-
seval’s theorem allows expressing this total power using the coefficients in its spherical harmonics expansion:

1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ (θ, φ) f∗ (θ, φ) =

∞∑
l=0

Pl, (8)

where Pl is the power carried by the spherical harmonics with a degree l, given by:

Pl =

l∑
m=−l

|flm|2 . (9)
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Real spherical harmonics. While the main text uses complex spherical harmonics, which produce more
compact mathematical expressions, the SHTools package carries out calculations using closely related real
spherical harmonics y±lm(θ, φ), which are defined as:

y+lm (θ, φ) =
1√
2
(Ylm (θ, φ) + Y ∗

lm (θ, φ)) =
√
2 (−1)

m
Re [Ylm (θ, φ)] ,

y−lm (θ, φ) =
i√
2
(Ylm (θ, φ)− Y ∗

lm (θ, φ)) =
√
2 (−1)

m
Im [Ylm (θ, φ)] ,

yl0 (θ, φ) = Yl0 (θ, φ) .

(10)

Since y+l,−m (θ, φ) = y+lm (θ, φ) and y−l,−m (θ, φ) = −y−lm (θ, φ), the real spherical harmonics expansion of a
function f (θ, φ) becomes:

f (θ, φ) =

∞∑
l=0

l∑
m=0

[clmy+lm (θ, φ) + slmy−lm (θ, φ)], (11)

where the coefficients clm and slm can be calculated using complex coefficients flm:

clm =
(−1)

m
flm + fl,−m√

2
,

slm = i
(−1)

m
flm − fl,−m√

2
.

(12)

Note, that in contrast to Eq.(2), the summation over m in Eq.(11) runs from 0 to l.
By default SHTools package uses real spherical harmonics[2], therefore the spherical harmonics series

expansion of any function is represented with large arrays, containing clm and slm coefficients, which in
general are complex numbers. For a real function f (θ, φ) = f∗ (θ, φ), the coefficients clm and slm become
real and can be simplified as:

clm =
√
2Re [flm] (−1)

m
,

slm = −
√
2 Im [flm] (−1)

m
.

(13)

Notes on averaging due to random rotations

This section details some of the expressions used to calculate the effect of averaging under random
rotations, and provides pathways for implementing those in computer code.

Rotation around z-axis. Using Eq.(12) and (15) of the main text, it is possible to show that a coordinate
system rotation by an Euler angle α around z-axis, transforms a function f(θ, φ) with real spherical harmonic
coefficients clm and slm into a function f ′(θ, φ) which coefficients given by:

c′lm = clm cosmα+ slm sinmα,
s′lm = −clm sinmα+ slm cosmα

(14)

Uniformly random rotation. If an Euler angle α has a uniform random distribution in the interval −π ≤
α ≤ π, the averaging of Eq.(14) over α produces zeros for all clm and slm, except c′l0 = cl0 = fl0. From the
computing point of view the effect of such averaging is trivial because it is simply equivalent to setting most
values of c′lm and all values of s′lm to null.
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Gaussian distributed random rotation. If an Euler angle α is distributed according to a zero-centred Gaussian
distribution g (α) = e−α2/σ2

α , with −π ≤ α ≤ π chosen for convenience, the averaging of Eq.(14) in the
limit σα � 2π produces:

c′lm =

∫ π

−π

g (α) [clm cosmα+ slm sinmα]dα ≈

≈
∫ ∞

−∞
e
− α2

σ2
α
eimα + e−imα

2
dα =

√
πσαe

−m2σ2
α

4 clm, and similarly:

s′lm ≈
√
πσαe

−m2σ2
α

4 slm

(15)

This result demonstrates, that a distributed angle α produces an averaged function which SHCs c′lm and

s′lm dependent on a factor ∼ e−
m2σ2

α
4 , which quickly decays with an increase of m. Therefore as follows from

Eq.(12), f ′
lm coefficients are suppressed by a factor of ∼ e−

m2σ2
α

4 compared to f ′
lm.

Averaging over a Gaussian distributed Eular angle γ done in a similar manner produces the same result.
The effect of averaging over an Euler angle β is easier to discuss as a result of averaging the matrix

elements < D
(l)
m,m′(0, β, 0) >. This can be qualitatively evaluated using a rotation property in Eq.(23) of the

main text. Averaging the matrix < D
(l)
m,m′(β, 0, 0) > over angles β distributed according to g (β) = e−β/σ2

β ,

with −π ≤ β ≤ π, produces a diagonal matrix with elements < D
(l)
m,m′ (β, 0, 0) >= δm,m′

√
πσβe

−
m2σ2

β
4 .

The rotation under D̂
(
0, π

2 , 0
)
D̂

(
π
2 , 0, 0

)
in Eq.(23) of the main text scrambles the matrix elements with

the same degree l, meaning that l diagonal values of < D
(l)
m,m′(β, 0, 0) > are "spread" over the entire l × l

matrix. In practice, the matrices D
(l)
m,m′(0, π

2 , 0) and D
(l)
m,m′(π2 , 0, 0) are precalculated and recalled to be

combined with < D
(l)

m,m′ (β, 0, 0) > to provide a full matrix determining f ′
lm coefficients from the coefficients

flm. Those in turn can be transformed into c′lm and s′lm using Eq.(12). The net effect of such averaging on

the coefficients c′lm and s′lm is their suppression by factors ∼ 1
l and ∼ e−

m2σ2
β

4 compared to clm and slm. In
other words, averaging is equivalent to applying a low-pass filter suppressing spherical harmonics with large
values of l and m in the function f(θ, φ).

DEER spectra

The individual meaningful DEER spectrum components S̃2k,0(ω), shown in Eq.(28) of the main text can
be calculated as follows:

S̃2k,0 (ω) =
1

2

∫ 2π

0

dφ

∫ π

0

dθ sin θ[δ (ω − ωdd (r, θ)) + δ (ω − ωdd (r, θ))]Y2k,0 (θ, φ), (16)

where δ(ω) is a Dirac δ-function. After integration over angle φ, replacement of Y2k,0 (θ, φ) with its rep-
resentation using associated Legendre polynomials, shown in Eq.(5), and taking into account the symmetry
with respect to a sign change in Eq.(7), S̃2k,0 (ω) becomes:

S̃2k,0 (ω) = 2π
√
4k + 1

∫ θ=0

θ=π/2

[
δ
(
ω − ωdd,0

(
3 cos2 θ − 1

))
+ δ

(
ω − ωdd,0

(
3 cos2 θ − 1

))]
P 0
2k (cos θ) d cos θ.

(17)
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After replacing the variable z = cos2 θ, a careful integration leads to the following result:

S̃2k,0 (ω) =



π
√
4k + 1

√
3

1− ω
ωdd,0

P 0
2k

√
1− ω

ωdd,0

3

 , for − 2 ≤ ω

ωdd,0
< −1;

π
√
4k + 1

√
3

1 + ω
ωdd,0

P 0
2k

√
1 + ω

ωdd,0

3

+

√
3

1− ω
ωdd,0

P 0
2k

√
1− ω

ωdd,0

3

 ,

for − 1 ≤ ω

ωdd,0
≤ −1;

π
√
4k + 1

√
3

1 + ω
ωdd,0

P 0
2k

√
1 + ω

ωdd,0

3

 , for 1 <
ω

ωdd,0
≤ 2.

(18)
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Supplementary figures

Figure S1: Experimental background corrected and normalized DEER traces of the nitroxide biradical, shown also in the main
text Fig. 3c, overlaid with the fits obtained using parameters Ψ = 30◦ and ∆Φ = 15◦ as explained in the main text. The
DEER traces were measured at the magnetic fields: 3374.7 mT (black), 3376.6 mT (red), 3378.5 mT (green), 3380.2 mT (blue),
3382.0 (purple), 3385.2 mT (yellow).
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Figure S2: Principal components analysis of the nitroxide biradical DEER data. (a) The average trace and the principal
components (red) shown on the same scale, with the zero offsets lines marked in black. (b) The experimental biradical
DEER traces (red) overlaid with reconstructed traces (black), obtained using only the first two principal components. (c)
The experimental DEER traces (red) overlaid with reconstructed traces (black), obtained using only the first three principal
components.
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Figure S3: Details for processing the nitroxide biradical DEER data using the Tikhonov regularization-based iterative pro-
cessing algorithm explained in the main text. (a) L-curve: residual norm againts solution norm calculated for various values of
regularization parameter ζ. (b) Experimental background corrected and normalized DEER traces recorded at various magnetic
fields and overlaid with fits obtained using the iterative processing algorithm. The DEER traces were measured at the magnetic
fields: 3374.7 mT (black), 3376.6 mT (red), 3378.5 mT (green), 3380.2 mT (blue), 3382.0 (purple), 3385.2 mT (yellow). (c)
orientation encoding coefficients pk(Bj) against MPP weights wMPP

k (Bj) calculated using a simple geometric model in Fig.
3a. Red line represents a linear fit with zero-intercept.

S8



Figure S4: Principal components analysis of the spin-labelled τC14 protein DEER data. (a) The average trace and the principal
components (red) shown on the same scale, with the zero offsets lines marked in black. (b) The experimental biradical DEER
traces (red) overlaid with reconstructed traces (black), obtained using only the first two principal components.
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Figure S5: Details for processing the spin-labelled τC14 protein DEER data using the Tikhonov regularization-based iterative
processing algorithm explained in the main text. (a) L-curve: residual norm versus solution norm calculated for various values of
regularization parameter ζ. (b) Experimental background corrected and normalized DEER traces recorded at various magnetic
fields and overlaid with fits obtained using the iterative processing algorithm. The DEER traces were measured at the magnetic
fields: 3378.7 mT (black), 3380.4 mT (red), 3383.0 mT (green), 3385.5 mT (blue), 3386.5 (purple). (c) orientation encoding
coefficients pk(Bj) against MPP weights wMPP

k (Bj) calculated using a simple geometric model in Fig. 3a. Red line represents
a linear fit with zero-intercept.
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Figure S6: Distance distributions (blue) obtained by the Tikhonov regularization of a synthetic trace, produced by a summation
of individual DEER traces of (a) the nitroxide biradical and (c) the τC14 protein. The light blue shaded areas in (a) and (c)
correspond to the 95% confidence bounds obtained using a bootstrap method with a resampling by replacement. The red line
in (a) and (c) corresponds to the best fit results for the nitroxide and τC14 protein respectively, and is also shown in Figs. 5
and 7 of the main text. (b) and (d) The synthetic DEER traces (blue) obtained by a summation of the nitroxide biradical and
τC14 protein datasets respectively. Yellow line is a DEER trace calculated using distributions in panels (a) and (c).
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