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Abstract 

Stomata regulate gas exchange between plants and the atmosphere, but analysing their morphology is 

challenging due to anatomical variability and artifacts during image acquisition. Deep learning (DL) can 

address these challenges but often requires large and diverse datasets, which are costly and error prone 

to produce. Generative adversarial networks (GANs) offer a solution by generating artificial data via 

unsupervised learning. However, GANs often suffer from problems including mode collapse, vanishing 

gradients, and network failure, particularly with small datasets. Here, we present StomaGAN, a deep 

convolutional GAN (DCGAN) with tailored modifications to address common GAN issues. We collected 

559 stomatal impressions of field, or faba bean (Vicia faba) consisting of ~3,000 stoma, 80% of which 

were used to train StomaGAN. Evaluation metrics, including generator and discriminator loss 

progression and a mean Fréchet Inception Distance (FID) score of 61.4 across eight experimental runs 

confirms successful training. To validate StomaGAN, we generated artificial images to train a deep 

convolutional neural network (DCNN) based on the DeepLabV3 framework for stomata detection from 

real, unseen images. The DCNN achieved a mean Interception over Union (IoU) of 0.95 on artificial 

training images and a 0.91 on real, unseen, images across varying magnifications. Our results 

demonstrate that StomaGAN effectively generates high-quality synthetic datasets, enabling reliable 

stomatal detection and enhancing phenotypic analysis. This approach reduces the need for extensive 

manual data collection and simplifies complex morphological assessments. 

Keywords 

Artificial data, Deep Convolutional Neural Network (DCNN), Deep learning (DL), Generative Adversarial 

Network (GAN), Plant Phenotyping, Stomata 
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1. Introduction 

Crop yield largely depends on the cumulative rate of photosynthesis as well as the availability of water, 

in which stomata play a fundamental role (Long et al. 2006; Furbank et al. 2015; Franks et al. 2015; 

Condon 2020). Stomata (singular ‘stoma’) refers to the complex consisting of a central pore surrounded 

by specialised cells, called guard cells, located on above- ground plant organs. These structures regulate 

pore aperture in response to internal and external signals, driven by changes in the turgor pressure of 

the guard cells, facilitating gas exchange between the plant and the atmosphere (Lawson and Blatt 

2014). A comprehensive understanding of stomatal form and function can help enhance photosynthetic 

activity and water use efficiency (Franks and Farquhar 2007), ultimately increasing crop yield and 

stability across increasingly extreme environments.  

Analysing stomata presents significant challenges, partly due to their diverse appearances across species 

(Peterson et al. 2010). Typically, stomatal anatomy is studied using microscope-based images, either 

captured directly from the plant surface, or obtained from surface impressions made using dental resin, 

nail varnish or other means (Matthaeus et al. 2020; Pathoumthong et al. 2023). Following image 

collection, manually analysing stomatal traits such as counts, or morphology is time consuming and 

error prone. 

Deep learning (DL) and Deep Neural Networks (DNNs), offer a fast and efficient solution to automating 

plant phenotyping tasks, including for the analysis of stomata (Thompson et al. 2017; Balacey et al. 

2023; Gibbs and Burgess 2024). Using multiple artificial neural layers, DNNs can recognise, classify and 

describe data, making them particularly effective for image analysis related tasks (Rawat and Wang 

2017). However, the accuracy and precision at which stomata can be identified and characterised 

depends upon the provision of an initial training data set where the stomata, or other relevant 

phenotypic features, have been accurately annotated. Creating this training dataset is often time 
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consuming, tedious and requires some biological expertise to ensure accurate labelling of sufficient 

images. Combined with a lack of shared data resources, this image collection and annotation phase 

represents a critical bottleneck in the throughput of phenotyping tasks. 

In well-established fields like object detection or handwriting recognition, existing datasets provide 

access to hundreds of thousands of annotated images (e.g. IMAGE-NET, 2012; Krizhevsky, 2009). 

Similarly, increased research into stomata has led to a growing number of publicly available datasets. 

However, these datasets predominantly include annotations in the form of bounding boxes (Gibbs and 

Burgess 2024), limiting the extraction of detailed morphometric data and the ability to perform more 

complex analyses (Gibbs et al. 2021; Wang et al. 2024). Improving access to high quality datasets could 

significantly alleviate this bottleneck whilst supporting more in-depth analysis. One promising approach 

to expanding data availability is the application of Generative Adversarial Network (GAN). 

GANs were first introduced by Goodfellow et al. (2014) and are a subclass of generative models. Their 

primary use is to generate artificial representations of real data via unsupervised learning. By identifying 

and learning patterns in input data, GANs can produce realistic and plausible outputs (Creswell et al. 

2018; Goodfellow et al. 2020). The most successful use of GANs has been in image processing and 

computer vision, with applications including face generation, portrait creation, pose generation, imager 

super-resolution and medical applications (Creswell et al. 2018). Beyond these domains, GANs have also 

been applied to tasks involving natural language processing, music composition, speech synthesis and 

time series analysis (Aggarwal et al. 2021; Gui et al. 2023). GANs have also been applied to plant 

phenotyping tasks, such as the artificial generation of Arabidopsis thaliana rosettes to facilitate 

segmentation and counting tasks (Giuffrida et al. 2017). 

GANs consist of two interconnected sub-models, a generator G and a discriminator D. The generator is 

tasked with producing new data, while the discriminator, typically a binary classifier, attempts to 
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distinguish between real data (from the original input dataset) and fake data (generated by G; Figure 1) 

(Goodfellow et al. 2014). Both G and D are trained simultaneously in a minimax, or zero-sum game; 

referred to as adversarial learning. Here, G aims to maximise the likelihood of D misclassifying its 

generated data as real. In essence, G aims to produce data that closely resembles the training set to 

deceive the D, thereby driving G to generate increasingly realistic samples. Simultaneously, D learns to 

improve its ability to correctly classify data as real or fake, creating a dynamic balance between the two 

models. Many variants of GANs have been proposed, and whilst a full review of all of GAN variants is out 

the scope of this paper, the most recurring methods include CycleGAN, InfoGAN, Conditional GANs 

(cGAN), Deep Convolutional GAN (DCGAN), Wasserstein GAN (WGAN), Identity GAN (Fathallah et al. 

2023) and Least Squares GAN (for a review seeGui et al. 2020).   

Although GANs have relatively simple network architectures, they are notoriously difficult to train and 

evaluate. Even minor changes to hyperparameters or optimisation randomness can lead to poor or 

incomplete results. For instance, adjustments to hyperparameters may cause mode collapse, where the 

G sub-model produces limited data variations, or a diminished gradient, where the D becomes overly 

effective at distinguishing real from fake data, preventing the generator from learning. Moreover, there 

is no robust or consistent method for evaluating GANs, making it challenging to objectively determine 

the optimal network structure (Lucic et al. 2017; Borji 2022). 

Here, we present a modified DCGAN to help alleviate common issues associated with GANs and novel 

evaluation methodology applied to a relatively small dataset of leaf surface impressions of field, or faba, 

bean (Vicia faba).  
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2. Materials and Method 

Our approach consists of several key stages, as illustrated in Figure 2:1) Data acquisition - the initial data 

stage in which data is collected and annotated manually. Notably, this is the only manual and labour-

intensive component in our proposed approach. 2) Pre-processing – to overcome key issues with data 

collected under various conditions. 3) StomaGAN – The training of the proposed GAN, which 

incorporates modifications relative to the original DCGAN. 4) Post processing – Application of a series of 

post-processing steps to improve the quality of the output of StomaGAN. 5) Fake image generation – a 

series of tools to generate artificial images, including additional augmentations to increase the size and 

variety of the artificial dataset. This can further be used to validate the GAN method. 

 

2.1 Data Acquisition 

We acquired 559 images of nail varnish-based surface impressions taken of field bean using a Leica DM 

5000 B microscope (Wetzlar, Germany) at a magnification of 10x40 (Figure 2). The total dataset 

consisted of around ~3,000 individual stomata. Stomata were annotated using pixel-wise methods using 

the Pixel Annotation Tool (Bréhéret 2017). Whilst annotations performed as bounding boxes could be 

equally used within StomaGAN, semantic segmentation permits morphology and boundaries to be 

preserved (Gibbs and Burgess 2024). Furthermore, here we removed the background, prior to training 

the GAN so that generated stoma present only this complex with preserved boundaries.  
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2.2 Pre-Processing 

Microscope-based images of stomata often face challenges such as inconsistent lighting and varying 

environmental conditions due to the wide range of microscope configurations and data acquisition 

methods. StomaGAN aims to address these inconsistencies by providing a generalised tool for stomatal 

analysis, regardless of the data acquisition method. To achieve this, an automated pre-processing step is 

implemented, which is free from constraints and universally applicable to all annotated images (Figure 

2). Contrast Limited Adaptive Histogram Equalisation (CLAHE) was applied to the annotated images to 

highlight features and standardise the dataset by eliminating any colour biases. Individual stomata were 

identified and extracted using blob detection on the image mask, enabling the detection of each stoma 

and extraction of its contours. A bounding box was placed around the contour of the stoma, obtained 

using the minimum and maximum coordinates for a best fit box. Each stoma, and associated mask, were 

cropped from the original image and saved as separate files. Finally, stoma alignment was performed, 

which is the process of rotating the stomata to horizontally align it with the y-axis. The angle of rotation 

was determined from the major and minor axis of the image mask.  

The proposed GAN requires that training images are square (width == height) so additional padding was 

applied to resize images accordingly and prevent distortions (Figure 2). During training, images are 

resized to the network default, as specified in the configuration file, and therefore the dimension of 

images does not have to be consistent across images. In most cases,  variation in image size can improve 

training by reflecting variations in stoma size and quality, for example., scaling up may retain defects. To 

introduce further variability, random padding was added to further adjust the size of stomata. Typically, 

GANs are trained with tens of thousands of images, however, this study used a significantly smaller 

dataset. To address this limitation, a series of augmentations were applied, increasing the dataset 

fivefold through random transformations, flips and contrast enhancements.  Degenerative 
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augmentations, such as blur and random noise, were intentionally excluded to maximise the quality of 

generated synthetic images. Instead, these distortions can be introduced later when training on fake 

data, to improve the model’s ability to detect unseen real stomata, as discussed in subsequent sections. 

2.3 Modified DCGAN 

The original DCGAN, proposed by (Radford et al. 2015), modifies the traditional GAN architecture by 

replacing the perceptron layers with convolutional neural networks (CNN), while excluding pooling and 

sampling layers. Here, we incorporate additional modifications to help alleviate issues such as 

overfitting, overconfidence, mode collapse and vanishing gradients; all of which are more susceptible 

when training on smaller datasets. We discuss these below: 

Replacement of ReLU: We replaced the Rectified Linear Unit (ReLU) activation functions with Parametric 

ReLU (PReLU), to mitigate the vanishing gradient problem. Vanishing gradients occur when gradients 

become too small, causing learning to slow down or cease altogether, while exploding gradients involve 

excessively large gradients (Liu et al. 2022). Both issues are known to contribute to the instability of 

GANs. PreLU not only addresses these issues but also offers additional advantages in terms of 

computational efficiency. Unlike ReLU and Leaky ReLU, PreLU offers a learnable slope parameter, which 

enhances model accuracy and convergence (He et al. 2015). 

Noisy labels: We replaced the instance labels, traditionally 1 for a true (a real image) and 0 for false, 

with two-sided noisy labels. For real images, labels were randomly applyied in the range of 0.9 to 1.0, 

and for fake images, labels ranged from 0.0 to 0.1., These labels were dynamically adjusted per epoch. 

Applying dynamic noisy labels helps to stabilise training and prevent overconfidence. Overconfidence 

occurs when the discriminator focuses on minimal features to classify an image. Consequently, the 
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generator exploits this behaviour by producing only the feature the discriminator uses for classification, 

undermining the training process (Wenzel 2023).  

Dropout: Within GANs, the discriminator is known to be more dominant than the generator and tends 

to overfit to the training data. Consequently, the discriminator tends to perform well for seen data, but 

fails to adapt to new data. To alleviate this problem, dropout layers, a regularisation technique, were 

added to the discriminator with a probability of 0.5. These layers function by intentionally omitting 

random data points from the network during training, helping to reduce overfitting and improve 

generalization. 

Spectral normalisation is the process of normalising the weights in the discriminator. This aids to 

stabilise training by mitigating the exploding and vanishing gradient problem as well as alleviating mode 

collapse (Miyato et al. 2018). By restricting the weight changes in each iteration, spectral normalisation 

ensures that the discriminator is not over dependant on a small set of features in distinguishing images. 

We applied spectral normalisation to the final block in our discriminator network (Figure 3). 

Simulated Annealing with top_k: Research suggests that updating the generator and discriminator with 

more realistic weights improves the realism of the samples generated (Wu et al. 2019).  Based on this 

theory, Sinha et al. (2020) proposed a simple approach leveraging the top k gradients. In this approach, 

during each update step where k decreases by a constant factor over time, lower weights are ignored. 

Whilst the proposed method works, it does not take into consideration the quality of the weights by 

instead selecting a random distribution.  

We propose a simple change to introduce adaptive top k based on the quality of the weights. Early in 

training, the scoring function’s ability to correctly classify weights as good or bad is unreliable due to a 

lack of knowledge. Discarding these weights as this stage would be equivalent to discarding random 

samples. To address this, we first applied an initial set of warmup epochs during which the temperature 
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remained constant at the starting value. Following this, we applied an annealing process to gradually 

decrease the temperature over time, adjusting the base batch size and allowing lower quality weights to 

be included in the initial stages of training. We adjusted the batch size based on the mean of the results 

of the weights (Eq. 1&2). 

𝑏𝑖 = (1 − 𝑇𝑖) ⋅ 𝑏0      (1) 

𝑘 =  𝑏𝑖 + 𝑥𝑗
�̅� ⋅ (𝑏0 − 𝑏𝑖)     (2) 

where 𝑇𝑖 is the temperature at time at time 𝑖, 𝑏𝑖 is the base batch size at time 𝑖, and 𝑥𝑗
�̅� is mean of the 

output generated by the discriminator.   

Generality: We have aimed to make the source code as general and applicable as possible through 

various approaches. The generator and discriminator are designed to be adaptive, automatically resizing 

the model based on the input, eliminating the need for manual adjustments or rewrites. Robust 

evaluation is facilitated by integrating Comet ML (https://www.comet.com/drjonog/stomagan/), which 

supports adjustable parameters specified in a configuration file that can be edited without requiring 

technical expertise. Additionally, the StomaGAN repository on GitHub includes a suite of helper 

functions for image pre-processing tasks.  

2.4 Experimental Setup 

An overview of the StomaGAN architecture is presented in Figure 3. Both the discriminator and 

generator were initialised with random weights and a random seed. Since training is highly sensitive to 

minor changes in weights, we trained the model eight times to ensure fairness. Unless otherwise 

specified, the mean value of these eight experiments is presented when discussing results. The models 

used the Adam optimiser with a learning rate of 1 x 10-4 and a Binary Cross Entropy loss function. A 

batch size of 16 was used and maintained throughout all experiments, as a smaller or larger number can 
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significantly impact the results (Brock et al. 2018). Each experiment ran for 250 epochs. Terminating the 

run after 20 un-improving FID evaluations could be more computationally efficient, however, for 

evaluation purposes and fairness, we completed all 250 epochs. All hyperparameters, except the 

random seed, remained consistent across all experiments. The experiments were performed on a 12GB 

Titan V graphics card, an Intel Core i9-9980XE CPU running at 3.00GHz, with a total of 112GB of RAM. 

During evaluation, we recorded both the total run time and the run time per epoch, excluding 

evaluation time. This was necessary because, for the purpose of this paper, we included additional 

evaluation metrics, such as the estimation of Fréchet Inception Distance (FID) at each step (see below), 

which significantly increased computational time. 

StomaGAN proposes two architectures of similar size (Figure 3). The generator contains 32 layers, 

primarily composed of blocks of 2D transposed convolutions, batch normalisation, and the PreLU 

activation function, with a final layer applying the hyperbolic tangent (tanh) function. The discriminator 

comprises 33 layers made up of blocks of 2D convolutions, batch normalisation, the PreLU activation 

function, and a dropout rate of 0.5. Its final layer incorporates spectral normalisation and a sigmoid 

activation function. Example real and generated (fake) stoma are shown in Figure 4. 

2.5 Potential application proof of concept: the Artificial Dataset 

This section aids to illustrate the relevance and potential application of StomaGAN. Consequently, we do 

not provide an in-depth analysis of the results, but instead propose this as a proof of concept.  

An overview of the application of an artificial dataset generated using StomaGAN is presented in Figure 

5. 1) We used the trained StomaGAN to produce a series of artificial stomata, which, due the training 

set, are individual images of 128x128 pixels. 2) The original microscope-based images of leaf surface 

impressions and their corresponding annotations were passed to a data manipulator tool (provided on 
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GitHub). This extracts background segments of the images, comprising epidermal cells, vein structures 

etc. but omits stomata. Each background segment is cropped to 128x128 pixels, and two simple 

augmentations are applied: namely, resizing- in which images are kept at the original size or resized to 

64x64 or 32x32 pixels; and a random horizontal or vertical flip. 3) The background to the artificial images 

was generated through random tiling of background segments (step 2) to create a base background of 

512x512 pixels. 4) Artificially generated stomata (step 1) were subsequently assigned random 

coordinates on top of this background, ensuring there was no overlap by using bounding box collision 

detection. During insertion, random augmentations were applied to each stoma including scaling, 

ranging from 0.2 to 1.2 of its original size; rotation; gaussian blur and gamma adjustment. Each of these 

augmentations adjust the stomata in a way that is commonly seen in higher magnification images and 

significantly increases the variability within the dataset. Corresponding masks were then generated 

using the known stomata locations and contours. 5) We trained DeepLabV3 with MobileNet, an 

advanced neural network for semantic segmentation (Sandler et al. 2018) from scratch. The training was 

conducted on artificial images using an NVIDIA Jetson Nano Orin (Santa Clara, USA). The dataset, 

comprising 10,000 images, was divided into training and testing sets in a 4:1 ratio, and the model was 

trained for 150 epochs. To further validate the usefulness of the GAN generated dataset, we trained 

DeepLabV3 on solely real images as a benchmark, and again on a combination of real and artificial 

images. 

 

3. Results 

Here, we present StomaGAN, a modified and enhanced GAN designed to generate artificial images of 

stomata, with applications across various plant phenotyping task. All data and tools associated with this 

project are publicly available. These include the StomaGAN source code, pre-trained models, and a suite 
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of image analysis and manipulation tools; available at https://github.com/DrJonoG/StomaGAN. 

Additionally, we provide three new datasets available at: https://www.stomatahub.com: 

1) The original, semantically annotated images of field bean leaf impressions.  

2) The original stomata extracted from their backgrounds, along with individual artificial stomata 

generated by StomaGAN. 

3) A collection of artificial images created by combining original image backgrounds with the artificial 

stomata (Figure 5). 

In StomaGAN evaluation was conducted using multiple metrics (a full evaluation of can be found at: 

https://www.comet.com/drjonog/stomagan/). Whilst we generated loss functions for both the 

generator and discriminator independently, these values alone provide limited insight into assessing 

GAN quality. However, GANs are known to exhibit specific trends during successfully training, which we 

observed here (Figure 6A&B). Typically, discriminator loss function starts high, around 0.8, indicating 

that it struggles to correctly distinguishing between real and artificial data. Over time, this value 

gradually converges towards 0.5, reflecting a 50% probability of guessing whether data is real or 

artificial, as expected by chance (Figure 6A). In comparison, the generator loss function increases as 

training progresses, starting around 0.75 and rising up to approximately 1.75 (Figure 6B). Together, 

these trends suggest that the discriminator successfully learns key features of real images, while the 

generator improves its ability to produce realistic artificial images . 

We employed the Fréchet Inception Distance (FID), as it has been shown to align closely with human 

judgement (Heusel et al. 2017). A lower FID score indicates greater similarity between real and 

generated (fake) data. Whilst a perfect FID score of 0 is theoretically achievable, it is often unrealistic 

without overfitting. However, a decreasing FID score over time indicates successful learning, which was 

observed for StomaGAN (Figure 6C). 
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Although three common metrics were applied, they do not address of the issue of variability, realism, or 

prove a future application of StomaGAN. To demonstrate proof of concept, we utilised a DCNN for 

stomatal detection trained exclusively on artificial data. While synthetic data generation is not always 

strictly necessary, it can be particularly valuable in data scarce environments. In addition, this provides 

an alternative and complementary approach to improving the performance of a DCNN, such as DeepLab, 

when real data is limiting.  

DeepLab achieved a mean Interception over Union (IoU) of 0.95 during training on the artificial dataset. 

When the trained model was applied to real, unseen images, a mean IoU of 0.91 was achieved. Notably, 

these real images were not only unseen during GAN training but were also at different resolutions. 

Specifically, whilst the GAN was trained on images at 40x magnification, the DeepLab model successfully 

processed images at 10x and 20x magnification, where stomata appear significantly smaller and often 

exhibit more defects.  

To further evaluate the potential value of an artificial dataset generated through StomaGAN, the 

DeepLab v3 model was trained and validated using other combinations of data: 1) trained on real 

images and validated on real images, and 2) trained on a combination of artificial and real images and 

validated on real images. Both models were evaluated on an independent test set to assess their 

performance. The model trained solely on real data achieved a detection accuracy of approximately 

94.7%, whereas the model incorporating artificial data attained an accuracy of 99.7%, misclassifying only 

a single instance. This latter case is similar to the results of Giuffrida et al. (2017), we found that the 

inclusion of both real and artificial data led to an improvement in accuracy. 
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4. Discussion 

This study offers a novel GAN architecture, StomaGAN, and application. StomaGAN offers a proof of 

concept for using artificially generated images to train neural networks with high accuracy, we are 

however aware of limitations of this study, which are discussed here.  

4.1 Evaluation of GANs 

Despite significant advancement in improving the quality of GANs, the evaluation and comparison of 

methods remains underdeveloped (Borji 2018, 2022). Since GANs relay on the coordinated training of 

two models, the generator and the discriminator (Figure 1), there is no objective loss function to directly 

evaluate the generator’s performance. Consequently, it is not possible to assess the progress of the 

training based solely on loss, requiring evaluation to be based on the quality of the generated synthetic 

images. Whilst various methods to evaluate GANs have been proposed, none have been universally 

adopted (Borji 2022). Even under ideal conditions, the training can be unstable and highly sensitive to 

hyperparameters (Wenzel 2023). Further difficulties arise because optimal weights correspond to saddle 

points rather than to a minimum or maximum loss function (Li et al. 2017). Furthermore, issues such as 

mode collapse, vanishing and exploding gradient exacerbate the difficulties in training and evaluating 

GANs (Wenzel 2023).  

Focus on qualitative measures, such as visually comparing results, is often used when evaluating GANs 

(Zhou et al. 2019; Borji 2022). While improved frameworks have been proposed to improve human 

evaluation metrics (Zhou et al. 2019), this approach remains subjective, inconsistent, and potentially 

misleading (Le et al. 2010; Salimans et al. 2016). Moreover, humans process data differently to 

machines, limiting their ability to assess model outputs accurately (Denton et al. 2015; Olsson et al. 

2018). Therefore, alternative, more quantitative evaluation measures have been proposed. Inception 
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score (IS; Salimans et al. 2016) is an evaluation metric based on the comparison between generated data 

and an existing image library. Therefore, IS is appropriate for generated images of objects known to the 

model used to calculate the conditional class probabilities, but is unsuitable for objects outside of these 

categories (Barratt and Sharma 2018). For example, the Inception v3 model recognises 1,000 object 

types as part of the ILSVRC 2012 dataset (IMAGE-NET 2012), whereas the CIFAR-10 and CIFAR-100 

models recognise 10 and 100 object classes, respectively (Krizhevsky 2009). However, current published 

models lack object categories useful to biological analysis, making IS  unsuitable for evaluating 

StomaGAN. 

The pattern of change in loss functions of the generator and discriminator provides another means of 

evaluating GAN performance. Whilst the witnessed pattern within this study indicates successful 

training (Figure 6), this is not always the case. For example, the discriminator could learn a specific 

feature which allows it to distinguish between real and generated data. Alternatively, the generator 

could be producing the same, or very similar images, which therefore have the same features. This 

would make it easier for the discriminator to distinguish and, consequently, results in the generation of 

artificial data with little variability.  

Here, we introduced an additional metric to assess the accuracy of the GAN via use of a DCNN trained 

solely on an artificial dataset. This test highlights the capabilities of StomaGAN; first by producing 

sufficiently plausible stomata to deceive the DCNN, and second, by demonstrating its applicability to 

more difficult phenotyping tasks. Microscope-based images taken at lower magnifications contain more 

stomata but often suffer from a higher degree of artifacts such as blur (Millstead et al. 2020). This makes 

annotation significantly more difficult, time consuming and computationally expensive. Furthermore, 

accurately preserving the boundaries of small stoma using pixel-wise annotation is more difficult than 

those of larger sizes, dependent on the radius of the annotation tool and resolution of the image. For 

this reason, the majority of deep learning approaches applied to stomatal analysis have utilised 
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bounding box annotation, as opposed to the more informative semantic segmentation (Gibbs and 

Burgess 2024). StomaGAN provides a solution to this problem through the generation of artificial data 

which can be applied to any magnification. This is achieved via an initial image set captured and 

annotated at high magnification (40x), and through augmentations that represent many of the key 

artifacts seen in surface impressions. Furthermore, as the results are semantic, more in-depth analysis 

can be performed such as the estimation of Gsmax (Gibbs et al. 2021), compared to the limiting bounding 

box approaches. 

Although pixel-wise annotation is more time-consuming  than bounding boxes, this process can be 

significantly accelerated through application of a GAN. As demonstrated in this study, even a small 

dataset can enable GANs to produce sufficient data representations to permit detection via a DCNN. 

Here, we started with 559 images of surface impressions and were able to generate 10,000 artificial 

images, which can then be used for the preliminary classification of further unseen images. However, we 

expect that an even smaller dataset could be used initially. It is expected that this would work via an 

iterative process; where outputs of the DCNN provide additional training data that can be fed into the 

GAN. This would be particularly valuable for datasets whereby artifacts or errors during data collection 

result in distorted target objects (i.e. stomata); such that manual annotation is not feasible. Further 

augmentations, such as blur, could be applied to GAN-generated artificial dataset to aid detection of 

these objects (e.g. Gibbs et al. 2019). Common errors in the DCNN output often relate to rough or 

incomplete boundaries, most of which can be repaired via additional blob detection and contour 

smoothing.  
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4.2 Future directions and current limitations 

While DL offers a promising solution for enhancing the throughput of biological image analysis, there 

several limitations hinder its broader applicability. Variability in image capture and annotation pipelines, 

along with restricted access to datasets, pose significant bottlenecks for phenotypic analysis. 

Additionally, the lack of alignment between image analysis outputs and conductance measurements 

limits the ability to correlate findings with underlying physiological function. For a more detailed 

discussion of these limitations, see Gibbs and Burgess (2024). 

The use of GANs can help to increase dataset variability and size; however, there are areas for 

improvement. Hyperparameter tuning plays a critical role in GAN performance, and comprehensive 

optimisation could enhance output quality. Whilst this was beyond the scope of our project, it presents 

an important next step.  Existing evaluation metrics for StomaGAN have been discussed, but 

incorporating additional real-time metrics during training could provide deeper insights into GAN 

performance. Currently, there are limited options for such metrics in GANs, and robust methods for 

comparing models are needed to determine if hyperparameter changes lead to meaningful 

improvements. 

In certain phenotyping tasks, it is essential to generate artificial data that represents multiple features or 

labels. For instance, StomaGAN could be trained separately on background leaf segments and stomata. 

Similarly, Park et al. (2019) introduced Spatially-Adaptive Normalization (SPADE), a normalization layer 

designed to retain semantic information within a network, thereby preventing the loss of spatial details. 

This is particularly relevant for phenotyping tasks that require segmentation maps of specific features. 

Biological images, such as those obtained through microscopy and other imaging techniques, often 

exhibit complex structures where preserving spatial and semantic information is crucial. Techniques like 

SPADE can therefore be adapted to maintain and control spatial features during data generation. 
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Alternative generative models present valuable opportunities to enhance dataset diversity and size. One 

example is Latent Diffusion Models (LDMs), which incrementally add noise to data and then apply a 

reverse denoising process to generate synthetic samples (Rombach et al. 2021). Although LDMs are 

generally more stable to train compared to GANs, they are computationally intensive, making them 

particularly well-suited for tasks involving high-dimensional data. However, for certain tasks, pre-trained 

LDMs exist (e.g. Anagnostopoulou et al. 2023). Similarly, Variational Autoencoders (VAEs) encode 

images into a latent space before decoding them back into image form (Pu et al. 2016). Conditional 

VAEs, in particular, offer a powerful approach for generating synthetic representations of specific 

features, such as plant traits. The optimal method depends on the specific requirements of the 

application, such as the need for realism, control over features, computational efficiency, or the scale of 

the dataset. 

Future work should focus on developing fair evaluation techniques for less common biological images, 

such as stomata, which are often overlooked compared to objects featuring in datasets such as ILSVRC 

2012, CIFAR-10 or CIFAR-100 datasets (Krizhevsky 2009; IMAGE-NET 2012). Emphasis should also shift 

towards shared resources and datasets, including a unified GAN capable of generating stomata across 

various species to represent the full spectrum of structural diversity. 

 

5. Conclusion 

Here, we introduce StomaGAN, a novel method for generating artificial images of stomata to support 

automated analysis of stomatal traits or other plant phenotyping tasks using deep learning. Alongside 

StomataGAN, we provide publicly available, high-quality resources, including the StomaGAN source 

code, pre-trained models, image analysis and manipulation tools, and three diverse datasets. These 

tools and datasets represent a significant advancement in stomatal analysis, offering enhanced 
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throughput and expanded capabilities with applications in broader image analysis tasks. Notably, 

StomaGAN is optimised to work with relatively small datasets, enabling the generation of larger, more 

diverse training data for DCNNs. Additionally, StomaGAN simplifies complex phenotyping tasks, such as 

translating higher-resolution images to lower magnifications, making it a versatile tool for plant science 

and image-based research. 
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Figure Legends 

Figure 1: Basic GAN architecture applied to stomata. The generator (G) creates a synthetic stoma 

from a random seed, while the discriminator (D) evaluates the stoma to determine whether it can 

classify it as real or fake based on its training. The feedback from this evaluation is then used to 

iteratively refine both the generator and discriminator, improving their performance over time. 

Figure 2: Overview of the pipeline from image acquisition of leaf impressions of field bean (Vicia 

faba) to the generation of synthetic stomata via StomaGAN. Microscope based images of leaf 

impressions were taken at 10x40 magnification and annotated using pixel wise segmentation. Stoma 

were extracted, rotated, Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied, and 

resulting images were padded to create square images (width == height). StomaGAN used these pre-

processed stoma as an input to generate synthetic stoma.  

Figure 3: StomaGAN network structure. The generator (G) contains 32 layers comprised primarily of 

blocks featuring 2D transposed convolutions, batch normalisation and the Parametric Rectified 

Linear Unit (PreLU) activation function. The final layer employs a hyperbolic tangent function, tanh. 

The discriminator comprises33 layers made up for blocks of 2D convolutions, batch normalisation, 

PReLU activation functions and a dropout rate of 0.5. The final layer integrates spectral 

normalisation along with a sigmoid activation function. 

Figure 4: Example stoma where Real (left side) present original images of stoma following extraction, 

rotation and Contrast Limited Adaptive Histogram Equalization (CLAHE) and Generated (synthetic) 

stoma produced via StomaGAN. 

Figure 5: Evaluation pipeline for StomaGAN using an artificially generated dataset. Small sections of 

leaf impression background (i.e. areas in which stomata are not present) were cropped from the 

original dataset and tiled to create a base. Variability was increased through applying random 
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augmentations to the StomaGAN generated stoma before embedding them into the tiled background 

images. The resulting artificial dataset was split 4:1 for training and validation, and used to train a 

deep convolutional neural network (DCNN), DeepLabV3. Once trained, the DCNN was applied to 

unseen original microscope-based images for the detection of real stomata. 

Figure 6: Evaluation of StomaGAN performance during training for 250 epochs indicating the moving 

average of the (A) Discriminator loss function and (B) Generator loss function. (C) Fréchet Inception 

Distance (FID). 
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Abbreviations 

CNN Convolutional Neural Network 

D Discriminator- sub model of the GAN 

DCGAN Deep Convolutional Generative Adversarial Network 

DL Deep Learning 

DNN Deep Neural Network 

FID Fréchet Inception Distance 

G Generator- sub model of the GAN 

GAN Generative Adversarial Network 

IoU Interception over Union 

IS Inception Score 

PReLU Parametric Rectified Linear Unit 

ReLU Rectified Linear Unit 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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