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Abstract: Survival models have become popular for credit risk estimation. Most current credit risk survival 

models use an underlying linear model. This is beneficial in terms of interpretability but is restrictive for real-

life applications since it cannot discover hidden nonlinearities and interactions within the data. This study uses 

discrete time survival models with embedded neural networks as estimators of time to default. This provides 

flexibility to express nonlinearities and interactions between variables, and hence allows for models with better 

overall model fit. Additionally, the neural networks are used to estimate Age-Period-Cohort (APC) models so 

that default risk can be decomposed into time components for loan age (maturity), origination (vintage) and 

environment (e.g., economic, operational and social effects). These can be built as general models, or as local 

APC models for specific customer segments. The local APC models reveal special conditions for different 

customer groups. The corresponding APC identification problem is solved by a combination of regularization 

and fitting the decomposed environment time risk component to macroeconomic data, since the environmental 

risk is expected to have a strong relationship with macroeconomic conditions. Our approach is shown to be 

effective when tested on a large publicly available US mortgage data set. This novel framework can be adapted 

by practitioners in the financial industry to improve modelling, estimation and assessment of credit risk. 

Keywords: credit risk; survival model; neural network; age-period-cohort 

 

1. Introduction 

Credit risk is a critical problem in the financial industry and remains an active topic of academic 

research. Credit risk indicates the risk of a loss caused by a borrower’s default, referring to its failure 

to repay a loan or fulfill contractual obligations. The credit score, which is calculated based on 

financial data, personal (or company) details and credit history, is a quantification of this risk. It can 

distinguish good customers from high risk ones when making a decision on loan applications. Banks 

and other financial institutions are most interested in evaluating credit risk. Traditionally, banks use 

linear model such as discriminate analysis and logistic regression. Nowadays, they are exploring 

survival models and some non-linear methods; e.g., machine learning (ML), especially deep neural 

network (DNN). For example, Hussin Adam Khatir & Bee (2022) explored several machine learning 

algorithms with different data balancing methods and concluded that random forest with random 

oversampling works well. Jha and Cucculelli (2021) showed that an ensemble of diverse non-linear 

models is able to provide improved and robust performance. However, Blumenstock et al. (2022) 

showed that there has been limited work on ML/DNN models specifically for survival analysis in 

credit scoring due to the concern about the use of black-box models in the finance community and 

their paper is the first to apply DNN in the credit risk context. In this paper, we propose machine 

learning based survival models with interpretability mechanisms to enable complex interaction terms 

between features and representations of non-linear relationship between variables and output. We 

construct the neural networks at vintage level, which contains a suite of subnetworks, one for each 

origination period. Traditional DNN lacks the ability to provide interpretation of its predictions, 

which cannot convince the banks and financial companies. In our study, we want to make the neural 
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network more explainable by visualizing and interpreting the predictions and the risk behavior from 

the model. To realize this, Lexis graphs is employed to record the information from the neural 

network. Then ridge regression is used to decompose the probability of default (PD) estimation by 

the neural network in the Lexis graph into three Age-Period-Cohort (APC) timelines. Our model, 

named as NN-DTSM, is capable of extracting different kinds of customer risk behaviors from the data 

sets which cannot be realized by survival analysis methods in previous studies. Meanwhile, the three 

time-functions decomposed by APC modelling method can be used to interpret the black box of the 

neural network in this credit risk application. 

The remainder of this article is divided into the following sections: Section 2 introduces the 

background with literature review, Section 3 describes the DTSM, neural network and APC 

methodologies used, Section 4 describes the US mortgage data sets that are used, along with the 

experimental results, Section 5 presents results and discussions, and finally Section 6 provides 

conclusions. 

2. Background & Literature Review 

Over the past 50 years, much impressive research has been done to better predict the default 

risk. Among those studies, the first and one of the most seminal works is the Z-score model (Altman, 

1968). Altman used multivariate discriminant analysis (MDA) to investigate bankruptcy prediction 

in companies. MDA is a linear and statistical technique which can classify observations into different 

groups based on predictive variables. The discriminant function of MDA is: 𝑍 = 𝑣ଵ𝑥ଵ + 𝑣ଶ𝑥ଶ + ⋯ + 𝑣𝑥 (1)

where 𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥 are observation values of n features used in the model, and 𝑣ଵ, 𝑣ଶ, ⋯ , 𝑣 are 

the discriminant coefficient computed by the MDA method. For the Z-score model, typically the 

features used are financial ratios from company accounts. This model can then transform an 

individual company’s features into one dimensional discriminant score, or Z, which can be used to 

classify companies by risk of bankruptcy. For consumer credit, MDA and other linear models such 

as logistic regression have traditionally been used for credit scoring (Khemais et al., 2016; Sohn et al., 

2016; Thomas et al., 2017) . 

Although this kind of traditional linear method can determine whether an applicant is in a good 

or bad financial situation, it cannot deal with dynamic aspects of credit risk, in particular, time to 

default. Therefore, survival analysis has been proposed as an alternative credit risk modelling 

approach default time prediction. Banasik et al., (1999) pointed out that the use of survival analysis 

facilitates the prediction of when a borrower is likely to default, not merely a binary forecast of 

whether or not a default would occur in a fixed time period. This is because survival analysis models 

permit the inclusion of dynamic behavioral and environmental risk factors in a way that regression 

models cannot perform. 

One of the early popular multivariate survival models is Cox Proportional Hazard (PH) model 

(Cox, 1972). Unlike regression models, Cox’s PH model can include variables that affect survival time. 

The semiparametric nature of the model means that a general non-linear effect is included. The Cox 

model is composed of a linear component, the parametric form, and baseline hazard part, the non-

parametric form: ℎ(𝑡|𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥) = ℎ(𝑡)exp(αଵ𝑥ଵ + αଶ𝑥ଶ + ⋯ + α𝑥). (2)

This function assumes the risk for a particular individual at time t is the product of a non-

specified baseline hazard function of time ℎ(𝑡)  and an exponential term of linear series of 

variables. The coefficients α  are estimated using maximum partial likelihood estimation without 

needing to specify the hazard function ℎ(𝑡) . Therefore, the Cox PH model is called a 

semiparametric model. One advantage of the Cox PH model is that it can estimate the hazard rate 
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(the probability that the event occurs per unit of time conditioning on no prior event happened 

before) for each variable separately, without needing to estimate the baseline hazard function ℎ(𝑡). 

However, for predictive models, as would typically be required in credit risk modelling, the baseline 

hazard will need to be estimated post-hoc. 

Thomas (2000) and Thomas and Stepanova (2001) developed survival models for behavioral 

scoring for credit and showed how these could be used for profit estimation over a portfolio of loans. 

Bellotti and Crook (2009) developed a Cox PH model for credit risk for a large portfolio of credit cards 

and showed it provided benefits beyond a standard logistic regression model, including improved 

model fit and forecasting performance. They showed that credit status is influenced by the economic 

environment represented through time-varying covariates in the survival model. Dirick et al. (2017) 

provided a benchmark of various survival analysis technologies including the Cox PH model, with 

and without splines, Accelerated Failure Time models, and Mixture Cure models. They considered 

multiple evaluation measures such as area under the ROC curve (AUC) and deviation from time to 

default, across multiple data sets. They found that no particular variant strictly outperforms all 

others, although Cox PH with splines was best overall. In their notes they mentioned the challenges 

of choosing the correct performance measure for this problem, when using survival models for 

prediction. This remains an open problem. 

Traditional, survival models are continuous time survival models. However, discrete-time 

survival models (DTSM) have received great attention in recent years. For credit risk, where data is 

collected at discrete time points, typically monthly or quarterly repayment periods, a discrete time 

approach matches the application problem better than continuous time modelling; furthermore, for 

prediction, using discrete time is computationally more efficient (Bellotti and Crook, 2013). 

Gourieroux et al. (2006) pointed out that the continuous time affine model often has a poor model fit 

due to a lack of flexibility. They developed a discrete-time survival affine analysis for credit risk 

which allows dynamic factors to be less constrained. De Leonardis and Rocci (2008) adapted the Cox 

PH model to predict the firm default at discrete time points. Although time is viewed as a continuous 

variable, company’s datasets are constructed on a monthly or yearly discrete-time basis. Companies’ 

survival or default is measured within a specific time interval, which means Cox PH model needs to 

be adapted so that the time will be grouped into discrete time intervals. The adapted model not only 

produces a sequence of each firm’s hazard rates at discrete time points but also provides an 

improvement in default prediction accuracy. Bellotti and Crook (2013) used a DTSM framework to 

model default on a data set of UK credit cards. They used credit card behavioral data and 

macroeconomic variables to improve model fit and better predict the time to default. In their paper, 

time is treated monthly, and the model is trained using three large data sets from UK credit card data, 

including over 750,000 accounts from 1999 to mid-2006. The model is more flexible than the 

traditional one. Bellotti and Crook (2014) followed up by building a DTSM for credit risk and showed 

how it can be used for stress testing. Both papers treat the credit data as a panel data set indexed by 

both account number and loan age (in months), with one observation being a repayment statement 

for the account at a particular loan age. Unlike previous studies, they used models to measure the 

risk, forecasting and stress testing and pointed out that including statistically explanatory behavioral 

variables can improve model fit and predictive performance. 

Even though the Cox model is a popular approach for survival analysis, it still suffers from a 

number of drawbacks. Firstly, the baseline hazard function is assumed to be the same across all 

observations, but this may not be realistic in many applications, such as credit risk, where we may 

expect that different population segments may have different default behavior. Further, since the 

parametric component of the Cox PH model is linear, non-linear effects of variables must be included 

by transformations or by including explicit interaction terms. But it can be difficult to identify these 

by manual processes. These difficulties, however, can be handled automatically using some other 

non-linear methods, such as an underlying machine learning algorithm such as random survival 

forest (RSF), support vector machine (SVM) and different kinds of artificial neural networks (ANN), 

which can also potentially improve the model fit. 
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Random Survival Forest (Ptak-Chmielewska & Matuszyk, 2020) evolved from random forest 

and inherits many of its characteristics. Only three hyperparameters need to be specified in Random 

Survival Forest (RSF): the number of predictors which are randomly selected, the number of trees, 

and the splitting rules. Also, unlike the Cox PH model, RSF is essentially assumption-free, although 

the downside of this is that it does not (directly) provide statistical inference. However, this is a very 

useful property in survival modelling in the context of credit risk, where the value of a model is in 

prediction, rather than inference. Ptak-Chmielewska and Matuszyk (2020) showed that RSF has a 

lower concordance error when compared with the Cox PH model. Therefore, RSF is a promising 

approach to predict account default. 

To further improve the model fit and the model prediction of credit risk, ANN has received 

increased attention in credit risk, known as a more powerful and complex non-linear method with 

improved performance in other areas such as computer vision (Hongtao & Qinchuan, 2016). Faraggi 

and Simon (1995) upgraded the Cox proportional hazards model with a neural network estimator. 

The linear term αଵ𝑥ଵ + αଶ𝑥ଶ + ⋯ + α𝑥 in Equation (2) is replaced by the output of a neural 

network 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛). This neural network model incorporates all the benefits of the standard 

Cox PH model and retains the proportional hazard assumption, but allows for non-linearity amongst 

the risk factors. Ohno-Machado (1996) tackled the survival analysis problem utilizing multiple neural 

networks. The model is composed of a collection of subnetworks and each of them corresponds to 

certain discrete time point, such as month, quarter or year. Each subnetwork has a single output 

forecasting survival probability at its corresponding time period. The data sets are also divided into 

discrete subsets consisting of cases at specific time points in the same way and assigned to each 

subnetwork for training. The paper also describes that the learning performance of the neural 

network can be enhanced by combining the subnetworks, such as using outputs of some subnetworks 

as inputs for another subnetwork. But the issue of how to configure an optimal architecture of neural 

network (i.e., how to combine the neural networks) remains an open research problem. Gensheimer 

and Narasimhan (2019) proposed a scalable DTSM using neural networks which can deal with non-

proportional hazards, trained using mini-batch gradient descent. This approach can be especially 

useful when there are non-proportional hazards effects on observations, for large data sets with large 

numbers of features. Time is divided into multiple intervals dependent on the length of the timelines. 

Each observation is transformed into a vector format to be used in the model, where one vector 

represents the survival indicator and another represents the event or default indicator, if it happened. 

The results shows that this discrete time survival neural network model can speed up the training 

time and can produce good discrimination and calibration performance. 

Many studies using machine learning with survival models are in the medical domain. Ryu et 

al. (2020) utilized a deep learning approach to survival analysis with competing risk called DeepHit 

which uses a deep learning neural network in a medical setting to learn individual’s behavior and 

allow for dynamic risk effect of time-varying covariates. The architecture of DeepHit consists of a 

shared network and a group of sub-networks, and both are composed of a series of fully connected 

layers. The output layer uses SoftMax activation function which produces the probability of events 

for different discrete time points. 

There are few papers studying the application of neural networks for DTSM specifically in the 

context of credit risk models. Practitioners and researchers in credit risk have begun to explore 

machine learning (ML) and deep learning (DL) in application to survival analysis, see e.g., Breeden 

(2021) for an overview. Blumenstock et al. (2022) explored ML/DL models for survival analysis, 

comparing with traditional statistical models such as Cox PH model motivated by the results in 

previous work on ML/DL credit risk models. They found that the performance of DL method 

DeepHit (Lee et al., 2018) outperforms statistical survival model and RSF. Another contribution of 

their paper is introducing an approach to extract feature importance scores from DeepHit which is a 

first step to build trust in black box models among practitioners in industry. However, this approach 

cannot reveal a clear picture of the mechanism and prediction behavior of DL models for analysts. 

As we describe later, one of our contributions is using local APC models as a means to interpret the 

black-box of DL model across different segments of the population. Dendramis et al. (2020) also 
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proposed a deep learning multilayer artificial neural network method for survival analysis. The 

complex interactions of the neural network structures can capture the non-linear risk factors causing 

loan default among the behavioral variables and other institutional factors. These factors play more 

important roles in predicting default than the frequently used traditional fundamental variables in 

statistical models. They also showed that their neural network outperforms alternative logistic 

regression models. Their experimental results are based on a portfolio of 11,522 Greek business loans 

under the severe recession period, March 2014 to June 2017, with relatively high default rate. 

In this article we report the results of a study using neural networks for DTSM on a large 

portfolio of US mortgage data over a long period, 2004 to 2013, which covers the global financial crisis 

and aftermath. This long period of data allows us to explore and decompose the maturation, vintage, 

behavioral and environmental risk factors more clearly. We show that these models are more flexible 

than the standard linear models and provide an improved predictive performance overall. 

Studies in credit risk modelling with machine learning typically focus on predictive 

performance, which is indeed the primary goal in this application context. However, there is an 

increasing concern in the financial industry that credit risk models are not interpretable and 

explainable. Banks and companies do not trust the black box of the complex neural network 

architectures or other machine learning algorithms that are lack of transparency and interpretability 

(Quell et. al. 2021, Breeden 2021). To address this concern, in this paper, we use the output of the 

DTSM neural network as input to local linear models that can provide interpretation of risk behavior 

for individuals or population segments in terms of the different risk time-lines related to loan age 

(maturity), origination cohort (vintage) and environmental and economic effect over calendar time. 

These types of models are known as Age-Period-Cohort (APC) models and are well-known outside 

credit risk (see e.g., Fosse and Winship 2019), but their use as a method to decompose the timeline of 

credit risk was pioneered by Breeden (e.g., see Breeden 2016). There remains an identification 

problem with APC models and in this study, we address this problem using a combination of 

regularization and fitting the environmental timeline to known macroeconomic data. To the best of 

our knowledge this is the first use of APC models in the context of neural networks for credit risk 

modelling. 

3. Materials and Methods 

In this section, we describe the algorithms and approaches used in our method, including DTSM, 

neural network, lexis graph, APC effect and time-series linear regression model. All of these methods 

help predict time-to-default event and solve the APC identification problem. 

3.1. Discrete Time Survival Model 

Even though time-to-default events can be viewed as occurring in continuous time, credit 

portfolios are typically represented as panel data which record account usage and repayment in 

discrete time (typically monthly or quarterly records). Therefore, it is more natural to treat time as 

discrete point for a credit risk model (Bellotti & Crook, 2013). If we use discrete time, the data is 

presented as a panel data indexed on both on each account i and discrete time t. We provide the 

following concepts and notations and functions for a credit risk DTSM. 

• The variable 𝑡  is used as the primary time-to-event variable and indicates the loan age of a 

credit account. Loan age is the span of the time since a loan account was created. It is also called 

loan maturity. For this study, data is provided monthly so 𝑡  is number of months, but the 

period could be different, e.g., quarterly. 

• Let 𝑡∗ be the last loan age observation recorded for account i. 

• The binary variable 𝑑௧  represents whether account 𝑖  default or not (1 denotes default, 0 

denotes non-default) at a certain loan age t. 

• Note that in the survival analysis context, default must be the last event in a series, hence for 𝑡 < 𝑡∗, 𝑑௧ = 0 and for 𝑡 = 𝑡∗, 𝑑௧ = 0 indicates a censored account(the account that the exactly 

event time(e.g., death time in medical, default time in credit risk) is unknown during the whole 

observation period) and 𝑑௧ = 1 indicates default. 
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• The variable 𝐰𝒊 is a vector of static application variables collected at the time when the customer 

applies for a loan (e.g., credit score, interest rate, debt-to-income ratio, loan-to-value). 

• Let 𝑣 be the origination period, or vintage, of account i. Normally the period is the quarter or 

year when the account was originated. This is actually just one of the features in the vector 𝐰𝒊. 
Let 𝑁௩ be the total number of vintages(the time when an individual customer open the account) 

in the data set. 

• Meanwhile, we denote time-varying variables (e.g., behavioral, repayment history and 

macroeconomic data) by vector 𝐱𝒊𝒕, which is collected across the lifetime of the account. 

• Let 𝑐௧ be the calendar time of account i at loan age t, with 𝑁 the total number of calendar time 

periods. The measurement of calendar time is typically monthly, quarterly or annually. Notice 

that 𝑐௧ is actually just one of the features in the vector 𝐱𝒊𝒕. 
Notice that loan age, vintage and calendar time are related additively: 𝑐௧ = 𝑣 + 𝑡. For example, 

suppose an account originated (𝑣) in June 2009 and we consider repayment at loan age (t) of 10 

months, then this repayment observation must then have calendar time (𝑐௧) as April 2010. 

The DTSM model’s probilitiy of default (PD) for each account 𝑖 at time 𝑡 is given as 

 
 𝑃௧ = 𝑃(𝑑௧ = 1 | 𝑑௦ = 0 ∀ 𝑠 < 𝑡; 𝒘𝒊, 𝒙𝒊𝒕) (3) 

  
PD at time t is dependent on the account not defaulting prior to t; i.e., the account has survived 

up to time 𝑡 − 1. A further constraint on the model is that we do not consider further defaults after 

default is first observed. It is these conditions that makes such a model a survival model. The linear 

DTSM is built using the model structure, 

 
  𝑃௧ =  𝐹(𝛽 + 𝛼𝜑(𝑡) + 𝜷𝟏𝒘𝒊 + 𝜷𝟐𝒙𝒊𝒕) (4) 

where F is an appropriate link function, such as logit, and 𝜑 is some transformation of t. Even though 

this model is across observations indexed by both account i and time t, and we cannot assume 

independence between each time 𝑡 and 𝑡 − 1 within the same account i, by applying the chain rule 

for conditional probabilities, the likelihood function can be expressed as 

 
 𝐿(D) = ෑ ෑ 𝑃௦ௗೞ(1 − 𝑃௦)(ଵିௗೞ)௧∗

௦ୀଵ


ୀଵ  (5) 

  

where D refers to the panel data which records accounts behavior at consecutive time points; 𝑖=1 

indicates first account and 𝑚 is the number of accounts in the dataset. With F as the logit link 

function, it is the same form as logistic regression, and hence can be estimated using a maximum 

likelihood estimator for logistic regression. Details can be found in Allison (1982). 

3.2. Vintage Model 

In the financial industry, often analysis is performed and models are built at vintage level 

(Siarka, 2011). That is, separate models are built on accounts that originate within the same time 

period; e.g., in the same quarter or same year. Using the notation above, it means they all have the 

same value of 𝑣. Vintage modelling leads to a suite of models: one for each origination period. This 

is a useful practice since it may be expected that different vintages will behave in different ways, and 

hence require separate models. The DTSM can be built as a vintage model for a fixed origination date, 

in which case loan age t also corresponds to calendar time, in the context of each separate vintage 

model. 

3.1. DTSM using Neural Network (NN-DTSM) for Credit Risk 

The model structure in Equation (4) is constrained as a linear model. We hypothesize that a 

better model can be built with a non-linear model structure since introducing non-linearity enables 

interaction terms between features, automated segmentation between population subgroups and 

representation of non-linear relationships between features and outcome variable. Equation (4) can 

be extended by changing the linear term into a nonlinear equation. For this, we replace Equation (4) 
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by a neural network structure. The log of the likelihood function in Equation (5) can be taken as the 

objective function for the neural network and this corresponds to the usual cross-entropy loss. 

The neural networks are built as vintage models, i.e., a suite of neural networks, one for each 

origination period, following Ohno-Machado (1996). This is to match standard industry practice for 

vintage models and also to make estimation of neural networks less computationally expensive. Each 

subnetwork of this architecture is a Multilayer Perceptron (MLP) neural network (Correa et al., 2011), 

which consists of a dropout layer (to moderate overfitting), an input layer, several hidden layers, and 

an output layer. The dropout was proposed by Dahl et al. (2013) who pointed out that the overfitting 

can be prevented by randomly deleting part of the neurons in hidden layers and repeating this 

process in different small data samples to reduce the interaction between feature detectors (neurons). 

Each neuron in the hidden layer receives input from the former layer, computes its corresponding 

value with a specific activation function, and transfers the output to next layer. The output of the 

neuron calculated with the activation function represents the status. In each neural subnetwork, we 

apply the RELU activation function to each hidden layer: 𝑦 = max (0, 𝑥) and apply the sigmoid 

activation function to the output layer which corresponds to a logit link function: 

 𝑦 = 11 + 𝑒ି௫ (6) 

The overall architecture of the multiple neural networks with discrete time survival analysis is 

shown in Figure 1. 

 

Figure 1. Multiple vintage level neural networks. 

Each neural network has a single unit in the output layer predicting estimating PD (with value 

0 to1) at a certain discrete time point. In our study, we combine 40 neural networks which are 

constructed at vintage level based on the datasets covering the period from 2004 to 2013 (i.e., from v 

= 1 to v = 40) which are divided into quarterly subsets (the input of each separate model) and assigned 

to the subnetworks for training and testing. Each subnetwork predicts the default event at its 

corresponding quarter and the overall output function for the DTSM with neural network is 

  𝑃௧ =  𝐹 ቀ𝑠(𝒘𝒊, 𝒙𝒊𝒕)ቁ  where 𝑗 = 𝑣  (7) 

where 𝑠 is the subnetwork in each vintage j and 𝐹 is the logit function. 

In machine learning frameworks, it is important to tune hyperparameters for optimal 

performance. Unsuitable selection of hyperparameters can lead to problems of underfitting or 

overfitting. However, the process of selecting appropriate hyperparameters is time consuming. 

Manually combining different hyperparameters in neural networks is tedious. Meanwhile, it is 

impossible to explore many multiple combinations in a limited time. As a result, grid search is a 

compromise between exhaustive search and manual selection. Grid search tries all possible 

combinations of hyperparameters from a given candidate pool and chooses the best set of parameters 

according to prediction performance. Typically, grid search calculates loss (e.g., mean square error 

or cross-entropy) for each set of possible values from the pool by using cross-validation (Huang et 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 January 2024                   doi:10.20944/preprints202401.0040.v1

https://doi.org/10.20944/preprints202401.0040.v1


 8 

 

al., 2012). The use of cross-validation is intended to reduce overfitting and selection bias (Pang et al., 

2011). In our study, we combine grid search with cross-validation with specified parameter ranges 

for the numbers of hidden layers, numbers of neurons in each layer and the control parameter for 

regularization. 

3.1. Age-Period-Cohort effects and Lexis Graph 

In the context of better analyzing time ordered datasets, Age-Period-Cohort (APC) analysis is 

proposed to estimate and interpret the contribution of three kinds of time-related changes to social 

phenomena (Yang & Land, 2013). APC analysis is composed of three time components: age effects, 

period effect and cohort effect, where each one plays a different role; see (Glenn, 2005) (Yang et al., 

2008) (Kupper et al., 1985). 

• Age effect reflects effects relating to the aging and developmental changes to individuals across 

their lifecycle. 

• Period effect represents an equal environmental effect on all individuals over a specific calendar 

time period simultaneously, since systematic changes in social event, such as a financial crisis or 

Covid-19, may cause similar effects on individuals across all ages at the same time. 

• Cohort effect is the influence on groups of observations that originate at the same time, 

depending on the context of the problem. For example, it could be people born at the same time, 

or cars manufactured in the same batch. 

In the context of credit risk, loan performance can be decomposed by an APC model into loan 

age performance, period effect through calendar time of loan repayment schedule, and cohort effect 

through origination date (vintage) of the loan (Breeden, 2016; Breeden & Crook, 2022). In credit risk, 

the calendar time effect reflects macroeconomic, environmental and societal effects that impact 

borrowers at the same time, along with changes in legislation. Operational changes in the lender’s 

organization, such as changes in risk appetite, can affect vintage (cohort) or environmental (period) 

timelines. 

The Lexis graph is a useful tool to represent and visualize APC in data. We describe it in the 

context of credit risk here to show default intensities in different time lines. In the Lexis graph, the x-

axis represents the calendar time, and the y-axis represents the loan age effect. Each square in the 

graph represents a specific PD modeled by the DTSM based on the account panel data corresponding 

to that time point. The shade (or color) of each square thus indicates the degree of the probability of 

default of each account at the corresponding time point, the darker, the higher. For examples of Lexis 

graphs, see the figures following experimental results in section 5.2. 

Although a Lexis graph can be produced for the whole loan population, it is useful to produce 

Lexis graphs and, consequently, APC analysis by different subpopulations or population segments. 

If linear survival models are used to construct the Lexis graph, this is not possible, since the time 

variables are not linked to other variables that could differ between segments. However, the use of 

NN-DTSM will enable segment-specific Lexis graphs as a natural consequence of the non-linearity in 

the model structure and it is one of the key contributions of this study. 

3.1. Age Period Cohort Model 

We consider APC models built on aggregations of accounts using the prediction output of the 

DTSMs as training data. These data are essentially the points given in the Lexis graph, and the APC 

model can be seen as a way to decompose the three time components in the Lexis graph. 

Firstly, notice that calendar time c can be given as the sum of origination date v and loan age t: 𝑐 = 𝑣 + 𝑡. Therefore the outcome of the APC model can be expressed and indexed on any two of 

these, and we use loan age (t) and vintage (v). For this study, the outcome variable is the average 

default rate predicted by the DTSM at this particular time point computed as 

 
 

𝐷௩௧ = 1|𝑆|  𝑃௧∈ௌ  where 𝑆 = ሼ𝑖: 𝑡 ≤ 𝑡∗, 𝑣 = 𝑣ሽ (8) 
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where 𝑆 is the index set of observations to include in the analysis. This may be the whole test set, or 

some segment that we wish to examine. To represent the APC model we use the following notation 

for three sets of indicator variables corresponding to each time line at time point given by 𝑣, 𝑡, 𝑐: 

• For all t such that 1 ≤ 𝑡 ≤ 𝑁், where 𝑁் = max (𝑡∗), 

 𝛿௧ሾ்ሿ(𝑥) = ൜1, if 𝑥 = 𝑡0, otherwise (9) 

• For all v such that 1 ≤ 𝑣 ≤ 𝑁௩, 

 𝛿௩ሾሿ(𝑥) = ൜1, if 𝑥 = 𝑣0, otherwise (10) 

• For all c such that 1 ≤ 𝑐 ≤ 𝑁, 

 𝛿ሾሿ(𝑥) = ൜1, if 𝑥 = 𝑐0, otherwise (11) 

These represent the one-hot encoding of the time variables. Then the general APC model in 

discrete time is 

 
 𝐷௩௧ =   𝛼௦ே

௦ୀଵ 𝛿௧ሾ்ሿ(𝑠) +   𝛽௨ேೡ
௨ୀଵ 𝛿௩ሾሿ(𝑢) +   𝛾ே

ୀଵ 𝛿ሾሿ(𝑏) +  𝜀௩௧ (12) 

where 𝛼௦ , 𝛽௨  and 𝛾  represent the coefficients on the timeline indicator variables and 𝜀௩௧  is an 

error term given from a known distribution, typically normal. This is a general model in discrete time 

since it allows the estimation of a separate coefficient for each value in each timeline. Once the data 

points 𝐷௩௧ are generated from the model using (8), the APC model (12) can be estimated using linear 

regression. 

However, the APC identification problem needs to be solved. This is due to the linear 

relationship between the three timelines: i.e., 𝑐 = 𝑣 + 𝑡. The identification problem in APC analysis 

cannot be automatically, perfectly and mechanically solved without making further restrictions and 

assumptions on the model to find a plausible combination of APC, ensuring those assumptions are 

validated across the whole lifecycle of analysis (Bell, 2020). The identification problem is derived as 

follows to show there is not a unique set of solutions to Equation (12), but different sets of solutions 

controlled by an arbitrary slope term 𝜎: 

Firstly, combining 𝑐 = 𝑣 + 𝑡 with Equation (12) for some arbitrary scalar 𝜎: 

 
 
 
 

𝐷௩௧ =   𝛼௦ே
௦ୀଵ 𝛿௧ሾ்ሿ(𝑠) + 𝜎𝑡 +  𝛽௨ேೡ

௨ୀଵ 𝛿௩ሾሿ(𝑢) + 𝜎𝑣
+   𝛾ே

ୀଵ 𝛿ሾሿ(𝑏) − 𝜎𝑐 +  𝜀௩௧ 

(13) 

Then, noticing from the definition of the indicator variables, that 

 
 
 

𝑡 =  𝑠ே
௦ୀଵ 𝛿௧ሾ்ሿ(𝑠), 𝑣 =  𝑢ேೡ

௨ୀଵ 𝛿௩ሾሿ(𝑢), 𝑐 =  𝑏ே
ୀଵ 𝛿ሾሿ(𝑏), (14) 

this gives 

 

 
 
 

𝐷௩௧ =  (𝛼௦ + 𝜎𝑠)ே
௦ୀଵ 𝛿௧ሾ்ሿ(𝑠) +  (𝛽௨ + 𝜎𝑢)ேೡ

௨ୀଵ 𝛿௩ሾሿ(𝑢)
+  (𝛾 − 𝜎𝑏)ே

ୀଵ 𝛿ሾሿ(𝑏) + 𝜀௩௧ 

(15) 

Construct new coefficients, 

 𝛼௦ᇱ = 𝛼௦ + 𝜎𝑠, 𝛽௨ᇱ = 𝛽௨ + 𝜎𝑢, 𝛾ᇱ = 𝛾 − 𝜎𝑏 (16) 

to form 
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 𝐷௩௧ =   𝛼௦ᇱே

௦ୀଵ 𝛿௧ሾ்ሿ(𝑠) +   𝛽௨ᇱேೡ
௨ୀଵ 𝛿௩ሾሿ(𝑢) +   𝛾ᇱே

ୀଵ 𝛿ሾሿ(𝑏) +  𝜀௩௧ (17) 

which is another solution to the exact same regression problem. Therefore, we have shown that 

Equation (11) has no unique solution, and indeed there are infinite solutions, one for each choice of 𝜎. We call 𝜎 a slope since it alters each collection of indicator variable coefficient by a linear term 

scaled by 𝜎 . The identification problem is essentially to identify the correct value of slope 𝜎. 

To resolve this problem, there are several approaches which involve placing constraints on the 

model, such as removing some variables (essentially setting them to zero), or arbitrarily setting one 

set of the coefficients to a fixed value (i.e., no effect), see e.g., Fosse and Winship (2019). However, 

these solutions can be arbitrary. Therefore, in this study two approaches are considered: (1) 

regularization, (2) constraining calendar time effect in relation to observed macroeconomic effects. 

The first approach includes regularization penalties on the coefficients in the loss function that can 

be implemented in Ridge regression expressed by the loss function, 

 
 𝐿 =  ቌ 1𝑁௩𝑁௧  𝜀௩௧ଶேೡ,ே

௩ୀଵ,௧ୀଵ ቍ + 𝜆 ቌ 𝛼௦ଶே
௦ୀଵ +   𝛽௨ଶேೡ

௨ୀଵ +   𝛾ଶே
ୀଵ ቍ (18) 

which minimizes mean squared error plus the regularization term, where 𝜆 is the strength of the 

regularization penalty. This loss function provides a unique solution in the coefficients for (12). The 

second approach is discussed in detail in the next section. 

3.1. Linear regression & fitting macroeconomic variables 

In the initial APC model, 𝜎  is unknown. A common and recommended solution to the 

identification problem is to use additional domain knowledge (Fosse and Winship 2019). In this case 

we suppose that the calendar-time effect will be caused by macroeconomic conditions, at least partly. 

Therefore by treating the APC model calendar-time coefficients 𝛾  as outcomes, these can be 

regressed from observed macroeconomic data. As part of this process, the slope 𝜎 can be estimated 

to optimize the fit. Therefore, we use the term 𝜎 which relates to time trend of calendar to adjust the 

shape of calendar time function. Once the calendar time function is fitted, the vintage function and 

loan age function is also determined. The time-series regression is defined as 

 (𝛾  −   𝜎𝑐 ) =  𝛽ᇱ +   𝛽ᇱ𝑚(ିೕ)ெ
ୀଵ + 𝜀 (19) 

where 𝛾  represents the raw coefficients of the calendar time function from the APC model 

regression, 𝑀 is the number of macroeconomic variables (MEVs), 𝑚(ିೕ) indicates the 𝑗th MEV, 

with a time lag 𝑙 and 𝜀 is an error term, normally distributed as usual. This can be rewritten as 

 
 𝛾 =  𝛽ᇱ +   𝛽ᇱ𝑚(ିೕ)ெ

ୀଵ +  𝜎𝑐 + 𝜀 (20) 

and it can be seen as a linear regression with 𝜎  a coefficient on variable c, which can then be 

estimated with the intercept 𝛽ᇱ and other coefficients 𝛽ᇱ. Typical MEVs for credit risk are gross 

domestic product (GDP), house price index (HPI) and national unemployment rate (see e.g., Bellotti 

& Crook 2009). This solution, to fit estimated coefficients against economic conditions is similar to 

that used by Breeden (2016) who solves the identification problem by retrending the calendar-time 

effect to zero. However in that research the retrending is against a long series of economic data, 

whereas we use time series regression against a shorter span of data. This is because for shorter 

periods of time (less than 5 years), the calendar-time effect may have a genuine trend that can be 

observed in macroeconomic data over that time, but retrending over long periods would remove that. 

3.1. Lagged Macroeconomic Model 
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Some MEVs might have lagged effect in the model. For example, the fluctuation of the house 

price will not have an immediate effect on people’s behavior, but people will change their consumer 

behavior after a few months. To find the best fit between dynamic economic variables and customer 

behaviors, a lagged univariate model is used for each MEV: 

 𝑦 =  𝛽ᇱ + 𝛽ଵᇱ𝑚(ିೕ) + 𝜂 (21) 

Formula (21) is in the form of time series regression, where 𝑦 indicates the customer behavioral 

variables, 𝑚 denotes the 𝑗th macroeconomic time series variable, 𝑙 is the lagged offset, and 𝜂 is 

a normally distributed error term. Univariate regression of 𝑦 on the MEV is repeated for different 

plausible values of 𝑙, and the best value of 𝑙 is chosen based on maximizing 𝑅ଶ. Once 𝑙 is selected 

for each MEV 𝑗, Equation (20) can then be estimated. 

3.1. Overall framework of the proposed method 

The overall flowchart for our method is shown in Figure 2. The neural network in this study 

consists of multiple vintage-level sub-networks. After the model is trained, the next step is to extract 

and analyze different kinds of customer behaviors from the model by inputting different data 

segments which might show varied characteristics (e.g., low interest rate customer groups). These 

data segments help to construct Lexis graphs from the model which can visualize the characteristics 

of different data groups. To better capture and analyze the risk from the model, we use APC ridge 

regression to decompose the default rate modeled by the neural network in the Lexis graph into the 

three APC timelines: age, vintage and calendar time. These can finally be expressed as three APC 

graphs that can help experts to better understand and explain behavior of different loan types. 

The coefficients of calendar date extracted from the neural network represent the size and 

direction of the relationship between the specific calendar date and loan performance. Matching these 

coefficients with the macroeconomic data reveals the relationship of macroeconomic effect in the 

model and their impact on loans. This helps to solve the APC identification problem. It is possible 

that the regularized APC model already provides the correct slope 𝜎 and a statistical test on the time-

series macroeconomic model is used to test this. 
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Figure 2. Overview of neural network for DTSM with APC explanatory output methodology. 

4. Data and Experimental Design 

4.1. Mortgage Data 

We use a data set of over 1 million mortgage loan-level credit performance data originating in 

the USA from 2004 to 2013, publicly available from Freddie Mac1. Freddie Mac is a government-

sponsored enterprise which plays an important role in the US housing finance system. It buys loans 

from approved lenders and sells the securitized mortgage loans to investors, which helps to improve 

the liquidity and stability of the US secondary mortgage market and promote access to mortgage 

credit, particularly among low-and moderate-income households (Frame et al., 2015). These 

characteristics of Freddie Mac facilitate us to gain access to a large number of publicly available data 

covering various kinds of accounts which are representative of the US mortgage market. 

The quarterly datasets contain one file of loan origination data and one file of monthly 

performance data covering each loan in the origination file. The origination data file includes 

variables that are static and collected at the time of application from the customers, while the monthly 

performance data files contain dynamic variables which record customers’ monthly repayment 

behavior. See the General User Guide and Summary Statistics from the Freddie Mac single family 

loan level data set web site1 for further information about the variables available in the data set. Loan 

 
1 www.freddiemac.com/research/datasets/sf-loanlevel-dataset 
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sequence number is a unique identifier assigned to each loan. These two data files contain the same 

sequence number for each loan which is used to join the two files together to form the training 

datasets. The FICO® credit score, UPB (unpaid balance), LTV (loan-to-value percentage), DTI (debt-

to-income percentage) and interest rate are five core variables for the default model. A credit score is 

a number that represents an assessment of the creditworthiness of a customer, in other words, credit 

score is the likelihood that the customer will repay the money (Arya et al., 2013). UPB is the portion 

of a loan that has not been repaid to the lenders. LTV is the mortgage amount borrowed divided by 

the appraised value of the property, where applications with high LTV ratios are generally 

considered high risk loans. DTI is calculated by dividing monthly debt payment by monthly income. 

If the status of these variables is not so good, the application will be rejected, or possibly approved 

with a higher interest rate to cover the additional risk. Apart from these variables, there are other 

categorical variables which may represent risk factors and are preprocessed before being included 

into the model. For example, there are 5 categories in the loan purpose variable: P (Purchase), C 

(Refinance – Cash out), N (Refinance – No Cash out), R (Refinance – Not Define), and 9 (Not 

Available) which cannot be included directly in the model. Therefore, one-hot encoding is used to 

transform the categorical variable into numeric indicator variables. 

In our experiments, we define an account status as default based on the failure event that 

minimum repayment was not received for three consecutive months or more. This definition is 

common in the industry and follows the Basel II convention (BCBS, 2006). Since we are using a 

survival model where default is recorded at a particular loan age, there is no need to measure default 

in an observation window following origination, as would be required for static credit risk models 

(Bellotti and Crook, 2009). 

Default rates in the data set are shown in Figure 3. The default event is rare which leads to an 

unbalanced data set. This may affect the performance of the machine learning classification 

algorithm. The model will be dominated by the majority class (i.e., non-default) and may not make 

accurate prediction for the minority class, while in many contexts like credit risk we are more 

interested in discovering patterns for the rare class. To address this problem, the non-defaults in the 

data set are undersampled at the account level, so that only 10% of the non-default accounts are 

reserved by random selection. In the original dataset, the proportional of default data is only 0.1% 

and after under sampling, the default rate in the modified data set rises to around 1%. 

 

Figure 3. Default rates by origination quarter (after under-sampling). 

4.1. Macroeconomic Data 

Survival analysis provides a framework for introducing MEVs, which in turn can influence the 

prediction of default. (Bellotti & Crook, 2009) explored the hypothesis that macroeconomic variables 

such as unemployment index, house price index, production index can affect the probability of 

default. For instance, an increase in unemployment rate is expected to cause a higher risk since 

individuals who lost their job may not be able to make their repayments. Experiments are conducted 

to test the relationship between MEVs and PD. The results show that unemployment index, house 
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price index and production index (proxy for GDP) have statistically significant explanation of default. 

Following this study, we include these variables in our experiments for APC modelling as described 

in Section 3.6. Real GDP is used instead of nominal GDP because the nominal GDP is calculated based 

on current prices, whereas the real GDP is adjusted by a GDP deflator which is a measurement of 

inflation since a base year. In the previous work MEVs are included directly in the DTSM (Bellotti & 

Crook, 2013), but in this study we do not take this approach for the following reasons: 

• We devise APC to capture the whole calendar-time effect. If MEVs are included directly into the 

model, this most important part of the calendar-time effect will be missing. 

• We do not assume MEVs represent all calendar time effects, because some effects such as 

legislation, environmental or social changes will also influence the calendar time function and 

these should also be included as part of the calendar-time effect. 

• Some previous papers were looking to build explanatory models, but in this study, we are 

developing predictive models. MEVs in our study will be used later as a criteria to assess the 

accuracy of the model and directly including them into the model will reduce the reliability of 

this testing process. 

All of the macroeconomic datasets covering the period of 2001 to 2013 show moderate changes 

over time. Figure 4 shows each of the MEV time series. The GDP growth dropped sharply in 2008, 

after which it went down to a trough (-3.99%), then quickly rose back and fluctuates slightly (range 

from 0.9% to 2.9%). House price index gradually rose from 247.88 in 2001 to 380.9 in 2007, before 

falling down to 308.79 in 2012, after which it slightly rose to 329.2 in 2013. As for the growth of 

unemployment rate, it rose in a very short time within 2001 (by 35.9%) and fell until 2006, after which 

it sharply rose by 80% in 2009, before falling again steadily over the remaining period. 

 

Figure 4. Macroeconomic time series (quarters since first quarter 2001). 

4.1. Evaluation Methods 

Since we model time-to-default event, this means the outcomes are binary (0 or 1), so the usual 

performance measures such as mean squared error and R-squared do not apply. Receiver operating 

(a) GDP Growth (b) House Price Index 

(c) Unemployment rate (d) Growth of unemployment rate 
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characteristics curve is one of the ubiquitous methods to measure the binary classifications which can 

calculate the performance for each possible threshold from 0 to 1 to form a curve, and the area under 

this curve (AUC) to indicate the goodness of fit of the binary classifier. So, AUC can also be used in 

the context of survival analysis. However, it cannot fully estimate the performance of the survival 

model since AUC does not fully take time aspects into account (Dirick et al., 2017). Also, the dataset 

in our study is extremely imbalanced which limits the power of AUC. Therefore, to better measure 

and validate the goodness of model fit with the data, we use McFadden’s pseudo-R-squared to 

compare between our proposed neural network and linear DTSM: 

 
 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑅ଶ = 1 − log 𝐿൫𝑀௧௧൯log 𝐿(𝑀௦) (22) 

where 𝐿(𝑀௧௧)  and 𝐿(𝑀௦)  indicate the likelihood of the target prediction model and 

baseline model (null model), respectively. Similar to R-squared used in linear regression to calculate 

the proportion of explained variance, pseudo-R-squared measures the degree of improvement of the 

model likelihood over a null model, which is a simple baseline model containing no predictor 

variables (Hemmert et al., 2018). 

5. Results 

5.1. Neural Network versus Linear DTSM 

5.1.1. Experimental Setup 

The mortgage data set is divided into 40 subsets corresponding to each quarter of the origination 

data from 2004 to 2013. We then split each of the data subsets randomly into training data and 

independent testing data at vintage level with ratio 3:1. Each DTSM is trained on only the training 

data and is labelled with its corresponding time period; e.g., model07_4 represents the model for the 

fourth quarter of 2007. 

5.1.2. Hyperparameter selection using Grid Search 

The neural network architecture is selected using grid search of different settings given in Table 

1. The grid search finds values of minus log-likelihood (the target loss function) ranging from 0.07681 

to 0.08257, with the best value 0.07681 when using the following hyperparameters of the neural 

network: no dropout, 4 hidden layer, 8 neurons in each layer and 20 epochs for training. 

Table 1. Possible values of the hyperparameters for grid search. 

Parameter Values 

Percentage of dropout (regularization): 0, 0.1, 0.2, 0.3, 0.4,0 .5 

Numbers of hidden layers: 2, 4, 6, 8 

Numbers of neurons in each layer: 2, 4, 6, 8 

Training iteration for the network: 5, 10, 15, 20, 25, 30 

5.1.2. Comparison between Neural Network and Linear DTSM 

The vintage level neural networks are compared against vintage level linear DTSM and 

aggregate linear DTSM which is built across training data from all vintages together. Pseudo-R-

Square was calculated for each model in quarterly test sets from 2004 to 2013 and the results are 

shown in Figure 5. We use L2 regularization to stabilize the linear DTSM estimations. Figure 5 shows 

that neural network outperforms the vintage level linear DTSMs most of the time. The aggregate 

linear DTSM performs better, but on average neural network outperforms it, especially after 2009. 
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Figure 5. Performance of different models (pseudo-R-squared). 

5.2. Lexis Graphs 

Based on the predictions from the NN-DTSM, several Lexis graphs are produced for the whole 

population (the general case) and for different segments of the population: broadly, low risk 

(LTV<50% and interest rate<4%) and high risk (interest rate>7.5%). Since the neural network is non-

linear we can expect it to generate Lexis graphs that are sensitive to population segment 

characteristics. Since the underlying DTSM models include origination variables such as credit score 

and LTV, it should be noted when interpreting these Lexis curves, that the vintage effect is the 

remaining vintage effect controlling for these measurable risk factors, or, in other words, the vintage 

effect shown is the “unknown” vintage effect that is not directly measurable in the given risk 

variables, such as underwriting rules, risk appetite, unobserved borrower characteristics, and so on. 

This is somewhat different to vintage effects reported by Breeden (2016), e.g., which represent the 

whole vintage effect (including possibly measurable risk factors). Results are shown in Figures 6–8. 
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Figure 6. Lexis graph for the whole population. 

 

Figure 7. Lexis graph for low risk accounts :LTV<50% and interest rate<4%. 
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Figure 8. Lexis graph for high risk accounts: interest rate>7.5%. 

For the Lexis graph for the whole population, Figure 6, we can see the financial crisis emerging 

after 2008 with a dark cloud of defaults from 2009 to 2013. But interestingly, the Lexis graph shows 

that these defaults are along diagonal bands, corresponding to different account vintages, thus each 

band indicates the risk associated with some vintage. In particular, if we trace the dark diagonals 

back to the horizontal axis (loan age=0) we see that the riskiest origination periods were between 2006 

and 2008. On the vertical axis, we can see that defaults are rarer within the first year of a loan. 

The Lexis graphs for especially low and high risks accounts reveal two different kinds of 

customer behavior patterns. For high risk, high default rates emerges earlier and PD is much higher. 

For high risk customers, PD is as high as 0.05, whereas for low risk group, PD is only as high as 0.0035. 

We see that in both groups, the most vulnerable cohorts begin in 2006, but ends sharply in 2010 for 

high risk group, whereas a tail of further defaults are found for low risk group into 2012 although 

with much lower PDs). 

5.3. APC Model 

We use the Lexis graph and local APC linear models to interpret the black box of neural network. 

The relationship between the three time components: loan age, calendar time and vintage, and the 

PD outputs of the neural network are modeled using ridge regression. The ridge coefficient is chosen 

to maximize model fit on an independent hold-out data set. APC effects are decomposed using this 

approach, as described in Sections 3.5, and different risk patterns for different customers are 

analyzed. Different groups of mortgage applicants are illustrated in this section. 

Figure 9 shows time components for the general population. Higher values relate to higher risk 

of default on a PD scale. This vintage curve clearly shows that the risk reached a peak before 2008, 

remained at a high level for around two quarters and then dropped rapidly in 2009, indicating the 

time the banks became more risk adverse facing the unfolding mortgage crisis. For the loan age effect 

of the general case, the risk steadily increased to around 30 quarters, then maintained at a stable level, 

before dropped slightly at 40 quarters. For calendar time effect, the risk actually went down until 

2008, which indicates that the operating environment and US economy were performing well at that 
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time, just before the financial crisis. However, the risk increased sharply in 2009 and 2010 as the 

financial crisis took hold. 

 

Figure 9. APC decomposition for general case. 

Figure 10 shows the results for the segment of relatively low LTV (<50%) and low interest rate 

(<4%), corresponding to the Lexis graph in Figure 7. All APC effects are much smaller than that of 

the general case, which makes sense since this is expected to be a low risk group. In particular, the 

vintage effect is flatter, with noise, and having one peak in risk during 2006. Also, the calendar time 

effect peaked much later: 2013 compared to 2011 in the general case. 

Figure 11 shows the results for a segment of accounts with exceptionally high interest rates, 

corresponding to the Lexis graph in Figure 8. All APC effects are much larger than in the general 

case, the vintage effect is shaped differently with a sharper rise and peak from 2007 to 2008. 

Noticeably, the calendar time effect became apparent about 2 to 3 quarters before the general case 

(i.e., it is already quite high in 2009). 
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Figure 10. APC decomposition for low LTV, low interest rate segment. 

 

Figure 11. APeeeeC decomposition for high interest rates segment. 
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5.4. Macroeconomic data fitting 

5.4.1. Choose time lag for macroeconomic data 

We suppose the MEVs have a lagged effect on default risk and we use univariate linear 

regression models to fit the calendar time effect decomposed by the model with each MEV with 

different time lags of the variables to discover the best lag, using the method discussed in Section 3.6. 

Each linear model is trained using the macroeconomic data ranging from 2000 to 2013 and the 

calendar time coefficient ranging from 2004 to 2013 (we define the range of potential lag time as up 

to 3 years). The results are shown in Figure 12. 

 

Figure 12. Macroeconomic lag fit (quarters). 

For every MEV, the 𝑅ଶ peaks within 12 quarters which means the best fitting of time lags for 

those variables are all within 3 years. The highest 𝑅ଶ  value for GDP growth and growth of 

unemployment rate are still very low (around 40%) which shows that they do not fit well with the 

calendar time effect. So, these two variables are excluded from our experiments. Only unemployment 

rate and HPI are reserved for further studies. 

After the MEVs used for fitting are determined, the next step is to find the time lag with the best 

fits (highest 𝑅ଶ) for each variable. We select different data segments representing different customer 

profiles and use NN-DTSM to construct APC graphs. The calendar time effect of each APC model is 

then fitted against each MEV to find particular time lags using the method described in Section 3.6. 

The results are shown in Figures 13–15. 

For unemployment rate, low-risk customers have the longest time lag of 5 quarters, followed by 

the general customer group of 4 quarters and the high-risk group of 3 quarters; while for HPI, only 

low-risk group have time lag of 1 quarter, which indicates that HPI affects the low-risk customer a 

quarter behind, but has an immediate impact on the general and high-risk customer groups. 
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Figure 13. Macroeconomic fitting for the general customer. 

 

Figure 14. Macroeconomic fitting for high risk customer. 
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Figure 15. Macroeconomic fitting for low risk customer. 

5.4.2. Multivariate fit of MEVs with calendar time effect component 

To handle the APC identification problem, we use time trend of calendar date and MEVs with 

the selected time lag from the previous section to fit with the APC calendar time effect, following 

Equation (20). The results are shown in Table 2 for the general case. 

Table 2. Result of macroeconomic time series regression (Adjusted R-squared:0.938). 

Variable Coefficient estimate P-value 

X1 (coefficient of unemployment rate, lag 4 

months) 
+4.000 × 10ି4 <0.0001 

X2 (coefficient of HPI, lag 1 month) -3.118 × 10ି5 <0.0001 

X3 (coefficient of the time trend) -5.309 × 10ି6 0.522 

The results show that the adjusted 𝑅ଶ exceeds 0.9, meaning the time trend together with the 

two MEVs with different best-fit time lag can fit well with the calendar time effect. Adjusted 𝑅ଶ is 

used since sample size for this regression is low (40 observations). The coefficient on time trend is 

very small and p-value is large (>0.5) which indicates that time trend is not an important variable for 

this regression and it is reasonable to suppose the slope 𝜎 = 0 . The consequence is that the 

regularization in the APC ridge regression is sufficient to solve the APC identification problem for 

this particular data set and there is no need to adjust the slope post hoc. 

6. Conclusion 

In this paper, the vintage-level neural networks were built for DTSM, and evaluated on a large 

US mortgage data set over a long period of time covering the 2009 financial crisis. The results show 

that the neural network is competitive with the vintage level and aggregate DTSMs. Furthermore, to 

improve the explainability of the black-box neural networks, we introduce Lexis graphs and local 

APC modelling. The Lexis graph shows the PD estimate from NN-DTSM decomposed into the three 

timelines using APC analysis: loan age, vintage and calendar time, which allows us to visualize the 

change of the model behavior with the different time components. This approach helps to construct 

customer segment-specific APC graphs from the neural networks, which can better estimate, 

decompose and interpret the contribution and risk pattern of the three time-related risks on the 

accounts due to loan age, calendar time and vintage. Instead of just looking at the performance and 

estimates from NN-DTSM without understanding the mechanism and the reliability of the models, 

these APC graphs can help practitioners and researchers to build trust in the neural networks and 
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better understand the story of the loan portfolio over time for specific datasets and customer 

segments. In contrast, the linear survival model can only provide PD estimate APC graphs for the 

entire population. To solve the APC identification problem due to the linear relationship between the 

three timelines (calendar time = loan age + vintage), we make further restrictions and assumptions on 

the model functions to find a reliable set of APC parameters. In this study, we use two approaches: 

(1) add regularization term into the loss function to control the complexity of the APC model, (2) 

control the parameters of APC timelines by an arbitrary slope term σ, and correlate the calendar time 

effect with observed macroeconomic effects to calculate a unique solution, using time-series 

regression. We find a strong correlation between MEVs and the environmental risk time component 

estimated using our methodology. In future work, we will explore using different neural networks 

that may be suitable for the credit risk and survival modelling problem, such as recurrent neural 

networks, to construct architectures for DTSM that allows feedforward of information from one 

vintage to another, and the inclusion of behavioural data. 
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