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A B S T R A C T

Deprivation pushes people to choose cheap, calorie-dense foods instead of nutritious but expensive alternatives.
Diseases, such as obesity, cardiovascular disease, and diabetes, resulting from these poor dietary choices place
a significant burden on public health systems. Measuring nutritional insecurity is difficult to achieve at scale
and so the ability to study the relationship between nutritional outcomes and deprivation at a national level
is very challenging. This makes it difficult to understand the effect of new policies or track changes over time.
To address this challenge, we develop a machine learning approach using massive anonymised transactional
data (4 million members and 2.5 billion transactions) in partnership with the retailer The Co-operative
Group UK. We engineer a series of variables related to obesogenic diets, including a new measure called
‘Calorie-oriented purchasing’. These variables help illustrate how large-scale transactional data can discriminate
between neighbourhoods most affected by deprivation and childhood obesity. Through comparative assessment
of machine learning approaches, we find better performance from tree-based models (Random Forest, XGBoost)
with the best-achieving accuracy of 0.88 for predicting deprivation and an accuracy of 0.79 for childhood
obesity. Calorie-oriented purchasing emerges as a robust predictor of deprivation and childhood obesity at the
census area level. Results show this approach can help summarise nutritional insecurity, and support its spatio-
temporal monitoring. We conclude with policy implications and recommend retailers adopt new measures for
measuring national nutrition insecurity.
1. Introduction

The Academy for Medical Sciences has reported an ‘appalling de-
cline’ in children’s health in the UK, partly due to soaring obesity
rates (PA Media, 2024). Childhood obesity, characterised by the WHO
as ‘‘one of the most serious public health challenges of the 21st cen-
tury’’ (World Health Organization, 2020), is a major and growing issue
in the UK and globally (World Health Organization and others, 2016).
Recent statistics from England show 10% childhood obesity at age 5,
increasing to 23.4% by age 11 (Baker, 2022). While age 5 rates have
remained relatively stable, obesity at age 11 has risen dramatically
since 1990, along with associated health impacts like childhood type 2
diabetes (Davies, 2019), which disproportionally affect children living
in the most deprived areas (The Food Foundation, 2023). The UK
government aims to halve childhood obesity by 2030, but concerns
persist about the effectiveness of this goal without more interventionist
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policies (Knai et al., 2016).
The links between nutrition, health and deprivation are well

established (Tarasuk et al., 2013; Cetateanu and Jones, 2014;
Howard Wilsher et al., 2016; Amin et al., 2021). Recent research
has highlighted poor diet and experiences of food insecurity as
important factors in lower life expectancy (The Food Foundation,
2023), compromised health and wellbeing (Tarasuk et al., 2013; Amin
et al., 2021), increased levels of childhood obesity (Howard Wilsher
et al., 2016; Cetateanu and Jones, 2014) and essential micronutrients
deficiencies (Mansilla et al., 2024; Harvey et al., 2023). In the
UK, Cetateanu and Jones (2014) and Howard Wilsher et al. (2016)
used geographic analysis and parametric methods on large cross-
sectional samples to examine these relationships and found positive
associations between the presence of unhealthy food outlets and sales
of unhealthy food and childhood obesity, and with area deprivation. As
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Food Policy 131 (2025) 102826 
these studies demonstrate, the causes of poor health are multifactorial,
ut the ranking of factors contributing to these findings remains
oorly understood. This makes identifying areas most at risk resource-
ntensive. Implementing policies to reduce poverty and ensure optimal
ealth requires current, accurate assessments of a population’s health,

deprivation, and nutrition. This paper investigates whether large-scale
grocery purchase data can provide new deprivation measures and
ealth insights to inform such policies.

In this study, we pursue two objectives. First, to evaluate the effec-
iveness of using supermarket food shopping data to predict area-level
eprivation; and second, to explore how insights derived from food
urchases offer additional information on childhood obesity, which can
hus be used to inform policies focused on food provision and/or de-

privation, such as the English Indices of Multiple Deprivation (Ministry
of Housing, Communities & Local Government, 2019). These objectives
revolve around two research questions:

RQ1 — Can large-scale transactional data on grocery purchases
predict both deprivation and childhood obesity at the neighbourhood
evel?

RQ2 — What features derived from transactional data are most
trongly correlated with deprivation and childhood obesity, and how

might these metrics inform national food policy?
Deprivation metrics are typically applied to specific populations or

reas, incorporating socioeconomic and/or health factors. For example,
the Townsend Index relies on Unemployment, Non-car ownership,
Non-home ownership, and Household overcrowding (Townsend et al.,
2023). While numerous other deprivation metrics exist (Morris and

arstairs, 1991), we focus on England’s Indices of Multiple Depriva-
ion (Ministry of Housing, Communities & Local Government, 2019,

IMD) — the predominant area-level deprivation measure in the UK.
This index defines deprivation as a composite measure of societal and
economic disadvantages at the local level, specifically at the geographic
level of ‘Lower-layer Super Output Areas’ (henceforth ‘LSOAs’1). The
MD incorporates seven domains to calculate a deprivation score that
ncompasses economic, social, and environmental factors. This score
s commonly used to allocate resources for addressing socioeconomic
nequalities. However, the IMD’s complexity and data requirements
ean it is only updated every 4–5 years, with the latest version re-

eased in 2019. Recent UK government obesity reports (Baker, 2022)
learly highlight the relationship between obesity and deprivation, as
easured by the IMD, with levels of childhood obesity in the most
eprived areas being approximately double those in the least deprived
reas. The primary contribution of this work is therefore to demonstrate
ow transaction-level data can be used to predict area-level deprivation
nd childhood obesity.

Measures of diet are not included in the calculation of the IMD.
his omission likely stems from a reliance on expensive and limited-

coverage surveys to assess nutrition. For example, the UK’s National
Diet and Nutrition Survey (NDNS), like the US National Health and
Nutrition Examination Survey, depends exclusively on self-reported
dietary data. However, self-reported nutritional intake faces method-
ological challenges like selection bias and recall issues among partic-
pants (Kipnis et al., 2002). The complexity and cost of survey-based

approaches make it difficult to link geographically focused diet insights
ith deprivation metrics. Alternative methods for assessing nutritional

ntake, such as through national-level shopping data, could poten-
ially help predict area-level deprivation and health outcomes. This

would support the development of new, rapidly updatable and mul-
tidimensional measures of deprivation. Moreover, as food sold in retail
environments directly contributes to diet-related disease, such national
sales data could illuminate the link between diet and health outcomes
among populations most at risk, like children of school-going age with
obesity.

1 For a full list of the acronyms used in this paper refer to Appendix A
2 
As supermarkets are the predominant source of household food
n high-income countries, grocery purchase records can offer valu-

able, rapid and localised insights into the diets of large groups of
people (Timmins et al., 2018; Jenneson et al., 2022). There is prece-
dent in re-purposing commercial data to estimate food and nutrient
intake (Brimblecombe et al., 2013); monitor nutrient availability and
population health (Aiello et al., 2019, 2020; Badruddoza et al., 2023);
nd evaluate the impact of interventions or policies (Andreyeva and

Tripp, 2016; Schwartz et al., 2017; Amin et al., 2021; Berger et al.,
2021) at population level.

These large-scale and granular data sources also enable novel data-
riven approaches to hypothesis testing to be adopted in health re-
earch (Mooney and Pejaver, 2018), especially via the use of Ran-

dom Forests models (Amin et al., 2021; Bannister and Botta, 2021;
Badruddoza et al., 2023; Villacis et al., 2023). Studies using machine
learning (ML) with grocery purchase records have shown the potential
of these methods over traditional econometric models in predicting
deprivation, as further discussed in Section 2.1.3. They also address
the inconclusiveness of prior research in this area due to reliance on
‘small population samples drawn from large urban areas’; much of
the evidence comes from the USA, where, compared to the UK, the
makeup of food environments may be different due to neighbourhood
design and segregation (Cetateanu and Jones, 2014, p.68). Addition-
ally, there is a reliance on the location and density of food outlets as
roxies to diet without a clear understanding of their relationship with
iet (Howard Wilsher et al., 2016).

There remains a significant need to improve testing of the gener-
alisability of ML methods on new, unseen data, and to enhance the
explainability of these methods by identifying key variables that drive
the predictions, with methods such as Model Class Reliance (Smith
et al., 2020; Dolan et al., 2023). Notably, previous work by Bannister
and Botta (2021) used Tesco sales data from 1.6 million London cus-
tomers in 2015 to estimate area deprivation levels via Random Forests
models. However, the study was limited to Greater London, which had
a restricted set of nutritional features and limited insight into variable
importance measures. Our research seeks to build upon existing work
by instead utilising national grocery purchase data from a different
retailer, and expanding the range of food categories and associated nu-
tritional features in the analysis. Additionally, we expand on predicting
IMD deprivation by exploring measures of variable importance for the
relationships between deprivation, diet, and childhood obesity.

To address the issues described above, we collaborated with The
Co-operative Group (here referred to as the Co-op or The Co-op), a
major UK food retailer, and obtained 30 months’ worth of shopping
ransaction data for their members. Employing anonymised geolocation
ata provided by the retailer, we linked these transactions to LSOAs in
he UK, census areas defined by the Office for National Statistics (ONS).

e build upon previous research by introducing three metrics related
o the obesogenicity of food purchases: Calorie-oriented purchasing
COP), Calorific Density (CD), and Obesogenic Potential (OP). We use
rocery shopping data and the associated nutritional content to develop
redictive models, and estimate area deprivation levels and childhood
besity rates. We then apply ML explainability tools to identify and
ompare key variables influencing these models.

The results of this method provide a three-fold contribution. First,
we establish the viability of using aggregated food purchase transac-
tions to predict area-level deprivation and childhood obesity. These
rapidly updatable data sources and predictions can be used to augment
deprivation statistics that are otherwise rarely revised. Second, we
highlight insights into the relationship between diet, deprivation, and
childhood obesity (specifically through calorie-oriented purchasing),
whilst recognising deprivation as a challenging confounding factor in
the intricate relationship between diet and health outcomes. Third, we
use these insights to draw implications that could enhance national
deprivation metrics and ensure that funding support is being deployed
as efficiently and effectively as possible.
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Fig. 1. The workflow diagram outlines the overall methodology used in this project. It illustrates each major work element in the order they were performed. Part A depicts data
collection and preprocessing, Part B summarises the selection and feature engineering process, and Part C presents the iterative nature of the experimental design.
2. Materials and methods

This section details the data and methodology used to address the
research questions (Refer to Fig. 1 for an overview of the methodology).
We discuss the processes and rationale behind our data models, e.g., fil-
tering, cleaning, and metric selection, as well as the development of the
final methodology.

2.0.1. Retail data
Grocery shopping data was provided by Co-op Food, a large UK food

retailer with over 2500 convenience stores and supermarkets. Their
retail network coverage is the highest in the UK, with over 95% of the
population living within 5 miles of a Co-op store (Rains and Longley,
2021).

The dataset observed grocery purchases made by Co-op members
(equivalent to loyalty card holders in other retailers) between July
2019 and December 2021. This covered around 2.5 billion individual
3 
transactions for over 4 million members. Geo-location data anonymised
to LSOA level was provided by Co-op to attribute purchases spatially
while keeping member addresses anonymous (See Part A of Fig. 1).
Aggregated data on dietary classification, nutrition and shopping be-
haviours were collated and extracted at the LSOA level for each quarter
in the study period. Descriptions of specific data features are provided
in Appendix B (Table B.1). More details on the methods used are
described in Section 2.1.

2.0.2. Demographic data
The ground truth deprivation data paired with the retail data de-

scribed was drawn from ONS Indices of Deprivation (IoD) datasets.
Primarily, we included the IMD, which represents a weighted average
score of the major subdomains of deprivation modelled by the IoD. The
2019 version of the IoD was used to match the time frame of the retail
data. The IMD for an LSOA is typically represented by three values:
the IMD score, its overall ranking, and its decile. For this study, we
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focused on the decile value of the IMD, allowing us to classify relative
deprivation into 10 classes ranging from decile one (most deprived) to
decile 10 (least deprived).

In particular, we were interested in the most deprived 20% of
neighbourhoods in the UK. While there is no definitive threshold for
what constitutes the most or least deprived, the top 10% and 20%
f areas are considered eligible for ‘remedial resources’ through a
ide range of intervention policies and funding to support struggling
ouseholds (Bannister and Botta, 2021; Comber et al., 2022). Addi-

tionally, the most deprived 20% of the population is also used in
HS England’s Core20PLUS5 programme (England, 2023), a health

ntervention policy operated in England by the NHS to reduce health
nequalities. Accurately identifying such areas using only shopping data
ould be highly beneficial. It would provide a rapid, timely and context-

sensitive methodological alternative to existing deprivation surveys,
hich are expensive and infrequent. Moreover, it could help socially-

minded retailers like Co-op better understand the relative well-being
of their members and support directed interventions for those most
n need. The geospatial distribution of IMD deciles across England is
hown in Appendix B B.1.

We sought to investigate the relationship between grocery purchases
nd deprivation, and between grocery purchases and health outcomes,
specially as it affects children of school-going age in the UK. In Eng-
and, the Office for Health Inequalities and Disparities (OHID) provides

health data across a broad range of areas, including disease and poor
health, lifestyle and mortality statistics as part of their local health
portal (Office for Health Improvement and Disparities (OHID), 2024).
This includes data on levels of childhood obesity recorded from NHS

igital’s, National Child Measurement Programme (NCMP).
The NCMP data is available at the Middle Super Output Area

(MSOA)2 level of spatial aggregation and records the percentage of
hildren measured as overweight or obese at school reception age (age
) and school year 6 (age 11). The data used actual measurements
f child weight and height measured by trained staff for over 95%
f children between 2018 and 2019. Confidence in the accuracy of
his data is extremely high since it is based on actual measurements
n a controlled environment of an (almost) entire population rather

than a sample or self-reported survey as is often the case with health
data. This made the dataset of particular utility and value for our
study, as we could be very confident that the data accurately reflected
childhood obesity levels. Height and weight measurements are used
to calculate the percentage of overweight and obese children based
on their recorded Body Mass Index (BMI). For this work, we used the
measure of relative obesity represented by the obesity quintile in the
dataset. A mapping showing the distribution of childhood obesity at the
MSOA level can be found in Appendix B Fig. B.2.

2.1. Methodology

We started by extending the work of Bannister and Botta (2021)
o investigate whether secondary data from a UK-wide grocery re-
ailer could provide timely and accurate deprivation estimates across

neighbourhoods in England. To address RQ1, this study utilised gro-
ery transaction data, aggregated at the neighbourhood (LSOA) level,
o predict deprivation through machine learning (ML) methods. Key
eatures included spending and purchase volumes across various food

categories, their macronutrient composition, and derived nutritional
indicators (Table 1), all available quarterly. The temporal framework
was selected to align with the release timing of the latest deprivation
data for England (last quarter of 2019).

2 MSOAs are another geographic small area defined by the ONS. MSOAs are
built from contiguous groups of LSOAs (usually four to five). Their resident
populations are typically between 5000–15000.
 t

4 
Our initial analysis aimed to classify neighbourhoods into one of
0 relative deprivation deciles. While the models performed well in

distinguishing the most and least deprived areas, they struggled to
accurately classify neighbourhoods in the middle deciles (confusion
matrix for the 10-classes classifier is shown in Appendix C, Fig. C.1),
 challenge consistent with earlier findings by Bannister and Botta

(2021) using Tesco data for the City of London. Since the focus of
this study was on identifying highly deprived areas with significant
evels of childhood obesity, we restructured the classification task into

a binary model for greater interpretability. The binary model classified
neighbourhoods into the most deprived quintile versus the rest (20/80,
2.1.2). For models involving childhood obesity data, which was avail-
ble at the MSOA level, grocery data was aggregated accordingly to
aintain consistency in granularity.

To address data imbalances inherent in each treatment of the binary
classification task, we employed a stratified undersampling approach,
ensuring that the proportions of deprivation levels were retained in
the resampled dataset (Cateni et al., 2014). An alternative option

ight be application of oversampling techniques, such as SMOTE, that
enerate synthetic training examples to address imbalance. While such

approaches can often improve model accuracy, especially in situations
with limited data and well-defined feature distributions (Joloudari
et al., 2023), use of synthetic samples does bring with it a risk of over-
fitting and making interpretation and explanation of model predictions
more challenging (data being less representative of real-world obser-
vations — a factor potentially important in domains such as health
and social care) (Wongvorachan et al., 2023). As such, and given
the large number of datapoints available to our analysis, a stratified
downsampling strategy was preferred on this occasion.

Feature selection played a critical role in improving model perfor-
ance and interpretability. Starting with 92 features grouped into 10
omains (detailed in Table B.1), we used an ablation study to reduce
edundancy and focus on the most predictive variables. Features were
anked using Shapley values (SHAP) to identify their contribution to
odel predictions, and less informative variables were systematically

emoved. This was followed by model class reliance (MCR, detailed in
ection 2.1.6) resulting in a streamlined set of 39 features, achieving

dimensionality reduction while maintaining classification accuracy.
This methodological framework demonstrated the potential of ML

or predicting deprivation-related conditions, offering significant ad-
antages over traditional econometric models (Amin et al., 2021;

Villacis et al., 2023; Hossain et al., 2019; Bannister and Botta, 2021;
McBride et al., 2022). Unlike conventional approaches, ML models
re highly flexible and data-driven. These attributes make ML partic-
larly well-suited for analysing complex relationships, such as those

between deprivation and various predictors (input features), where
the underlying patterns may be unknown or difficult to capture using
arametric methods. By leveraging the high-dimensionality and rich-
ess of transactional data (2.5 billion grocery purchases for over 4
illion members), this study contributes to the growing body of work

howcasing how non-traditional data sources can provide actionable
nsights into socioeconomic conditions. The next sections detail the
echnical aspects of feature engineering, model selection, development,
valuation, and interpretation.

2.1.1. Feature engineering
Summary and descriptive statistics for the key features used in this

ork, and described in more detail below, can be found in Appendix B
Table B.2 (for deprivation related features) and Table B.3 (for child-
hood obesity related features).

Dietary categorisation.
Products were classified using a taxonomy according to 17 broader

ategories, including grains, dairy, red meat, fish, soft drinks, etc. (a
full list is given in Appendix B – Table B.1). An additional non-food
category of cigarettes was also added to the data model, bringing the
otal number of categories to 18.
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Behavioural shopping data.
Several features were identified and derived from the transactional

ata to represent behavioural patterns in the shopping records for
ach LSOA. These ranged from simple measures of the total number
f customers, shopping baskets, stores and spending to more complex
etrics, including average bundle entropy of customers (Mansilla et al.,

2022), average products per shopping basket and average weekly spend
er customer.

Additional measures relating to the number of shopping trips made
t different times of the day (e.g. morning, afternoon, evening) were
lso included to examine whether the timing of shopping trips might
ave been in some way related to local health and deprivation.
Nutritional mapping exercise and metrics.
As one of the primary aims of this work was to examine potential

inks between nutrition and local deprivation and health outcomes,
inking shopping purchases to their nutritional content was an essential
lement (See Part A of Fig. 1). However, this was challenging due to
ver 31,000 food products in the retail dataset. Each product had a
ext string called item description, which typically included the brand

name, product name, and product size (in that order). However, not
all item descriptions exactly followed this pattern. Products were also
categorised into a three-level hierarchy based on their department,
ection, and subsection. This was the only information available to match
he products to their nutritional content.

Three data sources were used to map grocery products to their
nutritional content:

1. UK Composition of Foods Integrated Data set (CoFID) (GOV.UK,
2021), also referred to as ’McCance and Widdowson’.

2. Co-op’s own brand nutritional data set provided by the re-
tailer. This data did not have links to the product database, and
nutritional mapping was still required.

3. The online Nutritics data set (Nutritics, 2024), an online food
database containing nutritional data on over one million food
products.

Where these data sources lacked nutritional information for high-
ales products among our customers, the content was manually calcu-

lated from the ingredient list found via web search.
Retailer’s own brand items were matched to their nutritional data

source where possible as this represented the closest nutritional match.
Aside from own-brand products, a three-stage method for matching
nutritional data to product data was employed in this study. This
rocess was performed for each of the three nutritional data sources in
rder of their primacy (i.e., CoFID, retailer nutrition, Nutritics). CoFID

was selected as the primary nutritional data source as it contained
a broader range of macro- and micro-nutrient data than the other
nutritional data sources.

The three stages of nutritional mapping were:

1. Product and nutritional data sets were imported to a PostGreSQL
database. The PostGreSQL similarity function, which performs
fuzzy text matching using trigrams, was used to compare the
item descriptions in both data sets and return those with a
similarity above a specified confidence level. This level was
initially set to 0.9 and then iteratively reduced to 0.5 to max-
imise the number of matches. Matches from each iteration of the
confidence level were manually verified. Verified matches were
added to a nutritional look-up table.

2. Unmatched products after step (1) were then matched using the
department, section, and subsection fields in the product table.
These fields were compared to the food description in the nutri-
tional data source(s) using the PostGresSQL similarity function.
Where verified matches were identified by this method, all
products in the matched department, section, and subsection were
added to the nutritional look-up table.
5 
Table 1
Overall nutritional mapping results.

Data Products Matched Matched Percentage Percentage
Source matched Sales Spend of total sales of total spend

CoFID 4987 1,308,047,579 £1,977M 43.98 39.49
Retailer 5001 1,347,068,459 £2,374M 45.29 47.44
Nutriticsa 214 44,405,507 £62M 1.49 1.25

TOTAL 10,202 2,699,521,545 £4,413M 90.77 88.18

a Also includes product matches based on manually calculated nutrition from product
ingredients.

3. Food products still unmatched after steps (1) and (2) were
then manually matched using their sales volume to prioritise
matching, i.e., highest-selling products were matched first. This
process was repeated until a specified sales volume threshold
was reached.

Using the method described, just over a third of the total food
products in the retailer’s data set were matched to the nutritional data
sources. This represented around 90% of total sales quantity and spend
on food items in the retail data set (Table 1).

Nutritional content mapped to products (where available) included
all macro-nutrient data (e.g. calories, protein, fat, sugar, fibre, etc.)
and selected micro-nutrients, depending on the specific nutritional data
source used. Nutritional features used in the analysis are described in
Appendix B. As stated in the introduction, this work was focused on
identifying and assessing nutritional metrics that could be useful in the
ssessment of local health and deprivation outcomes. To this end, three

metrics derived from the nutritional data matched to grocery purchases
ere generated:

• Calorie-oriented purchasing (COP) was an extension of relative
calorific pricing (RCP) or energy cost metrics as previously de-
scribed in research into calorie-dense products and their links
with health, diet and poverty in the literature (e.g., Headey
and Alderman (2019), Drewnowski and Specter (2004)). Here,
though, we extended the measure to the level of the individual
shopper and/or local population by summing their total choices
through time, so it thus became a general measure of the be-
havioural tendency to maximise calories for money spent, rather
than a product-focused value. We calculated the measure where
‘calories’ is the total calories (kCals) in nutritionally matched food
purchases and ‘spend’ is the sum of money spent on those food
purchases (£) for a given geographic area and time period.

𝐶 𝑂 𝑃 = 𝛴 𝐶 𝑎𝑙 𝑜𝑟𝑖𝑒𝑠
𝛴 𝑆 𝑝𝑒𝑛𝑑 (1)

Variables were aggregated across quarterly time periods, and at
LSOA (for the IMD model) and MSOA (for the childhood obesity
model).

• Calorific Density (CD), or energy density (Drewnowski and
Specter, 2004), is another measure of the calorific content of food
normalised by weight. Examples of foods with high CD include
fats, oils and red meat.

𝐶 𝐷 = 𝛴 𝐶 𝑎𝑙 𝑜𝑟𝑖𝑒𝑠
𝛴 𝑊 𝑒𝑖𝑔 ℎ𝑡 (2)

CD was assigned using the same method as COP but calculated
by dividing the total weight (in kg) of matched food purchases
by the total matched spend (in £)

• Obesogenic Potential (OP) is the proportion of calories obtained
from fats and sugar. It shares similarities with CD but is a more
nuanced measure and is more closely correlated with poor health
outcomes where diets have higher levels of associated obesity. OP
was assigned at the same level of spatiotemporal aggregation as
COP and CD and is calculated using the following equation, where
each nutrient is the sum (in grams) of that nutrient in matched
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food purchases for the given area and period:

𝑂 𝑃 =
(𝛴 𝑓 𝑎𝑡 × 9) + (𝛴 𝑠𝑢𝑔 𝑎𝑟 × 4)

((𝛴 𝑓 𝑎𝑡 × 9) + (𝛴 𝑐 𝑎𝑟𝑏𝑜ℎ𝑦𝑑 𝑟𝑎𝑡𝑒 × 4) + (𝛴 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 × 4)) (3)

2.1.2. Outcome variables
We used food purchased by customers living in 32,844 LSOAs to

redict the deprivation level of that area, as measured by the IMD.
The modelling of deprivation included 10,547 LSOAs with at least
50 customers and at least 50% of food items matched against their
nutritional composition (See Part B of Fig. 1). As previously detailed,
the binary classifier (20/80 split) was designated as the main model. To
test the deprivation predictor performance further and investigate the
impact of attempting to classify different levels of deprivation, further
ML models were developed. These included a model to identify the
most deprived decile (a 10/90 split model) and a ternary-based model
using a 30/40/30 split) to classify deprivation into three categories.
he ternary model was developed to see if the method was capable
f discriminating into three groups representative of low, medium and
igh levels of relative deprivation.

We were also interested in using our engineered features to predict
hildhood obesity prevalence at school reception age and year 6, as
ecorded by the NHS Digital’s NCMP. Data on levels of obese children
n the 7201 MSOAs in England were collected and ranked to assign
ach area into quintiles, where the first quintile represent the lowest

20% of MSOAs with obese children and the fifth quintile represent the
areas in the highest 20%.

2.1.3. Machine learning model selection
In binary classification, algorithms such as Logistic Regression (LR),

upport Vector Machine (SVM), XGBoost (XGB), Decision Tree (DT),
nd Random Forest (RF) are commonly utilised. However, given the
arge and high-dimensional dataset in this study, RF and XGB were
articularly well-suited. These algorithms excel in handling complex,
on-linear relationships and are resilient against outliers, noise, missing

data, and feature correlation (Ali et al., 2012; Fernández-Delgado et al.,
2014), which are typical in real-world datasets. While models like
VM and DT can struggle with high-dimensional data and overfitting

issues (Singh et al., 2016; Guyon and Elisseeff, 2003), ensemble meth-
ods such as RF and XGB are designed to mitigate these challenges,
improving accuracy and robustness. Nevertheless, simpler models like
LR offer distinct advantages in terms of interpretability. Given these
considerations, RF, XGB, and LR were chosen for this study, striking a
balance between predictive performance and model transparency.

2.1.4. Training the models
Before training the models in an iterative process (See Part C of

Fig. 1), we carried out a correlation analysis between the index of
multiple deprivation (IMD) deciles, childhood obesity quintiles and
ood purchased in UK neighbourhoods. We assessed relationships be-

tween features using Pearson’s correlation with Bonferroni’s correction
to limit the risk of false discoveries of significant results, given the large
umber of highly correlated features included in the hypothesis testing.
ue to the large number of features tested, we limited the resulting
orrelation matrices to only include those features showing a significant
orrelation (correlation coefficient >+/- 0.2). The resulting matrices
an be found in the appendices (see Figs. C.2 (IMD) and C.3 (childhood
besity at year 6).

We trained all classifiers in a similar way. We provided details for
he RF model used to predict neighbourhood-level deprivation from
he grocery features. We treated this as a classification task whereby
he outcome variable denotes whether an area is more or less deprived
long the deciles of the composite IMD. Data was split using stratified

random sampling into training (80%) and test sets (20%), and each
model’s performance was tested using the held-out set. Grid search was
 a

6 
also used to create an exhaustive search through the predefined hyper-
parameters of the RF (Dusmanu et al., 2017). Once the final model was
selected, its performance was tested on the unseen (20%) test data.
Testing the model on data previously unseen by the algorithm is a
valuable indicator of how the model will generalise to areas previously
ot included in the modelling (Yarkoni and Westfall, 2017). The model

evaluation is described further in Section 2.1.5.
The childhood obesity classification models used a subset of the

rocery-related features employed in the deprivation classifier. Features
related to total and proportional spending were excluded, as were any
shopping categories inapplicable to children, i.e. alcohol and cigarettes.

2.1.5. Evaluation of model performance
The ML models described were evaluated against a range of stan-

ard criteria. These included overall accuracy, providing a broad sense
f model effectiveness, precision, assessing the percentage of correctly
lassified results in the positive/relevant class (an important measure
iven the potential consequences of misclassification in policy and
esource allocation), and F1-scores, combining both recall (the per-
entage of total relevant results correctly classified) and precision to
ndicate performance whilst balancing the false classification of more
nd less deprived areas (Pitsilis et al., 2018).

A dummy classifier, stratified on the dependent variable classes, was
also generated to assess the performance of the ML models. Comparing
the accuracy of the models against this baseline was crucial to deter-
mine whether the complex models were genuinely learning meaningful
patterns in the data or merely performing at the level of random
chance. Cohen’s Kappa scores were also calculated and included in the
results to provide an additional indication of the model’s performance.

2.1.6. Model interpretation
We used a combination of ML techniques to examine which vari-

bles were the most important and to what extent they mattered.
lthough RF provides some insights into feature importance (i.e., can
e used to rank the importance of features on the classification task),
t only considers a single predictive model and not others that may
erform equally or better (Altmann et al., 2010). Therefore, results
nd interpretation might be biased towards that specific model by just

learning one of many equally well-performing relationships between
the input features and the outcome. This means variables may be
ncorrectly considered unimportant, that model audits may not be
obust to model retraining, and that the interpretation of potential
ausal features may be incomplete and misleading (Biecek et al., 2024).
he same happens with other variable importance techniques, such
s Unconditional Permutation Importance, Gain, Split Counts, and
inimal Depth.

Since we also sought to interpret the relationships that exist be-
tween identified levels of deprivation and our three derived nutritional
metrics, as these would be of interest to policymakers, we derived
SHapley Additive exPlanations (SHAP, (Futagami et al., 2021)). To
further ensure that our feature importance results were consistent and
not the cause of random fluctuations in a given model, Model Class
Reliance (MCR) was used to fully explore the impact of our key features
on model performance and accuracy (Fisher et al., 2019).

Although SHAP values are computationally expensive, they offer a
aluable mechanism for understanding the relationship between pre-
ictors and the predicted output in ML models. SHAP values designate
 weight to each predictor by evaluating all possible feature combina-
ions, emphasising their relative relevance in determining the model’s
redictions. A positive SHAP value indicates an increase in the pre-
icted response relative to the average prediction, whereas a negative
alue indicates a decrease. Predictors with SHAP values of zero do
ot deviate from the overall prediction. Hence, SHAP values provide
 comprehensive and interpretable understanding of how each feature
ffects the model’s output.
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MCR is a measure that estimates the degree to which a given
variable is relied upon by a set of models that achieve comparable
redictive performance but employ distinct predictive factors. This
et of models is known as a Rashomon set (Fisher et al., 2019). In

contrast to other methods that only evaluate a variable’s significance
within a single predictive model, MCR provides a range of values
that illustrate the variable’s reliance across an entire set of models.

he maximum model class reliance (MCR+) measures the maximum
ossible change in predictive performance that can be attributed to
 specific variable within the Rashomon set. Conversely, the mini-
um model class reliance (MCR-) represents the minimum possible

hange in predictive performance attributable to the variable within
he Rashomon set. Smith et al. (2020) extended MCR to non-linear

algorithms, allowing MCR calculation for regression and classification
andom Forests. By using both SHAP and MCR values, we gained

a more comprehensive understanding of the significance of derived
features in predicting childhood obesity and deprivation.

2.1.7. Implications of feature importance insights
Utilising SHAP and MCR features in machine learning models pro-

ides a thorough understanding of the factors affecting predictions and
ffers valuable opportunities for future research and targeted policy
nterventions.

In contrast to traditional feature importance methods, SHAP and
CR not only identify which features are influential but also elucidate

the direction and magnitude of their effects. This facilitates a more
nuanced comprehension of the complex relationships within the data.
For researchers, these insights can inform the selection of variables
for further investigation, particularly in longitudinal studies aimed at
uncovering causal relationships between socioeconomic factors, dietary
habits, and health outcomes.

For policymakers, feature importance analysis can reveal action-
able areas for intervention. For instance, if variables related to the
proportion of spend on nutrient-dense foods emerge as a significant
redictor, it could guide the development of subsidy programs or public
ealth campaigns that promote healthier choices. Furthermore, insights
nto behavioural patterns, such as shopping habits at different times of
ay or frequency of purchases, can help tailor interventions to specific
ommunity needs, thereby enhancing their effectiveness.

3. Results

Grocery purchases for over 4 million Co-op members covering
around 2.5 billion transactions over a 30-month period were cat-
egorised, their nutritional value was calculated, and shopping be-
haviours were assigned to each LSOA and MSOA in England for each
year and quarter in the sample. Data for the 4th quarter of 2019 was
used in the ML results described in this section to closely match the time
period of the deprivation and childhood obesity datasets that were the
target variables. The results described relate solely to this time period,
but we also tested the consistency of our results using data until the
end of 2021. The consistency of model accuracy across the time frame
of the data available is shown in the supplementary materials provided
in Appendix C (Fig. C.4). As shown, the initial results were found to be
onsistent through time, including during and after the COVID period.

Only LSOAs/MSOAs with greater than 50 customers and with at
least 50% of their food sales nutritionally matched were included in
the sample set. This amounted to 10,547 LSOAs and 4667 MSOAs used
in training and testing the ML classifiers.

3.1. Deprivation classifier results

Results of predicting deprivation using a binary classifier are shown
in Table 2. All models perform significantly better compared to a
dummy classifier (∼50% accuracy). The highest performing models are
the tree-based models for the 10/90 classifier (86%–88% accuracy)
7 
using all 92 features. However, the 20/80 classifier also achieves over
0% accuracy and remains accurate when using the reduced set of input

features. Model accuracy across all three ML types (LR, XGB, and RF) is
onsistent in the majority of cases. Both binary classifier models show
imilar accuracy in identifying the most deprived 10%–20% of LSOAs
nd the less deprived 80%–90%.

Table C.1 assesses the performance of the ternary classifier using
similar metrics. Overall accuracy is significantly reduced compared to
our binary classifiers. However, the increase in performance over the
dummy classifier is of similar magnitude to the binary classifiers. As
shown in Table C.1, the ternary classifier’s performance at identifying
areas with extreme (low/high) deprivation areas is similar to the
binary classifier models (∼75%–80%). The ternary classifier’s ability
to discriminate areas of medium deprivation is where the drop in
accuracy can be seen (e.g., LR having ∼ 30% accuracy). The tree-based
models are significantly better at ternary classification overall, with
both RF and XGB showing similar levels of accuracy. Despite the drop
in accuracy, these results demonstrate that a ternary model is capable of
classifying deprivation into three categories — low, medium and high.

3.2. Childhood obesity classifier results

Results for predicting the areas with high levels of childhood obesity
re shown in Table 3. In this instance, only a 20/80 classifier is shown.
his was chosen as it provides a good comparison for our optimised
MD 20/80 classifier. Results for classifying childhood obesity at re-
eption age and year 6 are shown next. The year 6 classifier is more
ccurate across all model types, with the tree-based models showing
he highest overall accuracy (79%). The best-performing model at
eception age, logistic regression, achieves an accuracy of 71%.

To ensure that the performance of the classifier was not significantly
affected by seasonality, models were run for multiple quarters. In
Appendix C (Fig. C.4), accuracy across all three classes of models was
consistent throughout the time period considered with less than 10%
difference in model accuracy across all quarters tested and an average
overall accuracy of 80%. Notably, the models with the lowest accuracy
are those for the second quarter of 2020. We hypothesise that this
deviation can be accounted for by the Coronavirus pandemic and the
first UK lockdown that occurred in this quarter. This would likely
have led to significant changes in shopping behaviours and grocery
purchases. Nevertheless, the model accuracy for this period was still
igh (76%–79%).

3.3. Feature importance

To address RQ2, it is necessary to assess the relative importance
f each of the input features used in the ML classifiers developed.
n addition to standard methods of ranking each feature, SHAP and
CR analysis was performed for each ML classifier as outlined in

ection 2.1.6, to evaluate feature importance.

3.3.1. IMD classifier
SHAP summary plots for the RF classifiers predicting the most

deprived 10% of LSOAs against the remaining 90% are shown in Fig. 2.
A similar SHAP plot for the 20/80 split classifier is shown in Fig. 3. The
op 20 features are ranked in terms of their importance, spending on
oods in the ‘‘ready-made’’ category being the most important feature
n the model using all 92 features. SHAP values are very useful in
nderstanding the influence each feature has, and show how much
ach contributes to moving a prediction away from the average model
rediction (i.e., the baseline prediction if we knew nothing about the
eature values). The colour shows whether that feature was high (red)
r low (blue) for that row of the dataset, and the SHAP value’s sign
ndicates the direction it moves the prediction.

By way of example, in Fig. 2, observing high sales of ready-made
food purchases (indicated in red) is shown to push the prediction
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Table 2
Results of binary classifier from experimental models predicting extreme deprivation using food shopping data from October 2019 to December
2019.

Threshold Inputs Model Results(ALL areas) Results (Least deprived areas) Results (Most deprived areas)

Acc Prec F1 Kappa Acc Prec F1 Kappa Acc Prec F1 Kappa

10–90 All Dummy 0.51 0.51 0.50 0.02 0.51 0.50 0.52 0.02 0.50 0.51 0.49 0.0
(deprived/not) LR 0.83 0.83 0.83 0.64 0.84 0.84 0.84 0.65 0.82 0.83 0.84 0.63
percentile split XGB 0.88 0.88 0.87 0.75 0.88 0.87 0.88 0.75 0.87 0.88 0.87 0.74

RF 0.86 0.87 0.86 0.73 0.89 0.89 0.86 0.76 0.83 0.84 0.87 0.64

Reduced LR 0.78 0.78 0.78 0.59 0.78 0.78 0.78 0.59 0.78 0.78 0.78 0.59
XGB 0.71 0.71 0.71 0.43 0.71 0.71 0.72 0.43 0.71 0.72 0.71 0.43
RF 0.74 0.74 0.74 0.49 0.74 0.74 0.75 0.49 0.75 0.75 0.74 0.50

20–80 All Dummy 0.47 0.47 0.47 −0.06 0.47 0.47 0.49 −0.06 0.47 0.47 0.46 −0.06
(deprived/not) LR 0.82 0.82 0.82 0.63 0.80 0.81 0.82 0.61 0.84 0.83 0.81 0.65
percentile split XGB 0.81 0.81 0.81 0.62 0.81 0.82 0.81 0.62 0.80 0.80 0.81 0.61

RF 0.81 0.81 0.81 0.62 0.82 0.82 0.81 0.63 0.80 0.80 0.81 0.61

Reduced LR 0.80 0.80 0.80 0.61 0.80 0.80 0.80 0.61 0.80 0.80 0.80 0.61
XGB 0.82 0.82 0.82 0.64 0.82 0.83 0.82 0.64 0.82 0.81 0.82 0.64
RF 0.82 0.82 0.82 0.64 0.82 0.85 0.82 0.64 0.80 0.81 0.83 0.61
Table 3
Results of binary classifier from experimental models predicting childhood obesity using food shopping data from October 2019 to December
2019.

Target Model Results(ALL areas) Results (Least obese areas) Results (Most obese areas)

Acc Prec F1 Kappa Acc Prec F1 Kappa Acc Prec F1 Kappa

Reception Dummy 0.51 0.51 0.51 0.01 0.53 0.51 0.52 0.01 0.48 0.51 0.49 −0.01
(Age 5) LR 0.71 0.71 0.71 0.43 0.74 0.70 0.72 0.45 0.68 0.73 0.70 0.40

XGB 0.64 0.64 0.64 0.36 0.66 0.64 0.65 0.37 0.63 0.65 0.64 0.35
RF 0.69 0.69 0.69 0.41 0.67 0.70 0.68 0.39 0.71 0.68 0.70 0.43

Year 6 Dummy 0.50 0.50 0.50 0.0 0.48 0.50 0.49 −0.01 0.51 0.50 0.51 0.01
(Age 11) LR 0.77 0.77 0.77 0.55 0.80 0.76 0.78 0.58 0.75 0.79 0.77 0.53

XGB 0.79 0.79 0.79 0.57 0.78 0.78 0.79 0.56 0.79 0.79 0.79 0.57
RF 0.79 0.79 0.79 0.57 0.75 0.80 0.78 0.53 0.82 0.77 0.79 0.60
d

towards lower deprivation (positive SHAP values), while low ready-

ade food purchases (indicated in blue) push the prediction towards
igher deprivation (negative SHAP values). The magnitude of the SHAP
alue on the 𝑦-axis of the graph indicates the strength of this effect –

larger absolute values indicate stronger influence on the prediction –
and it is clear from the plot that ready-made meals is the feature most
redictive of IMD levels.

Fewer purchases of ready-made foods, fish, wine, and fruits and
egetables are associated with higher deprivation in both models. In

comparison, the SHAP plots show that areas with higher sales volumes
of soft drinks and cigarettes (shown in red) are associated with higher
levels of deprivation in both models (negative SHAP values), although
their relative importance is higher in the reduced feature set model due
to the removal of other features that shared information with these
features, e.g. proportion/average spend of soft drinks/cigarettes. Our
COP metric shows high importance in both models, with high values of
COP associated with areas with the highest levels of deprivation. This
ndicates, as expected, that shoppers in deprived areas are getting more
alories for every pound spent. The other two nutritional metrics devel-
ped, CD and OP, do not appear to be of high importance according to
heir SHAP values.

In terms of shopping behaviour features, a higher number of cus-
tomers shopping later in the day (afternoon and night) is associated

ith areas of higher deprivation, potentially due to differences in
mployment in such areas (e.g., shift working and higher levels of
nemployment). It also appears that customers in areas of extreme
eprivation make more shopping trips (higher average basket count)
nd purchase more products. In the optimised, reduced feature set
odel, see Fig. 2 (right), features relating to macro-nutrient intake are

shown to be of importance. Higher proportions of fibre and protein
in food purchases are associated with areas of least deprivation. This
esult matches those identified in terms of the proportion of fibre in
ood purchases according to Bannister and Botta (2021) in their study

of grocery purchases from Tesco in the city of London, UK.
8 
MCR results for the reduced model predicting LSOAs in the most
eprived 20% can be seen in Fig. 4. MCR values for each individual

feature are shown, highlighting that several features are responsible for
the model’s accuracy.

The minimum importance of each feature (MCR-) is represented by
the lollypop in the chart. Where this value is above zero, notably in
the case of wine_spend_p, softdrinks_quantity_p and kcals_per_pound,
this indicates that those features are required across all best-performing
models. Features with MCR- values of zero are not essential in the set
of best-performing models and could be replaced by another feature
with which they could share information. For example, the proportion
of fibre in grocery sales in an LSOA could be correlated with the
proportion of fruit and vegetables sold in the same area since that food
category is high in fibre.

3.3.2. Childhood obesity classifier
The SHAP summary plots for the classifiers used to predict areas in

the lowest quintile for childhood obesity at reception age and year 6
(ages 5 and 11, respectively) are shown in Fig. 6. It is evident from the
SHAP summary charts that feature importance for the two childhood
obesity classifiers are similar, sharing five of the top seven features.
The main differences between the two models appear to occur for the
features with lower overall importance.

In both models, the proportion of soft drinks sold in each MSOA and
the COP show the greatest importance. Areas with higher sales of soft
drinks and grains and higher levels of COP (represented by red) lead to
a lower SHAP value, indicating the 20% most obese areas. Conversely,
higher sales of fruit and vegetables and fish lead to a higher SHAP
value, which relates to the 80% of areas with lower levels of childhood
obesity. Beyond the top-performing features, the best-performing model
predicting obesity at year 6 (Fig. 5 [right]), reveals additional findings:

• Areas with higher sales of products that have higher levels of
fat content (dairy products, saturated fats, fats and oils) are
associated with lower levels of childhood obesity.
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Fig. 2. SHAP summary plots for RF models classifying the most deprived decile. Right — Classifier using all 92 features. Left — Classifier using reduced feature set. Red values
indicate the feature is a high value, Blue a low value. Positive SHAP values indicate the feature is shifting predictions towards a higher IMD estimate (Low Deprivation) and
negative ones are shifting predictions towards a lower IMD estimate (High Deprivation). The magnitude of the SHAP value indicates the strength of that shift — for example the
model has learnt that high calorie oriented purchasing (red) is a strong component in accurately predicting higher deprivation levels (negative SHAP). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. SHAP summary plots for RF models classifying the most deprived quintile. Left — Classifier using reduced feature set. Right — Classifier using all 92 features. SHAP results
broadly echo results for deciles (see Fig. 2), but high spend on soft drinks (red) and calorie-oriented purchasing (red) is even stronger in predicting the most deprived areas in
quintiles (negative SHAP values) — perhaps due to the lowest quintile having slightly increased disposable income over the lowest decile, hence allowing such predictors to be
more expressed in shopping behaviours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
• Similarly, areas with lower levels of CD are associated with
lower levels of childhood obesity. Therefore, obesity policy should
perhaps be more suitably focused on COP statistics than CD or OP
when considering transactional data.

MCR was performed for both childhood obesity classifiers and the
results are shown in Figs. 6 (reception age classifier) and 7 (year 6
classifier). MCR results for the two models show significant differences
despite sharing similarities in the important features (e.g. soft drinks,
9 
COP, grains, fish and dairy).
The MCR results for the reception age classifier (Fig. 6) show a far

greater number of features with similar levels of maximum importance
(MCR+), represented by the size of the bars. Almost all features have
a minimum importance (MCR-) greater than zero. This indicates that
all the features are required to produce the set of best-performing ML
models. The sales of soft drinks and COP have the highest values of both
MCR+ and MCR- highlighting their criticality in predicting reception
age obesity.
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Fig. 4. Model Class Reliance chart showing feature importance across multiple RF models for the classifier using the reduced feature set to predict the most deprived 20% of
LSOAs. MCR- (lollipops) and MCR+ (bars) represent the lower and upper bounds of each feature’s importance, illustrating variability across models.
Fig. 5. SHAP summary plots for RF classifier predicting extreme quintiles of childhood obesity at [left] reception and [right] year 6. Here high calorie-oriented purchasing (left —
red) is even more clearly indicative of predictions, intuitively shifting predictions towards predictions of higher childhood obesity risk (negative SHAP values) — and at a notably
higher magnitude than in deprivation predictions, at > −0.25 in several cases.
Results for the year 6 classifier show a much greater divergence
between the importance of features. The importance of soft drinks sales
and COP is far greater than the other features in the model. Soft drinks
sales show the highest potential importance, but COP has a higher
minimal importance level. As shown in Fig. 7 the minimum importance
of these two features exceeds the potential importance of the majority
of the other features in the model. Only a small number of features have
potential importance levels higher than the minimal level of soft drinks
10 
and COP (grains, proportion of fat and saturated fat, total carbohy-
drates and average number of baskets bought by customers). Although
many of the remaining features show little potential importance, there
are several features whose minimum importance level (MCR-) is above
zero, indicating that they are required, even if their overall contribution
is minimal. These include OP, total fibre, and the sales of fish, dairy and
poultry products.
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Fig. 6. Model Class Reliance chart showing feature importance across multiple RF models for the classifier predicting MSOAs with the highest 20% of obese children at reception
age. MCR- (lollipops) and MCR+ (bars) represent the lower and upper bounds of each feature’s importance, illustrating variability across models.

Fig. 7. Model Class Reliance chart showing feature importance across multiple RF models for the classifier predicting MSOAs with the highest 20% of obese children at year 6.
MCR- (lollipops) and MCR+ (bars) represent the lower and upper bounds of each feature’s importance, illustrating variability across models.
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Overall, the MCR results for the year 6 classifier show greater
robustness in the model than the reception classifier. A small number
f features are required to predict areas with high levels of childhood

obesity with high confidence. In contrast, the reception age classifier
shows high levels of multicollinearity and the sharing of information
across the features used.

4. Policy implications

The work described here offers new insights into neighbourhood-
evel deprivation and childhood obesity, as seen through the lens

of grocery purchases. Current policy designed to alleviate extreme
deprivation in English communities relies exclusively on the IoD and
the IMD in particular. Only those areas in the lowest quintile of the
IMD are eligible for remedial interventions and funding (Comber et al.,
2022). Even assuming that the IoD accurately reflect the deprivation
experienced in those areas, the time and cost of developing them means
that they are only updated infrequently, every 3–5 years on average.
Analysis of differences in the most recent IoD releases (2015 and 2019)
hows that the deprivation deciles of around 40% of areas changed
uring that period. This means that a significant number of LSOAs will
ither not be eligible for the support they require or will be in receipt
f support that is no longer warranted.

The work described here could be used as part of a national dietary
onitoring model to highlight areas showing potential signs of high
eprivation in near real-time, enabling national and local policymakers
o deploy funding support as efficiently and effectively as possible.
his could potentially be achieved by tracking the rates of change

n key metrics such as Calorie-oriented purchasing or the sales of
eprivation-related food categories such as cigarettes, soft drinks, wine
nd fish. Similarly, tracking changes in deprivation-related shopping
etrics could offer a potential method to examine the impacts of

ocal policy interventions. This would represent a significant step for-
ard as methods for evaluating such interventions are limited and/or
xpensive (Nica-Avram et al., 2021).

Further research using shopping data from other grocery retailers
ould be warranted to investigate the generalisability of our findings,
articularly the clear relationship identified between our COP metric
nd deprivation/obesity. Since COP does not rely on any subjective
ategorisation of grocery products and simply requires a good mapping
f nutritional content, it is potentially a highly generalisable metric
hat could be applied across grocery retail markets. Another avenue
f future research would be using shopping data covering the recent
nflationary economic period, often referred to as the ‘cost of living
risis’ (Robinson, 2023; Keith Neal, 2022), and could provide clear

evidence of the effects of increasing deprivation on grocery shopping
behaviours and the associated nutritional impacts.

There are also policy implications for food retailers to help local
communities suffering from deprivation. For example, in terms of the
iscounting of grocery staples or providing educational or informa-
ional content to help local communities. Co-op already engages with
ts members and customers to provide support for those in need.

Co-op, like some other UK-based retailers, has already ‘topped up’
existing government voucher based schemes for the poorest in society
(see for example the ‘Healthy Start Scheme’). Previous research has
demonstrated the value in dietary terms that such initiatives create,
particularly regarding the breadth of fruit and vegetable diversity in
consumption (Thomas et al., 2023).

Co-op has indicated an interest and commitment to the wellbeing
of its members through discounting, particularly where discounting
ccurs in conjunction with government-supported initiatives to reach
hose most in need. Such community outreach currently uses traditional
easures of deprivation, like the IMD (Hill-Dixon et al., 2018), but

uture support could integrate grocery sales as a metric for identifying
ocal deprivation. For example, Co-op currently publish a public ‘Well-
eing index’ to help support their members that is constituted solely of
 d
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open data but do not currently use the proprietary transactional data
they have available.

From a childhood obesity perspective, the results confirm current
thinking in terms of food policy, e.g. negative health impacts associ-
ated with excessive consumption of soft drinks, especially in children,
and the positive health impact of increased consumption of fruit and
vegetables. This finding backs up prior research on the impacts of
the sales of sugary drinks on childhood obesity, e.g. Tedstone et al.
(2015) and James and Kerr (2005), whilst highlighting that current
policy interventions, and in particular the tax on sales of such products
introduced in 2016, do not appear to have been sufficient to reduce
levels of childhood obesity. This strengthens the policy arguments
for greater intervention to encourage or discourage such behaviours,
e.g. through increased support for ‘Healthy Start Vouchers’ for the
poorest families or increases to the ‘sugar’ tax.

Additionally, the strong link between high levels of Calorie-oriented
purchasing in a neighbourhood and the prevalence of childhood obesity
in that area would appear to highlight the impact of poor diets on child
health, This finding is also supported by the links to childhood obesity
identified between low quantities of fruit and vegetables, and higher
levels of grains purchased in areas with the highest quintile of obese
children at ages 5 and 11. Such findings provide additional evidence
inking poor dietary choices and childhood obesity and strengthen
rguments that policy interventions need to go further than those

currently implemented if childhood obesity is to be reduced.

5. Conclusions

In Section 1, we proposed two research questions. Responding to
these two questions was the primary goal of this paper. For RQ1, we
have clearly demonstrated that large-scale transaction data on gro-
cery purchases can be useful in predicting deprivation and childhood
obesity at the neighbourhood level. The ML-based classifiers produced
predicted areas experiencing the highest levels of deprivation and child-
hood obesity with around 80% accuracy. In terms of the ML models
tested, accuracy was similar for the three types of classifiers tested (LR,
XGB, and RF).

As demonstrated by the results of the ternary classifier developed
(Table C.1), the models are particularly of use when trying to predict
xtreme levels of deprivation/obesity and are less accurate at classify-
ng neighbourhoods with average levels of deprivation/obesity. How-
ver, from a policy intervention context, it is these areas experiencing
xtreme deprivation/obesity levels that are of primary concern.

In terms of RQ2, several features derived from the transactional data
ere identified as being important predictors of deprivation and/or

hildhood obesity. These are highlighted in Section 3.3 for both the de-
privation and obesity classifiers. One of our derived nutritional metrics,
Calorie-oriented purchasing, was shown to be of high utility in predict-
ing both extreme deprivation and childhood obesity. Both the SHAP
and MCR analyses identify the metric as one of the most important
features in the majority of the ML models produced during the study.
Another metric that was found to be a very useful predictor of both
deprivation and childhood obesity was the proportion of soft drinks
purchased in a neighbourhood. Areas of high deprivation and childhood
obesity are associated with higher levels of soft drinks purchases. While
soft drinks strongly predict areas of high obesity in our models, this
does not imply causality. The association may, for example, reflect a
complex interplay of poverty and behaviour. Although the model points
o areas where interventions are needed, it does not provide evidence

for what those interventions should be.
For deprivation alone, it was found that lower levels of proportional

pending on wine, fruit and vegetables, fish and ready-made meals
ere associated with areas with high deprivation. Conversely, higher

evels of spending on cigarettes were associated with areas of high
eprivation.
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In the context of childhood obesity, lower levels of sales of fruit and
egetables, fish and dairy products appear to indicate higher levels of

childhood obesity. In addition to Calorie-oriented purchasing and soft
drinks, higher levels of purchasing of grains seem to lead to higher
levels of childhood obesity.

Addressing the final point of RQ2, there are several ways in which
these findings could inform national food policy, as described in the
policy implications section of this paper (Section 4).

As with any research employing retail transactional data as its
rincipal data source, there are inherent limitations to be considered.
irstly, the use of member data solely may be subject to gender and/or
ge biases (Nevalainen et al., 2018) compared to the general popula-

tion. Secondly, membership is likely to be common for frequent and
habitual shoppers (Rains and Longley, 2021) and may not accurately
reflect the shopping behaviour of the wider population. These limi-
tations are an unavoidable consequence of working with loyalty data
and is necessary in order to be able to assign geographic locations to
ustomers, a prerequisite to performing neighbourhood-scale analyses.

Another limitation is the reliance on a single retailer. This is not
nusual in this type of study due to the complexities and commercial
ensitivities involved in building long-term data-sharing agreements in
ompetitive retail markets. Despite this, our findings appear in line with
imilar research (Bannister and Botta, 2021) using data from Tesco, the

UK’s largest supermarket chain (in terms of market share).
As stated, the results shown in Section 3 used data for 2019 Quarter

. This was done to synchronise the data with the timing of the
arget datasets (IMD/childhood obesity) whilst excluding impacts of
he COVID-19 pandemic and associated lockdowns. However, to ensure
hat the results were not a statistical anomaly of that specific time
eriod, models were also generated for each quarter for which data
as available. As shown in Fig. C.4, performance was consistent across

the entire period with only minor fluctuations in accuracy identified.
Regarding our nutritionally derived metrics, we previously exam-

ned the effectiveness of the Calorie-oriented purchasing metric on
he model’s performance. The other two metrics developed, Calorific
ensity and Obesogenic potential, did not share the relative importance
f Calorie-oriented purchasing but did show some influence on model
erformance based on the SHAP and MCR analysis. Based on the SHAP
nalysis, it appears that higher levels of CD and OP are found in areas
ith lower levels of childhood obesity. This appears counter-intuitive

as we would expect dietary consumption of calorifically-dense and
besogenic foods to lead to higher levels of obesity. However, it should
lso be noted that the MCR analysis showed CD and OP’s variable

importance to be relatively minor, see Fig. 7. The implication is that
the simple prevalence of fat in the diet is not driving childhood obesity
statistics and that COP is more likely reflecting the excessive consump-
tion of very cheap, highly-processed and highly-palatable foods. What
the feature importance analysis does not show is how features interact
with one another, and their joint effect on the outcome; this could
potentially be explored through partial dependence graphs to gauge
how the probability of predicting deprivation/obesity levels changes
when a factor is varied while all others are kept fixed.

Models predicting childhood obesity at year 6 performed signifi-
antly better than those predicting obesity at reception age. We hypoth-
sise that the improved accuracy at year 6 may be related to both the
igher overall levels of obesity at this age, and greater freedom for chil-
ren to make their own dietary choices at this age. While testing this
ypothesis is not within the scope of available data, further research is
arranted to investigate this difference in model performance.

From a methodological context, we showed that the use of binary
lassification ML models to identify areas with high levels of depriva-

tion/childhood obesity is an effective tool that could be easily extended
o investigate other demographic and health outcomes. Results showed

a significant level of performance with our models able to predict areas
n the highest 10% and 20% of deprivation/childhood obesity with

round 80% accuracy.
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Appendix A. Acronyms

BMI — Body Mass Index
CD — Caloric Density
CoFID — Composition of Foods Integrated Dataset
COP — Calorie-oriented Purchasing
DT — Decision Tree
IMD — Index of Multiple Deprivation
LR — Linear Regression
LSOA — Lower-layer Super Output Areas
MCR — Model Class Reliance
ML — Machine Learning
MSOA — Middle Super Output Area
NCMP — National Child Measurement Programme
NDNS — National Diet and Nutrition Survey
NHANES — National Health and Nutrition Examination Survey
OHID — Health Inequalities and Disparities
ONS — Office for National Statistics
OP — Obesogenic Potential
RCP — Relative Caloric Pricing
RF — Random Forest
SHAP — SHapley Additive exPlanations
SVM — Support Vector Machine
XGB — XGBoost

Appendix B. Set of predictor features and target variables

See Figs. B.1 and B.2.

Appendix C. Supplementary analysis

See Figs. C.1–C.4 and Table C.1.
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Table B.1
Food purchased is organised into 17 categories including: grains; fruit and vegetables; red meat; poultry; fish; dairy; eggs; fat and oil; canned goods; sweets; cigarettes and
tobacco; readymade; sauces and soups; softdrinks; beer, lager and cider; wine; spirits. For each LSOA, a total of 92 features were constructed to include the fraction of purchased
products and money spent, and averages relative to the number of customers. Additional predictors are the fraction of macro-nutrients present in the purchased products – fibre,
fat, carbohydrate, protein, sugar, sodium, cholesterol, saturated fats, iron, iodine, calcium, vitamin B12 content; and our derived nutritional metrics – COP, CD and Obesogenic
Potential.

Feature domain Feature name & shorthand Feature description Source/ Reference

Area-level
deprivation

IMD decile (imd_decile) Index of Multiple Deprivation for England (2019) Ministry of Housing,
Communities & Local
Government (2019),
Bannister and Botta
(2021), Amin et al. (2021),
Cetateanu and Jones
(2014), Howard Wilsher
et al. (2016)

Childhood Obesity Childhood obesity quintile
(obesity_quintile)

NCMP Childhood obesity data Prevalence of
obesity (including severe obesity), 3-years data
combined (2019 to 2020, to 2021 to 2022)

National Child
Measurement Programme
(NCMP), N.H.S. Digital
(2023), Aiello et al.
(2019), Cetateanu and
Jones (2014),
Howard Wilsher et al.
(2016)

Population statistics Mid-2019 median age
(mid_2019_median_age)

Median population age in mid-2019 Office of National Statistics
(2020), Amin et al. (2021)

Population density (population_sq_km) Population density per square kilometer

Food-access Number of food stores per population
(e.g., takeaway_sandwich_population)

Number of takeaways and sandwich shops _
Number of supermarkets _ Number of restaurants,
cafes and canteens per population

Food Standards Agency
(2021), Badruddoza et al.
(2023), Cetateanu and
Jones (2014), Amin et al.
(2021)

Grocery shopping
levels per customer

Number of customers
(customers_population)

Number of customers per LSOA population Mansilla et al. (2022)

Avg. number of products
(avg_products_bought_customers)

Avg. number of products per customer

Avg. number of unique products
(avg_unique_products_customers)

Avg. number of unique products per customer

Avg. number of shopping trips
(avg_basket_count_customers)

Avg. number of shopping trips per customer

Avg. spend (£) (avg_spend_customers) Avg. spend (£) per customer
Avg. number of unique stores
(avg_unique_stores_customers)

Avg. number of unique stores per customer

Avg. bundle entropy
(avg_bundle_entropy_customers)

Avg. bundle entropy per customer

Avg. weekly spend (£)
(avg_weekly_spend_customers)

Avg. weekly spend (£) per customer

Avg. spend (£) per shopping trip
(avg_basket_spend_customers)

Avg. spend (£) per shopping trip per customer

Avg. number of products per shopping
trip (avg_products_per_basket_customers)

Avg. number of products per shopping trip per
customer

Grocery shopping
seasonality

Avg. seasonal purchases per number of
customers (avg_seasonality_customers)

Avg. seasonal purchases per number of customers

Avg. number of shopping trips per
customer (e.g., avg_morning_customers)

Avg. number of shopping trips during early
morning, mid-morning, lunch-time, afternoon,
evening and night per customer

Grocery shopping
spend

Avg. spend per number of products
(e.g., avg_fruit_vegetables_spending_total)

Avg. spend per number of products across 17
categories

Proportion of spend on product
categories (e.g., red_meat_spend_p)

Proportion of spend across 17 categories

Grocery shopping
volumes

Proportion of purchased items across
product categories (e.g.,
red_meat_quantity_p)

Proportion of purchased items across 17 categories Andreyeva and Tripp
(2016), Schwartz et al.
(2017), Berger et al.
(2021), Brimblecombe
et al. (2013),
Howard Wilsher et al.
(2016)

Obesogenicity Caloric frugality (CF, kcals_per_pound) Kilocalories per £spent Headey and Alderman
(2019), Drewnowski and
Specter (2004)

Caloric density (CD, kcals_per_kg) Calorific content normalised by weight
Obesogenic potential (OP, obesogenic) Proportion of calories obtained from fats and sugar

(continued on next page)
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Table B.1 (continued).
Feature domain Feature name & shorthand Feature description Source/ Reference

Nutrient
composition

Calories per number of products
(calories_sum_products)

Calories per number of products

Energy content per number of products
(energy_sum_products)

Energy content per number of products

Avg. macronutrients per number of
products (e.g., fibre_sum_products)

Avg. macronutrients per number of products: fibre,
fat, carbohydrate, protein, sugar, sodium,
cholesterol, saturated fats, iron content

Proportion of macronutrient content
(e.g., fibre_p)

Proportion of macronutrient content: fibre; fat,
carbohydrates; protein; sugar; sodium; iron; iodine;
calcium; vitamin B12

Brimblecombe et al.
(2013), Andreyeva and
Tripp (2016), Berger et al.
(2021)
Table B.2
Summary statistics for reduced feature set and IMD target variable. Statistics shown for 10,547 LSOAs in England after exclusion criteria filtering
was applied to the dataset.

Feature name Min Mean SD Median Max

IMD Decile (Target variable) 1.00 6.11 2.66 6.00 10.00
Average products bought per customer 16.98 96.77 30.88 93.14 402.27
Average shopping baskets per customer 3.43 15.11 4.86 14.53 37.75
Average spend per customer (£) 34.58 177.49 57.89 171.11 739.96
Average bundle entropy per customer 0.25 0.38 0.04 0.38 0.56
Average basket spend per customer (£) 4.39 12.25 2.83 11.67 35.71
Average products per basket per customer 3.16 6.69 1.41 6.41 18.57
Average seasonal purchases per customer 1.25 24.15 13.05 21.75 114.62
Average lunchtime purchases per customer 0.53 2.68 0.81 2.61 7.26
Average afternoon purchases per customer 0.77 3.80 1.24 3.67 9.72
Average evening purchases per customer 0.24 2.92 1.35 2.76 11.87
Average night purchases per customer 0.00 0.86 0.61 0.73 5.49
Average calories per product (Kcals) 285.42 556.01 36.51 558.94 681.59
Average sugar per product (g) 16.48 30.22 2.64 30.27 43.85
Average sodium per product (mg) 170.90 390.85 71.36 385.90 1108.27
Average cholesterol per product (mg) 17.66 41.60 5.89 41.34 82.87
Average spending on grains (£) 0.66 1.01 0.07 1.00 1.40
Average spending on fruit and vegetables (£) 0.59 1.09 0.08 1.09 1.44
Average spending on red meat (£) 1.62 2.64 0.26 2.65 4.13
Average spending on poultry (£) 1.06 2.84 0.39 2.87 5.27
Average spending on fish (£) 1.04 2.79 0.46 2.86 4.07
Average spending on dairy (£) 0.81 1.36 0.09 1.36 2.04
Average spending on eggs (£) 0.66 1.47 0.15 1.47 2.16
Average spending on fats and oils (£) 1.04 1.90 0.18 1.91 3.07
Average spending on canned foods (£) 0.48 0.94 0.11 0.93 1.59
Average spending on sweets (£) 0.76 1.22 0.11 1.21 1.90
Average spending on readymade foods (£) 0.96 1.77 0.15 1.77 2.42
Average spending on sauces and soups (£) 0.53 1.20 0.15 1.18 2.02
Average spend on tea and coffee (£) 0.99 2.69 0.24 2.69 4.08
Proportion of fibre in products 0.03 0.05 0.004 0.05 0.08
Proportion of fat in products 0.14 0.21 0.01 0.21 0.30
Proportion of saturated fat in products 0.06 0.08 0.005 0.08 0.13
Proportion of carbohydrate in products 0.54 0.62 0.02 0.62 0.69
Proportion of protein in products 0.13 0.17 0.01 0.17 0.22
Proportion of spend on cigarettes 0.00 0.10 0.06 0.09 0.42
Proportion of spend on wine 0.00 0.12 0.05 0.12 0.38
Proportion of soft drinks purchased 0.02 0.10 0.03 0.09 0.25
Calorie-Oriented Purchasing (Kcals/£) 186.94 347.46 39.05 345.57 622.30
Calorific Density (Kcals/kg) 626.10 1096.31 87.24 1096.94 1470.43
Obesogenic Potential 0.50 0.60 0.02 0.60 0.68
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Table B.3
Summary statistics for reduced feature set and Childhood obesity quintile target variable. Statistics shown for 4,677 MSOAs in England after
exclusion criteria filtering was applied to the dataset.

Feature Min Mean SD Median Max

Obesity quintile 1.00 3.20 1.36 3.00 5.00
Average products bought per customer 24.58 84.66 27.66 82.01 222.18
Average unique products bought per customer 13.78 43.78 12.76 42.43 113.89
Average number of shopping baskets per customer 4.09 13.71 4.25 13.45 29.56
Average spend per customer (£) 35.41 153.71 52.32 149.13 397.11
Average calories per product (Kcals) 330.33 539.11 40.81 545.16 650.84
Average energy per product (KJ) 1386.28 2262.73 171.54 2288.04 2732.81
Average fibre per product (g) 2.95 4.82 0.50 4.86 7.29
Average fat per product (g) 14.06 22.55 1.82 22.69 30.32
Average carbohydrate per product (g) 39.49 65.36 5.58 65.97 83.60
Average protein per product (g) 10.70 17.86 1.52 18.13 22.78
Average sugar per product (g) 18.31 29.45 2.53 29.61 39.41
Average cholesterol per product (mg) 17.10 39.54 6.11 39.98 74.94
Average saturated fat per product (g) 5.71 8.93 0.79 9.00 11.95
Average sodium per product (mg) 183.62 376.30 66.83 378.42 1205.48
Proportion of fibre in products 0.004 0.009 0.001 0.009 0.020
Proportion of fat in products 0.017 0.044 0.005 0.044 0.064
Proportion of carbohydrate in products 0.046 0.128 0.015 0.127 0.188
Proportion of protein in products 0.013 0.035 0.004 0.035 0.053
Proportion of sugar in products 0.020 0.058 0.007 0.057 0.092
Proportion of grains purchased 0.017 0.050 0.011 0.050 0.232
Proportion of fruit and vegetables purchased 0.030 0.161 0.044 0.156 0.406
Proportion of red meat purchased 0.006 0.029 0.007 0.030 0.069
Proportion of poultry purchased 0.001 0.018 0.004 0.018 0.048
Proportion of fish purchased 0.002 0.013 0.005 0.012 0.059
Proportion of dairy products purchased 0.077 0.151 0.019 0.152 0.337
Proportion of eggs purchased 0.001 0.012 0.004 0.012 0.032
Proportion of fats/oils purchased 0.002 0.015 0.004 0.014 0.047
Proportion of canned foods purchased 0.008 0.033 0.010 0.032 0.111
Proportion of confectionery purchased 0.049 0.133 0.025 0.132 0.289
Proportion of ready made foods purchased 0.092 0.170 0.027 0.165 0.384
Proportion of sauces/soups purchased 0.003 0.017 0.004 0.016 0.043
Proportion of tea/coffee purchased 0.004 0.017 0.005 0.016 0.061
Proportion of soft drinks purchased 0.030 0.091 0.027 0.086 0.245
Calorie Oriented Purchasing (Kcals/£) 200.10 341.85 34.86 340.71 541.43
Calorific Density (Kcals/kg) 556.12 1089.30 81.08 1092.44 1483.63
Obesogenic Potential 0.53 0.60 0.02 0.60 0.67
Fig. B.1. Map showing spatial distribution of IMD deciles across England [Left]. More detailed view of London and South East England is shown on the[right] highlighting smaller
urban areas of higher deprivation that are not clearly visible at the national level. The geospatial accuracy of the 20/80 IMD classifier was highest in LSOAs with higher levels
of co-op membership and sales. Misclassification errors were generally found in those LSOAs with lower sales and customer levels, e.g. West Midlands and the East of England.
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Fig. B.2. Map showing spatial distribution of Childhood Obesity (year 6) quintiles across England [Left]. More detailed view of London and South East England is shown on
the[right] highlighting smaller urban areas with higher levels of child obesity that are not clearly visible at the national level. Similarly to the IMD Classifier, the Childhood
Obesity results were spatially more accurate in those MSOAs with higher levels of sales. Misclassification errors were generally found in areas with borderline childhood obesity
levels (e.g. 1st/2nd quintile) combined with low levels of co-op sales and membership were found such as the West Midlands and the East of England.
Fig. C.1. In the 10-class classifier, LSOAs in the middle range of deciles are predicted less accurately, as it is probably harder to differentiate among them. Only the deciles of
pronounced deprivation (1–3, 8–10) appear to be discriminatory to the classifier.
Table C.1
Ternary classification results from experimental models predicting deprivation levels using food shopping data from October 2019 to December
2019.

Threshold Inputs Model Results(ALL areas) Results (Low deprivation areas)

Acc Prec F1 Kappa Acc Prec F1 Kappa

30-40-30 All Dummy 0.35 0.35 0.35 0.02 0.34 0.34 0.34 0.01
(high/med/low) LR 0.62 0.62 0.62 0.5 0.80 0.70 0.74 0.58
deprivation XGB 0.75 0.75 0.75 0.63 0.76 0.75 0.79 0.63
percentile split RF 0.74 0.74 0.74 0.62 0.77 0.76 0.79 0.64

Reduced LR 0.61 0.61 0.61 0.46 0.80 0.63 0.69 0.48
XGB 0.69 0.69 0.69 0.53 0.74 0.73 0.73 0.57
RF 0.70 0.70 0.70 0.55 0.73 0.74 0.74 0.59

Results (Medium deprivation areas) Results (High deprivation areas)

Acc Prec F1 Kappa Acc Prec F1 Kappa

30-40-30 All Dummy 0.35 0.35 0.36 0.02 0.34 0.34 0.34 0.01
(high/med/low) LR 0.32 0.53 0.40 0.41 0.79 0.64 0.71 0.52
deprivation XGB 0.65 0.69 0.67 0.57 0.84 0.82 0.79 0.7
percentile split RF 0.68 0.66 0.65 0.54 0.83 0.81 0.78 0.69

Reduced LR 0.33 0.52 0.40 0.37 0.76 0.68 0.74 0.53
XGB 0.59 0.58 0.58 0.42 0.73 0.76 0.75 0.6
RF 0.57 0.61 0.60 0.46 0.77 0.74 0.75 0.59
17 
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Fig. C.2. Correlation matrix showing relationships between the Index of Multiple Deprivation (IMD) and food purchased in UK neighbourhoods (LSOAs). We find that multiple
features extracted from the grocery shopping data show a significant correlation with the IMD when performing Bonferroni corrected Pearson’s correlation. To increase readability,
only features showing a significant correlation coefficient (+/- 0.2) are depicted.

Food Policy 131 (2025) 102826 
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Fig. C.3. Correlation matrix showing relationships between the childhood obesity quintile (at year 6) and food purchased in UK neighbourhoods (MSOAs). We find that multiple
features extracted from the grocery shopping data show a significant correlation with obesity when performing Bonferroni corrected Pearson’s correlation. To increase readability,
only features showing a significant correlation coefficient (+/- 0.2) are depicted.
Fig. C.4. Temporal consistency of classifier accuracy by year and quarter. Results shown are for the 20/80 split IMD classifier using the reduced set of input features.
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