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ABSTRACT 

We investigate Duschinsky rotation/mixing between three vibrations for both m-fluorotoluene (mFT) 

and m-chlorotoluene (mClT), during electronic excitation and ionization. In the case of mFT, we 

investigate both the S1  S0 electronic transition and the D0
+  S1 ionization, using two-dimensional 

laser-induced fluorescence (2D-LIF) and zero-electron-kinetic energy (ZEKE) spectroscopy, 

respectively; for mClT, only the D0
+  S1 ionization was investigated, using ZEKE spectroscopy. The 

Duschinsky mixings are different in the two molecules, owing to shifts in vibrational wavenumber and 

variations in the form of the fundamental vibrations between the different electronic states. There is 

a very unusual behaviour for two of the mFT vibrations, where apparently different conclusions for 

the identity of two S1 vibrations arise from the 2D-LIF and ZEKE spectra. We compare the experimental 

observations to calculated Duschinsky matrices, finding that these successfully pick up the key 

geometric changes associated with each electronic transition, and so are successful in qualitatively 

explaining the vibrational activity in the spectra. Experimental values for a number of vibrations across 

the S0, S1 and D0
+ states are reported and found to compare well to those calculated. Assignments are 

made for the observed vibration-torsion (“vibtor”) bands, and the effect of the vibrational motion on 

the torsional potential is briefly discussed. 
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I. INTRODUCTION 

An analysis of the vibrational activity in electronic and photoelectron spectra is often used as a 

signature of vibrational coupling between fundamentals, overtones, and combination levels. This 

occurs through anharmonic coupling, which leads to the dispersal, and so delocalization, of internal 

energy within a molecule – an important aspect to enhancing photostability.1,2,3,4 Sometimes activity 

in fundamentals other than that excited can be seen in experimental spectra; however, to first order, 

vibrational fundamentals do not couple anharmonically. Such activity can be induced by changes in 

geometry that lead to significant Franck-Condon factors (FCFs), or as a result of a Duschinsky rotation,5 

with cross-activity between vibrations being a signature of the latter. Understanding the intensities of 

vibrational features in electronic and photoelectron spectra is key to understanding electronic and 

geometric changes between electronic states. A Duschinsky rotation occurs when the vibrational 

motions and/or force constants vary significantly between two electronic states; then, each of the 

affected vibrations in one electronic state has a motion that can be expressed as a linear combination 

of more than one vibrational motion in the other electronic state. This is sometimes termed the 

Duschinsky effect, with the resulting vibrations said to have undergone Duschinsky mixing. This would 

mean, for example, that activity arising when exciting from a particular vibration would be more 

extensive than expected, owing to the excitation of further vibrations in the final electronic state. Of 

course, both Franck-Condon (FC) and Duschinsky effects will operate simultaneously, which can 

complicate the interpretation of the spectra. 

Very recently, we published resonance-enhanced multiphoton ionization (REMPI) and zero-electron-

kinetic-energy (ZEKE) studies of the low-wavenumber regions of m-fluorotoluene (mFT)6 and m-

chlorotoluene (mClT),7 which mainly focused on torsions and vibration-torsion (vibtor) levels. The mFT 

study complemented the two-dimensional laser-induced fluorescence (2D-LIF) study of Stewart et al., 

who examined the first 350 cm-1 of the S1  S0 transition.8 The spectra of both molecules were 

assigned in terms of torsion and vibtor levels in the S0 and S1 states. Earlier, Ito and coworkers9,10,11,12 

reported laser-induced fluorescence (LIF), dispersed fluorescence (DF), REMPI, and ZEKE spectra of 

the low-wavenumber region of mFT. In addition, Ichimura et al.13 have published LIF and DF spectra 

of mClT, while Feldgus et al.14 only reported REMPI and ZEKE spectra of mClT, restricted to the 

torsional region. 

In the present work, we focus on a set of three vibrations that are active in the S1  S0 transition, and 

are found to have a high degree of cross-activity, as ascertained using 2D-LIF and ZEKE spectroscopy. 
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These three vibrations are designated D18, D19 and D20, as described in Ref. 15, and whose explicit 

motions will be discussed later. 

II. EXPERIMENTAL 

The ZEKE16 and 2D-LIF17 apparatuses are the same as those employed recently. In both experiments 

for mFT, a free-jet expansion of mFT (Sigma-Aldrich, 98% purity) in 1.5 bar Ar was employed. For the 

ZEKE experiments on mClT, a free jet expansion was also used, consisting of mClT (Alfa Aesar, 98% 

purity) in 2 bar Ar, where the mClT sample was heated to ~50°C in order to introduce sufficient vapour 

to the expansion. 

For the 2D-LIF spectra, the free-jet expansion was intersected at X/D ~20 by the frequency-doubled 

output of a single dye laser (Sirah CobraStretch), operating with Coumarin 503 and pumped with the 

third harmonic of a Surelite III Nd:YAG laser. The fluorescence was collected, collimated, and focused 

onto the entrance slits of a 1.5 m Czerny-Turner spectrometer (Sciencetech 9150) operating in single-

pass mode, dispersed by a 3600 groove/mm grating, and ~300 cm-1 windows of the dispersed 

fluorescence collected by a CCD camera (Andor iStar DH334T). At a fixed grating angle of the 

spectrometer, the excitation laser was scanned, and at each excitation wavenumber the camera image 

was accumulated for 2000 laser shots. This allowed a plot to be produced of fluorescence intensity 

versus both the excitation laser wavenumber and the wavenumber of the emitted and dispersed 

fluorescence, termed a 2D-LIF spectrum. 18,19  

For the ZEKE spectra, the focused, frequency-doubled outputs of two dye lasers (Sirah CobraStretch) 

were overlapped spatially and temporally, and passed through a vacuum chamber coaxially and 

counterpropagating, where they intersected the free jet expansion. The excitation laser operated with 

Coumarin 503 and was pumped with the third harmonic (355 nm) of a Surelite III Nd:YAG laser, while 

the ionization laser operated with Pyrromethene 597, pumped with the second harmonic (532 nm) of 

a Surelite I Nd:YAG laser. The jet expansion passed between two biased electrical grids located in the 

extraction region of a time-of-flight mass spectrometer, which was employed in the REMPI 

experiments. These grids were also used in the ZEKE experiments by application of pulsed voltages, 

giving typical fields of ~10 V cm-1, after a delay of up to 2 s; this delay was minimized while avoiding 

the introduction of excess noise from the prompt electron signal. The resulting ZEKE bands had widths 

of ~5-7 cm-1. Electron and ion signals were recorded on separate sets of microchannel plates. 
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III. RESULTS AND ASSIGNMENTS 

A. Nomenclature and labelling 

1. Vibrational and Torsional Labelling 

We shall employ the Di labels15 for the vibrations, as used in Refs. 6, 7 and 8, since neither 

Wilson20/Varsányi21 nor Mulliken22/Herzberg23 notations are appropriate for the vibrations of mFT or 

mClT. The Cs point group labelling scheme15 is based on the vibrations of the meta-difluorobenzene 

(mDFB) molecule. 

We shall also refer to the methyl torsional motion for mFT and mClT, for which the G6 molecular 

symmetry group (MSG) is appropriate, and we shall use those symmetry labels throughout. The 

torsional levels will be labelled via their m quantum number,6,8 and the correspondence between the 

Cs point group labels and the G6 MSG ones is given in Table I. To calculate the overall symmetry of a 

vibtor level, it is necessary to use the corresponding G6 label for the vibration, and then find the direct 

product with the symmetry of the torsion (Table I), noting that a C3v point group direct product table 

can be used, since the G6 MSG and the C3v point group are isomorphic. 

Under the free-jet expansion conditions employed here, almost all of the molecules are expected to 

be cooled to their zero-point vibrational level, and thus essentially all S1  S0 pure vibrational 

excitations are expected to originate from this level. In contrast, owing to nuclear-spin and rotational 

symmetry, the molecules can be in one of the m = 0 or m = 1 torsional levels,24 with residual population 

in the m = 2 levels also seen.6,7,8 

2. Transitions 

When designating excitations, we shall generally omit the lower level, since it will be obvious from 

either the jet-cooled conditions or the specified intermediate level. In the usual way, vibrational 

transitions will be indicated by the cardinal number, i, of the Di vibration, followed by a super-

/subscript specifying the number of quanta in the upper/lower states, respectively; torsional 

transitions will be indicated by m followed by its value. Finally, vibtor transitions will be indicated by 

a combination of the vibrational and torsional transition labels. 
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As has become common usage, we will generally refer to a level using the notation of a transition, 

with the level indicated by the specified quantum numbers, with superscripts indicating levels in the 

S1 state and, when required, subscripts indicating levels in the S0 state. Since we will also be referring 

to transitions and levels involving the ground state cation, D0
+, we shall indicate those as superscripts, 

but with a single, additional, preceding superscripted “+” sign. Relative wavenumbers of the levels will 

be given with respect to the relevant zero-point vibrational level with m = 0 in each electronic state. 

For cases where the geometry and the torsional potential are both similar in the S1 and D0
+ states, the 

most intense transition is usually expected to be that for which no changes in the torsional and/or 

vibrational quantum numbers occur: designated as m = 0, v = 0 or (v, m) = 0 transitions, as 

appropriate. However, as will be seen (and as reported in Refs. 6, 7, 12 and 14), the m = 0 and (v, 

m) = 0 transitions are almost always not the most intense bands in the ZEKE spectra for mFT and mClT, 

indicative of a significant change in the torsional potential upon ionization. 

B. Overview of REMPI spectra 

In Figure 1 we show the REMPI spectra of the first 500 cm-1 above the origin of the S1  S0 transition 

in mFT and mClT. The 0–350 cm-1 region of the mFT spectrum has been discussed in detail previously, 

in terms of 2D-LIF and ZEKE spectroscopy,6,8 while the corresponding region of the mClT spectrum has 

also been discussed relating to ZEKE spectroscopy.7 Because of the consistent vibrational labelling 

used for both molecules,15 it can be seen that the activity in both spectra is similar. In the present 

work, we shall concentrate on the two expanded regions of Figure 1, between 400–480 cm-1 for mFT 

and 350–470 cm-1 for mClT. In the case of mClT, the spectrum was recorded in two mass channels, 

corresponding to the 35Cl and 37Cl isotopologues, where some bands around 370 cm-1 can be seen to 

undergo isotopic shifts (compare the red and black traces in the expanded region in the lower portion 

of Figure 1), but there are essentially no shifts for the lower-wavenumber bands.7 For both mFT and 

mClT, these regions are dominated by activity involving three vibrations, D18, D19 and D20. As we shall 

see below, these vibrations are significantly Duschinsky mixed in the S1 state. 

We shall firstly concentrate on the assignment of the 2D-LIF and ZEKE spectra of mFT, before moving 

on to the ZEKE spectrum of mClT (no 2D-LIF spectra were recorded for this molecule). We shall then 

discuss the observations for both molecules. 
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C. 2D-LIF and ZEKE spectra of mFT 

In Figure 2, the 2D-LIF spectrum of mFT in the range 412–464 cm-1 is presented, while ZEKE spectra 

recorded at various excitation positions across the same region are shown in Figure 3. Calculated 

wavenumbers for a selection of pertinent vibrations for both molecules, and for the three different 

electronic states considered, are presented in Table II – the level of theory utilized has generally been 

shown to be sufficient for these molecules in our previous work. 

It will be seen in the discussion below that the D19 and D20 vibrations become very mixed in the S1 

state. For this reason, we have designated the S1 mixed vibrations, DX and DY in the following. The 

strongest features in the 2D-LIF spectrum (Figure 2) are seen when exciting via 181, X1 and Y1, each 

comprising m = 0 and m= 1 components, as indicated; significant cross-activity is evident. The strong 

emission bands seen when exciting via 181 are partially overlapped with those seen when exciting via 

Y1. Associated with each of the strong emission bands is a series of vibtor transitions, which have 

distinctive structure, as seen in the low wavenumber region.8 These consist of strong m3(+) and weaker 

m3(-) bands when exciting via the m = 0 components, as well as a strong m2 band, with weaker m4 and 

m5 bands, when exciting via the m = 1 components – some of these are overlapped by other features 

in the 2D-LIF spectrum. 

In Figure 3, we present the ZEKE spectra recorded via the m = 0 and m = 1 components of the 181, X1 

and Y1 vibrations of mFT. It can be seen from Figure 1 that the X1m0 and 181m1 transitions overlap, and 

so the ZEKE spectrum recorded for these overlapped features is included in both the upper and lower 

portions of Figure 3, but located on the correct scale in each case. Again, significant cross activity is 

seen when exciting via 181, X1 and Y1, for both m levels. 

To aid in the understanding of the activity of the spectra, Duschinsky matrices were calculated (using 

the FC-LAB II program)25 for a selection of the vibrations. This was done for the three pairings of the 

S0, S1, and D0
+ electronic states for mFT, and these are shown in Figure 4. Additionally, we show the 

calculated motions of the three Duschinsky-mixed vibrations of interest, in each of the three electronic 

states. First, we point out that the Di labels are defined with respect to the S0 motion. (The motions of 

meta-disubstituted benzenes in the S0 state, on which the Di labelling is based, were discussed in detail 

in Ref. 15.) Secondly, the S0/D0
+ matrix indicates that the vibrational motions in the ground state cation 

are very similar to those in the ground state neutral molecule, so that the S0 vibrational labels, Di, can 

also be used for the cationic vibrations to a very good approximation. (It is highlighted that the 
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wavenumber ordering of the D19 and D20 vibrations have switched in the cation relative to the S0 state 

– see Table II.) 

We now turn to the S0/S1 matrix for mFT in Figure 4. This indicates that the motions of the S1 vibrations 

corresponding to the D18, D19, and D20 S0 vibrations are significantly altered, and each of these S1 

vibrations can be thought of as being significant admixtures of the corresponding S0 ones, i.e. they are 

Duschinsky mixed; a similar picture holds when these S1 vibrations are expressed in terms of the D0
+ 

vibrations. In contrast, the D17 and D21 vibrations exhibit extremely similar motions in the three 

electronic states, and so are not considered to be Duschinsky mixed. We now point out that the S1 D18 

vibration is dominated by the same motion as in the S0 state (and D0
+ state) and so these are 

recognizably the same vibration, even though the S0 and S1 motions are not precisely the same, with 

a noteworthy contribution in S1 from D19. Hence, we retain the D18 label for this vibration across the 

three electronic states. This is not true for the D19 and D20 vibrations, where the two S1 vibrations have 

motions that can be expressed as significant admixtures of the corresponding S0 (or D0
+) vibrations; as 

such, the D19 and D20 labels cannot be used for these two S1 vibrations, which is why we have 

designated them DX and DY, in increasing wavenumber order. 

We now look at the activity in the 2D-LIF and ZEKE spectra in more detail. In Figure 2, we can see that 

there is significant cross activity in the 2D-LIF spectrum involving the D18, D19 and D20 vibrations, as 

indicated by the (X1, 181), (X1, 191) and (X1, 201) bands, together with (Y1, 181), (Y1, 191) and (Y1, 201), 

which appear for each of the two m levels. A definite (181m0, 191m0) band can be seen, as well as 

(181m0, 181m0), but there is only the faintest activity for (181m0, 201m0); there do, however, appear to 

be (Y1m0,1, 181m0,1) bands, albeit overlapped by (Y1m1, 201m4); indicating a lesser contribution of D18 to 

the S1 state Y1 vibration, compared to the X1 vibration – see further discussion below. 

With regard to the mFT ZEKE spectra in Figure 3, clear +191 and +201 activity can be seen when exciting 

via each of X1 and Y1, for both m = 0 and m = 1 levels, with the +191 wavenumber being lower than that 

of +201, i.e. the opposite order to the S0 and S1 states – see Table II. (There is also +181 activity, but this 

is less prominent.) The +191mx
 vibtor activity is greatest when exciting via Y1 and that of +201mx when 

exciting via X1, with this being most clear from the +191m3(+) and +201m3(+) bands. The dual activity of 

both vibrations is consistent with the vibrational character of the DX and DY vibrations in the S1 state 

being highly mixed versions of the corresponding D0
+ vibrations. The assignment of the various vibtor 

transitions is relatively straightforward, with the +201mx transitions being very close to the expected 

positions; however, the +191mx bands are somewhat shifted from the expected positions, but can be 
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identified by their relative intensities and by comparison to the +201mx bands. Further discussion on 

the shifted +191mx band spacings for mFT is given in Section IV.B. 

At this point, we note that for a symmetric, disubstituted benzene, such as mDFB, the point group is 

C2v, where the D19 and D20 vibrations are both of b2 symmetry, while D18 is of a1 symmetry; thus, D19 

and D20 can be thought of as mixing with one another during their evolution as the mass of the 

substituents changes,15 while D18 cannot. In the asymmetric mFT, we note that the masses of CH3 and 

a fluorine atom are very similar, and this may be an explanation of why there is strong Duschinsky 

mixing between D19 and D20. Also, as the mass difference between the two substituents increases for 

an asymmetric disubstitution, D18 and D19, , evolve into localized motions containing symmetric and 

asymmetric stretches, respectively, each involving the substituents, both being of a symmetry (in the 

Cs point group).15 In the present case, this is exhibited as the mixing between the D18 and D19 modes, 

for which the localization of the motion is not complete, and the extent of this varies between the 

electronic states (see Figure 4). We now compare and contrast the activity in the 2D-LIF and ZEKE 

spectra seen when exciting via the 181, X1 and Y1 levels. 

The initial interpretation of the 2D-LIF spectrum (Figure 2) is that DY in the S1 state is dominated by S0 

D20 character, with a sizeable contribution from D19 and a smaller one from D18; furthermore, DX has 

the largest contribution from D19 but with large contributions from D18 and (to a lesser extent) D20. We 

can also see that D18 in the S1 state has a significant contribution from S0 D19. These conclusions are 

largely in line with the calculated S0/S1 Duschinsky matrix (Figure 4). 

If we now look at the ZEKE spectra in Figure 3, then we would reach a different conclusion, in that 

exciting via Y1 gives the largest contribution from +D19 (i.e. the D19 vibration in the cation) with a 

significant contribution from +D20, while exciting via X1 gives the largest contribution from +D20, with a 

significant contribution from +D19. Again, these conclusions are in line with the calculated S1/D0
+ 

Duschinsky matrix – see Figure 4. As a consequence, at first sight it seems that the conclusions from 

the 2D-LIF and ZEKE spectra are contradictory with regards to the make-up of the DX and DY S1 

vibrations. This must arise from the small, but notable, differences in the motions of the D18, D19 and 

D20 vibrations in the S0 and D0
+ electronic states, which cause the expression of the S1 motions as 

admixtures of these vibrations in the different electronic states to differ. In addition, the Franck-

Condon factors between the vibrations and associated vibtor levels will differ for the S1  S0 and D0
+ 

 S1 transitions, depending on the main geometry changes between the respective pair of electronic 

states. These have been discussed previously6,7 for mFT and mClT, where the changes are very similar. 
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Notably, for mFT, the C-CH3 and C-F bond lengths both increase significantly during the S1  S0 

transition; however, the C-CH3 bond length is almost unchanged during the D0
+  S1 ionization, while 

the C-F bond shortens. Also, a shortening of all ring C-C bond lengths occurs during the S1  S0 

transition, while there is an asymmetric change in those bond lengths during the D0
+ S1 ionization. 

These are consistent with the 181, X1 and Y1 activity seen during the S1  S0 and S1  S0 transitions 

(Figure 1 and Figure 2, respectively) and the activity of +181 in the ZEKE spectra via the vibrationless 

m0 and m1 levels (see Ref. 6). 

We now consider the calculated motions of these three vibrations. Looking first at D18 and D19 (Figure 

4), we see motions in the S0 and D0
+ states that have significant in-phase C-CH3 and C-F stretches for 

D18, but these are out-of-phase for D19; moreover, the motions of the other atoms are very similar for 

these states. For D18 in the S1 state, although the motion of the methyl group, and that of some of the 

ring carbon atoms, is different than those of the other two electronic states, it is dominated by the in-

phase C-CH3 and C-F stretches: this is our justification for employing the same vibrational label. 

Similarly, for D20 in the S0 and D0
+ states, the motion can be identified by the in-phase, in-plane bending 

of the C-CH3 and C-F bonds. However, in the S1 state, the motions of two of the vibrations, the ones 

labelled X and Y, can be seen to be significant mixtures of the motions of the D19 and D20 vibrations. In 

particular, the motions of the C-CH3 and C-F bonds for DX and DY are similar to those of D19 and D20, 

respectively, while the motions of the carbon atoms in the aromatic rings for DX and DY largely 

resemble D20 and D19, respectively. Thus, different aspects of the DX and DY motions resemble different 

parts of the D19 and D20 vibrations. This shows that the D19 and D20 motions have indeed become mixed 

in S1, in line with the Duschinsky matrices (Figure 4) and this is reflected in the activity in the 2D-LIF 

and ZEKE spectra (Figure 2 and Figure 3). Of course, each entry in the Duschinsky matrix is a distillation 

of the comparisons of all angular and radial displacements between two vibrations; nonetheless, even 

though the subtleties of the different changes are not necessarily evident, the entry is expected to 

reflect the most important geometry changes for a particular electronic transition. This case shows 

that in fact the Duschinsky matrix does give a good qualitative picture of the observed spectral activity, 

although, for very mixed vibrations, caution is merited in the interpretation of the matrix in 

establishing how vibrations of one electronic state map onto another. Clearly, for the S1  S0 emission, 

it is the motions of the C-CH3 and C-F bonds that dominate the overlap of the S1 DX and DY vibrations 

with the S0 D19 and D20 ones; while for the D0
+  S1 ionization, the relative motions of the carbon 

atoms in the aromatic ring are the more important in determining the activity. 
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Summarizing, we conclude that the D18, DX and DY vibrations are heavily mixed in the S1 state, with the 

D19 and D20 contributions to X1 and Y1 each being particularly significant; however, when distilled into 

Duschinsky matrix entries, these are different when expressed in terms of the S1 or D0
+ vibrations, but 

in agreement with the observed vibrational activity. 

D. ZEKE spectra of mClT 

ZEKE spectra of mClT were recorded when exciting at various positions in the region indicated in the 

expanded view in the bottom half of Figure 1. These spectra are shown in Figure 5, for the m = 0 and 

m = 1 components, respectively; note that the 191m1 and 201m0 transitions overlap, and so the 

spectrum recorded for these overlapped features is included in both the upper and lower portions of 

the figure, each shifted to be on the correct relative wavenumber scale. The S0/D0
+ Duschinsky matrix 

shown in Figure 6 indicates that although the D18, D19, and D20 vibrations of the D0
+ state are mixed 

versions of the corresponding S0 ones, there is sufficient dominant character to employ the same 

labels for both states, notably with respect to the motions of the C-CH3 and C-Cl bonds. With regard 

to the aromatic ring carbon atoms, although the motions are not the same in the S1 state as the other 

two states, they are largely correspondent with that expected for the D19 or D20 vibrations and this 

gives a more diagonal Duschinsky matrix, allowing the same vibrational labels to be used in the three 

states. Although the 2D-LIF spectrum was not recorded, the S0/S1 Duschinsky matrix indicates that 

there would likely be significant cross activity between the 191 and 201 emissions, but with 181 being 

largely pure. 

For mClT, the ZEKE spectra recorded via 191m0 and 191m1 are relatively clean, with activity associated 

almost exclusively with this mode, with only small contributions from +211 when exciting via 191m0, 

and +302 when exciting via 191m1. (The +301m2 contribution, seen when exciting via 191m1 is consistent 

with the observation of this band when exciting via m1 – see Refs. 7 and 14.) We observe that the 

wavenumber of +211m0 is very close to that of +m5; however, the latter is symmetry forbidden when 

exciting via 191m0. (Although we have discussed previously6 the possible activity of +m5 when exciting 

via m0 for mFT in terms of a possible deviation away from the G6 MSG, we currently favour the +211m0 

assignment here.)  On the other hand, it is clear that there is significant cross activity between 181 and 

201, although this is much clearer when exciting via the m = 0 components: for the m = 1 components, 

the spectra are less clean and there are severely overlapped features (see Figure 5). In particular, 

201m0 is overlapped by 191m1 for the 35Cl isotopologue, as is evident from the REMPI spectra of the 

35Cl and 37Cl isotopologues, Figure 1 (bottom trace). It can also be seen from Figure 1 that 201m1 for 
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the 35Cl isotopologue is overlapped by 201m0 for the 37Cl isotopologue, but we cannot see definitive 

evidence for the latter in the ZEKE spectra. No attempts were made to record ZEKE spectra via 201m1 

for the 37Cl isotopologue. 

We comment that the activity seen in the ZEKE spectra when exciting via 191m0 and 191m1 is similar 

to that observed7 via the pure torsional levels, m0 and m1, although the +191mx bands are relatively 

more intense here, as expected. We highlight that no evidence was seen for the +181mx bands 

observed via the pure torsional levels;7 additionally, there was a similar lack of +201mx band activity. 

This suggests that the D19 vibration in the cation has a very similar motion to that of the S1 state, which 

is largely supported by the Duschinsky matrix shown in Figure 6. In contrast, when exciting via 181m0 

and 181m1 then bands attributable to both +181mx and +201mx are present, which is in line with the 

Duschinsky matrix. That said, the activity of +181mx bands when exciting via 201m1 is less clear, 

although there is plausible evidence for presence of a +181m3(+) band when exciting via 201m0. Since 

some of the +191mx and +201mx bands are very close in wavenumber, it is possible that +191mx bands 

are hidden, but these are not expected, according to the Duschinsky matrix. Concomitantly, when 

exciting via 201m0 and 201m1, both +181mx and +201mx
 activity is present. The implication is that the D18 

and D20 vibrations undergo Duschinsky mixing between the S1 state and the cation, in line with the 

presented S1/D0
+ Duschinsky matrix.  

From Figure 1, the 201m0 transition is expected to be largely coincident with the 191m1 transition for 

the 35Cl isotopologue. The strongest ZEKE band expected from 201m0 is +201m3(+); this can be seen as a 

shoulder on the lower wavenumber side of the +191m4 band in Figure 5, providing evidence for this 

overlap. Similarly, the 191m0 band for the 37Cl isotopologue is mostly overlapping the same band for 

the 35Cl isotopologue; but since we do not expect significant isotopic shifts for the +191mx bands, then 

there is not expected to be any obvious evidence expected for this overlap, and indeed none is seen. 

We also note that the 201m0 band for the 37Cl isotopologue is expected to coincide with the 201m1 

band for the 35Cl isotopologue, and there is a slight broadening of the main +201m4 band, but this is 

merely consistent with +201m3(+) activity from the 37Cl isotopologue, rather than being definitive. 

Comparing the vibrational motions of the three vibrations shown in Figure 4 and Figure 6, it is clear 

that in the S0 and D0
+ states, the C-CH3 and C-Cl stretches have become more localized for mClT – as 

per the discussion given in Ref. 15 – see the forms of the D18 and D19 modes; however, there is more 

bending motion of the methyl group in D19 of mClT caused by the more pronounced asymmetry in 

mass in the molecule. 
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In summary, between the S1 and D0
+ states for mClT, the corresponding Duschinsky matrix suggests 

that all three of the D18, D19 and D20 states undergo a small amount of Duschinsky mixing so that activity 

in each of the three modes is expected in the cation, whichever is excited, and this will, of course, 

apply to both of the m = 0 and m = 1 components. The spectra recorded when exciting via 181m0,1 do 

support a greater mixing between D18 and D20. The spectra recorded when exciting via 191m0,1 appear 

to show little evidence of activity involving the other two vibrations, while those recorded via 201m0,1 

suffer from significant overlap, but do not exclude involvement of activity of the other two vibrations. 

Hence, these observations are only qualitatively in line with the Duschinsky matrices. Overall, 

however, the situation for mClT appears to be clearer cut than for mFT. We note our discussion of the 

geometry changes for mFT in Section III.C, which complicates the expected vibrational activity, and 

which also applies, but to a more limited extent, to mClT. We highlight the consistency between the 

molecules with the activity of 181, 191 and 201 in the S1  S0 excitation (Figure 1). Further, we saw 

activity of both +181 and +191 when exciting via the vibrationless m0 and m1 levels,7 which is expected 

from the anticipated changes in bond lengths; note that only +181 was active in the case of mFT,6 again 

illustrating activity differences between two very similar molecules. 

IV. FURTHER DISCUSSION 

A. Duschinsky rotation 

The assumed linear and orthogonal relationship between the vibrations of different electronic states,5 

is only an approximation26 and neither of these conditions strictly holds; moreover, when the 

geometries of the electronic states differ from each other, axis switching can occur,27 which can 

further complicate the matter. On top of this, the entries in a Duschinsky matrix are a single number 

summarizing all of the changes in angular and radial motions of the bonds between two electronic 

states. If the vibrational motions are largely similar, then the diagonal entries will be the largest. If 

some of the vibrations become very mixed, then significant off-diagonal elements will be present, but 

still the diagonal elements would be expected to be the largest. The case is unusual here in that some 

off-diagonal elements are the largest for particular vibrations. Normally, this would suggest a 

misassignment of the vibrational labels; however, here these labels have been established from the 

S0/D0
+ Duschinsky matrix. Hence we interpret these large off-diagonal elements as reflecting particular 

aspects of the geometry changes that occur as a result of the electronic excitation. In such a scenario, 

as happens here for mFT, there is no longer a clear 1:1 correspondence between the vibrations in the 

S1 state and the other two states. This is indeed largely borne out by the calculated matrices and the 

experimental observations as discussed in the present work, with the strong mixing between the D19 
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and D20 modes for mFT being the most notable, and that between D18 and D20 being significant for 

mClT.  

Different Duschinsky mixings between the molecules will arise from the slightly different motions of 

the vibrations, owing to the different masses of the halogen atoms in the two cases, plus slightly 

different electronic effects caused by the different electronegativities of the halogen atoms, and the 

different overlap of the halogen orbitals with the aromatic π system. For mFT, the motions of two of 

the S1 vibrations become strong mixtures of the S0 (and D0
+) vibrations, preventing the same labels 

being used; although the mixing is also significant for mClT, the motions are similar enough to employ 

the same labels. These changes in motions are reflected in the activity in the ZEKE spectra and, for 

mFT, also in the 2D-LIF spectra. 

B. Vibtor coupling and torsional potential changes 

In Table III and Table IV, we give the wavenumbers of the different vibtor transitions in the cation for 

mFT and mClT, respectively, and the separation of each of these levels from the m = 0 level of each 

vibration. Previously,6,7 we have discussed the fact that the torsional potential of the out-of-plane D30 

vibration and its first overtone in the cation is altered compared to the pure torsional potential for 

both mFT and mClT, while the potentials for the observed in-plane (totally-symmetric) vibrations were 

not affected. Here, we find that the vibtor spacings of the cation involving the in-plane D19 vibration 

are reduced compared to those of the pure torsional levels (Table IV) suggesting the torsional barrier 

experienced during this vibration is lower, while some of those involving D20 are largely unaltered. 

However, it is difficult to rationalize, from the vibrational motions shown in Figure 4 and Figure 6, why 

the CH3 torsional barrier is particularly sensitive to the D19 vibrational motion in the cation, and this 

may reflect a more complicated explanation in terms of electronic- and vibration-induced steric 

interactions. 

V. CONCLUSIONS 

In this work, we have focused on the activity and character of three vibrations for the closely-related 

molecules, mFT and mClT. In particular, we examined the change in the character of a subset of the 

vibrations upon electronic excitation, S1  S0, which was deduced via the activity in ZEKE spectra, but 

also in 2D-LIF spectra for mFT. Even though the activity in the REMPI spectra was very similar for these 

two molecules, the details of the changing vibrational character showed that in fact there were 

significant differences in the mixings occurring as a result of electronic excitation and ionization. This 

could be seen from the calculated form of the vibrations, as well as the differences in the vibrational 

activity exhibited in the spectra. In general terms, the calculated Duschinsky matrices were in line with 
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the observed spectral activity, even though such matrices are only expected to be approximate 

reflections of the vibrational character change between electronic states. Unusually, for mFT, if one 

were to deduce the correspondence between the S1 vibrations and those in the S0 and D0
+ states, 

reverse conclusions would be reached. This was identified as being due to the motions of the carbon 

atoms in the aromatic ring pairing with the switched C-CH3 and C-F bond motions in the S1 state for 

two of the vibrations. Remarkably, the Duschinsky matrices picked up the subtlety of the different 

electronic transitions affecting different geometric aspects of the molecule, and, in a qualitative way, 

correctly predicted the switched intensities of the transitions involving the D19 and D20 vibrations. We 

conclude that Duschinsky matrices, even though they are a rather coarse distillation of all of the 

changes in atomic motions between electronic states, are actually very sensitive to the aspects of the 

geometry that are most affected by the electronic transition. 

Understanding such changes in detail, via assignment of vibrational structure as a result of electronic 

excitation and photoionization, are clearly key to understanding photo-physico-chemical behaviour. 
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Table I: Correspondence of the Cs point group symmetry classes with those of the G6 molecular 

symmetry group. Also indicated are the symmetries of the Di vibrations and the different pure 

torsional levels.a 

 

Cs G6 Di
 b m 

a a1 D1–D21 0, 3(+),6(+), 9(+) 

a a2 D22–D30 3(-),6(-), 9(-) 

 e  1,2,4,5,7,8 

 

a Symmetries of vibtor levels can be obtained by combining the vibrational symmetry (in G6) with those 

of the pure torsional level, using the C3v point group direct product table. 

b The Di labels are described in Ref. 15, where the vibration mode diagrams can also be found. 
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Table II: Calculated and experimental wavenumbers for mFT and mClT vibrations pertinent to the 

present study. 

Di S0 S1 D0
+ 

 Calculateda Experimental Calculatedb Experimental Calculatedc Experimental 

mFT 

17 718 728d, f 685 685d,f 700  

18 519 527d,f,g 459 460 e,f 509 510e,f 

19 (X) 505 512d,f,g 448 457d,e,f 410 415f 

20 (Y) 435 445 d,f,g 410 420d,e,f 442 456f 

21 285 292 d,f,g 281 284d,e,f,g 290 296 e,f 

28 443 438 d,f,g 241 258d,e,f,g 373 375 e,f 

29 236 236f,g 184 173 d,e,f,g 190 190 e,f 

30 199 201f,g 122 127 d,e,f,g 167 167 e,f 

mClT 

18 513 524 h,j 446 455h 455 457i 

19 402 409 h,j 373 378h 391 396i 

20 376 387 h,j 368 373h 377 387i 

21 226 221 h,j 226 231i 233 240i 

28 432 431j 241  366  

29 213 234j 159 151i 176 176i 

30 171 185j 80 111i 150 149i 

a B3LYP/aug-cc-pVTZ, scaled by 0.97. For mClT, the results are for the 35Cl isotopologue. 

b TD-B3LYP/aug-cc-pVTZ, scaled by 0.97. For mClT, the results are for the 35Cl isotopologue. 

c UB3LYP/aug-cc-pVTZ, scaled by 0.97; <S2> = 0.76. For mClT, the results are for the 35Cl isotopologue. 

d Ref. 9. Small updates to some of these values have been made in Refs. 3, 8 and the present work. 

e Ref. 6 

f Present work. The experimental values for D27 were obtained from observed vibtor bands. In the case 

of D19 and D20 in the S1 state, which we have designated DX and DY in the text, we have allocated these 

to the Di label that has the maximum S0 contribution from the Duschinsky matrix in Figure 4. 

g From Ref. 8 

h From Ref. 13 

i From Ref. 7 

j Ref. 15.
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Table III: Separations of vibtor levels built on different vibrations for mFT (cm-1). 

 Vibrational Levela,b 

Torsionc +00 

[0] 

+181 

[510] 

+191 

[415] 

+201 

[456] 

+m0,1 0 0 0 0 

+m2 101 100 

(610) 

94 

(509) 

102 

(558) 

+m3(-) 103 102 

(612) 

  

+m3(+) 185 184 

(694) 

172 

(587) 

187 

(643) 

+m4 192 193 

(703) 

181 

(596) 

195 

(651) 

+m5 250 250 

(760) 

235 

(650) 

254 

(710) 

+m6(-) 292 292 

(802) 

 294 

(750) 

+m6(+) 311 312 

(822) 

293 

(708) 

312 

(768) 

+m7 368 370 

(880) 

  

 

a Torsional spacings are given with respect to the band position of the m = 0 level of the indicated 
vibration. 

b Values in square brackets in the column headers are the wavenumbers of the m = 0 level of the 
indicated vibration. 

c The +m0 and +m1 levels are degenerate at our resolution. Levels with m ≠ 3n have degenerate + and 
– levels. 
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Table IV: Separations of vibtor levels built on different vibrations for mClT (cm-1). 

 Vibrational Levela,b 

Torsionc +00 

[0] 

+181 

[457] 

+191 

[396] 

+201 

[387] 

+m0,1 0 0 0 0 

+m2 98 97 

(555) 

94 

(490) 

105 

(492) 

+m3(-) 98    

+m3(+) 175 177 

(633) 

171 

(563) 

182 

(569) 

+m4 186 186 

(642) 

177 

(573) 

193 

(584) 

+m5 246 248 

(704) 

240 

(636) 

254 

(641) 

+m6(-) 284 278 

(734) 

272 

(668) 

 

+m6(+) 300 300 

(756) 

294 

(690) 

300 

(687) 

+m7 363    

 

a Torsional spacings are given with respect to the band position of the m = 0 level of the indicated 

vibration. The values in parentheses are the actual band position with respect to +m0. 

b Values in square brackets in the column headers are the wavenumbers of the m = 0 level of the 

indicated vibration. 

c The +m0 and +m1 levels are degenerate at our resolution. Levels with m ≠ 3n have degenerate + and 

– levels. 
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Figure Captions 

Figure 1: REMPI spectra of the 0–500 cm-1 region above the origin for the S1  S0 transition for (a) 

mFT and (b) mClT. In each case, the expanded views of the regions corresponding to the 181m0,1, 

191m0,1 and 201m0,1 transitions are shown. In the case of mClT, traces for both the 35Cl and 37Cl 

isotopologues are presented. Note that for mFT, the region around the origin to lower wavenumber 

than the indicated break has been scaled by a factor of 0.5. 

Figure 2: 2D-LIF spectrum for mFT, where the excitation range covers the 181m0,1, 191m0,1 and 201m0,1 

transitions. The emission range covers the main (v, m) = 0 regions, extending to higher wavenumber 

to include other key features. Assignments for related bands (e.g. vibtor and combination levels of the 

same vibration) are shown in the same colour. Features marked with an asterisk are not assigned here, 

but these will be addressed in a future publication. 

Figure 3: ZEKE spectra of mFT recorded at different S1  S0 excitation positions, separated into m = 0 

and m = 1 components. For clarity, the preceding superscripted “+” used in the text is omitted from 

the transition labels. Since the 181m1 and 191m0 transitions are overlapping, the corresponding ZEKE 

spectrum has been included in both parts of the figure; the bold label indicates the pertinent level for 

that part of the figure. We have added obeli (†) to bands that arise from the overlapping transition, 

and which are labelled on the duplicate trace. The relative energy scales are given with respect to the 

+m0 and +m1 transitions; in absolute terms, the +m1 transition is ca. 5 cm-1 lower in wavenumber, owing 

to the m1
  m0 spacing in the S0 state. 

Figure 4: Top. Duschinsky matrices for selected vibrations of mFT for combinations of the S0, S1 and 

D0
+ electronic states. The depth of grey shading represents the coefficients of the mixing between the 

vibrations in the two electronic states, with white representing 0 and black representing 1. Bottom. 

Calculated mode diagrams for the three vibrations corresponding to D18, D19, and D20 in the three 

different electronic states. See text for further discussion. 

Figure 5: ZEKE spectra of mClT recorded at different S1  S0 excitation positions, separated into m = 0 

and m = 1 components. For clarity, the preceding superscripted “+” used in the text is omitted from 

the transition labels. Since the 191m1 and 201m0 transitions are overlapping, the corresponding ZEKE 

spectrum has been included in both parts of the figure; the bold label indicates the pertinent level for 

that part of the figure. We have added obeli (†) to bands that arise from the overlapping transition, 

and which are labelled on the duplicate trace. The low-wavenumber bands marked with asterisks (*) 

are spurious. The relative energy scales are given with respect to the +m0 and +m1 transitions; in 
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absolute terms, the +m1 transition is ca. 5 cm-1 lower in wavenumber, owing to the m1
  m0 spacing 

in the S0 state. 

Figure 6: Top. Duschinsky matrices for mClT between combinations of the S0, S1 and D0
+ electronic 

states. The depth of grey shading represents the coefficients of the mixing between the vibrations in 

the two electronic states, with white representing 0 and black representing 1. Bottom. Calculated 

mode diagrams for the three vibrations corresponding to D18, D19, and D20 in the three different 

electronic states. See text for further discussion. 
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Figure 2 
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Figure 3 

 

  



24 
 

Figure 4 
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Figure 5 
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