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A B S T R A C T

Large sample surveys with households, or individuals within households, as the basic sampled units, are
important sources of information on variables related to household income, economic activity, food security
and nutritional status. In many circumstances the advantages of supplementing these surveys with sampling
of the soil from fields or other land units which the households cultivate may seem obvious, as a source
of information on the quality of the soil on which households depend, and potential limitations on their
food security such as soil pH or nutrient status. However, it is not certain that household surveys, designed
to examine social and economic variables, will be efficient for collecting soil information, or will provide
adequate estimates of soil property means at scales of interest. Additional sampling might be necessary, so an
attendant question is whether this is feasible. In this paper we use data on soil pH and soil carbon inferred by
spectral measurements on soil specimens collected from land cultivated by households in Uganda and Ethiopia
to estimate variance components for these properties, and from these the standard errors for mean values at
District (Uganda) or Zone (Ethiopia) level by household surveys with different designs. Similar calculations
were done for direct measurement of soil carbon and soil pH from a spatial sample in Malawi from which
variograms were used to infer the variance components corresponding to the levels of a household survey.
The results allow the calculation of sample sizes at different levels of the design, required to allow estimates
of particular quantities to be obtained with specified precision. The numbers of sampled enumeration areas
required to obtain estimates of district or zone-level means with the arbitrary specified precision were large,
but the feasibility of such sampling must be judged for a particular application, and the precision appropriate
for that. The presented method makes that possible.
1. Introduction

Information about the soil is essential to support policy and man-
agement decisions in pursuit of the sustainable development goals (Lal
et al., 2021). For example, information about the nutrient content
of soils, and their capacity to retain nutrients, can support efforts to
address nutrient limitations on crop production while avoiding waste
and environmental impacts of unnecessary inputs. Similarly, the emer-
gence of soil acidification or salinization can be a significant threat
to soil quality, the use of land for production and the nutrient use
efficiency of plants. Soil organic carbon is an important indicator of
soil quality, affects the contribution of the soil to the greenhouse gas
budget of agriculture, and also influences the supply of nitrogen to
crops from the soil. The soil also contains micronutrients, such as zinc
or selenium which are essential for human health, and soil content
of these elements, and soil properties which influence their mobility,
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can be factors in ‘hidden hunger’, micronutrient deficiency alongside
adequacy of dietary energy and protein (Gödecke et al., 2018).

Most food in Africa is produced on farms of about 1 ha or less
(Giller et al., 2021), so there is value in soil information observed at
the scale of the household and its associated fields. This is illustrated by
results on field-scale measurements of soil properties and micronutrient
status of the populations of Ethiopia and Malawi from Gashu et al.
(2021). However, soil data are generally sparse in the global south,
and while recent efforts to provide soil information through digital soil
mapping (DSM) have produced the Soil Grids and iSDA information
layers (Hengl et al., 2021; iSDA, 2024), these remain unvalidated. Fur-
thermore, DSM products are essentially static, and additional sampling
is needed to monitor change in the soil.

National household sample surveys are undertaken across many
countries in Africa and elsewhere to provide health, demographic and
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social information to support development. Examples are the World
Bank’s Living Standards Measurement Study (LSMS) and the LSMS-
SA (Integrated Surveys on Agriculture) as described by Carletto and
ourlay (2019). If soil sampling were added to the protocols for such

surveys then soil information could be collected routinely, for use in
gricultural productivity analyses, for example, representing the soil
nder small-holder cultivation. However, the question remains whether
oil samples collected in the framework of household surveys optimized
o represent social and economic variables, would allow sufficiently
recise estimates of soil properties, given the variability of soil, and
ow many households within such a survey would have to be sampled.
his must be addressed systematically because of the logistical and
nalytical costs of soil survey can be significant, and adding compo-
ents to the survey increases the respondent burden and the risk of
on-participation (Singh et al., 2022).

In this study we assess the scope to estimate administrative-area
means of soil properties through the integration of soil analysis in
household surveys. This is done on the basis of estimated variance
components for two key soil properties (pH and soil organic carbon:
SOC) in topsoil and subsoil. Data were used from two experimental
urveys in which soil sampling was carried out, within a household
urvey sampling frame, on land owned by households. We also assessed
he potential of DSM products to assess soil variation for purposes
f planning soil sampling as part of a household survey, and used a
eostatistical model of soil variation in Malawi, from data collected
n a spatial coverage survey not aligned with household surveys, to
stimate the variance components required for this sampling planning

task. These results allowed us to assess the expected precision of soil
information based on sampling in a household survey, and to identify
the intensity of surveying required in such a framework to provide
adequate information at the target scale (administrative area).

2. Methods

2.1. Data from household-aligned surveys

The data from household surveys were from two aligned projects in
ganda and Ethiopia. These were two-stage sample surveys in which

primary sample units (enumeration areas: EA) were selected from a
ample frame comprising all EA in the administrative unit. The sec-
ndary sample units (households: HH) were then selected from among
H within the selected primary units. Details of the designs are in
ections 2.1.1 and 2.1.2. These studies were designed specifically to
valuate different methods to measure key properties of agricultural
roduction systems, including soil health, and so the sampling densities
in terms of the number of EA per administrative unit) were not typical

of national household surveys, with more sample effort than would
be usual per unit area. For example, in the methodological studies
15–29 EA were sampled per district whereas in the Uganda National
Panel Survey (UNPS) 2–3 EA are typically sampled per district, and
2–6 in the Uganda Household Integrated Survey (UHIS). Similarly,
in Ethiopia, typically 2–3 EA are selected per Zone in the Ethiopia
Socioeconomic Survey, with somewhat more intensive sampling in the
Ethiopian Agricultural Sample Survey (Ag-SS) at 6–24 EA per Zone.
This relatively dense sampling in the methodological studies is an
advantage, because the more intensive sampling provides data from
which to estimate variance components at between-EA and between-
HH within-EA levels with confidence. These variance components can
then be used to explore the expected precision of estimates based on
urveys of differing intensity.
2 
2.1.1. MAPS 2015 survey and data, Uganda
The MAPS 2015 project (Methodological Experiment on Measur-

ing Maize Productivity, Variety and Soil Fertility) was undertaken in
Uganda as a partnership between the World Bank LSMS-ISA programme
and the Uganda Bureau of Statistics. More information about the survey
is provided by Gourlay et al. (2019). The 2015 data used here were
collected from three units in eastern Uganda: Serere district, Sironko
district and one unit comprising part of Iganga and Mayuge districts. A
total of 75 enumeration areas (EA) were selected by random sampling
with inclusion probability proportional to size (PPS) giving 15 EA in
each of Serere and Sironko districts and 45 in Iganga–Mayuge. Within
each EA twelve households (HH) were selected independently and at
random from a listing with the objective of selecting six from among
those with monocrop maize plots and six from those with intercropped
maize plots. One field was selected at random from each household,
from among its monocrop or intercrop plots depending on the subset
to which it belonged.

Soil samples were collected from the selected plot for each house-
old following crop planting unless heavy rains made this impossible
n which case soil was collected when the crop was cut for yield
stimation. Soil was sampled at a central location in the plot at depths
–20 cm and 20–50 cm. An additional three samples from 0–20 cm
ere collected at locations 12.2 m from the central location, the first
pslope from the centre, and the second and third on bearings 120

degrees and 240 degrees from the upslope direction. The four samples
rom 0–20 cm were bulked in the field, then coned and quartered to

a subsample of approximately 120 g. The soil samples were double-
bagged and barcoded, then delivered to the analytical laboratory within
five days of collection.

The final data set, after removing observations missing a unique HH
esignation, comprised data from 892 households. Of these 874 had a
opsoil (0–20 cm) sample and a subsoil (20–50 cm) sample, 8 had a
opsoil sample only and 10 had a subsoil sample only.

2.1.2. LASER survey and data, Ethiopia
The Ethiopia Land and Soil Experimental Research (LASER) study

was carried out by the Central Statistical Agency of Ethiopia (CSA)
in 2013 in partnership with the World Bank’s LSMS team. This was
a pilot study primarily focused on methods to estimate maize yield
and productivity. Information about the survey is provided by Central
Statistical Agency (2017).

The LASER project was conducted in Oromia Region of Ethiopia
ver three administrative Zones: Borena, West Arsi and East Wellega. A

total of 85 enumeration Areas (EA) were chosen from these Zones from
he universe of EA that were included as part of the Agricultural Sample
urvey, in which EA were selected with probability proportional to size
Central Statistical Agency, 2017). Twelve HH were selected in each EA

and from each HH up to two fields were selected. One field was selected
at random from among the HH’s fields under monocrop maize, and a
second field was then selected at random from all other fields cultivated
by the HH. It was possible that a HH cultivated fields in more than one
istinct parcel of land, but the sampling was not structured by parcels,
nd so observations from different parcels within a household arose at

random and not from the sample design.
Exploration of the data set found that for each of 297 HH just one

ield had been sampled, and for each of 688 HH two fields had been
ampled. In each of 251 of the HH two fields had been sampled from
ifferent parcels of land, and for the remaining 437 the samples were
rom two fields within the same parcel of land.

2.1.3. Soil data and their exploratory analysis
The soil samples collected from both the LASER and MAPS surveys

ere analysed for different properties. Here we focus on two key soil
variables which are indicators of quality and potential limitations on
crop production: soil pH and organic carbon content. The values for
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these variables for each soil sample were predicted at the ICRAF Soil-
lant Diagnostic Laboratory. Protocols for that Laboratory’s procedures

are provided by Ateku (2021a,b) and Ateku and Chacha (2021). Near-
and mid-infrared spectral measurements were made on each sample,
and a subset of ten percent were also analysed for the properties by
conventional wet chemistry to provide values to calibrate the spectral
data. Soil pH was determined for the calibration subset in a 1:2 water
suspension, and soil organic carbon was determined after acidification
to remove inorganic carbon in the form of carbonate. All the data used
rom these surveys in the rest of the paper are the predicted values

based on the spectral measurements.
Summary statistics on the data were computed. In particular the

conventional skewness coefficient was estimated as a measure of the
asymmetry of the data distribution. Conventionally, steps such as trans-
formation are considered if this falls outside the interval [−1, 1]. How-
ever, as the skewness coefficient may be susceptible to the effect of
outlying observations we also computed the octile skewness of Brys
et al. (2003). Transformation may be required when this falls outside
he range [−0.2, 0.2] (Rawlins et al., 2005).

Probable outliers in each data set, in the sense of Tukey (1977),
were found as observations outwith the ‘outer fences’ of the data. The
outer fences are at

𝑄1 − 3𝐻 , 𝑄3 + 3𝐻 ,
where 𝐻 = 𝑄3 −𝑄1 and 𝑄1, 𝑄3 are the first and third quartiles of the
data respectively.

A histogram and boxplot were produced for each variable, in addi-
tion to a QQ plot: a plot of the empirical quantile values represented by
each standardized datum against the equivalent quantile of a standard
normal distribution. Data from a normal random variable should fall
on a straight line.

These plots and summary statistics were used to decide whether
he data could plausibly be regarded as a normal random variable on
he original scales of measurement, or whether a transformation to
ormality was required prior to further analysis.

2.1.4. Linear mixed models: model structure and estimation
In both these projects, Districts/Zones were selected for sampling

and then EA within the districts, HHs within EA and Fields within HH
were selected by random sampling. This can be represented in a linear
mixed model (LMM) with an overall mean as a fixed effect, and the
District/Zone, EA, HH and field-level variation represented by random
effects. In these studies we also included the crop management system
(monocrop or intercrop) as a fixed effect.

The LMM for a vector of 𝑛 observations, 𝐲, takes the following form:

𝐲 = 𝐗𝝉 + 𝐙𝐮 + 𝜺,

where 𝐗 is an 𝑛 × 𝑝 design matrix which associates each of the 𝑛
bservations with a value for each of 𝑝 fixed effects, and 𝝉 contains the

fixed effects coefficients. In this case the fixed effects are an intercept,
the mean value of the soil property under the reference management
(monocrop or intercrop), and an additional fixed effect coefficient
which is the additive effect of the non-reference management.

There are 𝑟 random effects, with values in 𝐮, and 𝐙 is an 𝑛×𝑟 design
matrix which associates each observation with a subset of these. In the
ase of the MAPS survey the random effects are the 𝑟D districts, 𝑟EA
As and the 𝑟HH HHs, with EA nested within the Districts and HH nested
ithin EA. We may therefore think of 𝐮 as comprising three subvectors,

he 𝑟D × 1 vector of District random effects, 𝐮D, the 𝑟EA × 1 vector of EA
andom effects, 𝐮EA, and the 𝑟HH × 1 vector of HH random effects, 𝐮HH
here 𝑟 = 𝑟D + 𝑟EA + 𝑟HH and 𝐮 =

[

𝐮DT,𝐮EAT,𝐮HHT]T. The design matrix
𝐙 associates each observation with exactly one District, one EA within
hat District and one HH within that EA. The term 𝜺 is an independent
nd identically distributed residual, this represents the between-field
ithin HH variation of the observations, including analytical error.
 o

3 
In the case of the MAPS survey there were a significant number
of households where the sampled fields were selected from distinct
parcels, and so an additional between-parcel within HH random effect
can be specified. However, for purposes of simplicity in presentation
we stick with the case with just three random effects at District, EA
within-District and HH within-EA level.

It is assumed that the random effects and residual terms are inde-
pendent, and normally distributed. The random effects at each level of
a nested structure have a common variance, so in this case the model
parameters include a separate variance component for Districts (Zones
in the LASER survey) 𝜎2D; one for EA within Districts, 𝜎2EA∶D; one for HH
within EA 𝜎2HH∶EA and a residual variance 𝜎2𝜀 . The joint distribution of
𝐮 and 𝜺 is therefore modelled as
[

𝐮
𝜺

]

∼ 
{[

𝟎
𝟎

]

,
[

𝐆 𝟎
𝟎 𝐑𝑣

]}

, (1)

where the random effects have an 𝑟 × 𝑟 covariance matrix 𝐆. In the
ase of the nested design-based sample used here G can be written in

terms of the variance components for the random effects and identity
matrices 𝐈:

𝐆 =
⎡

⎢

⎢

⎣

𝜎2D𝐈𝑟D 𝟎 𝟎
𝟎 𝜎2EA∶D𝐈𝑟EA 𝟎
𝟎 𝟎 𝜎2HH∶EA𝐈𝑟HH

⎤

⎥

⎥

⎦

,

and the residual term has an 𝑛×𝑛 covariance matrix 𝐑𝑣 = 𝜎2𝜀 𝐈𝑛, which is
iagonal because of the assumption that the residuals are independent.
he unknown parameters, the variance components 𝜎2EA, 𝜎2HH∶EA and
2
𝜀 are estimated by residual maximum likelihood which avoids the
ell-known bias in ordinary maximum likelihood estimation. We did

his analysis using the lme function from the nlme library for the R
latform (Pinheiro and Bates, 2000).

2.1.5. Survey weights
The original weights from these surveys were not available. This

does not prevent our analysis of the data by the LMM in which, rather
than using sample weights derived from the inclusion probabilities,
we use modelled variance components as a basis for weighting the
contribution of observations to estimates. The variance components for
the LMM model, estimated as described above, provide a valid basis
for quantifying the precision of model-based estimates and predictions
from new data collected according to some comparable hierarchical
design and assumed to be a realization of the same model.

Sample weights can be incorporated into the fitting of a linear mixed
model to data from a design-based survey (see Carle, 2009). To do this
the weights are rescaled, for which there are two principal methods.
f 𝑤𝑖,𝑗 is the sample weight for observation 𝑖 in cluster 𝑗 then the two
escaling schemes are as follows:

𝑤A
𝑖,𝑗 = 𝑤𝑖,𝑗

(

𝑛𝑗
∑

𝑖 𝑤𝑖,𝑗

)

, (2)

𝑤B
𝑖,𝑗 = 𝑤𝑖,𝑗

(
∑

𝑖 𝑤𝑖,𝑗
∑

𝑖 𝑤
2
𝑖,𝑗

)

. (3)

Neither of these weighting schemes is regarded as generally best.
Carle (2009) suggests that the weights 𝑤A

𝑖,𝑗 are preferable for point
estimates, whereas the weights 𝑤B

𝑖,𝑗 will provide better estimates of
variance components. In this study we used both weighting schemes
for comparison with outputs from an unweighted fitting of the model.
The LMM with weights were obtained using the WeMix library in R
(Bailey et al., 2023; R Core Team, 2023). This can be used for LMM

ith random effects at no more than three levels, so for the LASER
ata from Ethiopia, the Household and Parcels had to be absorbed into

the residual for analysis in WeMix.
In lieu of survey weights, which were not available for the MAPS

and LASER studies, approximate sampling weights for the probability
f EA selection were estimated. Note that these estimated probabilities
f selection, which are based on a number of assumptions, only go
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so far as the EA selection, and do not incorporate household or plot
evel selection probabilities, which were assumed to be uniform within
ach EA. For LASER, we backed out the estimated probability of

inclusion of a given EA in the AgSS survey which was sampled PPS
(with the assumption that all EA within a given woreda have the same
population), and multiplied that by the probability of selection into
the LASER study given the AgSS sample and the practical allocation
of EA across agroecological zones identified in the sample design. For
the Uganda MAPS study, in which EA were selected with PPS, the
estimated probabilities of EA selection are employing two very strong
assumptions: (i) assuming one EA equals one village, and (ii) assuming
all villages within a given sub-county have the same population. These
are to be taken as rough approximations in assessing the implications
of sample clustering within districts/zones.

2.1.6. E-BLUP and variance
Once the random effects parameters are estimated, the Mixed Model

equation of Henderson et al. (1959) can be applied to obtain the Best
Linear Unbiased Estimates of the fixed effects coefficients (BLUE, �̂�) and
the Best Linear Unbiased Predictions of the random effects (BLUP, �̃�).
The equation is as follows:
[

𝐗T𝐑−1
𝑣 𝐗 𝐗T𝐑−1

𝑣 𝐙
𝐙T𝐑−1

𝑣 𝐗 𝐙T𝐑−1
𝑣 𝐙 +𝐆−1

] [
�̂�
�̃�

]

=
[

𝐗T𝐑−1
𝑣 𝐲

𝐙T𝐑−1
𝑣 𝐲

]

. (4)

The error covariance matrix of the estimates/predictions
[

�̂�T �̃�T
]

,
𝐂 is estimated by

�̂� =
(

𝐖T𝐑𝑣
−1𝐖 +𝐆∗)−1 , (5)

where 𝐖 ≡ [𝐗,𝐙] and 𝐆∗ ≡
[

𝟎 𝟎
𝟎 𝐆−1

]

.

The BLUP for some random quantity, described by a LMM, is the
mean for the prediction distribution of that quantity, conditional on
he model and observations. When the REML estimates of the random

effects parameters are used to specify the model then BLUP is some-
imes called the empirical BLUP or EBLUP. Eq. (4) can be solved to
ind the EBLUP of the individual random effects by using the estimated
ariance parameters to specify 𝐑𝑣 and 𝐆.

In this study we specify the prediction error variance of the E-BLUP
of the mean for a sampled District/Zone as a quality measure on which
to compare different sampling schemes. Others could be considered.
In our models the District/Zone is a random effect, so we assume that
the fixed effect is an overall mean and that the E-BLUP for the mean
of a sampled District/Zone is therefore the combination of the BLUE
f the overall mean and the BLUP for the District/Zone random effect
which is not nested in any other RE). If this sum can be computed by
he operation 𝝀T𝜷, where 𝝀 is a vector length 𝑝 + 𝑟 with value 1 for
he fixed effect and random effect values corresponding to the overall
ean and the random effect of interest, then the variance of the error

s

𝝀T𝐂−1𝝀. (6)

We computed the prediction error variance of the E-BLUP for the
mean of a sampled District/Zone for the observed soil properties in
he MAPS and LASER surveys, assuming the variance components esti-

mated from the data. The sampling schemes were specified as follows.
or Uganda (MAPS) we assumed a sample campaign over two districts.
our fixed sample sizes were specified. All possible combinations of
he number of EA sampled per district and number of HH sampled per
A consistent with the specified sample size were considered and the
tandard error for the E-BLUP of the mean of a sampled district was
omputed. This objective function was then plotted against the number
f sampled EA.

Soil organic carbon had been transformed to logarithms for analysis.
Assuming the District mean to be the same as the sample mean, the
interval of the mean ±1 standard error on the log scale was computed
4 
and back-transformed to the original scale of units. The width of this
interval on the original scale (percent organic carbon) was plotted
against the number of EA

Similarly for the LASER data from Ethiopia, the prediction error
variance of the E-BLUP for a Zone mean was computed from the
stimated variance components. It was assumed that two Zones were
ampled, and four fixed total sample sizes were specified. Two land
arcels were sampled per HH, with one field sampled in each parcel.

All combinations of the number of sampled EA per Zone and HH per
A consistent with the total sample size were considered, and, for each
oil property, the SE of the E-BLUP of the Zone mean was computed
nd plotted against the number of EA.

2.2. Estimates of variance components from alternative data sources

In the case of the MAPS 2015 survey from Uganda and the LASER
urvey from Ethiopia we have data from a household survey which

allow us to estimate directly the variance components for a model of
the soil variable which we require in order to compute prediction error
variances for E-BLUPs from different sample designs. However, it is
ot always the case that such pilot information will be available. Is

it possible to arrive at estimates of these variance components from
sources of information other than household surveys? Two approaches
were considered. The first was based on the use of digital soil map-
ping products. The second entailed the use of a geostatistical model
for a target soil property derived from data collected on a sampling
design selected for geostatistical mapping which does not allow direct
estimation of the variance components for a household survey.

2.2.1. Digital soil information products
Digital soil maps are predictions of soil properties, including soil

classes, made by some quantitative model or algorithm from a lim-
ited number of direct observations and associated covariate data such
as remote sensor measurements or variables extracted from a digital
terrain model. Two such digital soil information products for Africa
are SoilGrids (version 2.0) with predictions on 250-m pixels (Poggio
t al., 2021) and the iSDA (Hengl et al., 2021) with predictions on 30-m

pixels.
It should be noted that, while considerable effort has been put into

producing these DSM products, they are not widely and independently
validated, and so their usefulness as predictions of soil properties are
not yet established. Furthermore, any DSM product comprises predic-
tions, based on models or algorithms, which are subject to shrinkage or
smoothing and so are not expected to exhibit spatial variation directly
comparable to that of the corresponding soil properties. Data on soil
pH and organic carbon were extracted from the iSDA and SoilGrids2.0
digital soil map products, based on the georeferenced coordinates
of each agricultural plot in which ground-based soil samples were
collected.

The MAPS and LASER soil samples and corresponding analyses are
for depth intervals 0–20 cm and 20–50 cm (topsoil and subsoil). The
SDA predictions are for these same depths, the SoilGrids predictions
re for 0–5 cm, 5–15 cm and 15–30 cm. Topsoil values from SoilGrids,
orresponding to the 0–20 cm sample interval were computed as
eighted averages of the SoilGrids predictions at the three depths, with
eights 0.25, 0.5 and 0.25 respectively.

The extracted predictions were analysed with a LMM as for the
direct soil measurements, and the estimated variance components were
used to compute the prediction standard errors of E-BLUPs of the mean
for sampled Zones or Districts. These could then be compared with the
standard errors based on variance components estimated from direct

observations of the soil properties.
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2.2.2. Point soil data from spatial surveys
Soil sampling undertaken to support spatial prediction of soil prop-

erties is not, in general, collected according to hierarchical sampling
designs as these are not efficient for this objective. Rather, spatial
coverage samples are preferred, to limit the mean distance from an
unsampled location to the nearest observation in the sample. Such a
sample may be on a regular grid, or generated by some algorithm such
as the 𝑘-means algorithm in the spcosa library for the R platform
(Walvoort et al., 2010). Some supplementation of a spatial coverage
survey with closely-paired observations is recommended to support the
estimation of a spatial statistical model of the data (Lark and Marchant,
2018). In this study we propose that data from such surveys, and other
point data sets not obtained in household surveys, could be used to
estimate variance components corresponding to hierarchical levels of a
household survey in order to evaluate the precision of E-BLUPs based
on household surveys of different size and composition. This is through
the estimation of a variogram model for the target variable from the
spatial data.

In this study we used point soil data from the GeoNutrition survey of
soil and crops in Malawi and Ethiopia (Kumssa et al., 2022). The survey
of Malawi was a spatial coverage survey across the country (the sample
frame was those areas in agricultural use). Spatial coverage points were
obtained with the 𝑘-means algorithm in the spcosa library referred to
above, supplemented with some close-pair observations. Full details of
the sampling design and its implementation are given by Kumssa et al.
(2022). The survey of Ethiopia was done differently because the sample
frame is more spatially fragmented than in Malawi due to the marked
relief over much of Ethiopia. Rather, sample locations were selected
by a random sampling design with equal inclusion probabilities for all
nodes in the sample frame, but the sites selected to achieve spatial
balance with spread (Grafström and Schelin, 2014). Random locations
were then selected for supplementary sampling with a closely-paired
location such that about 10% of the total sample comprised close-pair
points.

Both the Malawi and Ethiopia GeoNutrition data sets contain point
observations of soil pH (measured in water) and soil organic carbon
content for depth interval 0–15 cm. These data were used to estimate
variograms. A subset of data were obtained from the Ethiopia set within
part of Oromia Region delineated by the minimum and maximum
longitudes and latitudes for West Arsi and East Wellega respectively.
This gave 122 data for each variable. A variogram was estimated for
each variable by residual maximum likelihood (REML) using the likfit
function from the geoR library for the R platform (Diggle and Ribeiro,
2007). This variogram function was cross-validated using the xvalid
function from the same library.

In the case of Malawi, all 1812 data from across the country were
used. Because the data set was large the variogram was estimated
by Matheron’s estimator (Matheron, 1962) and a model was fitted by
weighted least squares (Webster and Oliver, 2007) and cross-validated
(Lark, 2003). The estimation of variance components from the vari-
ogram of a soil property was then based on Krige’s relation, as described
below.

Krige’s relation concerns the relationship between the dispersion
variances of a variable, measured on different supports within some
region . By support we denote the size and shape of a spatial unit over
which the variable is (linearly) aggregated. Fig. 1 shows a region  and
domains on one of two supports,  and ′ over which a variable may
be aggregated (domain means). Note that support ′ is smaller than 
in the sense that we could represent some domain, 𝑖, on support ,
as the union of some set of domains on support ′

𝑖 ≡ ∪
{

′
1,

′
2,…

}

.

We denote the variance of a variable, 𝑍, on support  within region
 by 𝐷(,). In geostatistics this is called the dispersion variance
5 
Fig. 1. A hypothetical region, , which includes two larger subregions 𝑖 and 𝑗 and
smaller subregions ′

𝑚 and ′
𝑛, with ′

𝑚 nested in 𝑖.

(Journel and Huijbregts, 1978). Krige’s relation states the additivity of
dispersion variances on nested supports,

𝐷(′,) = 𝐷(′,) +𝐷(,), (7)

(Journel and Huijbregts, 1978). That is to say, the variance of 𝑍 on
support ′ in  can be partitioned into the variance on a larger support
 within  and the variance on support ′ within . The two terms on
the right hand side can be thought of as variance components, so we
can obtain the between ′ within  variance component by

𝐷(′,) = 𝐷(′,) −𝐷(,). (8)

If the variogram of 𝑍 on a point support, that is to say on a support
much smaller than the smallest nested domain of interest (e.g. a core
within a field), is 𝛾(|𝐡|) then the dispersion variance (core support)
within region , 𝐷⋅(), can be obtained by the double integral

𝐷⋅() = ∫𝐱1∈ ∫𝐱2∈
𝛾
(

|𝐱1 − 𝐱2|
)

d𝐱2d𝐱1, (9)

see, for example, Webster and Oliver (2007).
From Krige’s relation we can write

𝐷⋅() = 𝐷⋅() +𝐷(,), (10)

which can be rearranged and substituted into Eq. (8) to give an expres-
sion for the nested variance component

𝐷(′,) = 𝐷⋅() −𝐷⋅(′). (11)

In the case of the Ethiopia dispersion variances were calculated by
computing the mean value of the variogram over all pairs of points in
the HH survey. These pairs could be sorted into pairs within the same
EA or within different EA within the same Zone, or within different
Zones, and so used to compute the dispersion variances from which
the variance components corresponding to the levels of the HH survey
could be estimated.

In the case of Malawi shapefiles were used for the Enumeration Ar-
eas and Districts so that 𝐷⋅() could be computed across the cultivated
domain of the country, and then dispersion variances within Districts
and EA by Monte Carlo integration. Variance components were then
used to obtain the prediction error variances of the Zone or District
E-BLUP, as with the HH surveys.
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Fig. 2. Uganda data: variance components for (a) topsoil pH (b) subsoil pH (c) log topsoil SOC and (d) log subsoil SOC with 95% confidence intervals.
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3. Results

3.1. Exploratory data analysis

3.1.1. Uganda
Summary statistics are presented in Table A1 in the supplementary

aterial, with plots in Figure A1. These suggest that soil pH at both
epths can plausibly be regarded as normally distributed, with some
utliers in the upper tail. The small octile skewness (comfortably in
−0.2, 0.2]) is indicative of a symmetrical distribution, the conventional
kewness is relatively large, presumably due to its susceptibility to out-
iers. Outliers were identified at both depths according to the criterion
f Tukey (1977). Because this study is focussed on the size of variance
omponents, which are very susceptible to outliers, these outlying data

were removed before analysis. There are clear relationships between
topsoil and subsoil values of soil pH (Figure A4). There is little evidence
for a difference in soil pH between the monocrop and intercrop fields
(Figure A6).

The exploratory plots (Figure A2) and summary statistics (Table
1) indicate that SOC is markedly skewed in the topsoil and subsoil

octile skewness of 0.38 and 0.47 respectively). This is reduced by
ransformation to natural log (see Table A1 and Figure A3), but there
ay be two distinct subpopulations, as both histograms for SOC show

a bimodal distribution on the log scale. The summary statistics and the
scatterplot (Figure A5) show that SOC concentration is larger in general
in the topsoil than the subsoil, although there is a correlation between
SOC at the two depths. The boxplots in Figure A6 indicate that SOC may
be slightly larger under intercropping than under monocrop maize.

3.1.2. Ethiopia
Summary statistics (Table A2) and the exploratory plots (Figure

7) indicate that soil pH at both depths can plausibly be treated as
ormally distributed. The pH values at the two depths are strongly
elated (Figure A9), and there is some evidence for a possible difference
n pH between crop management systems, with somewhat smaller pH
nder the monocrop maize. There is evidence of a trend in pH from
 v

6 
south to north (Figure A12), possibly reflecting the effect on soil acidity
of greater rainfall in the north.

The octile skewness for SOC in Ethiopia is small at both depths,
although the conventional skewness is large (0.75 and 1.10 for the
top and subsoil). There are outlying data on SOC by the criterion of
Tukey (1977), and the exploratory plot (Figure A8) shows that most
of the data show a symmetrical distribution, which could plausibly be
egarded as normal, but with some very distinct outliers. As with the
ata on soil pH from Uganda, these outlying data were removed before
urther analysis. There was no evident effect of crop management on
OC (Figure A11), nor of a trend with latitude (Figure A12).

3.2. Linear mixed models: effects of weights, parameter estimation and
nference

3.2.1. Effects of including or ignoring sample weights
The variance components for fitted LMM are presented in Table 1,

including those estimated ignoring the weights and those estimated
with WeMix using the approximate weights, under both schemes for
rescaling the weights. Very small effects are seen from ignoring the

eights for variance components at EA scale and finer. This suggests
that the sample weights are not informative about the target variables.

iven that we are using the prediction error variance of the E-BLUP of
the mean at Zone or District level to assess the quality of a sampling
design, and our uncertainty about the true weights, further analysis was
based on the unweighted output. Household and Parcel were therefore
ncluded for the LASER survey analyses.

3.2.2. Uganda
The LMMs for soil pH included cropping system as a fixed effect,

because of its use in the sampling design. There was no evidence to
reject the null hypothesis of no difference in the soil pH under the
ontrasting cropping systems for either the topsoil or the subsoil (𝑝 =
0.94 and 0.51 respectively). Nonetheless, we retain cropping system
n the model, because it cannot be regarded as a random effect. The
ariance components for soil pH (Table 1, Fig. 2(a,b)) were small at
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Table 1
Estimated variance components with unweighted and weighted fitting of the linear mixed model.

Level MAPS survey, Uganda

pH, topsoil pH, subsoil

Unweighted Weighted Weighted Unweighted Weighted Weighted

𝑤A 𝑤B 𝑤A 𝑤B

District 0.018 0.012 0.013 0.001 <0.001 <0.001
EA 0.039 0.036 0.033 0.028 0.026 0.023
Residual 0.147 0.144 0.148 0.178 0.172 0.176

Level log SOC, topsoil log SOC, subsoil

Unweighted Weighted Weighted Unweighted Weighted Weighted
𝑤A 𝑤B 𝑤A 𝑤B

District 0.112 0.081 0.082 0.105 0.067 0.077
EA 0.063 0.057 0.054 0.073 0.075 0.064
Residual 0.124 0.120 0.123 0.115 0.114 0.116

Level LASER survey, Ethiopia

pH, topsoil pH, subsoil

Unweighted Weighted Weighted Unweighted Weighted Weighted
𝑤A 𝑤B 𝑤A 𝑤B

Zone 0.250 0.165 0.165 0.257 0.179 0.169
EA 0.159 0.160 0.159 0.213 0.213 0.212
Residual 0.302 0.300 0.297 0.290 0.288 0.288

Level SOC, topsoil SOC, subsoil

Unweighted Weighted Weighted Unweighted Weighted Weighted
𝑤A 𝑤B 𝑤A 𝑤B

Zone 0.272 0.175 0.175 0.112 0.071 0.071
EA 0.667 0.667 0.666 0.489 0.489 0.487
Residual 0.422 0.417 0.417 0.349 0.346 0.346
5
s
P
S

t
n
s

s
g

s

u
T

district level, and only slightly larger at EA-level. The largest variance
component, at both depths, was the residual (between HH). This short-
range variation may reflect management practices, as well as analytical
error. It is worth noting that the same pattern is seen at both depths,
so there may be underlying variations in the soil material as well.

As for pH, there was no evidence to reject the null hypothesis of
no difference between cropping system with respect to SOC at either
depth (𝑝 = 0.32 and 0.55 respectively). In contrast to soil pH, the largest
ariance component for SOC at both depths was the between-District

component. The between-EA and between-HH (residual) variance com-
ponents were similar to each other at both depths.

3.2.3. Ethiopia
There was very weak evidence that the mean pH for topsoil under

monocropped maize was slightly more acid than under intercrop (𝑝 =
0.06), and no evidence to reject the null hypothesis of no difference
in the case of the subsoil (𝑝 = 0.73). The variance components for
pH (Fig. 3(a,b)) from the Ethiopia survey show a similar pattern for
opsoil and subsoil with the largest component at the between-zone
evel, large components at the between-EA and residual (between-field
ithin parcel), and rather small variance components at HH and parcel

evel.
There was moderate evidence for a small difference in SOC con-

centration in topsoil between the soils under monocrop and intercrop
aize (mean difference of 0.11%), (𝑝 = 0.01), but no evidence for a
ifference in the subsoil (𝑝 = 0.77). The largest variance component for
OC at both depths was at the between-EA level, and the next largest
as the residual at both depths. The between-zone variance was similar

o the residual in size for the topsoil, but smaller for the subsoil. As for
H, at both depths, the variance components at HH and parcel level

were the smallest.

3.3. Error of BLUPs

3.3.1. Uganda, district BLUPs
For soil pH in the Ugandan setting we consider the standard error of

the E-BLUP of a District mean in surveys of two Districts with different
 s

7 
total sample sizes distributed over different numbers of EA per District
(Fig. 4(a,b)). We consider a target standard error for the prediction of
0.05, so that the 95% confidence interval is about ±0.1 pH units (dashed
line on the figures).

With a total sample size of 600 or fewer, this target is achieved for
topsoil pH only with 20 or more EA sampled per district. With a total
sample size of 100 this target is not achieved (even with 50 EA per
district). With a total sample size of 200 the target is achieved with
0 or more EA per district In practice the sample intensity for HH
urveys in Uganda ranges from 2–3 EA per district (Uganda National
anel Survey) and 2–6 EA per district (Uganda Household Integrated
urvey). At these intensities the standard error for the BLUP of topsoil

pH varies from 0.08 to 0.13, giving wider confidence intervals than the
target.

Variation of soil pH in the subsoil was less pronounced than in the
opsoil and so the target standard error can be achieved with a smaller
umber of EA (10 or more) than for the topsoil. With a total sample
ize of 100 the target is achieved with 50 EA per district, and with a

total sample size of 400 the target is achieved with 10 or more EA per
district. At the sampling intensities of the UNPS and UHIS surveys, the
tandard error for the BLUP of subsoil pH varies from 0.06 to 0.09,
iving wider confidence intervals than the target.

In the case of soil pH in Uganda we can see some potential for trade-
off between the total sample size, and the number of EA which are
ampled. For example, for subsoil pH (Fig. 4b) the standard error of

the E-BLUP is about the same for a total sample size of 100 over 25 EA
per District and for a total sample size of 200 with 10 EA per district.
The best solution will depend on the marginal cost of adding additional
analyses and how it compares with the cost of adding a new EA to the
survey.

Because data on the SOC were analysed on the log-scale, the plots
in Fig. 4(c,d) show the width of the back-transformed interval of ±1
standard error, assuming estimates at the global mean, a target width
of 0.2 SOC % g/g was specified. For any given sample scheme the
ncertainty for topsoil SOC is somewhat larger than for subsoil SOC.
he primary difference from the results for soil pH is that there is less
cope for trade off between the number of EA and the number of HH
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Fig. 3. Ethiopia data: variance components for (a) topsoil pH (b) subsoil pH (c) log topsoil SOC and (d) log subsoil SOC with 95% confidence intervals (not found for subsoil
SOC).

Fig. 4. Uganda: (a) (b) standard error of the E-BLUP of a district mean for (a) topsoil pH (b) subsoil pH plotted against the number of EA per district for different designs. (c)
(d) Width of ±1 standard error (original scale) for district mean for (c) topsoil SOC (d) subsoil SOC plotted against the number of EA per district for different designs.

Geoderma 453 (2025) 117148 

8 



R.M. Lark et al.

s

o
s

Geoderma 453 (2025) 117148 
Fig. 5. Ethiopia: Standard error of the E-BLUP of a zone mean for (a) topsoil pH (b) subsoil pH (c) topsoil SOC (d) subsoil SOC plotted against the number of EA per zone for
different designs.
Fig. 6. Uganda: Standard error for district mean soil pH (topsoil left, subsoil right) with different designs with a total sample of 400, based on variance components from different
ources: MAPS soil data, iSDA values or SG (Soil Grids) values.
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per EA with SOC. This can be attributed to the smaller ratio of the
between-HH (residual) variance to the between-EA variance for SOC
than for pH. The number of EA is the dominant control of the width of
the prediction interval of the E-BLUP, and with more than 10 EA the
target is achieved for all sample sizes.

At the sampling intensities of the UNPS and UHIS surveys, the width
f the interval of ±1 standard errors on the log scale is 0.25 to 0.45 for
ubsoil SOC, and 0.3 to 0.5 for topsoil SOC, exceeding the target of

0.2.
 w

9 
3.3.2. Ethiopia, Zone BLUPs
The standard errors of the E-BLUPS for Zone means in Ethiopia

Fig. 5) show little dependence on the total sample size, given the
umber of sampled EAs. This is true for both variables and depths, and
an be attributed to the relatively small variance components at HH and
arcel level. Soil pH is more variable in Ethiopia than in Uganda, and a
tandard error of 0.05 pH units is not achieved with the sample designs
llustrated in Fig. 5. A wider target standard error of 0.075 pH units,

giving a 95% confidence interval of about ±0.15 pH units is achieved
ith about 50 EA sampled per Zone at both depths.
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Fig. 7. Uganda: Width of ±1 standard error for district mean SOC (topsoil left, subsoil right) with different designs with a total sample of 400, based on variance components
from different sources: MAPS soil data, iSDA values or SG (Soil Grids) values.
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Sample intensity for HH surveys in Ethiopia range from 2–3 EA
er Zone (ESS) and 6–24 EA per Zone (Ag-SS). At these intensities
he standard error for the BLUP of topsoil pH varies from 0.1 to 0.28,
.1–0.3 (subsoil) giving prediction intervals up to ±0.6 pH units.

A specific target standard error for SOC is not considered, but
ote that a confidence interval of about ±0.5 SOC % g/g would be
chieved at both depths with a sample design with 5 EA per Zone. At EA
ampling intensities of ESS and Ag-SS, the standard error of the Zone
LUP for SOC ranges from 0.2 to 0.5 (topsoil) and 0.15 to 0.4 (subsoil).

3.4. Use of DSM products to estimate variance components at different
levels of the HH survey

There is little evidence that the variation among the observations
n the MAPS 2015 and LASER surveys with respect to soil pH and
OC is well-represented by the corresponding iSDA or Soil Grids data
Figures A13–A16), the closest relationship being for the Soil Grids
OC in Ethiopia (A16). A general discussion of the validity of these
SM products is outside the scope of this paper, but these results do

ndicate that, at least at present, this information cannot be treated as
 substitute for direct measurement of soil properties. The predictions
how a marked shrinkage, with much less variation than is seen in
he corresponding measurements. For Uganda topsoil pH (Fig. 6a) and
OC at both depths (Fig. 7), the standard errors of the BLUPs based

on variance components for DSM predictions are notably smaller than
hose based on the actual soil measurements. Smaller differences are
een for subsoil pH (Fig. 6b). A similar picture is seen in Ethiopia
Figures A17, A18), particularly for SOC. These results are consistent
ith the shrinkage effect seen in the scatter plots (Figures A13–A16),
nd our expectation that DSM predictions would not reproduce the
ariability of soil properties at the scales of interest.

3.5. Use of variograms from point data to estimate variance components at
ifferent levels of the HH survey

The parameters for the variograms of soil properties from the
GeoNutrition project data sets are shown in Table 2. The final column
of the Table shows the median standardized squared prediction error
for the variogram model from its cross-validation. For a correct model
the expected value of this statistics is 0.45, and the reported values are
all within the 95% confidence interval of this.

Fig. 8 shows the standard errors for the Zone E-BLUP from samples
of 400 observations according to different designs based on the LASER
 o

10 
Table 2
Variogram parameters estimated from GeoNutrition project data. The term 𝜃 is
he median standardized squared prediction error from the cross-validation of the

parameters. The expected value of this statistic with a valid variogram and normal
kriging errors is 0.455, the 95% interval for the statistic, given the sample size, is
0.262, 0.647] for the Ethiopia data set and [0.388, 0.522] for the Malawi data set.
Data set Variable Uncorrelated Spatially 𝜅 𝜙 Median 𝜃

variance correlated /km
variance

Ethiopia pH 0.09 0.50 0.5 31.9 0.430
Ethiopia SOC 0.43 1.22 0.5 27.6 0.412
Malawi pH 0.20 0.25 0.5 36.8 0.451
Malawi log SOC 0.20 0.08 0.5 43.3 0.416

survey variance components and on variance components computed
from the GeoNutrition variogram. The values are similar, in particu-
lar for topsoil SOC. In both cases the standard errors are somewhat
larger for the variance components computed from the variogram than
directly from the LASER survey data.

Fig. 9 shows the standard errors for the E-BLUP of the District
ean for soil pH in Malawi, and the width of the back-transformed ±1

tandard error interval for SOC, based on different survey designs using
ariance components based on the Malawi GeoNutrition variograms.
or both properties there is potential trade-off between the number of

EA which are sampled and the total sample size. To achieve a prediction
f District mean topsoil pH with a confidence interval of about ±1 pH
nit a total sample size of 400 with 50 EA sampled per District would
uffice. To have a prediction interval for mean SOC no wider than 0.1
OC % g/g can be achieved with a sample of 600 points and 10 EA per
istrict, or with a sample of 200 points and 50 EA per district.

4. Discussion

These results illustrate how variance components, estimated from
 pilot survey, can be used to compute quality metrics for predictions
r estimates based on different sample designs. This provides a basis
or selecting a design which provides specified information of adequate
recision while avoiding oversampling, or for assessing the potential
f an existing sampling design, such as a household survey, as a
ramework for sampling a new set of variables.

It must be emphasized that in this paper we consider the mean value
f a variable for a district (Uganda, Malawi) or zone (Ethiopia) as the
bjective for sampling, and its standard error as the quality measure
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Fig. 8. Ethiopia: standard error for (a) zone mean topsoil pH and (b) zone mean topsoil SOC with different designs with a total sample of 400, based on variance components
from LASER soil data and the GeoNutrition variogram.
Fig. 9. Malawi: (a) standard error for district mean topsoil pH and (b) Width of ±1 standard error of district mean topsoil SOC on original scale with different designs, based on
ariance components the GeoNutrition variogram.
v
a

for assessing a proposed sampling design. These were selected for illus-
trative purposes. The results presented here would support a decision
about sampling for this objective, but that is not the only objective and
associated quality measure which might be considered when supple-
menting a household survey with soil measurements. For example, one
might be interested in mean values for groups of enumeration areas, or
a mean value at national or regional scale.

The scale-dependence of soil variation, that is to say the distri-
ution of the variance between different spatial components, affects
ow sensitive the standard error of an estimate is to different ways of
eploying the same sample effort between levels of the sample design.
or example, for soil pH in Uganda (Fig. 4a,b), the standard error
f an estimate depends both on the total number of EA sampled per
11 
district but also the numbers of samples within each EA. This was also
found for both variables with variance components extracted from the
ariograms for the Malawi data (Fig. 9). By contrast, for variables such
s SOC in Ethiopia, there is very little difference between the SE for

different sample sizes at some fixed number of EA. In the Ethiopian
setting the number of EA is the dominant factor determining the SE of
a prediction so smaller total sample sizes may be acceptable provided
sufficient EA are sampled. The marginal cost of an additional EA in a
sample design is likely to exceed the marginal cost of an additional HH
within a sampled EA substantially, so where there is a potential trade-
off between total sample size and the number of EA to be sampled,

larger overall samples are likely to be preferred.
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The different locations differ with respect to soil variation (see, for
xample, the log-normal distribution for SOC in Uganda and Malawi,
ut not in Ethiopia). Furthermore, the magnitude of the variation
f a soil property may differ between locations, as may the scale-
ependence. The relative magnitude of the different variance compo-
ents may also differ between properties in the same region. Note,
or example, how the District variance component is a substantial
ontribution to the variance of SOC in the MAPS 2015 survey from
ganda, but is small for soil pH there. The relatively small contribution
f HH and Parcel-level variance components in the LASER survey data

explains why total number of EA is the dominant factor influencing the
-BLUP standard errors for Ethiopia.

This has implications for sample requirements. For example, to
estimate Zone/District topsoil pH with a standard error no larger than
0.05 requires 400 samples over 20 EA per district in Uganda (Fig. 4a),
more than 600 samples in Ethiopia (Fig. 5a) and 400 samples over 50
A in Malawi. To obtain an estimate of the mean topsoil SOC with the
idth of ±1 standard error no greater than 0.2 requires 200 or more

amples in 10 EA in Uganda, but 200 samples over 2 EA per district in
alawi. This highlights the importance of obtaining local information

or sample planning.
The question remains whether HH surveys are an appropriate frame-

work for soil sampling. In most cases the number of EA used in
surveys would constrain the standard errors of E-BLUPs, or the width
of prediction intervals to larger values than the targets selected here.
However, the latter are essentially arbitrary. The question of how
to specify the required precision of an estimate or prediction in sta-
tistical terms, specifically how stakeholders with different interests
(economists, nutritionists, agriculturalists) might decide what consti-
tutes a sufficiently narrow prediction interval, remains an open one
(Lark et al., 2022). Although the confidence interval or prediction
nterval is a standard measure of uncertainty attached to an estimation
r prediction, Chagumaira et al. (2021) found that varied end users
id not generally find them easy to interpret alongside outputs, and
imilarly did not interpret them effectively as quality measures for the
esign of spatial surveys (Chagumaira et al., 2023). It is possible, for
xample, that a standard error for District mean pH (topsoil) in the

range 0.08 to 0.13, as indicated for current HH surveys in Uganda,
could be sufficient for decisions on potential benefits of liming. We
therefore cannot conclude, without further stakeholder engagement,
whether the indicated precisions of soil information based on HH
surveys would meet user requirements.

The differences in scale-dependence, and absolute magnitude of
ariance components between locations and soil properties, show that

generalized rules of thumb for incorporating soil sampling into house-
hold surveys are unlikely to result in estimates or predictions of similar
precision between regions. If pilot soil data, collected in household
surveys such as MAPS 2015 or LASER, are not available then one might
base estimates of the necessary variance components on variograms
estimated from point data collected in the region of interest in spatial
surveys such as those reported by Gashu et al. (2021) or from legacy
point data such as the WoSIS data sets (Batjes et al., 2017).

In this study we noted that the sample weights (in so far as these
could be approximated post hoc) did not appear to affect the variance
components of relevance to the sampling scenarios considered here.
However, this might not hold in other circumstances, as the effects
of a complex sampling design are known to depend on the variables
which are sampled and the estimators which are used Pfeffermann
(1993). Therefore, we would recommend that comparable pilot data
are analysed with and without sample weights in a similar way.

There might be scope to improve the precision of estimates of
soil properties from samples collected in household surveys by model-
assisted estimation with appropriate covariates (Särndal et al., 2003).
This would be a matter for further research, but we note that the DSM
ridded information we examined here seems unlikely to be useful for
12 
this purpose. Other covariates such as terrain variables or remote sensor
data might be more suitable.

Finally, we note that guidelines on sound design for estimating
baseline values of soil properties are not necessarily appropriate for
monitoring change in soil over time. This is because the spatial scales
at which the change processes dominate might not be comparable
with those scales which are most important in the baseline variation
(Lark, 2009). If sampling is primarily for monitoring purposes then,
ideally, this would be based on resampling of an initial pilot survey
o characterize the variability of soil change.

5. Conclusions

The decision to include an additional variable in a household sur-
ey, or to integrate direct measurements outwith the survey’s original

scope, is not a neutral choice, and has consequences. The most straight-
forward of these is the additional cost imposed on the sponsor of the
survey, through the additional labour and time costs of collection of
a new variable which, in the case of soil data, includes the laboratory
costs entailed in making the measurements. This has been recognized
in medical surveys, adding physical measures and the collection of
specimens to a survey, as well as adding logistical costs (and additional
complexities to the consent procedure), also increases the burden on
the survey subject and this may increase the rate of refusal among
participants (Boyle et al., 2021), which is a potential source of bias.

For this reason we should carefully evaluate the potential value
f information obtained by adding variables to household surveys,
nd ensure that the number of households for which the additional
easurements are made is sufficient to provide information of adequate

uality but not excessive, representing unjustified additional sampling
osts. The results presented in this study regarding the quality of
articular sample estimates are restricted to district or zone means. For
his specific objective, the sampling requirement may be substantial;
onsider, for example, the number of EA per zone specified to achieve
 confidence interval of ±0.15 pH units for the zone mean topsoil or
ubsoil, this is around 50 EA per zone, which is more than would
ormally be sampled. However, this is not true for all variables in all
he settings we consider. Furthermore, sampling might be feasible for
ome other objective, for example to estimate the mean value of soil
H for some specified set of EA.

We have shown how past survey data, either collected according to
he household survey design, or according to a spatial design, can be
sed to estimate the variance components of variables of interest, and
rom this the estimation variance of particular sample means of interest.
his will allow informed decisions to be made on the supplementation
f household survey protocols with additional observations of the soil,
ather than simply incurring this cost, imposing it on participants, and
nly discovering limitations on the value of resulting elements post hoc.
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