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Abstract—This paper addresses the fault isolation, estimation,
and fault-tolerant control scheme for the aircraft electric anti-
skid braking system (EABS) in the presence of actuator and
sensor faults. First, the inherently nonlinear dynamics of EABSs
are represented by a Takagi-Sugeno (T-S) fuzzy model, incorpo-
rating immeasurable antecedent variables to capture the time-
varying characteristics. Second, based on the output equivalence
principle, a fuzzy observer with unmatched antecedent variables
is proposed to achieve isolation and estimation of actuator and
sensor faults. The designed observer can guarantee the sensitivity
to specific faults while enhancing the robustness to disturbances.
The estimated fault information is then utilized to develop a fault-
tolerant control strategy, ensuring effective fault compensation
and tracking performance. Subsequently, the design of separate
and integrated frameworks for the estimation and control units is
considered, taking their interaction into account to achieve state
and fault isolation, estimation, fault compensation, and tracking
control. Finally, hardware-in-the-loop experimental results verify
the effectiveness and real-time performance of the proposed fault
isolation and fault-tolerant control method, demonstrating the
practical applicability of the proposed framework.

Note to Practitioners–The aircraft anti-skid braking system
(ABS) is crucial for ensuring the safety during landing, taxiing,
and other ground movements. This paper focuses on developing
reliable fault isolation and fault-tolerant control strategies to
maintain ABS performance and efficiency in the presence of
faults. The proposed approach employs a fuzzy model to analyze
the effects of various faults on system outputs, enabling precise
fault isolation and estimation for simultaneous multiple faults.
The reconstructed fault information is then integrated to enhance
the fault-tolerant control mechanism. This ensures that braking
performance can be maintained, even in the presence of multiple
simultaneous faults, thereby enhancing system robustness and
safety. Moreover, the proposed strategy holds potential applica-
tions in other safety-critical domains, such as rail transportation
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and aerospace vehicles. Future research will explore the integra-
tion of historical data to further enhance the accuracy of the
fault diagnostic and accommodation units.

Index Terms—Aircraft antiskid braking system, fault isolation,
fault-tolerant control, T-S fuzzy system.

I. INTRODUCTION

In modern transportation, the brake system stands as an in-
dispensable pillar in ensuring traffic safety [1]–[3]. Particularly
during aircraft landing, it is accountable for decelerating the
aircraft effectively and safely [4]–[6]. With advancements in
aviation technology, electric anti-skid brake systems (EABSs)
have emerged as the development trend for modern aircraft due
to their superior response speed and precise control capabilities
[7]. Compared to hydraulic power source systems, EABSs
can be configured with a broader range of feedback signals
and high-speed digital processing to improve brake torque
regulation and anti-skid performance. Furthermore, as the field
of more-electric and all-electric aircraft evolves, EABSs can be
integrated with the entire aircraft power architecture, enabling
efficient energy management and contributing to improved
operational efficiency and reduced environmental impact [8].

The nonlinear characteristics inherent in EABS, influenced
by factors like runway surface conditions, aircraft weight,
fuselage velocity, and brake disc temperature, pose significant
challenges in modeling, filtering, and optimization [9]. To
address these challenges, T-S fuzzy models have emerged as
a powerful and flexible research framework for accurately
capturing complex and time-varying dynamics. By partitioning
the nonlinear system into local linear regions governed by
fuzzy rules, T-S models offer a precise and adaptable represen-
tation of these dynamics. Recent advancements in fuzzy logic
and T-S fuzzy modeling have broadened their applicability
across various control systems, including industry, automotive
and aviation domains [10]–[13]. Moreover, the integrating T-
S fuzzy models with modern computational techniques has
enhanced real-time implementation, improving the robustness
and adaptability of control strategies in dynamic environments.
Despite their considerable promise, the application of T-S
fuzzy models to EABS systems remains an area for requiring
further exploration and development.

The complexity of modern braking systems, coupled with
harsh operational conditions such as high impact and heavy
load, increases the risk of system failures, potentially causing
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unanticipated shifts in ABS dynamics. Due to the critical
safety and maintainability requirements, extensive research has
focused on model-based and data-driven fault isolation and
estimation methods [14]–[17]. Typically, fault isolation aims to
identify the type and location of a fault, while fault estimation
determines the magnitude and profile of the fault signal.
Component faults, particularly those in actuators [18] and sen-
sors [19], present significant risks to system performance and
stability. During high-speed braking, both actuator and sensor
faults can severely compromise key components, leading to
system failure or degraded performance. Specifically, sensor
faults can disrupt braking force distribution, causing uneven
tire wear or slip, while actuator faults can reduce braking
efficiency and impact safe deceleration. Therefore, it is crucial
to develop methods that consider that simultaneously address
both types of faults comprehensively. Compared to single-fault
methods, approaches that address the isolation and estimation
of multiple faults offer a more robust and reliable solution for
EABS applications.

The next critical step after fault isolation and estimation is
the implementation of fault-tolerant control (or fault-resilient
control), which aims to promptly mitigate and compensate for
the real-time effects of faults [20]–[24]. A widely adopted
technique for ABS controller design is the backstepping
method, which typically decomposes the ABS into a speed
loop (alternatively referred to as the slip ratio loop) and a pres-
sure servo loop [25]–[27]. The controller design methodology
adheres to a systematic progression, starting with the inner
loop and progressing to the outer loop. While this approach
holds promise in addressing ABS control challenges, compre-
hensive research on the coordinated design of control gains
and analytical validation remains limited. This deficiency is
particularly acute when confronted with unstructured modeling
uncertainties and nonlinear fault manifestations. Compared
to qualitative analyses, there remains a significant gap in
developing a robust and practical theoretical framework for
the quantitative stability analysis and stabilization design of
ABS systems, especially in the presence of faults.

Motivated by the critical role of EABS in aviation safety
and recognizing existing technological gaps, this study aims
to tackle the challenges of nonlinear system modeling, fault
isolation, and fault-tolerant control for EABS. T-S fuzzy
models, adept at handling uncertainties and approximating
complicated nonlinear dynamics with a set of linear models,
present a promising solution for improving fault diagnosis and
control in EABS. Recent advancements in observer design
with non-matched premise variables have significantly im-
proved fault isolation and state estimation capabilities. These
methods enhance the robustness and sensitivity of observers,
thereby enabling more effective fault detection and isolation.
This paper addresses these critical issues by proposing a
novel approach to designing fault isolation observers and
fault-tolerant controllers for nonlinear EABS. The primary
contributions of this paper include:

1) The time-varying nonlinear dynamics of EABS are han-
dled through the T-S model-based representation method.
This methodology enhances the capacity of the model
to characterize nonlinearities, enhanced flexibility and

precision under varying operating conditions.
2) This paper also addresses the fault isolation for EABS

with mismatched premise variables. By overcoming the
constraint of assuming only one fault type concurrently
and precise prior variable matching between the observer
and system, the proposed fault diagnosis observer is
capable of simultaneously estimating both actuator and
sensor faults.

3) The fault estimation unit and the fault-tolerant control
unit for EABS are handled within a unified framework.
To address the dynamic interaction between the observer
and controller, this paper proposes both a step-by-step de-
sign and an integrated single-step design method, thereby
offering enhanced design flexibility.

II. EABS MODEL DYNAMICS

A. Fuselage and Wheel Dynamics

Consider the longitudinal dynamics of the aircraft fuselage
and landing gear struts under a rigid frame [9], [28], [29],
as illustrated in Fig. 1. By neglecting the effects of fuselage
wheel load transfer and multidimensional friction saturation
along with the longitudinal dynamics, the braking dynamics
of the fuselage are described as follows:

Tr − Fx − Tn − Tm = mv̇x,

Tr = Ti + kvvx,

Fx =
1

2
ρCxSwv

2
x,

(1)

where Tr is the residual thrust from the engine; Fx is the
aerodynamic resistance; Tn is the friction between the nose
wheel and the runway; Tm is the friction between the main
wheel and the runway; m is the aircraft mass; vx is the longi-
tudinal taxiing speed; Ti is the initial thrust from the engine;
kv is its velocity coefficient; ρ and Sw are the air density
and total wing area, respectively; Cx is the aerodynamic drag
coefficient of aircraft. The vertical motion and pitch dynamics,
which interact synergistically with the longitudinal dynamics,
are described by the following equations:

n1N1 + n2N2 + FL = mg,

n1N1l1 + n1Tmlh + n2Tnlh = n2N2l2 + TrlT ,

FL =
1

2
ρCzSwv

2
x,

where g represents the gravitational acceleration; N1 and N2

stand for the vertical loads on a single main and front wheel,
respectively; FL is the aerodynamic lift; n1 and n2 indicate
the number of main and nose wheels, respectively; l1 and l2
are the horizontal distances from the main and front landing
gear to the center of gravity. Tm and Tn are friction force
at the main and front wheels, respectively. lT is the vertical
distance from the residual thrust to the center of gravity, lh
is the initial height of the center of gravity above the ground,
and Cz is the aerodynamic lift coefficient.

The dynamics of the braked main wheel are described by:

Jwẇr=
1

n1
TmR− kbPa −Bwwr, (2)
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Fig. 1. Aircraft fuselage and main wheel force diagram.

where Jw is the rotational inertia of the main wheel, wr is the
angular velocity of the wheel, R is rolling radius of the wheel,
kb is the braking torque-to-pressure conversion coefficient of
the braking device, Pa is the braking pressure applied to the
main wheel, and Bw is damping coefficient of the wheel.

The analysis of Coulomb friction between the main and
front wheels is crucial in aircraft braking:

Tm = µmN1, Tn=µnN2, (3)

where µm and µn are the friction coefficient at the main and
nose wheels, respectively. N1 and N2 are normal load on the
main and nose wheels, respectively.

Due to the differences in braking force and load distribution,
a disparity in the frictional forces between the nose wheels
µm and main wheels µn exists. The friction force on the nose
wheel remains constant due to free rolling, while the main
wheels experience braking pressure and are subjected to a
combination of static and rolling friction. The degree of slip is
indicated by the relationship between the speed of the aircraft
and the linear speed of the wheels:

λ = 1− wrR

vx
.

where wr is the wheel speed. The friction coefficient µm is
related to the slip ratio λ and can be characterized by the
following Magic Formula [30]:

µm=Dµ sin(Cµ arctanΠµ),

Πµ=Bµλ− Eµ[Bµλ− arctan(Bµλ)], (4)

where Dµ, Cµ, Bµ and Eµ are calibration parameters related
to the runway conditions.

B. Electromechanical Actuator Dynamics

The actuator of the EABSs employs an electromechanical
actuator (EMA) that consists of several components, including
the motor, reduction gear, ball screw, compression disc, and
brake disc, as illustrated in Fig. 2. In operation, the brushless
DC motor drives the reduction gear, which in turn rotates

Brake disc

Ball  screw

Motor

Wheel

Reduction 

gear

Fig. 2. Schematic diagram of EMA.

the ball screw. This rotational motion is converted into linear
motion along the axis of screw, which pushes the compression
disc against the brake disc. The resulting pressure generates
braking torque, thereby enabling the braking mechanism. The
voltage across the brushless DC motor is expressed as:

Uc = Rmie + Lei̇e +Kewm, (5)

and the electromagnetic torque is is given by:

Jmẇm = KT ie + TL −Bvwm, (6)

where Uc is the voltage across the motor; Rm, ie and Le

are the resistance, current and inductance of the motor, re-
spectively. Ke is the electromotive force constant; wm is the
angular velocity of the motor; Jm is the rotational inertia of
the motor; KT is the torque constant of the motor; TL is the
load torque; and Bv is the viscous damping coefficient of the
motor.

The braking pressure Pa can be linearly related to the
displacement of the ball screw, expressed as Pa = cbxe, where
cb is the linear coefficient relating braking pressure to ball
screw displacement, xe is the displacement of the ball screw.
The load force equation and the motion equation of the ball
screw are given by:

Pa =
2πTL

L0
, ẋe =

L0wm

2π
, (7)

where L0 is the lead of the ball screw. By deriving Pa from
equation above, the mechanical subsystem dynamics of the
EMA can be expressed as:

Ṗa =
cbL0wm

2π
. (8)

Combining equations (6) and (7), the electrical subsystem
equation of the EMA is obtained as:

ẇm = − 1

Jm

L0

2π
Pa −

Bv

Jm
wm +

KT

Jm
ie. (9)

C. T-S Fuzzy Representation

Define the state variables as x(t) = [vx, wr, Pa, wm]T and
the input as u(t) = ie. With the above mathematical model
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of the four components of the aircraft EABS and combining
equations (1), (2), (8) and (9), the overall model of EABS can
be expressed as:

ẋ=hx(x, ua, ω), y = hy(x, fs, ω), (10)

where fa and fs denote actuator and sensor faults, respec-
tively, and ω represents external disturbances. hx(x, ua, ω) =
[hvx hwn

hPa
hwm

]T, hvx = 1
mTr − 1

mµfN2 − 1
mµnN1 −

1
m ρ̄Dv2x+c1ω, hwn

= µnN1rw
Jw

− Bw

Jw
wr− kb

Jw
Pa+c2ω, hPa

=
cbL0wm

2π + c3ω, hwm
= − 1

Jm

L0

2πPa − Bv

Jm
wm + KT

Jm
ua + c4ω.

N2 and N1 are determined by the vertical motion and pitch
dynamics (2).

Remark 1: EABS actuators and sensors are susceptible to
malfunctions under high temperatures and vibrations, which
can lead to incorrect sensor readings and reduced braking
force. Sensor failures fs(t) cause discrepancies between mea-
sured and actual values, while actuator failures ua(t) result
in ineffective control. Faults can present as complete failure,
jamming, constant deviation, gain issues, or combined failures,
all of which significantly impact system performance and
safety.

To achieve a parameterized observer design for nonlinear
systems, this section proposes a fuzzy modeling approach. The
longitudinal speed vx varies within the range vx ∈ [vxL

, vxU
],

where vxU
denotes the upper bound (aircraft landing speed)

and vxL
denotes the lower bound (anti-skid brake termina-

tion speed). Consequently, 1/vx falls within [1/vxU
, 1/vxL

].
According to Magic Formula (4), µm ∈ [µmL

, µmU
].

This paper addresses the design of fault estimation observers
and controllers for nonlinear EABS adopting a fuzzy model
described by IF-THEN rules. The premise variables are chosen
as θ(t) = [θ1(t), θ2(t), θ3(t)]

T = [vx, 1/vx, µm]T and p-th
individual plant rule is formulated as:

Model Rule p: IF θ1 is Fp1, θ2 is Fp2, and θ3 is Fp3, THEN{
ẋ(t) = Apx(t) +B(u(t) +Hfa(t)) + Eω(t),

y(t) = Cx(t) +Gfs(t) +Dω(t),
(11)

where Fpl are fuzzy sets defined as: F11 = F21 = F31 =
F41 = (vxU

− vx)/(vxU
− vxL

), F51 = F61 = F71 = F81 =
(vx−vxL

)/(vxU
−vxL

), F12 = F22 = F52 = F62 = (1/vxL
−

1/vx)/(1/vxL
− 1/vxU

), F32 = F42 = F72 = F82 = (1/vx −
1/vxU

)/(1/vxL
−1/vxU

), F13 = F33 = F53 = F73 = (µmU
−

µm)/(µmU
− µmL

), F23 = F43 = F63 = F83 = (µm −
µmL

)/(µmU
− µmL

). The state variables x(t) ∈ Rnx , control
input u(t) ∈ Rnu , actuator fault fa(t) ∈ Rnfa , disturbance
ω(t) ∈ Rnω , output y(t) ∈ Rny and sensor fault fs(t) ∈ Rnfs

are defined accordingly. The normalized fuzzy membership
function is given by:

αp(θ(t)) = ηp(θ(t))/

8∑
p=1

ηp(θ(t)), ηp(θ(t)) =
3∏

i=1

Fpi(θi(t)),

where
∑8

p=1 ηp(θ) = 1, n = 3 is the number of fuzzy rules,
and m = 8 is the number of fuzzy inference rules. Let the set
be denoted as J = {1, 2, · · · , 8} to facilitate the expression.

Based on the constructed fuzzy sets and membership func-
tions, it can be verified that the fuzzy inference model (11) is

equivalent to the original nonlinear system (10). The matrices
Ap are obtained by replacing vx, 1/vx, and µm in the matrices
A(t) with vxL

, vxU
, 1

vxL
, 1

vxU
, µmL

and µmU
according to

the corresponding sets of fuzzy rules. Ap, B, H , E, C, G and
D are known parameter matrices that satisfy the principle of
dimensional compatibility.

The fuzzy fusion of the T-S fuzzy system (11) via defuzzi-
fication can be rewritten as

ẋ(t) =
∑
p∈J

αp(θ(t))[Apx(t) +B(u(t)

+Hfa(t)) + Eω(t)],

y(t) =Cx(t) +Gfs(t) +Dω(t).

(12)

The objective of this paper is to develop a fault isolation,
estimation, and fault-tolerant control strategy for the nonlinear
aircraft EABS by the proposed fuzzy model, addressing both
actuator and sensor faults under varying operational condi-
tions.

III. FAULT ISOLATION AND ESTIMATION OBSERVER

This section investigates the design of an asynchronous ob-
server aimed at achieving fault isolation from sensor-affected
measurement outputs, while simultaneously estimating the
system states, sensor faults, and actuator faults.

A. Sensor Fault Isolation and Estimation

Sensor faults have a direct impact on system outputs,
rendering the measurement and estimation of system states
unreliable. To address this, simultaneous estimation of states
and sensor faults is performed. Sensor faults are treated as
nominal states, and an extended state vector is introduced
to incorporate the effects of sensor faults into the system
dynamics. The following augmented state vector is defined:

x̄(t) =
[
xT(t), fT

s (t)
]T

,

with the corresponding matrices defined as Āp ≜ [Ap O], T̄ ≜
[I O], C̄ ≜ [C G]. The input is redefined as ua(t) = u(t) +
Hfa(t), which includes the nominal control input u(t) and
the fault-induced component Hfa(t). For system described
by (12), the dynamics are given byT̄ ˙̄x(t) =

∑
p∈J

αp(θ(t))[Āpx̄(t) +Bua(t) + Eω(t)],

y(t) = C̄x̄(t) +Dω(t).

Given that accurate measurements of the antecedent vari-
ables are unavailable, the T-S fuzzy model cannot be directly
implemented for designing a fault detection observer. Instead,
estimated variables, denoted as θ̄1(t) = v̂x, θ̄2(t) = 1/v̂x and
θ̄3(t) = µ̂m, are utilized as the premise variables of the ob-
server fuzzy rules. This relaxation avoids the strict requirement
of consistency between system and observer premise variables,
making the method more robust in practical implementations.
The fault detection observer is defined by the following rules:

Observer Rule q: IF θ̄1 is Fq1, θ̄2(t) is Fq2, and θ̄3(t) is
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Fq3, THEN
ż(t) = Nqz(t) +Mqu(t) + Lqy(t),

x̆(t) = z(t) +Qy(t),

y̆(t) = C̄x̆(t),

(13)

where Nq , Mq , Lq and Q are matrices to be designed. The
matrices S and Q are chosen such that ST̄ +QC̄ = I .

The overall observer normalization can be inferred as:
ż(t) =

∑
q∈J

αq(θ̄(t))[Nqz(t) +Mqu(t) + Lqy(t)],

x̆(t) = z(t) +Qy(t),

y̆(t) = C̄x̆(t).

(14)

Defining the observer error ex̄(t) = x̄(t) − x̆(t) and the
residual generator ey(t) = y(t) − y̆(t), we can derive the
following expression:

ėx̄(t)= ˙̄x(t)− ˙̆x(t)

=
∑
p∈J

∑
q∈J

αp(θ(t))αq(θ̄(t)){
[
SĀp − LqC̄ +NqQC̄

]
x̄(t)

−Nqx̆(t) + [SB −Mq]u(t) + SBHfa(t)

+ [SE +NqQD − LqD]ω(t)−QDω̇(t)}.

The observer matrices are determined as follows:

Nq=SĀq −WqC̄, Mq = SB, Lq = Wq +NqQ, (15)

with the actuator isolation observer error evolving as:
ėx(t) =

∑
q∈J

αq(θ̄(t)){Nqex̄(t)−QDω̇(t) + SBHfa(t)

+ Sωx̄(t) + [SE −WqD]ω(t)},
ey(t) =C̄ex̄(t) +Dω(t),

(16)

where ωx̄(t) =
∑

p∈J
∑

q∈J αp(θ(t))αq(θ̄(t))[Āp − Āq]x̄(t),
which is norm-bounded.

The following logic criteria based on observer residuals are
used to achieve sensor fault isolation:

J1(ey) =

{
⩾ J1,th, sensor fault occurrence
< J1,th, sensor fault free

(17)

where the residual monitoring function J1(ey) =

{
∫ to+t∗
to

eTy (t)ey(t) dt}
1
2 . For the sensor fault-free case,

the function can be specified by J1(ey) = J1(ey)fs(t)=0 ⩽
ε1∥σ∥ ⩽ J1,th and J1,th = supd∈ℓ2ε1∥σ∥, where σ represents
the vector of disturbances and perturbations, and ε1 is the
scalar for observer design.

Remark 2: The augmented observer approach has gained
considerable attention, with successful implementations, such
as in [31]. These methods typically transform sensor faults
Gfs(t) into an equivalent fault f̆(t) for estimation. In contrast,
our approach directly estimates the original sensor faults fs(t),
avoiding additional transformations.

Theorem 1: Consider the fuzzy system described by (11)
and the sensor fault estimation observer (14). For given scalars
ε̄1 > 0, if there exist symmetric and positive definite matrix
Pa > 0 and matrix W̄q , such that the following conditions

hold ∀q ∈ J:

Λ̄ =

[
Ψ̄11 Ψ̄12

∗ Ψ̄22

]
< 0, (18)

where

Ψ̄11=PaSĀq + ĀT
q S

TPa − W̄qC̄ − C̄TW̄T
q + C̄TC̄,

Ψ̄12=Ωp + C̄TD̄, Ψ̄22 = −ε̄1I + D̄TD̄,

Ωp=
[
PaSE − W̄qD −PaQD PaS PaSBH

]
,

D̄=
[
D O O O

]
,

then the error system (16) is asymptotically stable, and the so-
lution of observer gain matrix Wq is given by Wq = P−1

a W̄q .
Proof: For error dynamics system (18), consider the

following Lyapunov function:

V1(ex̄(t), t) = eTx̄Paex̄(t). (19)

Taking the time derivative of V1(ex̄(t), t) along the trajec-
tories of the error dynamics (16), we obtain:

V̇1(ex̄(t), t)=2eTx̄ (t)Paėx̄(t)

=
∑
q∈J

αq(θ̄(t))2e
T
x̄ (t)Pa

{
Nqex̄(t) + SBHfa(t)

−QDω̇(t) + Sωx̄(t) + [SE −WqD]ω(t)
}
.

Let ω̄(t) =
[
ωT(t), ω̇T(t), ωT

x̄ (t), f
T
a (t)

]T
, and define the

auxiliary function:

Υ1(t) = V̇1(ex̄(t), t) + eTy (t)ey(t)− ε21ω̄
T(t)ω̄(t). (20)

The performance index (20) can be further expressed as:

Υ1(t)=
∑
q∈J

αq(θ̄(t))
{
2eTx̄ (t)Nqex̄(t) + 2eTx̄ (t)PaSBHfa(t)

+2eTx̄ (t)Pa [SE −WqD]ω(t)− 2eTx̄ (t)PaQDω̇(t)

+2eTx̄ (t)PaSωx̄(t)
}
− ε21ω̄

T(t)ω̄(t) + eTx̄ (t)C̄
TC̄ex̄(t)

+eTx̄ (t)C̄
TDω(t) + ωT(t)DTDω(t),

Defining ξ(t) = [eTx̄ (t) ω̄T(t)]T, the inequality can be
further simplified to:

Υ1(t)=
∑
q∈J

αq(θ̄(t))
{
ξT(t)Λξ(t)

}
, (21)

where

Λ=

[
PaNq +NT

q Pa + C̄TC̄ PaĒq + C̄TD̄
∗ −ε̄1I + D̄TD̄

]
,

Ēq=
[
SE −WqD −QD S SBH

]
, ε̄1 = ε21.

Given the condition in (18), and using W̄q = PaWq give
rise to Υ1(t) < 0. The proof is completed.

Remark 3: The asynchronous observer design presented
in this paper is capable of encompassing the results for the
case where the premise variables are identically matched. In
the scenario of exact matching, the observer operate syn-
chronously with the system, which is a special case of the more
general design. This point reveals that the method introduced
in Theorem 1 is not only robust to mismatched premise
variables, but can also be extended to the case where the
premise variables are exactly matched.
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B. Actuator Fault Isolation and Estimation

This section presents the design of an actuator fault isolation
and estimation observer, followed by the derivation of stability
conditions for the asynchronous observer.

The proposed observer structure is as follows:

ż(t) =
∑
q∈J

αq(θ̄(t))[Nqz(t) +Mqu(t) + H̄q f̂a(t) + Lqy(t)],

x̆(t) =z(t) +Qy(t),

y̆(t) =C̄x̆(t),

˙̂
fa(t) =

∑
q∈J

αq(θ̄(t))[Vq(y(t)− y̆(t))] + f̂a(t),

(22)

where matrices Nq , Gq , Q are defined as in (15), H̄q = MqH ,
Lq and Vq are observer gains to be designed.

Defining the estimation error ef = fa(t) − f̂a(t), we can
derive the following expression:

ėx̄(t) =
∑
q∈J

αq(θ̄(t)){Nqex̄(t)−QDω̇(t) + SBHef (t)

+ Sωx̄(t) + [SE −WqD]ω(t)},

ėf (t) =
∑
q∈J

αq(θ̄(t))[−VqC̄ex̄(t) + ef (t) + ḟa(t)

− fa(t)− VqDω(t)],

ey(t) =C̄ex̄(t) +Dω(t).

(23)

Define the augmented error state as:

ex̃(t)=
[
eTx̄ (t), e

T
f (t)

]T
,

ω̃(t)=
[
ωT(t), ω̇T(t), ωT

x̄ (t), f
T
a (t), ḟT

a (t)
]T

,

then the overall dynamic system of observer error can be
described as follows:

ėx̃(t) =
∑
q∈J

αq(θ̄(t)) [Xqex̃(t) + Zqω̃(t)] ,

ey(t) =C̃ex̃(t) + D̃ω̃(t),

(24)

where

Xq=Ãq − Γ̃qC̃, Zq = Ẽ − Γ̃qD̃, C̃ =
[
C̄ O

]
,

Ãq=

[
SĀq SBH
O I

]
, Γ̃q =

[
Wq

Vq

]
,

Ẽ=

[
SE −QD S O O
O O O −I I

]
, D̃ =

[
D̄ O

]
.

Similar to the previous section, the performance function
J2(ey), the detection limit J2,th and corresponding detection
logic for actuator fault isolation can be set up analogously to
(17).

Theorem 2: Consider the fuzzy system described by (11)
and the sensor fault estimation observer (13). For given scalars
ε̄2 > 0, if there exist symmetrical and positive definite matrix
Pb > 0, and matrices W̄q and V̄q , such that the following
conditions hold ∀q ∈ J:

Λ̃p =

[
Ψ̃11 Ψ̃12

∗ Ψ̃22

]
< 0, (25)

where

Ψ̃11=PbÃq + ÃT
q Pb − Γ̄qC̃ − C̃TΓ̄T

q + C̃TC̃,

Ψ̃12=PbẼ + C̃TD̃, Ψ̄22 = −ε̄2I + D̃TD̃, Γ̄q =
[
W̄T

q , V̄ T
q

]T
,

then the error system (24) is asymptotically stable, and the
solution of observer gain matrices Wq and Vq are given by[

Wq

Vq

]
=P−1

b

[
W̄q

V̄q

]
.

Proof: Define the Lyapunov function as

V2(ex̃(t), t) = eTx̃ (t)Pbex̃(t), (26)

and the auxiliary function as

Υ2(t) = V̇2(ex̃(t), t) + eTy (t)ey(t)− ε̄2ω̃
T(t)ω̃(t).

Taking the time derivative of V2(ex̃(t), t), we have

V̇2(ex̃(t), t)=2eTx̃ (t)Pb ˙ex̃(t)

=
∑
q∈J

αq(θ̄(t))
{
2eTx̃ (t)Pb[Ãq − Γ̃qC̃]ex̃(t)

2eTx̃ (t)Pb[Ẽ − Γ̃qD̃]ω̃(t)
}
.

The remainder of the proof is derived by applying the matrix
form Γ̃q = PbΓ̄q and referencing the relevant part of Theorem
1, thus completing the proof.

IV. FAULT-TOLERANT TRACKING CONTROLLER

The objective of this section is to fully utilize the fault
information estimated in the previous section to design a
controller, thereby achieving fault compensation and fault-
tolerant tracking. This controller enables the EABS to operate
according to a predefined deceleration rate or slip ratio.

A. Controller Design

Let the desired state trajectory be denoted as xr(t) and the
corresponding output as yr(t) = Cxr(t). The tracking error
is defined as er(t) = x(t)− xr(t) and eη(t) = y(t)− yr(t)−
Gf̂s(t). The time derivatives of above errors are expressed as:

ėr(t)=
∑
p∈J

αp(θ(t))[Apx(t) +B(u(t) +Hfa(t))

+Eω(t)]− ẋr(t).

The control input is formulated as:

Bu(t) = Bv(t)−BHf̂a(t)−Aqxr(t) + ẋr(t), (27)

where v(t) is the nominal control input, which is constructed
based on the feedback of observer-estimated information as
follows:

Controller Rule q: IF θ̄1 is Fq1, θ̄2(t) is Fq2, and θ̄3(t) is
Fq3, THEN

v(t) = Kq[ˆ̄x(t)− xr(t)], (28)

where ˆ̄x(t) = T̄ x̆(t) and Kq is the gain matrix to be design.
Remark 4: The controller structure consists of three essential

components, each crucial for ensuring the stability and desired
performance of the closed-loop system: 1) Bv(t) is applied
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to stabilize the closed-loop system, 2) Hf̂a(t) mitigates the
impact of actuator faults, and 3) −Aqxr(t) + ẋr(t) ensures
accurate tracking as the system converges to the reference
trajectory.

Remark 5: Considering the form of the matrix B, the
practical form of the controller for q ∈ J is given by:

u(t)=Kq ˆ̄x(t)−Kqxr(t)−Hf̂a(t)− b−1
4 [Aqxr(t)− ẋnr(t)].

where xr(t) = [xT
1r(t), · · · , xT

nr(t)] and Aq = [ĀT
q AT

q ]
T.

By connecting the system dynamics described in (11) with
the input (27) and (28), the closed-loop system can be ex-
pressed as follows:

ėr(t)=
∑
q∈J

αq(θ̄(t)){(Aq +BKq)er(t) + Iωx(t)

−BKqT̄ ex̄(t) +BHef (t) + Eω(t)},

where ωx(t) =
∑

p∈J
∑

q∈J αp(θ(t))αq(θ̄(t))[Ap−Aq]x(t) is
norm-bounded.

To analyze the dynamics of the estimation and tracking
error, define the augmented vector as:

ê(t)=
[
eTr (t), e

T
x̄ (t), e

T
f (t)

]T
, q(t) =

[
eTη (t), e

T
y (t)

]T
,

ω̂(t)=
[
ωT(t), ωT

x (t), ω̇
T(t), ωT

x̄ (t), f
T
a (t), ḟT

a (t)
]T

, (29)

the dynamics of the estimation and tracking errors can then
be described by:

˙̂e(t) =
∑
q∈J

αq(θ̄(t))
[
X̂q ê(t) + Ẑqω̂(t)

]
,

q(t) =Ĉê(t) + D̂ω̂(t),

where the matrices are defined as:

X̂q=

 Aq +BKq −BKqT̄ BH
O SĀq −WqC̄ SBH
O −VqC̄ I

 ,

Ẑq=

 E I O O O O
SE −WqD O −QD S O O

−VqD O O O −I I

 ,

Ĉ=

[
C Ĝ

O C̃

]
, D̂ =

[
D O
D O

]
,

Ĝ=
[
GT̂ O

]
, T̂ =

[
O I

]
.

Building upon the fault estimation observer developed in the
previous section, two design approaches are proposed for the
dynamic output feedback observer in (22) and the controller
in (28): a two-step separate design and a single-step integrated
design.

B. Two-Step Separate Design

This section explores the design of fault observers and
fault-tolerant controllers by a two-step procedure. The relevant

matrices can be decomposed as follows:

X̂q=Âq − Γ̂qČ, Ẑq = Ê − Γ̂qĎ,

Âq=

 Aq +BKq −BKqT̄ BH
O SĀqC̄ SBH
O O I

 , Γ̂q =

 O
Wq

Vq

 ,

Ê=

 E I O O O O
SE O −QD S O O
O O O O −I I

 ,

Č=
[
O C̄ O

]
, Ď =

[
D̄ O O

]
.

Theorem 3: Consider the system described by (11), with the
extended state observer designed as in (22) and its error system
given in (24), the controller synthesized as in (27) and (28).
Given the parameter ε̄3 > 0 and and an appropriate selection
of the matrix Kq for q ∈ J, if there exists a symmetric
and positive definite matrix Pc = diag{Pc1, Pc2}, along with
matrices W̄q and V̄q , such that

Λ̂p =

[
Ψ̂11 Ψ̂12

∗ Ψ̂22

]
< 0, (30)

where

Ψ̂11=PcÂq + ÂT
q Pc − Γ̌qČ − ČTΓ̌T

q + ĈTĈ,

Ψ̂12=PcÊ + ĈTD̂, Ψ̂22 = −ε̄3I + D̂TD̂, Γ̌q =
[
O, Γ̄T

q

]T
,

then the error system (29) is asymptotically stable, and the
solution of observer gain matrices Wq and Vq are determined
by: [

Wq

Vq

]
=P−1

c2

[
W̄q

V̄q

]
.

Proof: Consider the Lyapunov function as V3(ê(t), t) =
êT(t)Pcê(t) and define the auxiliary function as Υ3(t) =
V̇3(ê(t), t) + qT(t)q(t) − ε̄3ω̂

T(t)ω̂(t), where Pc =
diag{Pc1, Pc2}. The derivative of V3(ê(t), t) along the tra-
jectory of ê(t) in (29), follows the similar structure as the
Lyapunov function derivative in 2. The asymptotic stability of
the error system is ensured by selecting appropriate observer
gain matrices Γ̃q = Pc2Γ̄q , which are derived by applying the
conditions of Theorem 1.

Remark 6: This algorithm provides a systematic approach
to resolving the inequalities presented in Theorems 1 and 2.
Step 1: Set the controller gain Kq such that the matrices Aq+

BKq are Hurwitz ∀q ∈ J.
Step 2: Solve the inequalities (30) by the values of Kq

obtained in Step 1. Following this, compute the
estimation gain matrices Wq and Vq as:[

Wq

Vq

]
= Pc2

[
W̄q

V̄q

]
.

C. Single-Step Integrated Design

Next, the integrated design of the fault observer and fault-
tolerant controller is addressed.

Theorem 4: Consider the system described by (11), with the
extended state observer designed as in (22), its error system
as in (24), and the controller synthesized as in (27) and (28).
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Given the parameter γ > 0, ϑ1 > 0, ϑ2 > 0 and ε̄4 = ε̄41 +
ε̄42 > 0, if there exists symmetric and positive definite matrix
P̄d = diag{P̄d1, Pd2} and Pd3, along with matrices W̆q , V̆q

and K̆q , such that the following conditions hold:

Λ̆1p=

[
Ψ̆1

11 Ψ̆1
12

∗ Ψ̆1
22

]
< 0, (31)

Λ̆2p=

[
Ψ̆2

11 Ψ̆2
12

∗ Ψ̆2
22

]
< 0, (32)

where

Ψ̆1
11=

[
Φ̆1

11 Φ̆1
12

∗ Φ̆1
22

]
, Ψ̆1

12 =

[
Φ̆1

13 Φ̆1
14 Φ̆1

15

O O O

]
,

Ψ̆2
12=

[
Φ̆2

12 Φ̆2
13

O O

]
, Ψ̆2

22 =

[
Φ̆2

22 O

O Φ̆2
33

]
,

Ψ̆1
22=diag{Φ̆1

33, Φ̆1
44, Φ̆1

55},
Φ̆1

11=AqP̄d1 + P̄d1A
T
q +BK̆q + K̆T

q B
T,

Φ̆1
12=−BK̆q, Φ̆1

22 = −ϑ1P̄d1, Φ̆1
33 = −ϑ2Pd3,

Φ̆1
13=BH, Φ̆1

14 = Ĕ + P̄d1C
TĎ1, Ĕ = [E I] ,

Φ̆1
44=−ε̄41I, Iε = diag{ε̄42I, ε̄4I},

Φ̆1
15=P̄d1C

T, Φ̆1
55 = −(γ + 1)I,

Ψ̆2
11=Pd2Ãq + ÃT

q Pd2 − Γ̆qC̃ − C̃TΓ̆T
q + γ−1ĜTĜ+ P̃d,

Φ̆2
12=Pd2Ẽ − Γ̆qD̃ + ĜTĎ2 + C̃TĎ2, Γ̆q = [W̆T

q , V̆ T
q ]T,

Φ̆2
13={ϑ1I,O}, P̃d = diag{O, ϑ2Pd3}+ C̃TC̃,

Φ̆2
22=−Iε + ĎT

2 Ď2, Φ̆2
33 = ϑ1P̄d1,

then the error system (29) is asymptotically stable, and the
solutions of controller gain matrix Kq and observer gain
matrices Wq and Vq are given by

Kq=K̆qP̄
−1
d1 ,

[
Wq

Vq

]
= P−1

d2

[
W̆q

V̆q

]
.

Proof: Consider the Lyapunov function:

V4(ê(t), t) = êT(t)Pdê(t), (33)

and define an auxiliary function as Υ4(t) = V̇4(ê(t), t) +
qT(t)q(t)− ε24ω̂

T(t)ω̂(t), where Pd = diag{Pd1, Pd2}.

Taking the derivative of V4(ê(t), t) along the solution of
ê(t) in (29), we obtain:

V̇4(ê(t), t)=2êT(t)Pd
˙̂e(t)

=
∑
q∈J

2αq(θ̄(t))ê
T(t)Pd[X̂q ê(t) + Ẑqω̂(t)].

Substituting this into the auxiliary function Υ4(t), we have

Υ4(t)=
∑
q∈J

2αq(θ̄(t))
{
êT(t)Pd[X̂q ê(t) + Ẑqω̂(t)]

}
+qT(t)q(t)− ε24ω̂

T(t)ω̂(t).

We first ensure that the following conditions hold:

V̇4(ê(t), t) + qT(t)q(t)− ε24ω̂
T(t)ω̂(t) < 0, (34)

which implies the inequality:∑
q∈J

2αq(θ̄(t))
{
êT(t)Pd[X̂q ê(t) + Ẑqω̂(t)]

}
+qT(t)q(t)− ε̄4ω̂

T(t)ω̂(t)< 0, (35)

where ε̄4 = ε24. Define the auxiliary term:

Ῡ(t)=
[
eTx̄ (t) eTf (t)

] [ Ȳ1 O
O Ȳ2

] [
ex̄(t)
ef (t)

]
,

Ȳ1=diag{ϑ1Pd1, O}, Ȳ2 = ϑ2Pd3,

where ϑ1 and ϑ2 are positive scalars.

Applying the matrix scaling technique, we express the
quadratic term in the following form:

qT(t)q(t)≤eTr (t)C
TCer(t) + γeTr (t)C

TCer(t)

+γ−1eTx̃ (t)Ĝ
TĜex̃(t) + eTx̃ (t)C̃

TC̃ex̃(t)

+2eTr (t)C
TĎ1ω̆(t) + 2eTx̃ (t)Ĝ

TĎ2ω̂(t)

+2eTx̃ (t)C̃
TĎ2ω̂(t) + ω̆T(t)ĎT

1 Ď1ω̆(t)

+ω̂T(t)ĎT
2 Ď2ω̂(t),

where

ω̆(t)=
[
ωT(t), ωT

x (t)
]T

, Ď1 = [D O] , Ď2 = [D O] .

Thus, the condition is satisfied if the following inequalities
hold:

Λ̌1+Λ̌2 + eTx̄ (t)Ȳ1ex̄(t) + eTf (t)Ȳ2ef (t)

−ϑ1e
T
x (t)Pd1ex(t)− ϑ2e

T
f (t)Pd3ef (t) < 0, (36)

where

Λ̌1=
∑
q∈J

2αq(θ̄(t))
{
eTr (t)Pd1[(Aq +BKq)er(t)−BKqex(t)

+BHef (t) + Eω(t) + Iωx(t)]
}
+ eTr (t)C

TCer(t)

+2eTr (t)C
TĎ1ω̆(t) + γeTr (t)C

TCer(t)

+ω̆T(t)ĎT
1 Ď1ω̆(t)− ε̄41ω̆

T(t)ω̆(t),

Λ̌2=
∑
q∈J

2αq(θ̄(t))
{
eTx̃ (t)Pd2[(Ãq − Γ̃qC̃)ex̃(t) + (Ẽ − Γ̃qD̃)

×ω̃(t)]
}
+ γ−1eTx̃ (t)Ĝ

TĜex̃(t) + eTx̃ (t)C̃
TC̃ex̃(t)

+2eTx̃ (t)Ĝ
TĎ2ω̂(t) + 2eTx̃ (t)C̃

TĎ2ω̂(t)

+ω̂T(t)ĎT
2 Ď2ω̂(t)− ω̂T(t)Iεω̂(t). (37)

The inequality (36) can be established when the following
conditions are simultaneously satisfied:

Λ̌1 − ϑ1e
T
x (t)Pd1ex(t)− ϑ2e

T
f (t)Pd3ef (t) < 0, (38)

Λ̌2 + eTx̄ (t)Ȳ1ex̄(t) + eTf (t)Ȳ2ef (t) < 0. (39)

Let ξ̆1(t) = [eTr (t), e
T
x (t), e

T
f (t), ω̆

T(t)]T and ξ̆2(t) =

[eTx̃ (t), ω̂
T(t)]T. The conditions can be further expressed as:∑

q∈J
αq(θ̄(t))ξ̆

T
1 (t)Θ1ξ̆1(t) < 0, (40)∑

q∈J
αq(θ̄(t))ξ̆

T
2 (t)Θ2ξ̆2(t) < 0, (41)
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Fig. 3. Experimental block diagram.

Fig. 4. Fuzzy membership functions (a), (b), and (c) are corresponding to
plant, observer, and controller, respectively.

where

Θ1=


Θ1

11 −Pd1BKq Pd1BH Θ1
14

∗ −ϑ1Pd1 O O
∗ ∗ −ϑ2Pd3 O
∗ ∗ ∗ −ε̄41I + ĎT

1 Ď1

 ,

Θ2=

[
Θ2

11 Pd2(Ẽ − Γ̃qD̃) + ĜTĎ2 + C̃TĎ2

∗ −Iε + ĎT
2 Ď2

]
,

Θ1
11=Pd1(Aq +BKq) + (Aq +BKq)

TPd1 + (γ + 1)CTC,

Θ2
11=Pd2(Ãq − Γ̃qC̃) + (Ãq − Γ̃qC̃)TPd2 + γ−1ĜTĜ+ P̆d,

Θ1
14=Pd1 [E I] + CTĎ1, P̆d = diag{Ȳ1, Ȳ2}+ C̃TC̃. (42)

To address condition (40), the matrix U = diag {P̄d1,P̄d1, I,
I} is assigned, where P̄d1 = P−1

d1 . A congruent transformation
is then applied to the matrix Θ1 with U . By applying the
Schur complement lemma, condition (31) ensures that (40) is
satisfied. For condition (41), setting Γ̆q = Pd2Γ̃q allows the
remaining steps in the proof to be completed by following the
approach outlined in Theorem 1. This completes the proof.

V. EXPERIMENTS

Experimental verifications are conducted to demonstrate the
effectiveness of the proposed diagnostic and tracking frame-
work. The hardware-in-the-loop (HIL) real-time experimental
platform, shown in 3, integrates several key components. The
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Fig. 5. Evaluation function of J1(ey) under different fault scenarios. (a) Only
actuator fault; (b) Only sensor fault; (c) Both sensor and actuator faults.
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Fig. 6. Evaluation function of J2(ey) under different fault scenarios. (a) Only
actuator fault; (b) Only sensor fault; (c) Both sensor and actuator faults.

control equipment consists of a wheel speed test bench, a real-
time simulation computer, a host computer, and associated
management software. Communication with the wheel speed
test bench system is facilitated via the EtherCAN Bus. The
simulation computer is dedicated to model computation, re-
ceiving control signals through the reflective memory network,
and outputting model parameters for interaction with other
subsystems. Data acquisition is handled by a device that
collects electrical signals from the panel and fault injection
unit, retrieves model data via the reflective memory network,
and transmits it to the integrated control equipment by high-
speed Ethernet. The host computer, which receives aircraft
model state signals through high-speed Ethernet, is responsible
for monitoring and managing the entire system.

The conformity parameters utilized in this experiment test
are as follows: M = 5000 kg, h = 1.878 m, a = 2.328 m,
b = 4.68 m, Ti = 426 N, kv = 1 N·s/m, ρ = 1.203 kg/m3,
Cx = 0.1029, Sw = 31 m2, g = 9.8 N/kg, Cz = 0.359,
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Fig. 7. Estimated and actual values of fs(t) under different fault scenarios.
(a) Only actuator fault; (b) Only sensor fault; (c) Both sensor and actuator
faults.
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Fig. 8. Estimated and actual values of fa(t) under different fault scenarios.
(a) Only actuator fault; (b) Only sensor fault; (c) Both sensor and actuator
faults.

ht = 0.1 m, R = 0.3 m. The aircraft initiates braking upon
landing at a speed of vx(0) = 72 m/s, with the main wheels
initially rolling freely at wr(0) = 240 rad/s. To validate
the capability in handling simultaneous actuator and sensor
faults of the proposed fault isolation and fault-tolerant control
method, tests are conducted under three scenarios: (a) actuator
fault only; (b) sensor fault only; and (c) simultaneous actuator
and sensor faults. The fault conditions are set as follows:
the actuator fault is injected as a transient fault, occurring
between 4-6 seconds, while the sensor fault is an oscillatory
fault, starting at 3 seconds and persisting until the end of the
experiment.

Fig.4 illustrates the membership functions of the system,
observer, and controller during operation. The shaded regions,
depicted in different colors, represent the relative errors in
membership degrees between the system and the observer
or controller. The light blue region corresponds to relative
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Fig. 9. Comparison of aircraft speed and wheel speed signals.

errors within the range of 0 to 0.005, the dark blue region
captures relative errors between 0.005 and 0.0075, and the
red region indicates relative errors exceeding 0.0075. The
figure highlights two key observations. First, a persistent
relative error exists between the membership functions of
the observer and the system, primarily due to sensor faults
and modeling uncertainties. Second, despite the presence of
these errors, the observer maintains estimation accuracy by
ensuring that the relative errors remain bounded within a
reasonable range. This behavior is consistent with the bounded
deviation assumption discussed in Section III and underscores
the robustness of the proposed method. Figs. 6-8 display
the isolation and estimation results for three different fault
scenarios, with subfigures (a), (b), and (c) corresponding to
actuator faults, sensor faults, and simultaneous actuator and
sensor faults, respectively. The experimental results indicate
that the proposed method effectively diagnoses and recon-
structs specific faults while remaining insensitive to non-
specific faults. Fig. 9 presents the fault-tolerant control results,
showing that even under dual fault conditions, the controller
can still ensure that the EABS accurately tracks the desired
targets, achieving satisfactory braking performance. From the
results above, it can be observed that the proposed method
effectively reconstructs and compensates for the impact of
faults, and stabilizes the closed-loop system performance.

VI. CONCLUSION

This paper presents a comprehensive framework for fault
isolation, estimation, and fault-tolerant control of aircraft
EABS under actuator and sensor fault conditions. To address
the inherent nonlinearity of the EABS, a T-S fuzzy model
is developed to achieve global approximation of time-varying
dynamics. By utilizing mismatched premise variables and
the output equivalence principle, an asynchronous T-S fuzzy
observer is designed to estimate both actuator and sensor faults
simultaneously. Based on the fault estimation, an integrated
fault-tolerant control strategy is proposed. This control system
uses the estimated fault information to ensure effective fault
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compensation and maintain the desired performance of the
EABS even in the presence of faults. Experimental results
confirm the practical applicability of the proposed framework,
demonstrating its effectiveness in real-time fault estimation
and fault-tolerant control. One direction for future work is the
development of knowledge-driven and data-deriven intelligent
fault diagnosis and modulation mechanism.
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