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Abstract

In this article we consider the numerical approximation of the convection-dif-
fusion-reaction equation. One of the main challenges of designing a numerical
method for this problem is that boundary layers occurring in the convection-
dominated case can lead to non-physical oscillations in the numerical approx-
imation, often referred to as Gibbs phenomena. The idea of this article is to
consider the approximation problem as a residual minimization in dual norms
in Lq-type Sobolev spaces, with 1 < q < ∞. We then apply a non-standard,
non-linear Petrov-Galerkin discretization, that is applicable to reflexive Banach
spaces such that the space itself and its dual are strictly convex. Similar to
discontinuous Petrov-Galerkin methods, this method is based on minimizing
the residual in a dual norm. Replacing the intractable dual norm by a suitable
discrete dual norm gives rise to a non-linear inexact mixed method. This gener-
alizes the Petrov-Galerkin framework developed in the context of discontinuous
Petrov-Galerkin methods to more general Banach spaces. For the convection-
diffusion-reaction equation, this yields a generalization of a similar approach
from the L2-setting to the Lq-setting. A key advantage of considering a more
general Banach space setting is that, in certain cases, the oscillations in the
numerical approximation vanish as q tends to 1, as we will demonstrate using a
few simple numerical examples.
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1. Introduction

The term Gibbs phenomenon originally refers to the effect that the partial
sums of the Fourier series approximating a function with a jump discontinu-
ity exhibit over- and undershoots near the discontinuity. The phenomenon is
named after Willard Gibbs who described it in 1899 [1], though it had already
been discovered earlier by Henry Wilbraham in 1848 [2]. It also occurs in the
best approximation by spline functions in the L2-metric [3] and is one of the
main challenges in the numerical approximation of partial differential equations
(PDEs) whose solutions contain sharp features such as shocks or thin layers. In
[4] it is shown in one dimension that the best approximation of jump discon-
tinuities by polygonal lines on a uniform grid in one dimension does not lead
to Gibbs phenomenon in L1. More precisely, it is shown that the overshoot of
the best approximation in Lq, 1 < q < ∞, is an increasing function of q that
tends to 0 as q tends to 1. We show in [5, 6] that this result is still true for the
best approximation in Lq by piecewise linear functions on certain meshes in two
dimensions and certain non-uniform meshes in one dimension. However, there
exist meshes both in one and two dimensions such that the (maximal) overshoot
tends to some α > 0 as q → 1. Nonetheless, it is suggested in [5, 6] that if the
location of the discontinuity is known, a mesh can be constructed in such a way
that the overshoot vanishes. In [7], it is shown that Gibbs phenomena occur
in the best approximation of a function containing a jump discontinuity by a
trigonometric polynomial in the L1-metric. This confirms that the choice of
the finite dimensional approximation space crucially determines whether Gibbs
phenomena can be eliminated by considering best approximation in L1.

The motivation of this article is to exploit the Gibbs-reducing property of
Lq-type spaces in the numerical approximation of PDEs using finite element
methods. A similar idea has already been pursued for numerical methods in
Lq by Guermond [8]. In [8], Guermond points out that there are only very few
attempts to approximate PDEs directly in L1 despite the fact that first-order
PDEs and their non-linear generalizations have been extensively studied in L1.
The existing numerical methods to achieve this include the ones outlined in
the articles by Lavery [9, 10, 11], the reweighted least-squares method of Jiang
[12, 13] and the methods outlined in the series of articles by Guermond et al.
[8, 14, 15, 16, 17].

More recently, a novel approach to designing finite element methods in a
very general Banach space setting has been introduced in [18]. This approach is
rooted in the so-called Discontinuous Petrov-Galerkin (DPG) methods [19] and
extends the concept of optimal test norms and functions from Hilbert spaces
to more general Banach spaces yielding a scheme that can be interpreted as a
non-linear Petrov-Galerkin method. At least in an abstract sense, this approach
outlines how to design a numerical method that leads to a quasi-best approxi-
mation of the solution in a space of choice, provided the continuous problem is
well-posed in a suitable sense. In this article we apply this abstract approach to

the convection-diffusion-reaction equation in a W 1,q
0 (Ω)-W 1,q′

0 (Ω) setting where
1/q + 1/q′ = 1 and study the effect this has on the numerical approximation
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of boundary layers. We will see that as q → 1, the Gibbs phenomenon can
be eliminated entirely on some meshes for certain problem configurations. We
will also consider certain choices of meshes for which this is not the case and
consider how this can be fixed.

Gibbs phenomena in the numerical approximation of singularly perturbed
differential equations such as the convection-dominated convection-diffusion-
reaction equation have been studied exstensively in the literature, e.g., [20]. It
is a challenge common to virtually all discretisation approaches, including finite
difference methods, finite volume methods and finite element methods. Hence,
numerical methods designed for such problems often rely on so-called stabiliza-
tion and/or shock-capturing techniques, e.g., [20, 21, 22, 23]. The presence of
unphysical oscillations can usually be linked to the fact that the discretization
of the differential operator does not preserve certain properties of the operator,
such as maximum and comparison principles or (inverse) monotonicity. Even
stabilized methods such as streamline-upwind Petrov-Galerkin (SUPG) meth-
ods may fail to satisfy these properties [22]. Indeed, more generally, Godunov’s
barrier theorem [24, 25] implies that any linear method satisfying a discrete
maximum principle can be at most first-order accurate. Hence, higher-order
numerical schemes that eliminate Gibbs phenomena must be non-linear. Shock
capturing approaches typically rely on a non-linear artificial diffusion term, e.g.,
[26]. In the context of discontinuous Galerkin methods or finite volume methods,
non-linear schemes satisfying a discrete maximum principle are usually based on
flux or slope limiters, e.g., [27, 28]. An approach to enforcing a maximum prin-
ciple on the algebraic level are so-called flux corrected transport methods, e.g.,
[29, 30, 31, 32, 33]. A common challenge in designing a stable and monotonicity
preserving method is that this typically requires user input or a priori knowl-
edge on the solution, for example in order to select problem specific constants
present in the definition of the numerical scheme. In this article, we present
a scheme that relies on a very general residual minimization approach, that is
in principle applicable to any (linear) variational problem. The key advantage
of this approach is that the scheme naturally follows from a robust formula-
tion of the variational problem without relying on user-specific parameters. In
the case of the convection-diffusion-reaction equation, the robust formulation in

the W 1,q
0 (Ω)-W 1,q′

0 (Ω) setting is an open problem and hence the design of the
scheme presented in this article is guided by numerical experiments instead.

1.1. Notation

Throughout this article, we denote by Lq (Ω), 1 ≤ q < ∞, the Lebesgue
space of q-integrable functions on a bounded Lipschitz domain Ω ⊂ Rd, d ∈
{1, 2, 3, . . .}; L∞(Ω) is the Lebesgue space of functions on Ω with finite essential
supremum; and W 1,q (Ω), 1 ≤ q ≤ ∞, is the Sobolev space of functions that

are in Lq (Ω) such that their gradient is in Lq (Ω)
d
. Furthermore, W 1,q

0 (Ω) ⊂
W 1,q (Ω) is the subspace of all functions with zero trace on the boundary ∂Ω.
The corresponding norms are denoted by ‖ · ‖Lq(Ω) and ‖ · ‖W 1,q(Ω), respectively,
and the Sobolev-semi norm on W 1,q (Ω) is given by | · |W 1,q(Ω). For q = 2, we
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furthermore use the usual notation H1(Ω) := W 1,2 (Ω) and H1
0 (Ω) := W 1,2

0 (Ω).
For 1 ≤ q ≤ ∞ we write q′ to denote the dual exponent such that 1/q+1/q′ = 1.
For any Banach space V , its norm is denoted by ‖ · ‖V and its dual space by V ′;
the dual space of W 1,q

0 (Ω) is given by W−1,q′ (Ω) and H−1(Ω) := W−1,2 (Ω).
For v ∈ V and ϕ ∈ V ′, we have the duality pairing

〈ϕ, v〉V ′,V := ϕ(v).

For any ϕ ∈ V ′, its norm in the dual space V ′ is given by

‖ϕ‖V ′ := sup
v∈V,v 6=0

〈ϕ, v〉V ′,V
‖v‖V

.

If V is a Hilbert space, we denote the Riesz map on V by RV .

1.2. Problem Statement

The approach to generalizing the DPG framework to general Banach spaces
introduced in [18] is based on residual minimization. To this end, the authors
consider the abstract problem: find u ∈ U such that

Bu = f in V ′,

where U and V are Banach spaces, B : U → V ′ is a continuous, bounded-below
linear operator, and the right hand side f is in the dual space V ′. The associated
residual minimization problem for a given finite dimensional subspace Un ⊂ U ,
e.g., a finite element space, of dimension n is defined as follows:

un = arg min
wn∈Un

‖f −Bwn‖V ′ .

It can be shown that the solution un is a quasi-best approximation of the ana-
lytical solution u, in the sense that

‖u− un‖U ≤
M

γ
inf

wn∈Un

‖u− wn‖U ,

where M is the continuity constant of B and γ the bounded-below constant of
B.

In [18] it is shown that the minimization problem can be reformulated yield-
ing the following non-linear mixed system: find (r, un) ∈ V × Un such that

〈JV (r), v〉V ′,V + 〈Bun, v〉V ′,V = 〈f, v〉V ′,V , ∀v ∈ V,
〈Bwn, r〉V ′,V = 0, ∀wn ∈ Un,

(1.1)

where JV is a so-called duality mapping. Duality mappings are a generalization
of the Riesz map RV to general Banach spaces with the main difference that
they are non-linear mappings unless V is a Hilbert space. To turn the above
mixed system into a practical method, V is additionally replaced by a finite
dimensional subspace Vm of dimension m. As a result the minimization problem
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is no longer solved exactly. However, if the spaces Un and Vm are chosen in a
suitable way, one can obtain a well-posed fully discrete mixed system that retains
the quasi-best approximation property of un with a modified constant.

The aim of this article is to apply this abstract framework to the convection-
diffusion-reaction equation

−ε∆u+ b · ∇u+ cu = f in Ω,

u = 0 on Γ = ∂Ω,
(1.2)

where ε, b : Ω → Rd, and c : Ω → R are the (positive) diffusion parameter,
convection field and reaction coefficient, respectively, and f : Ω→ R is a given
source term. Therefore, we will consider the linear operator associated with the
following bilinear form:

Bε(u, v) = ε

∫
Ω

∇u · ∇v dx−
∫

Ω

u∇ · (bv) dx +

∫
Ω

cuv dx.

The resulting method is a generalization to the W 1,q
0 (Ω)-W 1,q′

0 (Ω)-setting
of the method introduced for the H1

0 (Ω)-setting in [34], where the DPG frame-
work is applied to the convection-diffusion-reaction equation without introduc-
ing broken test spaces. Related Petrov-Galerkin formulations are studied in
[35, 36, 37, 38, 39].

1.3. Summary of Results

In this article we study how the mixed method (1.1) and its fully discrete
counterpart can be applied to the convection-diffusion-reaction equation (1.2).
In particular, we study the choice of the space V , the corresponding norm ‖·‖V ,
and the discrete space Vm. The norm ‖ · ‖V on the space V determines the op-
erator JV in (1.1) and thus crucially determines the resulting method. As in
the special case q = 2 investigated in [34], we introduce weakly imposed bound-
ary conditions on the inflow boundary in the space Vm to address robustness
issues. We demonstrate in one dimension, how this choice of boundary condi-
tions affects the approximation and compare this approach with the case when
a weighted norm on V is employed.

The main focus of our numerical investigation is eliminating Gibbs phenom-
ena in the finite element approximation. Indeed, we will see that the numerical
approximation generated by our method qualitatively behaves like the Lq (Ω)-
best approximation of the analytical solution. This suggests that the Gibbs
phenomenon can be eliminated by taking the limit q → 1 provided that the
L1 (Ω)-best approximation does not exhibit Gibbs phenomena. The results in
[5] and [6, Chapter 4] show that this depends on the mesh that is chosen. In one
dimension only certain non-uniform grids have the property that the L1 (Ω)-best
approximation contains over- and undershoots, whereas in higher dimensions
this can even occur on structured, uniform meshes. We will demonstrate for
one two-dimensional example that it is possible to use the insights from [5, 6]
to modify the mesh in order to eliminate Gibbs phenomena as q → 1.
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1.4. Outline of the Paper

This article is structured as follows: in Section 2 we introduce duality map-
pings, which are essential to the abstract framework in [18], cf., (1.1). In Section
3 we give a brief overview of the abstract framework in [18]. Then, in Section
4 we then apply this framework to the convection-diffusion-reaction equation
and illustrate how this yields a practical method that can be implemented, e.g.,
in FEniCS [40, 41]. In Section 5 we investigate the practical performance of
the proposed method for a range of different test problems in one and two di-
mensions. Finally, in 6, we summarize the work presented in this article and
highlight the potential and challenges of the proposed numerical method.

2. Duality Mappings

One of the key ingredients used to extend concepts from Hilbert spaces to
more general Banach spaces both in [42] and [43, 6] is replacing the Riesz map
with so-called duality mappings. In general, duality mappings are non-linear
maps that share certain properties with the Riesz map. If the underlying space
is a Hilbert space, any duality mapping is linear and the Riesz map is one
possible choice for the duality mapping. In this section we will give a precise
definition of duality mappings, summarize a range of very useful properties and
list some relevant examples.

Definition 2.1.

1. A weight function is a continuous and strictly increasing function ϕ :
R+ → R+ such that ϕ(0) = 0 and limt→∞ ϕ(t) = +∞.

2. Let V be a Banach space and ϕ a weight function. Denote by P(V ′) the
power set of V ′. Then the multivalued map J ϕV : V → P(V ′), defined by

J ϕV (v) := {v′ ∈ V ′ : 〈v′, v〉V ′,V = ‖v‖V ‖v′‖V ′ , ‖v′‖V ′ = ϕ(‖v‖V )} (2.1)

is called a duality mapping of weight ϕ.

Due to a corollary of the Hahn-Banach theorem (cf., e.g., [44, Corollary 1.3])
the set J ϕV (v) is non-empty. If we choose ϕ(t) = t as a weight function we
obtain the so-called normalized duality map. In many cases this choice is the
simplest and most convenient one. In fact, some books only introduce the
duality mapping for this choice of ϕ, cf., e.g., [44, 45, 46]. As we will see later,
however, ϕ(t) = tq−1 is in some cases a more suitable choice for Lq-type spaces.
If q = 2, this choice coincides with the normalized duality map. Furthermore,
note that we have JV (v) = {RV (v)} if JV is the normalized duality map and
V is a Hilbert space due to the Riesz Representation theorem.
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2.1. Properties of Duality Mappings

In the following proposition we summarize a few properties of the duality
map for Banach spaces with particular structures.

Proposition 2.2. Let V be a Banach space and denote by J ϕV : V → P(V ′)
the duality map of weight ϕ on V . Then the following statements are true:

1. V ′ is strictly convex1 if and only if J ϕV is single valued, cf., [45, Prop. 12.3].
In this case we define the duality map JϕV : V → V ′ such that J ϕV (v) =
{JϕV (v)} for all v ∈ V .

2. If V is strictly convex, then J ϕV (v) ∩ J ϕV (w) = ∅ for all w 6= v. In partic-
ular, J ϕV is injective.

3. V is reflexive if and only if J ϕV is surjective in the sense that for every
v′ ∈ V ′ there is a v ∈ V such that v′ ∈ J ϕV (v), cf., [47, Theorem 3.4,
Chapter II].

4. If V is a reflexive Banach space and J ϕV is a duality mapping of weight ϕ,
then the map (J ϕV )−1 : V ′ → P(V ) defined by

(J ϕV )−1(v′) := {v ∈ V : v′ ∈ J ϕV (v)} for all v′ ∈ V ′ (2.2)

is well defined due to the previous part of the proposition. Moreover, em-
ploying the canonical identification of V ′′ and V , (J ϕV )−1 as defined above
is a duality mapping on V ′ of weight ϕ−1, cf., [47, Corollary 3.5, Chap-
ter II].

The main implication of the above proposition is that in a strictly convex
and reflexive space V , the duality mapping is bijective and its inverse can be
identified with a duality mapping on the dual space V ′ with the inverse weight
ϕ−1.

The following theorem is a special case of Theorem 4.4 in [47, Chapter I] and
states that the duality map on V can be characterized using the subdifferential
of the norm on V . This is a key property of the duality map that will allow us
to derive the duality map for some specific Banach spaces in the special case
that the subdifferential is essentially the Gâteaux or Fréchet derivative of the
norm.

Theorem 2.3 (Asplund, cf., [47, Chapter I, Theorem 4.4]). Let V be a Banach
space and define FϕV : V → R by FϕV (·) := ψ(‖ · ‖V ), where ψ(s) :=

∫ s
0
ϕ(t) dt

and ϕ is a weight function. Then for any v ∈ V , we have

J ϕV (v) = ∂FϕV (v), (2.3)

where ∂FϕV (v) denotes the subdifferential of FϕV at v.

1A Banach space V is strictly convex if for all v1, v2 ∈ V such that v1 6= v2 and ‖v1‖V =
‖v2‖V = 1 it holds that ‖ϑv1 + (1− ϑ)v2‖V < 1 ∀ϑ ∈ (0, 1).
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The result that finally allows us to compute duality maps is the following.

Proposition 2.4 (cf., [46, Proposition 47.19]). Let V be a Banach space and
define FϕV : V → R by FϕV (·) := ψ(‖ · ‖V ), where ψ(s) :=

∫ s
0
ϕ(t) dt and ϕ is a

weight function.

1. If V ′ is strictly convex, then ∇FϕV (v) exists as a Gâteaux derivative and
∇FϕV (v) = JϕV (v) for all v ∈ V .

2. If V ′ is uniformly convex, then ∇FϕV (v) exists as a Fréchet derivative and
∇FϕV (v) = JϕV (v) for all v ∈ V .

Note that uniform convexity of V ′ implies strict convexity of V ′ (cf., [48])
and due to the Milman-Pettis Theorem, V ′ and hence also V are reflexive in
this case. Furthermore, if FϕV is Gâteaux differentiable, Theorem 2.3 guarantees
that the duality map is single valued which implies strict convexity of the dual
space V ′ due to Proposition 2.2.

2.2. Some Examples of Duality Mappings on Sobolev Spaces

First, consider V = Lq (Ω) with the norm

‖v‖Lq(Ω) =

(∫
Ω

|v|q dx

)1/q

. (2.4)

Let us denote the duality mapping on Lq (Ω) with weight ϕ(t) = tq−1 by Jq. In
this case ψ(s) =

∫ s
0
ϕ(t) dt = 1

q s
q and thus we can compute

〈Jq(v), w〉Lq′ (Ω),Lq(Ω) =
d

dt

(
1

q
‖v + tw‖qLq(Ω)

)∣∣∣∣
t=0

=
d

dt

(
1

q

∫
Ω

|v + tw|q dx

)∣∣∣∣
t=0

=

∫
Ω

|v|q−1sgn(v)w dx.

(2.5)

Note that ϕ−1(t) = tq
′−1 for q such that 1 = 1/q+1/q′ and therefore J−1

q′ = Jq.
Moreover, we have for all v ∈ Lq (Ω)

‖Jq(v)‖Lq′ (Ω) = ‖v‖q−1
Lq(Ω), 〈Jq(v), v〉Lq′ (Ω),Lq(Ω) = ‖v‖qLq(Ω). (2.6)

Similarly, we can compute the normalized duality map J̃q on Lq (Ω), i.e., the
duality map with weight ϕ(t) = t, and obtain

〈J̃q(v), w〉Lq′ (Ω),Lq(Ω) = ‖v‖2−qLq(Ω)

∫
Ω

|v|q−1sgn(v)w dx. (2.7)

Comparing the expressions for Jq and J̃q, we can see that it may be useful, in
particular for the implementation, to use Jq instead of the normalized duality
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mapping in order to avoid the additional scaling ‖v‖2−qLq(Ω). Indeed, if J̃q is a

non-linear operator in a variational problem that is approximated using a finite
element method, we would need to evaluate the derivative of J̃q to determine
the Jacobi matrix used in Newton’s method. The derivative is given by

〈J̃ ′q(v)(z), w〉Lq′ (Ω),Lq(Ω) = (q − 1)‖v‖2−qLq(Ω)

∫
Ω

|v|q−2zw dx

+ (2− q)‖v‖2−2q
Lq(Ω)

∫
Ω

|v|q−2vz dx

∫
Ω

|v|q−2vw dx.

If w and z are finite element functions with local support, the first term is only
non-zero if both w and z are non-zero and thus this term would yield a sparse
matrix for typical finite element spaces. The second term on the other hand is
always non-zero if v is non-zero on the whole domain and thus may lead to a
dense Jacobi matrix. If we consider Jq instead, the derivative consists of only

the first term without the scaling ‖v‖2−qLq(Ω) and therefore we obtain a sparse

Jacobi matrix.
As a second example consider the space W 1,q

0 (Ω) with the (semi-)norm
|v|W 1,q(Ω). In the same way as before we can compute the duality map of
weight ϕ(t) = tq−1 and obtain

〈JW 1,q
0 (Ω)(v), w〉Lq′ (Ω),Lq(Ω) =

∫
Ω

d∑
i=1

|∂iv|q−1sgn(∂iv)∂iw dx. (2.8)

Remark 2.5 (q-Laplacian). Let 1 ≤ q < r < ∞ and x ∈ Rd. In this case we
have the following norm equivalence on the finite dimensional space Rd:

‖x‖lq =

(
d∑
i=1

|xi|q
) 1

q

≤ d
1
q−

1
r

(
d∑
i=1

|xi|r
) 1

r

= d
1
q−

1
r ‖x‖lr , (2.9a)

‖x‖lr ≤ ‖x‖lq . (2.9b)

As a result (∫
Ω

‖∇v‖ql2 dx

)1/q

(2.10)

defines a norm on W 1,q
0 (Ω) that is equivalent to |v|W 1,q(Ω) and the corresponding

duality mapping for q > 2 is given by∫
Ω

‖∇v‖q−2
l2 ∇v · ∇w dx, (2.11)

which is also the weak form of the q-Laplacian.
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3. Minimum Residual Methods in Banach Spaces

As mentioned before, the method we are considering is a generalization of the
scheme discussed in [34]. Conceptually, this method is closely related to DPG
methods with the main difference that only continuous finite element spaces
are considered in [34]. The key observation that makes it possible to extend
the methodology to general Banach spaces is the equivalence with a residual
minimization problem, cf., [34] and [49] for the DPG method. In this section,
we will see that, in the context of Banach spaces, the Riesz map can be replaced
by a duality mapping, but due to the non-linearity of the duality mapping we
lose the concept of an optimal test space which is used in the context of DPG
methods, cf., [50]. The extension to Banach spaces was first introduced in [42]
and we will repeat the main concepts in this section.

Let U and V be two Banach spaces and b : U ×V → R a continuous bilinear
form that satisfies the following inf-sup conditions:

inf
w∈U

sup
v∈V

b(w, v)

‖w‖U‖v‖V
= γ > 0, (3.1a)

{v ∈ V : b(w, v) = 0,∀w ∈ U} = {0}. (3.1b)

For a given right-hand side ` ∈ V ′, we consider the problem: find u ∈ U such
that

b(u, v) = `(v) ∀v ∈ V. (3.2)

Introducing a finite dimensional subspace Un ⊂ U , we can formulate the follow-
ing residual minimization problem: find un ∈ Un such that

un = arg min
wn∈Un

HV (wn),

HV (wn) := ψ(‖Bwn − `‖V ′),
(3.3)

where ψ(0) = 0, ϕ := ψ′ is a weight function as defined in Section 2 and
B : U → V ′ denotes the linear operator associated with the bilinear form b. A
typical choice for ψ would be ψ(t) = tq/q, 1 < q < ∞. If V ′ is strictly convex,
then the duality mapping JϕV ′ is single valued and JϕV ′ = ∇(v′ 7→ ψ(‖v′‖V ′)).

Note that this best approximation problem can be formulated in any Banach
space. However, we need strict convexity for uniqueness of minimizers, cf., e.g.,
[51, 42]. The closed range theorem is still applicable in general Banach spaces
and provides conditions for well-posedness of linear problems. Its reformula-
tion in terms of inf-sup conditions only requires reflexivity of the test space to
describe the kernel of B′ by (3.1b). Here, B′ : V → U ′ denotes the adjoint
operator to B.

3.1. Saddle Point Formulation

If V ′ is strictly convex, it can be shown that the residual minimization
problem is equivalent to ∇HV (un) = JϕV ′(` − Bun) = 0. If V is additionally
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reflexive, as well as being strictly convex, we obtain the following non-linear
Petrov Galerkin formulation: find un ∈ Un such that

〈JϕV ′(`−Bun),Bwn〉V ′′,V ′

=

〈
Bwn,

(
Jϕ
−1

V

)−1

(`−Bun)

〉
V ′,V

= 0 ∀wn ∈ Un.
(3.4)

Here, we used JϕV ′ =
(
Jϕ
−1

V

)−1

by means of canonical identification, cf., Propo-

sition 2.2. Introducing an auxiliary variable r =
(
Jϕ
−1

V

)−1

(`− Bun), this can

be reformulated as a mixed method: find un ∈ Un and r ∈ V such that

〈Jϕ
−1

V (r), v〉V ′,V + 〈Bun, v〉V ′,V = 〈`, v〉V ′,V ∀v ∈ V, (3.5a)

〈Bwn, r〉V ′,V = 0 ∀wn ∈ Un. (3.5b)

Note that Jϕ
−1

V is a non-linear map unless V is a Hilbert space. If V is a Hilbert

space and we select ψ(t) = t2/2, then Jϕ
−1

V = RV and we recover the framework
in [34].

3.2. The Optimal Test Norm

In applications, we are often more interested in minimising the error in
the approximation with respect to the norm on U rather than minimising the
residual. In other words, we usually want to choose the norm on V in such a way
that we ultimately control the error ‖u− un‖U . With this in mind, employing
the inf-sup condition (3.1a) and continuity of B, we deduce that

‖u− un‖U ≤
1

γ
sup
v∈V

b(u− un, v)

‖v‖V
=

1

γ
‖`−Bun‖V ′ ≤

M

γ
‖u− un‖U , (3.6)

where M is the continuity constant of the bilinear form b. Hence, in order
to control ‖u − un‖U , we require γ and M as close to one as possible and
independent of certain problem specific parameters (the scaling of the diffusion
term, for example, in case of the convection-diffusion-reaction equation). The
optimal test norm is a concept introduced in the context of DPG methods [52]
but unlike the concept of optimal test functions and spaces it can easily be
extended to Banach spaces. The optimal test norm is defined as the norm on
V such that M = γ = 1 and is given by

‖v‖opt := sup
u∈U

b(u, v)

‖u‖U
= ‖B′v‖U ′ . (3.7)

Indeed,

sup
v∈V

b(w, v)

‖v‖opt
= sup
v∈V

(B′v)(w)

‖B′v‖U ′
= sup
g∈U ′

g(w)

‖g‖U ′
= ‖w‖U . (3.8)
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Conversely, we have the optimal constants M = γ = 1 for any given test norm,
if we endow U with the so-called energy norm,

‖u‖E := sup
v∈V

b(u, v)

‖v‖V
. (3.9)

Ideally, we want to select the norm on U in order to approximate the solution
in the desired norm and then work with the optimal test-norm. However, the
optimal test-norm is a dual norm which is, in general, not computable. Thus,
we have to replace the optimal test-norm with an equivalent norm that is com-
putable. The difficulty here is to obtain equivalence constants, i.e., constants γ
and M , that are independent of problem parameters.

In the context of the convection-diffusion-reaction equation, Broersen and
Stevenson work directly with the optimal test norm in [35], whereas the analysis
presented in [39] and [37] relies on robust estimates for γ andM by looking at the
adjoint problem. Extending any of the robust estimates from Hilbert subspaces
of L2 (Ω) to Banach spaces Lq (Ω), 1 < q <∞, is highly non-trivial and to the
best of our knowledge remains an open problem.

3.3. The Inexact Method
So far, (3.5) does not define a method that can be implemented because the

mixed method is still an infinite dimensional problem that relies on the whole
test space V . Replacing the space V in (3.5) by a finite dimensional Vm ⊂
V , however, allows us to approximate the solution to the best approximation
problem by the solution of a finite-dimensional saddle point problem. More
precisely, we obtain the following fully discrete mixed problem: find (rm, un) ∈
Vm × Un such that

〈Jϕ
−1

V (rm), vm〉V ′,V + 〈Bun, vm〉V ′,V = 〈`, vm〉V ′,V ∀vm ∈ Vm, (3.10a)

〈Bwn, rm〉V ′,V = 0 ∀wn ∈ Un, (3.10b)

where Jϕ
−1

V = RV if V is a Hilbert space.
Replacing V by a finite-dimensional subspace we obviously lose the best

approximation properties. The question of quantifying this ‘loss’ was addressed
in [53] for Hilbert spaces by introducing the concept of a Fortin-operator and
was later extended to Banach spaces in [42]. For well-posedness of the inexact
method we require the existence of a bounded projection operator Π : V → Vm
such that

〈Bwn, v −Πv〉V ′,V = 0 ∀wn ∈ Un, v ∈ V. (3.11)

The norm of Π then enters into the a priori estimate and quantifies the ‘loss’
due to the inexactness, i.e., we can obtain an a priori estimate of the form

‖u− un‖ ≤ C inf
wn∈Un

‖u− wn‖, C =
(‖Π‖+ ‖I −Π‖)M

γ
. (3.12)

Remark 3.1. The constant C can be improved both in the Hilbert setting, where
we can obtain C = ‖Π‖M/γ, cf., [54], and in the Banach setting, where we would
have to introduce geometric constants for the improved estimate, cf., [42].
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4. The Convection-Diffusion Equation

The main focus of this article is to apply the abstract approach described
in the previous section to the scalar convection-diffusion-reaction equation in a
W 1,q (Ω)-W 1,q′ (Ω) setting. To this end, consider the following model problem:

−ε∆u+ b · ∇u+ cu = f in Ω, (4.1a)

u = 0 on Γ = ∂Ω, (4.1b)

where ε, b : Ω → Rd and c : Ω → R are the (positive) diffusion parameter,
convection field and reaction coefficient, respectively, and f : Ω→ R is a given
source term. Multiplying by a test function v ∈ C∞c (Ω) and integrating by parts
yields the bilinear form

Bε(u, v) = ε

∫
Ω

∇u · ∇v dx−
∫

Ω

u∇ · (bv) dx +

∫
Ω

cuv dx. (4.2)

This allows us to state the following variational problem: find u ∈ U := W 1,q
0 (Ω)

such that

Bε(u, v) = 〈f, v〉V ′,V ∀v ∈ V := W 1,q′

0 (Ω) . (4.3)

In [43, 6], a proof of an inf-sup condition is given, where the norms on U and
V are weighted versions of the standard norms W 1,q (Ω) and W 1,q′ (Ω), respec-
tively. Furthermore, this proof requires certain regularity assumptions on the
solution to the Poisson problem and that the convection field b and the reaction
coefficient c satisfy c−∇· 1

qb ≥ c0 > 0. The continuity constant and the inf-sup

constant that are established for the bilinear Bε in [43, 6] depend on the prob-
lem specific parameters. It should be noted that the estimates in [43, 6] can be
expected to be sub-optimal since sharper bounds are known for q = 2.

4.1. Choices for the Test Norm

The choice of the norm for the space V crucially defines the method described
in Section 3.3. To this end, we endow V with the following norm

‖v‖q
′

V := α‖v‖q
′

Lq′ (Ω)
+ ε‖∇v‖q

′

Lq′ (Ω)
+
|Ω|1/2

‖b‖L∞(Ω)
‖(ω(x))1/q′b · ∇v‖q

′

Lq′ (Ω)
, (4.4)

where ω(x) is a positive and smooth weighting function and α ≥ 0 a constant.
It is well known that for q = 2 and ω(x) ≡ const ≥ 0 the above choice of norm
on V does not yield a robust formulation, i.e., M/γ depends on the problem
parameters. Here, M denotes the continuity constant of the bilinear form and
γ its inf-sup constant. The inf-sup constant for 1 < q < ∞ obtained in [43, 6]
corresponds to the choice ω(x) ≡ 0 and α = c0, where c0 is the constant in
the Friedrich’s positivity assumption, c − 1

q∇ · b ≥ c0. As mentioned above,
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the continuity and inf-sup constants are not parameter independent but can be
expected to be suboptimal.

One approach to address the robustness issue is to introduce a non-constant
weighting function, cf., [39, 34]. For example, we may require ω(x) to be of
magnitude O(ε) near the inflow boundary but O(1) elsewhere. We will show
the effect of this by considering a simple one dimensional example on Ω = (0, 1)
with the inflow boundary at 0. For this example ω(x) = x + ε has the desired
properties; for comparison, we will also consider ω(x) ≡ 0 and ω(x) ≡ 1.

4.2. Weak Boundary Conditions on r

Alternatively, the robustness issue can be addressed by changing the bound-
ary conditions on r; this has been considered in different ways in [38, 34]. In
[37], the boundary conditions on u were modified instead. We will now present
the approach in [34] and extend it for 1 < q < 2. The idea is to relax the
boundary condition on the test space on the inflow part of the boundary. The
reasoning behind this is that in the mixed method we essentially approximate
the adjoint equation in the test space in order to approximate the residual or the
optimal test functions. Under resolved layers at the inflow boundary —which
is the outflow boundary for the adjoint equation— then pollute the solution to
the primal problem in the inexact method.

Instead of W 1,q′

0 (Ω), we consider the modified test space V = W 1,q′

0,Γ+
(Ω),

where q′ = q/(q − 1), and

W 1,q′

0,Γ+
(Ω) :=

{
v ∈W 1,q′ (Ω) : v

∣∣
Γ+

= 0
}
, (4.5)

Here,

Γ− := {x ∈ ∂Ω : b · n(x) ≤ 0}, Γ+ := ∂Ω \ Γ−,

where n(x) denotes the unit outward normal at a point on the boundary ∂Ω.
The modified bilinear form (cf., [34]) is given by

B̃ε(u, v) := ε

∫
Ω

∇u · ∇v dx +

∫
Ω

(b · ∇u)v dx− ε
∫

Γ−

∂u

∂n
v ds. (4.6)

The boundary term is merely the term that is picked up from the integration
by parts if v is non-zero on the inflow boundary. Note, however, that the term
ε
∫

Γ−
∂u
∂nv ds is a variational crime if we assume u ∈W 1,q

0 (Ω). As noted in [34],

the correct way of including this term would be to introduce it as an additional
unknown on the boundary and the inclusion of ε

∫
Γ−

∂u
∂nv ds can be viewed as a

discrete elimination of this unknown, cf., [34, 35].

4.3. The Inexact Method for the Convection-Diffusion-Reaction Equation

The key step for implementing the inexact method (3.10) for any specific

problem is determining the duality mapping Jϕ
−1

V . We choose the weight func-

tion ϕ−1(t) = tq
′−1 and compute the duality mapping, similar to Section 2.2;
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thereby, we get

〈Jϕ
−1

V (v), w〉V ′,V =

∫
Ω

|v|q
′−1sgn(v)w dx

+ ε

∫
Ω

d∑
i=1

|∂iv|q
′−1sgn(∂iv)∂iw dx

+

∫
Ω

ω(x)|b · ∇v|q
′−1sgn(b · ∇v)b · ∇w dx.

(4.7)

For a given right hand side ` ∈ V ′, we solve the following non-linear system:
find (un, rm) ∈ Un × Vm ⊂ U × V such that

〈Jϕ
−1

V (rm), vm〉V ′,V + Bε(un, vm) = `(v) for all vm ∈ Vm, (4.8a)

Bε(wn, rm) = 0 for all wn ∈ Un. (4.8b)

One can easily implement (4.8) in, e.g., FEniCS [40, 41] using standard H1 (Ω)-
conforming Lagrange finite elements for both Un and Vm. The spaces Un and
Vm are chosen over a common mesh. For Un a global polynomial degree pn is
chosen and for Vm we choose an enriched finite element space with polynomial
degree pm = pn +∆p, ∆p ≥ 1. The non-linear system is solved with a damped
Newton iteration in combination with q-continuation. For q = 2, the system
is linear and can thus be easily solved yielding an initial guess for q < 2. The

Gateaux derivative of Jϕ
−1

V can be derived analytically in order to implement the
Jacobi matrix for the system if q < 2. As q approaches 1 it becomes increasingly
more difficult to solve the non-linear system requiring a combination of small
continuation steps and damping in the Newton iteration. The solution algorithm
is not robust in q and therefore requires further research in order to become
feasible in practice. To consider the weak boundary conditions on r introduced
in the previous section, we simply replace Bε with B̃ε and adjust the space Vm
to only satisfy Dirichlet boundary conditions on the outflow boundary.

4.4. The Limit Case ε = 0

Since we are interested in the convection-dominated case, i.e., ε� ‖b‖L∞(Ω),
it makes sense to consider the limit ε → 0. Simply setting ε = 0 in (4.2) does
not yield a well-posed problem unless we only consider boundary conditions on
the inflow boundary Γ−. However, even the ill-posed problem with Dirichlet
boundary conditions on the whole boundary ∂Ω is of interest, since this is
essentially the problem that is approximated numerically on coarse meshes when
ε � ‖b‖L∞(Ω), cf., the discussion in [8]. On a discrete level we can think
of imposing boundary conditions for the approximation un on Γ+ simply as
considering an approximation problem in a smaller subspace of U .

When ε = 0, there are two different weak formulations of the convection-
reaction equation depending on whether

∫
Ω

(b · ∇u)v dx is integrated by parts
or not. The two cases differ in the regularity of the trial and test spaces which
is reflected in the norms chosen on U and V . Thus, in each case the residual is
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measured in a different norm and (quasi-)best approximation of the analytical
solution is achieved in a different space. Both weak formulations can be ex-
tended to weak formulations of the convection-diffusion-equation by adding the
diffusion term and accounting for different boundary conditions and regularity
requirements. If ε > 0, we require u ∈ W 1,q

0 (Ω) in both cases and the two
weak formulations are formally equivalent. However, the differences observed
in the limit case ε = 0 can be reflected in the choice of the norm on W 1,q

0 (Ω)
by choosing the weighting of the terms ‖w‖Lq(Ω), ‖∇w‖Lq(Ω) and ‖∇ · bw‖Lq(Ω)

accordingly.
We show that for the first choice the exact mixed method is equivalent to the

formulation used in [8] and that in the second case a quasi-best approximation
in Lq (Ω) can be computed by determining the optimal test norm. We use this
to interpret certain choices of the test norm for the convection-diffusion-reaction
equation.

4.4.1. Residual Minimisation in Lq (Ω)

Both weak formulations for the convection-reaction equation are obtained
by multiplying the convection-diffusion-reaction equation (4.1) with ε = 0 by
a smooth test function and integrating over the domain Ω. This immediately
yields the first possible choice for the weak formulation: find u ∈ W q

0,Γ−
(b, Ω)

such that

B̂0(u, v) =

∫
Ω

(b · ∇u)v dx +

∫
Ω

cuv dx ∀v ∈ Lq
′
(Ω) . (4.9)

Here, the bilinear form B̂0 is well defined for v ∈ Lq
′
(Ω) and u in the graph

space

W q
0,Γ−

(b,Ω) := {w ∈ Lq (Ω) : b · ∇u ∈ Lq (Ω) and u = 0 on Γ−} (4.10)

endowed with the norm

‖u‖q
W q

0,Γ−
(b,Ω)

= ‖u‖qLq(Ω) + ‖b · ∇u‖qLq(Ω). (4.11)

The associated residual minimisation problem is

un = arg min
wn∈Un

‖B̂0(wn, ·)− f‖Lq(Ω); (4.12)

this was considered in [8]. In general, method (3.10) yields a formulation for
solving the residual minimisation problem inexactly. However, since in this case
JϕV ′ = Jq, we can avoid the inexactness by directly implementing (3.4); this
is exactly the approach considered in [8] where a regularisation is introduced
to compute (3.4). The norm on V = Lq

′
(Ω) corresponds to the choice of

the test-norm for the convection-diffusion-reaction equation given in (4.4) with
ω(x) ≡ 0 and α = 1 since this yields the Lq

′
(Ω)-norm if ε is set to zero. This

suggests, that this choice of ω(x) and α corresponds to the natural extension
of this bilinear form to the case ε > 0. Moreover, the equivalence of the exact
minimum residual method and the approach in [8] for ε = 0 together with ε
weighting of the norm of the gradient suggest that for this choice of the test
norm, our scheme closely resembles the approach in [8] for 0 < ε� 1.
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4.4.2. Best-Lq Approximation

Next, we can integrate the convection term by parts in order to obtain the
second weak formulation. To this end, we note that∫

Ω

(b · ∇u)v dx = −
∫

Ω

∇ · (bv)udx +

∫
∂Ω

(b · n)uv ds. (4.13)

The boundary term on Γ− vanishes since u = 0 on Γ− (for non-zero boundary
conditions this term would be absorbed into the right hand side by inserting
the boundary condition). For v in the graph space

W q′

0,Γ+
(b,Ω) := {w ∈ Lq

′
(Ω) : b · ∇w ∈ Lq

′
(Ω) and w = 0 on Γ+}, (4.14)

the boundary term also vanishes on Γ+ and we obtain the bilinear form

B0(u, v) = −
∫

Ω

u∇ · (bv) dx +

∫
Ω

cuv dx, (4.15)

which is well-defined for u ∈ Lq (Ω). In this case we can compute the optimal
test norm

‖v‖opt := sup
u∈Lq(Ω)

B0(u, v)

‖u‖Lq(Ω)
= ‖B0(·, v)‖(Lq(Ω))′ = ‖ − ∇ · (bv) + cv‖Lq′ (Ω).

(4.16)

Choosing the optimal test norm, allows us to obtain the Lq-best approximation
in a given finite dimensional space Un. It is easy to see that the optimal test
norm is bounded from above up to a constant by the graph norm

‖w‖q
′

W q′
0,Γ+

:= ‖w‖q
′

Lq′ (Ω)
+ ‖b · ∇w‖q

′

Lq′ (Ω)
.

In [55] this formulation of the convection-reaction equation is analysed in detail
and an inf-sup condition is established assuming c − 1

q∇ · b ≥ c0 > 0. This
implies that the optimal test norm is up to a constant also bounded from below
by the graph norm. In other words, the graph norm is equivalent to the optimal
test norm. The graph norm can be obtained from (4.4) by choosing ω(x) ≡ 1,
α = 1 and setting ε to zero. This suggests that this choice of α and ω(x) yields
the natural extension of this formulation to the convection-diffusion-reaction
equation. The dependence of the inf-sup constant in [55] on c0 suggests that
the equivalence constants can be improved by choosing α = c0.

5. Numerical Examples

In this section we consider a range of numerical test cases to illustrate the
performance of our proposed numerical scheme. To this end, in Section 5.1
we demonstrate that in the diffusion-dominated regime optimal convergence
rates are achieved and moreover that in the convection-dominated regime the
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convergence rate is as expected. We also study the effect of different choices of
the discrete test space Vm on the convergence rates. In Section 5.2, we then
compare different choices for the test norm on V and the boundary conditions as
described in Sections 4.2 and 4.1 for a one-dimensional example. Furthermore,
for the same example we study for which choices of V , ‖ · ‖V and Vm we can
observe vanishing over- and undershoots as q → 1 and whether the method is
robust in ε. In Section 5.3 we consider three two-dimensional examples, where
for certain selected meshes the overshoots disappear as q → 1; this behaviour
can be predicted by considering L1-best approximations of discontinuities.

The four examples we are using in this section are given below. They consist
of one simple one-dimensional example and three two-dimensional examples each
with solutions containing boundary layers for small ε. The solution to the last
example additionally contains an interior layer. We consider both, examples
that satisfy Friedrich’s positivity assumption c − 1

q∇ · b ≥ c0 with c0 > 0 and
examples with c0 = 0. The only part of the theory that relies on this assumption
being satisfied is the proof of the inf-sup condition in [43].

Example 5.1.

−εu′′ + u′ + cu = f in (0, 1), u(0) = 0, u(1) = 1, (5.1)

where f is selected so that

u(x) =
exp

(
− 1
ε

)
− exp

(
x−1
ε

)
exp

(
− 1
ε

)
− 1

. (5.2)

Example 5.2 (Eriksson-Johnson model problem).

∂u

∂x
− ε

(
∂2u

∂x2
+
∂2u

∂y2

)
+ cu(x, y) = g(x, y) in (0, 1)2, (5.3)

u = 0 if x = 1, y = 0, 1, u = sin(πy) if x = 0, (5.4)

where g(x, y) is selected so that

u(x, y) =
exp(s1(x− 1))− exp(s2(x− 1))

exp(s1)− exp(s2)
sin(πy), (5.5)

and

s1 =
1 +
√

1 + 4π2ε2

2ε
, s2 =

1−
√

1 + 4π2ε2

2ε
.

Example 5.3 (Boundary Layer in the Corner of the Domain).

b · ∇u− ε∆u = b2h1(x) + b1h2(y) in (0, 1)2, (5.6)

u = 0 on ∂Ω, (5.7)
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with b = (b1, b2)T , b1,2 > 0 and

h1(x) = x−
1− exp

(
b1x
ε

)
1− exp

(
b1
ε

) , h2(y) = y −
1− exp

(
b2y
ε

)
1− exp

(
b2
ε

) .
The analytical solution is given by

u(x, y) = h1(x)h2(y). (5.8)

Since b1,2 > 0, the outflow boundary is defined by the two lines x = 1 and y = 1.
For small ε we can observe a boundary layer at the outflow boundary and in
particular near the corner (x, y) = (1, 1).

Example 5.4 (Interior and Boundary Layer).

b · ∇u− ε∆u+ u = 0 in (0, 1)2,

u = 1 on ∂Ω ∩ {x = 0},
u = 0 on ∂Ω \ {x = 0},

(5.9)

with b = (2, 1)T .
For this example, a boundary layer develops at Γ+∩{y > 0.5} and an interior

layer along the line y = 0.5x.

5.1. Convergence Tests

We start with investigating the convergence of the proposed method with
weak boundary conditions on the inflow boundary in the space Vm, i.e., formu-
lation (4.3) with B̃ε from (4.6), and the norm (4.4) with ω(x) ≡ 1 and α = 1. To
this end, we first consider the convergence of the method for Example 5.2 with
ε = 1 and c = 1. We consider a uniform mesh with element size h. The space
Un consists of piecewise polynomials of degree pn, while space Vm consists of
piecewise polynomials of degree pm = pn +∆p on the same mesh with ∆p ≥ 1.
Figure 1 shows that for q = 1.2 the error is essentially independent of the choice
of ∆p and hence there is no benefit to enriching the space of the residual rm
beyond pm = pn + 1. Figure 2 shows that we obtain the expected optimal con-
vergence rates for different polynomial degrees pn under uniform h-refinement.

Next, we consider the same example with the same finite element spaces
for ε = 10−4. Figure 3 (left) shows that again both for q = 1.01 and q = 1.2
the error does not improve as ∆p is increased beyond ∆p = 2; for q = 1.01,
however, we can observe that the error is larger for ∆p = 1. Note that we did
not observe this in the diffusive regime. The plot on the right shows that in
the convection-dominated regime we obtain a convergence rate of approximately

O(h
1
q ) as h tends to zero; this is consistent with the approximation error bound

of the piecewise linear interpolant of a jump discontinuity.
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Figure 1: Example 5.2 with ε = 1 and q = 1.2. Convergence for pn = 1 and ∆p = 1, 4, 7.
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Figure 2: Example 5.2 with ε = 1, c = 1 and q = 1.2, for pn = 2, 3, 4, 5 and ∆p = 2. Left:
Lq(Ω)-norm, Right: W 1,q (Ω)-norm

5.2. Convection-Diffusion in 1D

In this section we consider different choices for V , ‖ · ‖V and Vm and show
how this affects the approximation to the solution u of Example 5.1. To this
end, in Section 5.2.1, we investigate how the choice of α, ω(x) and the boundary
conditions in Vm affect the approximation un. In Section 5.2.2 we consider one
specific choice for the test norm and show that the oscillations vanish entirely
as q → 1. Next, in Section 5.2.3, we investigate the choice of the finite element
space Vm more closely. We have seen that increasing ∆p has no significant
effect on the convergence rates; however, we will see that this does indeed affect
certain qualitative properties of the solution. Finally, we demonstrate that the
method is robust in ε in Section 5.2.4

5.2.1. Comparing the Choices for the Test Norm and the Boundary Conditions

We start by comparing different versions of the non-linear Petrov-Galerkin
method for Example 5.1 with c = 0. In order to ensure that the space Vm is
sufficiently large we use piecewise polynomials of degree pm = 10 as the basis,
while Un consists of piecewise linear polynomials. We split the interval (0, 1)
uniformly into 8 elements. We consider three different choices for the weighting
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Figure 3: Lq (Ω)-error for Example 5.2 with ε = 10−4, c = 1 and pn = 1. Left: Lq (Ω)-error
for ∆p = 1, 2, 3, 4, 5 and q = 1.2, 1.01. Right: Lq (Ω)-error for ∆p = 2 and q = 2, 1.5, 1.2, 1.01.

function ω(x) as mentioned in Section 4.1, namely ω(x) = x+ ε, ω(x) ≡ 1 and
ω(x) ≡ 0. We combine this with two different choices of boundary conditions
on r, i.e., zero Dirichlet boundary conditions on the whole boundary and weak
boundary conditions on the inflow boundary as described in Section 4.2. This
creates six test cases; we first consider these six test cases for ε = 10−3 with
α = 1 and q = 2, 1.01. Secondly, we consider all six test cases with ε = 10−6,
α = 0, 1 and q = 2, 1.01 The solution un for each of the cases is shown in Figure
4.

We can see in Figures 4a, 4c and 4e that for q = 2 and Dirichlet boundary
conditions on the whole boundary for r, the approximation un only resembles
the analytical solution if ω(x) = x + ε. Introducing weak boundary conditions
on r on the inflow boundary resolves this issue for ω(x) ≡ 1 but the approxi-
mation with ω(x) ≡ 0 only shows improvement if α = 0. These observations
are the same for ε = 10−3 and ε = 10−6. This indicates that we can circum-
vent constructing a non-constant function ω(x) – which can be challenging for
complicated geometries – by introducing weak boundary conditions on r on the
inflow boundary. These observations are consistent with the results for a very
similar problem studied in [34]. Furthermore, note that ω(x) = 0 and α = 1
most closely resembles the method introduced in [8]. In [8] it is demonstrated
for a different (two-dimensional) example that the approximation for q = 2 can
be very inaccurate.

If we now consider q = 1.01, cf., Figures 4b, 4d and 4f, we observe a different
behaviour of the approximation. If ε = 10−3, the approximations are all very
similar and much closer to the analytical solution with close to no undershoots;
we will investigate the phenomenon of vanishing undershoots more closely both
in one dimension and two dimensions later on. If ε = 10−6, the approximation
with Dirichlet boundary conditions on the whole boundary and ω(x) ≡ 0 or
ω(x) ≡ 1 again leads to a very poor approximation to the analytical solution.
This again points to robustness issues that for q = 1.01 are only visible for
much smaller ε than for q = 2. It should be noted that for some examples,
e.g., Example 5.1 with c = 0.2 instead of c = 0, all of the considered variants of
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the non-linear Petrov-Galerkin method perform similarly for q = 1.01 yielding
approximations with very small undershoots. An interesting observation is that
for α = 1, the combination of weak inflow boundary conditions on r and ω(x) ≡
0 is not distinguishable from other choices of ω(x) for q = 1.01 whereas, for
q = 2 it is significantly different. The improvement of the approximation as
q → 1 for ω(x) ≡ 0 and α = 1 resembles the results presented in [8].

In conclusion, choosing the boundary conditions as described in Section 4.2
allows us to avoid constructing a non-constant weighting function ω(x). Close
to q = 1, the results are very similar for ω(x) ≡ 1 and ω(x) ≡ 0, whereas close
to q = 2, ω(x) ≡ 1 clearly yields a significantly better approximation of the
solution.

The choice of α does not seem to have a big impact on the approximation
except in the case ω(x) ≡ 0 and q = 2, where choosing α = 0 improves the
approximation compared to α = 1. If ω(x) ≡ 1, then both for α = 1 and
α = 0, the dominant term in the norm on V is essentially ‖∇u‖Lq′ (Ω) since

‖b · ∇v‖Lq′ (Ω) and ‖∇v‖Lq′ (Ω) are the same up to a constant in one dimension.

If ω(x) ≡ 0, then α = 0 implies that V is endowed with the W 1,q′

0 (Ω)-norm ,

whereas for α = 1 the Lq
′
(Ω)-term is the dominant term in the norm on V due

to the ε-weighting of the gradient. Since α = 0 yields a better approximation in
this case, this suggests that for q = 2 it is favourable to choose a stronger norm
on V that is either dominated by the norm of the gradient or the streamline
term ‖b · ∇v‖Lq′ (Ω).

5.2.2. Vanishing oscillations as q → 1

The examples in Figure 4 already illustrate that the undershoot in the ap-
proximate solution nearly vanishes for q = 1.01. We will now investigate in
more detail how the undershoot depends on q if we choose ε = 10−6, ω(x) ≡ 1,
c = 0.2, α = c0 = c and impose weak inflow boundary conditions on rm. To this
end, we choose a large space Vm with polynomial degree pm = 10 and piecewise
linear polynomials for Un. We split the interval into 8 elements and compute the
approximate solutions (rm, un) for several choices of q. Figure 5 shows un on
the left and rm on the right. A close-up of the undershoot and a plot min(un)
vs. q is shown in the centre of the figure. We can see that the undershoot
decreases monotonically as q approaches 1. In contrast to this, we can see that
the oscillations in the residual rm increase as q′ → ∞ which suggests that a
large space Vm may be necessary. This is the next aspect of the method we will
investigate.

5.2.3. The Choice of the Space Vm
In [18], it has been shown that the inexact method is well-posed if a Fortin

projector, cf., (3.11) exists. It is easy to see that dim(Vm) ≥ dim(Un) is a
necessary condition. Finding a sufficient condition or in other words finding a
compatible pair (Un, Vm) is highly non-trivial. In [55], certain special cases for
the convection-reaction equation are considered. The observations in Section
5.1 suggest that for ∆p ≥ 2, the Fortin condition is typically satisfied. We now
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(c) ε = 10−6, q = 2, α = 1
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(d) ε = 10−6, q = 1.01, α = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u
(x

)

(e) ε = 10−6, q = 2, α = 0
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(f) ε = 10−6, q = 1.01, α = 0

Figure 4: Solution un for q = 2 and q = 1.01 with ∆p = 9 using different norms, i.e.,
different weighting functions ω(x), and either Dirichlet boundary conditions for r on the
whole boundary (strong bc) or weak boundary conditions on r on the inflow boundary and
Dirichlet conditions on the outflow boundary (weak bc).
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Figure 5: Example 5.1 with ε = 10−6 and c = 0.2: Numerical approximations un (left) and
rm (right) with a uniform mesh consisting of 8 intervals using piecewise linear polynomials for
un and polynomials of degree pm = 10 for rm for varying values of q. Top center: Zoom-in
showing over- and undershoots. Bottom center: |min(un)| vs q.

investigate how the choice of Vm affects the undershoot for q close to 1. To this
end, we consider two different strategies of enlarging Vm: global p-enrichment
and uniform h-refinement. We again consider ε = 10−6, ω(x) ≡ 1, c = 0.2,
α = c0 and impose weak inflow boundary conditions on rm.

p-enrichment: In terms of implementation, the simplest choice for the
space Vm such that dim(Vm) > dim(Un) is a finite element space over the same
grid with the polynomial degree increased globally by some integer ∆p. Figure
6 shows how the overshoot reduces as we increase ∆p. The difference in rm for
varying pm is barely visible even though we have used a finer mesh for plotting
in order to capture the behaviour of the higher modes and yet it has a significant
effect on the approximation un. Clearly, a very high polynomial degree is nec-
essary to achieve the desired property further increasing the computational cost
of the method. Hence, further research is required in order to derive a more
optimal space Vm, e.g., by combining h- and p-refinement or by only locally
refining the space. The design of such strategies remains an open problem.

h-refinement: This time both Un and Vm consist of piecewise linear poly-
nomials. To ensure that dim(Vm) > dim(Un), we choose a refinement of the
underlying mesh of the space Un to construct the space Vm. This is the only
numerical experiment in this article that cannot be implemented in FEniCS;
instead, e.g., the C++ library Hermes2D [56] can be used. Figure 7 shows how
the overshoot reduces as we refine the mesh for Vm; the difference in rm is again
barely visible despite the significant effect on the approximation un. Similar
to p-enrichment, the computational cost is increased substantially in order to
achieve the desired property with global h-refinement. This again illustrates the
need for more sophisticated refinement strategies.
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Figure 6: Example 5.1 with ε = 10−6, c = 0.2 and q = 1.01, q′ = 101: Numerical approxima-
tions un (left) and rm (right) with a uniform mesh consisting of 8 intervals using piecewise
linear polynomials for un and varying polynomial degrees pm for rm. Top centre: Zoom-in
showing over- and undershoots. Bottom centre: |min(un)| vs pm. Right: Projection of rm
onto the space of piecewise linear functions with a uniform mesh consisting of 16 intervals
using piecewise linear polynomials for un and varying polynomial degrees pm for rm.

Figure 7: Example 5.1 with ε = 10−6, c = 0.2, q = 1.01 and q′ = 101: Numerical approxima-
tions un (left) and rm (right) with a uniform mesh consisting of 8 intervals using piecewise
linear polynomials for un and piecewise linear polynomials for rm on a refined mesh consist-
ing of NV intervals. Top centre: Zoom-in showing over- and undershoots. Bottom centre:
|min(un)| vs NV .

5.2.4. Robustness in ε

As a final experiment in one dimension, we study how ε affects the un-
dershoot in the approximation. We continue with the same setting as in the
previous section, but keep Vm fixed as the space of piecewise polynomials of
degree pm = 10 on the same mesh as used for Un and vary ε instead. Moreover,
we choose q = 1.01. We have already seen in Figures 5 and 6 that for ε = 10−6,
the overshoot becomes very small for this choice of parameters. We now in-
vestigate whether this remains true independent of the magnitude of ε. Figure
8 shows that, although the undershoot is not identical for all ε leading to an
under resolved layer, the undershoot seems to be approximately the same for
all ε ≤ ε0 for some ε0. This dependence on ε, which clearly becomes negligible
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Figure 8: Example 5.1 with c = 0.2, q = 1.01 and q′ = 101: Numerical approximations
un (left) and rm (right) with a uniform mesh consisting of 8 intervals using piecewise linear
polynomials for un and polynomials of degree pm = 10 for rm for varying values of ε. Top
centre: Zoom-in showing over- and undershoots. Bottom centre: |min(un)| vs ε.

as ε→ 0, can be traced back to the inflow boundary conditions on rm — which
are scaled with ε — if we look at rm on the right in Figure 8. The method
therefore seems to be robust in ε.

5.3. Vanishing Oscillations in Two Dimensions

In this section we explore whether the under- and overshoots in the ap-
proximation still vanish as q → 1 if we apply the method to two-dimensional
problems. To this end, we consider the Examples 5.2, 5.3 and 5.4 on different
meshes for ε = 10−6. We consider ω(x) ≡ 1, α = c0 (α = 1 if c = 0) and impose
weak boundary conditions on rm as described in Section 4.2. In one case we will
also consider α = 0 to compare the approximations for both choices of α. We
will see that the overshoots disappear on certain meshes, but remain present on
others. We will furthermore demonstrate that the approximation qualitatively
behaves like the Lq(Ω)-best approximation of the analytical solution. On coarse
meshes, when the layer is fully contained within the elements adjacent to the
boundary, approximating the layer numerically essentially means approximating
a discontinuity and thus we can apply the observations regarding the Lq best
approximation of disconinuities in finite element spaces presented in [5] and [6,
Chapter 4] to (a) predict on which meshes the overshoot will disappear as q → 1
and (b) design meshes that have this property in specific situations.

5.3.1. Gibbs Phenomena in the Lq-Best Approximation of Discontinuities in
Finite Element Spaces

As mentioned above, the design of some of the meshes considered in this sec-
tion relies on results presented in [5, 6] which we will now briefly summarize. The
main theoretical result of [5] and [6, Chapter 4] consists of the precise analysis
of very simple examples that illustrate the behaviour of Lq-best approximations
of discontinuities by continuous piecewise linear polynomials on coarse meshes.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 9: Three different meshes on the unit square

Furthermore some numerical examples that confirm the theoretical analysis and
illustrate how the observed behaviour in simple model examples applies to more
general scenarios are presented. In particular, it is demonstrated that the over-
and undershoots observed in Lq-best approximations for 1 < q <∞ decrease as
q → 1. Whether these oscillations disappear entirely depends on the mesh used
to define the finite dimensional approximation space.

In two dimensions, the approximation problem

uh = arg min
vh∈Uh

‖u− vh‖Lq(Ω), Ω = (0, 1)2, u ≡ 1, (5.10a)

subject to

uh(0, ·) = 1, uh(1, ·) = 0, (5.10b)

is considered for several meshes, including Meshes 1-3 shown in Figure 9 which
we will later use in some of the numerical examples presented in this article.

It is proven that the Lq-best approximation exhibits Gibbs phenomena on
Meshes 1-3 for all 1 < q < ∞. For a coarse version of Mesh 2, the Lq-best
approximation is charecterized precisely for all 1 ≤ q < ∞. This character-
ization shows that the overshoot reduces as q → 1 but does not vanish. In
contrast to the first mesh, there exists an L1-best approximation without any
over- or undershoots on Mesh 1. Numerical examples demonstrate that the
Lq-best approximation indeed converges to the analytically determined L1-best
approximations on all three meshes as q → 1. Further numerical tests illustrate
that the observations remain the same if u is a more general smooth function
and that the over- and undershoots cannot be eliminated by refining the mesh
for certain classes of meshes.

Moreover, [5, 6] include detailed results in one dimension which demonstrate
that even in one dimension the overshoot does not necessarily disappear if the
employed mesh is non-uniform. In particular, for the one-dimensional version
of the above best approximation problem, a sufficient condition for a general
N element mesh is introduced that guarantees that the Gibbs phonomenon can

27



be eliminated in the limit as q → 1 and an example is presented such that the
condition is violated and the L1-best approximation indeed exhibits over- and
undershoots. A very useful consequence of the general mesh condition is that
it is possible to design a mesh in such a way near the discontinuity that the
element-sizes are allowed to be arbitrary away from the discontinuity without
leading to oscillations. Further details on the results in one dimension have been
omitted here since we only consider uniform meshes in one dimension in this
article.

Finally, Mesh 3 is used to illustrate how the observations from the specific
examples that are analysed in detail can be used to modify meshes in such a way
that Gibbs phenomena can be avoided in the L1-best approximation. The proofs
presented in one dimension and for Meshes 1 and 2 in two dimensions, suggest
that the L1-best approximation exhibits no overshoot if for every interior node
(xi, yi) directly adjacent to the boundary where the discontinuity is located, the
area A1 of all triangles whose boundaries contain the node (xi, yi) and at least
one node on this boundary is sufficiently small compared to the area A2 of all
remaining triangles whose boundaries contain the node (xi, yi). In particular,
A1 ≤ A2 is a necessary condition which becomes sufficient if the remaining mesh
is sufficiently uniform or sufficiently coarse near the discontinuity. This insight
is then used to predict the occurance of overshoots on Mesh 3 and modified
versions of this mesh are introduced that eliminate the Gibbs phenomenon for
q = 1. The hypotheses are confirmed by numerical experiments.

5.3.2. The Eriksson-Johnson Model Problem

We consider the Eriksson-Johnson Model Problem (Example 5.2) with ε =
10−6 and c = 0.2 on the three different meshes depicted in Figure 9. Note that
these are the same meshes that are investigated in [5] and [6, Chapter 4].

First, we compare the approximations on Mesh 1 and Mesh 2 for q = 2
and q = 1.01 with the interpolant of the analytical solution in Un. Figure 10
shows the approximations on Mesh 1; for q = 2 we clearly observe overshoots
near the boundary layer (center) compared to the interpolant of the analytical
solution (left). On the other hand, for q = 1.01 we can see that the approxima-
tion approaches the interpolant of the analytical solution. Figure 11 shows the
approximations on Mesh 2; in this case we can see that the overshoot is nearly
the same for q = 2 and q = 1.01. From [5, 6] we note that this is the qualitative
behaviour that the Lq-best approximation exhibits.

With this in mind, we have numerically computed the Lq(Ω)-best approxi-
mation of the analytical solution for several choices of q and have also computed
the finite element approximations with ω(x) = 1 and both, α = c0 = c and
α = 0, with weak boundary conditions imposed on rm on the inflow boundary
for the same values of q. Figure 12 shows the maximal error between the in-
terpolant of the analytical solution and the approximation for the Lq(Ω)-best
approximation and the error between the interpolant and the numerical approx-
imations for α = c0 and α = 0. We can clearly see that the overshoot observed
for our proposed scheme is very similar to the overshoot in the Lq(Ω)-best ap-
proximation. Therefore, understanding for which meshes discontinuities/layers
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(a) Interpolant of the ana-
lytical solution

(b) Approximation with
q = 2

(c) Approximation with q =
1.01

Figure 10: Approximation of the analytical solution of Example 5.2 (Eriksson-Johnson model
problem) on Mesh 2 for ε = 10−6, c = 0.2 and pm = 10.

(a) Interpolant of the ana-
lytical solution

(b) Approximation with
q = 2

(c) Approximation with q =
1.01

Figure 11: Approximation of the analytical solution of Example 5.2 (Eriksson-Johnson model
problem) on Mesh 2 for ε = 10−6, c = 0.2 and pm = 10.

are captured as sharply as the grid allows by the Lq(Ω)-best approximation can
serve as an indicator regarding whether the over- and undershoots dissappear
as q → 1. This is the subject of [5] and [6, Chapter 4], where the Lq-best
approximation of discontinuous functions is analysed in detail in certain cases.

5.3.3. Boundary Layer in a Corner of the Domain

In this section we consider Example 5.3 with b = (2, 1)T . We will see that
on Mesh 1 in this case the overshoot does not disappear as q → 1 for our
method. This is due to the layer not only appearing along an edge of the unit
square but also near the corner (x, y) = (1, 1). With this in mind, we suggest
an alternative mesh that is only a slight modification of Mesh 1 for which the
overshoot disappears. Figure 13 shows the two versions of Mesh 1 that we have
used and the corresponding approximations for q = 2 and q = 1.01 along the
line through the interior nodes closest to the boundary y = 1. We can see that
on Mesh 1, the overshoot near the corner does not disappear as q → 1, whereas
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Figure 12: Example 5.2: max(un − û), where û is the interpolant of the analytical solution
u in the space Un and un is Lq(Ω)-best approximation, the non-linear Petrov-Galerkin finite
element approximations with α = c0 = c, or the non-linear Petrov-Galerkin finite element
approximations with α = 0, respectively. Here ε = 10−6 and c = 0.2. In all cases, the
space Un consists of piecewise linear polynomials on the meshes inidicated in the legend and
pm = 10 for the non-linear Petrov-Galerkin finite element approximations.

it does reduce significantly away from the corner. For the modified version of
Mesh 1, the overshoot disappears everywhere as q → 1.

To understand the improvement when using this modified mesh, we focus
on the interior node closest to the corner (x, y) = (1, 1). Figure 14 shows all
elements connected to this node. The elements with either a node or an edge on
the boundary are marked in green; the elements separated from the boundary
are blue. From [5, 6] we can infer that the L1-best approximation does not
exhibit overshoots if the volume of the green area is smaller or equal to the
volume of the blue area. This is obviously violated on Mesh 1 with the green
area being three times as large as the blue area. The modified version of the
mesh is designed to satisfy this condition by changing the mesh as indicated in
Figure 14.

5.3.4. Example with an Interior Layer

In this section we consider Example 5.4 and demonstrate that a mesh can
be constructed such that the over- and undershoots both near the boundary
layer and the interior layer can be eliminated as q → 1. To this end, Figure
15 shows the approximation to Example 5.4 for q = 2 and q = 1.1 on two
different meshes. The first mesh is designed such that the overshoot at the
boundary layer disappears as q → 1; this is already clearly visible for q = 1.1.
Along the interior layer, the overshoot also reduces significantly, but some over-
and undershoots are still present for q = 1.1. The second mesh is additionally
designed to align with the interior layer in such a way that we can expect the
over- and undershoots to disappear as q → 1. We can see, that this mesh even
nearly eliminates the overshoot along the interior layer for q = 2 and for q = 1.1
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(a) Mesh 1 (b) Exact solution u and approximation un

along red line as indicated in Figure 13a for
q = 2 and q = 1.01

(c) Modified version of Mesh 1 (d) Exact solution u and approximation un

along red line as indicated in Figure 13c for
q = 2 and q = 1.01

Figure 13: Example 5.3 with b = (2, 1)T : Mesh and approximation for ε = 10−6 with pn = 1
and pm = 8.

Figure 14: Modification of Mesh 1: Elements connected to the boundary are marked in green,
elements separated from the boundary in blue.

all over- and undershoots along both layers have essentially vanished.
Figure 16 shows the approximations for q = 2 and q = 1.1 if b is not
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(a) Mesh A (b) Approximation with
q = 2 on Mesh A.

(c) Approximation with q =
1.1 on Mesh A.

(d) Mesh B (e) Approximation with q =
2 on Mesh B.

(f) Approximation with q =
1.1 on Mesh B.

Figure 15: Example 5.4 with ε = 10−6 and pm = 10.

perfectly aligned with the mesh, i.e., b = (2, 1.2)T and b = (2, 1.06)T . The
difference between these two choices for b is that in the latter case the layer
is still contained in between the two lines parallel to the line (x, y) = t(2, 1),
whereas in the former case it is not. In both cases, we clearly observe overshoots
along the interior layer for q = 2 which are reduced for q = 1.1. Both, for
q = 2 and q = 1.1 the overshoot reduces slowly the closer b is to (2, 1)T . For
b = (2, 1.06)T and q = 1.1 the overshoot is barely visible in Figure 16.

6. Conclusions and Future Directions

In this article, we generalized the framework employed for DPG methods to
more general Banach spaces. This framework in principle allows us to choose the
norm in which the solution is approximated, provided a suitable well-posed vari-
ational formulation with robust constants and a test-norm that is computable is
given. Another challenge in designing such a method is that a Fortin-condition
must be satisfied for the discrete spaces Un and Vm. The recent work [57] de-
scribes a double adaptivity approach for the DPG method to circumvent this
challenge in the context of DPG methods. Due to the close relationship be-
tween DPG methods and our approach this has potential to be generalized to
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(a) Approximation with q =
2 and b = (2, 1.2)T on Mesh
B.

(b) Approximation with q =
1.1 and b = (2, 1.2)T on
Mesh B.

(c) Approximation with q =
2 and b = (2, 1.06)T on
Mesh B.

(d) Approximation with q =
1.1 and b = (2, 1.06)T on
Mesh B.

Figure 16: Example 5.4 with ε = 10−6,pm = 10, b = (2, 1.2)T (top) and b = (2, 1.06)T

(bottom).

the Banach space framework.
Furthermore, we have demonstrated how to design a finite element method

for the convection-diffusion-reaction problem that in the convection-dominated
case yields solutions that qualitatively behave like the Lq(Ω)-best approximation
of the analytical solution. This means that on meshes where the L1(Ω)-best
approximation does not contain any over- and undershoots, these can also be
avoided by taking q → 1 in our proposed method. Indeed, the final two examples
presented in this article demonstrate that it is possible to adjust meshes to
specific situations in order to eliminate over- and undershoots.

An important implication of the connection to the Lq (Ω)-best approximation
is that we can use the insights from [5, 6] to design suitable meshes. Note that
even in one dimension the over- and undershoots will not disappear for certain
non-uniform meshes. Roughly speaking, meshes where the elements near the
discontinuity or layer present in the analytical solution are smaller than at a
distance from those features are more favourable. Additionally, it is desirable
that all interior nodes that are closest to such a feature are aligned roughly in
parallel with the feature; for further details, we refer to [5, 6]. This is similar to
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the observations used to design the modified version of the mesh in the final two
examples. This suggests that if the mesh is refined in a suitable way near the
layer, we can eliminate over- and undershoots. This observation could be used
to design a mesh refinement strategy that modifies the mesh in such a way that
the L1(Ω)-best approximation of the layer or discontinuity does not contain any
over- or undershoots. Note, however, that even though we modified the mesh
in the final example in a way that resembles refinement towards the boundary
layer, the boundary layer clearly remains under resolved even on the modified
mesh. It is therefore not necessary to fully resolve the layer to eliminate the
oscillations in this case.

Another challenge of our proposed method is computational feasibility. Pos-
sible strategies to addressing this include reducing the degrees of freedom by
choosing the test space Vm adaptively, introducing broken test spaces Vm, simi-
lar to DPG methods, to allow for more effective parallelization, and developing
a more efficient non-linear solver. Despite the challenges outlined above, the
numerical results for our proposed method show great potential for the applica-
tion to non-linear problems whose analytical solutions contain sharp layers or
discontinuities. It is well-known that due to Godunov’s barrier theorem [24, 25]
higher-order monotonicity preserving methods can be expected to be non-linear;
thus, the non-linear nature of our approach by no means diminishes its potential.
However, the design of an efficient solver for this particular non-linear problem
remains an open problem.
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1020–1050.

[25] E. Godlewski, P.-A. Raviart, Numerical approximation of hyperbolic sys-
tems of conservation laws, Vol. 118 of Applied Mathematical Sciences,
Springer-Verlag, New York, 1996.

[26] E. Burman, A. Ern, Stabilized Galerkin approximation of convection-
diffusion-reaction equations: discrete maximum principle and con-
vergence, Math. Comp. 74 (252) (2005) 1637–1652. doi:10.1090/

S0025-5718-05-01761-8.

[27] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge
Texts in Applied Mathematics, Cambridge University Press, Cambridge,
2002. doi:10.1017/CBO9780511791253.

[28] C.-W. Shu, High order WENO and DG methods for time-dependent con-
vection-dominated PDEs: A brief survey of several recent developments,
Journal of Computational Physics 316 (2016) 598–613. doi:10.1016/j.

jcp.2016.04.030.

[29] D. Kuzmin, S. Turek, Flux correction tools for finite elements, J. Comput.
Phys. 175 (2) (2002) 525–558. doi:10.1006/jcph.2001.6955.
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