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Abstract: Windcatchers are effective passive ventilation systems, but their inability to
actively reduce and stabilize supply air temperatures reduces indoor cooling performance.
This study addresses this limitation by integrating encapsulated phase-change material
tubes (E-PCM-Ts) into a solar fan-assisted, multidirectional windcatcher. The novelty lies
in the vertical placement of E-PCM-Ts within the windcatcher’s airstreams, enhancing heat
transfer and addressing challenges related to temperature stabilization and cooling. Using
computational fluid dynamics (CFD) under hot outdoor conditions, the ventilation, cooling,
and PCM thermal storage performance are evaluated based on two different E-PCM-T
arrangements. Results showed a maximum air temperature drop of 2.28 ◦C at a wind
speed of 1.88 m/s and wind angle of 0◦. This offers an optimal temperature reduction
that achieved a 6.5% reduction for up to 7 h of air temperature stabilization. Placing E-
PCM-Ts in all airstreams improved the thermal storage performance of the windcatcher. A
50% increase in hybrid ventilation efficiency was also achieved when wind angles increased
from 0◦ to 30◦. Overall, the proposed system demonstrated superior performance compared
to that of traditional windcatchers, delivering improved thermal energy storage and cooling
efficiency and adequate hybrid ventilation with supply air velocities of 0.37–0.60 m/s.

Keywords: CFD; cooling; hybrid ventilation; phase-change material; thermal energy
storage; multidirectional windcatcher

1. Introduction
Buildings account for 40% of total energy consumption worldwide [1], with the use

of heating, ventilation, and air conditioning (HVAC) systems being a major contributor to
this high building energy demand globally [2]. HVAC systems consume 57% of end-use
energy in commercial and residential buildings [3]. Since HVAC systems primarily run
on electricity, and fossil fuels remain a dominant source of power generation globally,
most of these systems are still heavily reliant on non-renewable energy. Moreover, many
HVAC systems use refrigerants with high global warming potential (GWP) [4], significantly
contributing to climate change. As a result, the cooling services industry accounts for over
10% of global greenhouse gas (GHG) emissions [5].

Traditional air conditioning (AC) alone accounts for 4% of these emissions, which
are estimated to be twice as high as those produced by the entire aviation industry [6].
Consequently, researchers are actively exploring more sustainable and energy-efficient
alternatives to traditional AC systems.
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1.1. Windcatchers

Passive ventilation systems [7], such as windcatchers, offer greener alternatives to
fossil fuel-powered AC [8]. Typically mounted on building roofs, windcatchers utilize
prevailing winds and the stack effect to achieve effective ventilation [9].

Traditional windcatchers, also known as “badgirs”, have been used for centuries
in Middle Eastern buildings for passive ventilation [10]. Modern windcatcher designs,
however, have evolved to meet the ventilation needs of urban buildings [11]. According
to the existing literature, windcatchers are classified based on various parameters such as
the number of vents, internal partitions, stores, or cross-sectional structures [12]. However,
depending on the number of vents, the most typical descriptors are unidirectional (one-
sided), two-sided, or multidirectional. Windcatchers in the multidirectional family can be
either four-sided, six-sided, eight-sided, or circular [13].

1.2. Multidirectional Windcatcher Passive Ventilation

Multidirectional windcatchers are more suitable for building ventilation in hot climates
with low wind conditions [14]. For instance, Jafari et al. [2] implemented a combination of
a multidirectional windcatcher, a solar chimney, and water spray to address the limitation
of no-wind conditions for indoor thermal comfort. Further studies indicate that, compared
to equivalent single-sided window openings in similarly sized buildings, multidirectional
windcatchers can achieve higher indoor air exchange efficiency due to the vents’ multidi-
rectional design [15]. Li and Mak [16] compared the use of multidirectional windcatchers
and equivalent-sized single-sided window openings in similar-sized buildings. Results
suggested that the multidirectional windcatcher offered 0.33–0.39 m/s more indoor airflow
in the building than the equivalent single-sided window opening. Figure 1 graphically
illustrates how a roof-mounted multidirectional windcatcher system generates a more
effective indoor airflow pattern compared to that of an installed single-window setup in a
similarly sized space.
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Figure 1. Comparison of airflow patterns between single-window opening and top-mounted wind-
catcher with multiple openings. (a) represents a room ventilated with a single vent opening (without
windcatcher). (b) represents a room ventilated with a multidirectional windcatcher.

A typical four-sided multidirectional windcatcher is divided into quadrants by an
X-shaped partition, as shown in Figure 2 [17]. These quadrants play specific roles in
the airflow ventilation operation, with one quadrant typically supplying fresh air, while
the other three quadrants expel air out of the ventilated space. However, the airflow



Energies 2025, 18, 848 3 of 36

dynamics can change slightly depending on the angle of the prevalent leeward wind
incident to the windcatcher. However, in principle, the effectiveness of the windcatcher
airflow primarily relies on parameters such as wind speed, wind direction, differences
in indoor–outdoor air pressure, and air temperature variance [18]. These parameters are
commonly monitored in windcatcher studies, which typically use small-scale and full-
scale experiments, as well as theoretical assessments based on analytical, empirical, and
numerical modeling techniques [19]. These techniques also provide a robust foundation
for evaluating windcatcher performance, which has predominantly focused on ventilation
and cooling effectiveness in recent years. Table 1 summarizes key studies on windcatchers
from the past five years, highlighting their design variations, operational limitations, and
research gaps.
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Figure 2. Cross-section of a four-sided multidirectional windcatcher showing airflow patterns through
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Table 1. Key studies on windcatcher ventilation and cooling performance studies, highlighting their
design variations, operational limitations, and research gaps.

Ref. Year Study Design Variation Operational Limitations Research Gaps

Ventilation performance

[20] 2023

Experiment and numerical
investigation of a novel

flap fin louver windcatcher
for multidirectional natural

ventilation and passive
technology integration.

Flap fins on inlet
openings enable

direction-
independent
ventilation.

Relies heavily on wind
direction and speed; low
performance in variable

and low wind conditions.

Integration with
passive cooling,

heating, and
dehumidification

systems not explored.

[21] 2024

Parametric analysis of a
novel rotary scoop

dual-channel windcatcher
for multidirectional natural

ventilation of buildings.

Rotary scoop
dual channel

separates airflow.

Airflow leakage due to
gaps in the bearing
system, reducing

ventilation performance.

Did not address the
potential of

incorporating assisted
ventilation to enhance
system performance in
low wind conditions.
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Table 1. Cont.

Ref. Year Study Design Variation Operational Limitations Research Gaps

[22] 2024
Use of wind

wall-integrated
windcatcher.

Incorporated
upper wing walls

(UWWs) into a
two-sided

windcatcher.

Limited operation in
turbulent and varied

wind conditions.

Integration with
passive cooling
technologies not

considered.

[23] 2020
Windcatcher louvers

to improve
ventilation efficiency.

Clark Y fixed
airfoil-type louver
with single-sided

windcatcher.

Performance reduced in
low or turbulent
wind conditions.

Multidirectional
windcatchers and wider

climate adaptability
not explored.

[2] 2021

Numerical simulation of
natural ventilation with

passive cooling by
diagonal solar chimneys

and windcatcher and water
spray system in a hot and

dry climate.

Combines
windcatcher, three

solar chimneys,
and WSS.

Limited to hot, dry
climates; feasibility of
WSS in water-scarce
areas not addressed.

Experimental
validation missing.

[24] 2022

The effect of onset
turbulent flows on
ventilation with a

two-sided
rooftop windcatcher.

Assesses wind
incidence angles
for ventilation.

Relies on window
opening for

optimal operation.

Single-sided and
multidirectional designs

not explored and
lacks computational

validation.

Cooling performance

[25] 2024

Radiative cooling
ventilation improvement

using an integrated system
of windcatcher and

solar chimney.

Solar chimney
integrated with

radiative cooling
windcatcher.

Vent opening positioning
for optimization not

addressed; limited to hot,
dry climates.

Performance in humid
or mixed climates

not assessed.

[26] 2023

Experimental and
numerical evaluation of a

novel dual-channel
windcatcher with a rotary
scoop for energy-saving
technology integration.

The rotary scoop
separated the
supply and

return ducts.

Performance depends on
the outdoor wind,

reducing reliability in
variable conditions.

PCM integration not
explored for placement,

selection, and
effectiveness in

different climates.

[27] 2024

Optimizing Windcatcher
Designs for Effective

Passive Cooling Strategies
in Vienna’s

Urban Environment.

Evaluated
one-sided and

two-sided
windcatchers but
does not explore
multidirectional

designs.

Does not address
windcatcher performance

in low or no wind
conditions, crucial for

areas with
inconsistent winds.

Focused on Central
European climates, not
hot climates. Relied on

DesignBuilder
simulations without

experimental, CFD, or
real-world validation.

1.2.1. Effect of Wind Speeds on Windcatcher Ventilation

Higher wind speeds generally lead to increased ventilation rates in windcatchers [28].
However, excessively high wind speeds may not necessarily benefit windcatcher cool-
ing performance. In general, multidirectional windcatchers offer more satisfactory
ventilation in limited wind speed conditions than other types of windcatchers [14].
Gharakhani et al. [29] conducted wind tunnel experiments and CFD analysis to investigate
windcatcher ventilation performance under low-wind hot conditions. They found that
increasing the number of vents and optimizing windcatcher height improved ventilation at
nominal wind speeds of 5–7 m/s.
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Studies by Calautit et al. [30] and O’Connor et al. [31] demonstrated that four-sided
multidirectional windcatchers could operate efficiently even at low wind speeds of 2 m/s, a
capability attributed to the optimal sizing and placement of vents [32]. Similarly, Dehghani-
Sanij et al. [33] investigated a single-sided rotating cylindrical windcatcher with moistened
pads. Their findings indicated that greater ventilation efficiency was achieved at higher
wind speeds, typically ranging from 3 to 10 m/s.

1.2.2. Effect of Wind Angles on Windcatcher Ventilation

Wind angle is a critical factor influencing pressure differences across the openings
of passive ventilation systems, such as multidirectional windcatchers [34]. Research has
shown that the highest ventilation efficiency and pressure coefficients are achieved when
wind flows directly into the vents at a 0◦ angle [17]. However, as wind angles deviate
incrementally, airflow rates decrease until ventilation becomes negligible [35]. Angles
exceeding 45◦ significantly reduce cooling performance [26]. Afshin et al. [36] confirmed
that zero-ventilation performance occurs at a wind angle of 55◦.

Calautit et al. [37] conducted wind tunnel experiments and CFD simulations to evalu-
ate the impact of wind angles on the performance of a four-sided multidirectional wind-
catcher. Using boundary conditions with wind speeds ranging from 0.5 to 5 m/s and wind
angles between 0◦ and 90◦, they found that the highest ventilation efficiency occurred at a
wind angle of 45◦ with a wind speed of 3 m/s. This configuration resulted in an indoor
volumetric flow rate of 0.47 m3/s, which was 32% higher than the flow rate observed at a
0◦ wind angle.

These studies emphasize the significant influence of wind speed and angle on the pas-
sive ventilation potential of four-sided multidirectional windcatchers. Hybrid ventilation
systems, which incorporate fans, have shown promise in mitigating the effects of varying
wind angles on ventilation performance. However, the extent to which hybrid systems can
address these challenges has not been comprehensively explored in the existing literature,
warranting further investigation.

1.3. Fan-Assisted Windcatcher Hybrid Ventilation

Despite the improved ventilation potential of windcatchers, time-varying flows and
irregular ventilation pose significant barriers to achieving optimal building ventilation
performance [38]. Zhang et al. [39] suggested that adopting hybrid ventilation rather than
passive ventilation can overcome these limitations. Several studies have demonstrated
the potential of integrating fans into windcatchers to improve ventilation performance.
For instance, Sangdeh and Nasrollahi [17] discussed the potential of incorporating fans
with windcatchers to achieve hybrid ventilation. Hughes et al. [40] discussed the use of a
low-energy fan incorporated at the top of a windcatcher and connected to solar panels to
ensure continuous airflow when no outdoor wind is available.

Elmualim [41] explored the combination of a mechanical fan system with a wind-
catcher to enhance indoor airflow. However, the study did not verify the specific contri-
bution of the windcatcher to the overall ventilation performance. Hughes and Ghani [42]
developed a CFD model to evaluate the impact of different fan positions on windcatcher-
induced airflow. Their results indicated a consistent ventilation rate of 370 L/s when the fan
was positioned at the top of the windcatcher with a fan pressure of 20 Pa. This established
the potential for hybrid systems to maintain ventilation throughout the day, even under
low wind conditions.

Lavafpour and Surat [43] suggested orienting wall-mounted fans parallel to the wind-
catcher vents to reduce irregular ventilation flows. However, their study lacked supporting
data, highlighting the need for further research on fan-assisted windcatchers to better
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understand hybrid ventilation optimization. While the ventilation effectiveness of hybrid
windcatchers is evident, challenges remain. In alignment with the global emphasis on
sustainable energy technologies, solar fans could serve as an alternative to mechanical
fans in windcatchers. Hybrid multidirectional windcatcher systems show promise, but
achieving efficient and stable cooling remains crucial for widespread application in hot
climates [44]. This issue can be addressed by combining windcatchers with additional
passive cooling strategies.

1.4. Integrating Passive Cooling Devices with Windcatchers

The integration of passive cooling systems into windcatchers has been widely dis-
cussed in the literature [45], with previous studies using both experimental [46] and nu-
merical analyses [44]. Recently, significant attention has been given to the integration of
heat pipes to enhance windcatcher cooling performance. However, as discussed below,
heat pipes come with specific limitations that must be addressed.

1.4.1. Heat Pipe Integration with Windcatchers

Heat pipes are effective, low-energy heat transfer devices that can significantly reduce
incoming air temperatures when integrated with windcatchers [47]. Calautit et al. [47]
reported that heat pipes exhibit a sensible effectiveness of 45–65%. In one study, heat pipes
were incorporated into a unidirectional windcatcher to assess cooling performance across
varying wind speeds (1–5 m/s) [48]. Results showed a reduction in supply air temperature
by 9.5–12 ◦C, with better cooling performance observed at lower wind speeds (1–2 m/s)
than at higher wind speeds (5 m/s).

In another study, Calautit et al. [30] investigated cylindrical heat pipes in a unidirec-
tional windcatcher under an external air temperature of 318 K. This configuration achieved
a 12 K reduction in supply air temperature. Although ventilation rates decreased by 20–35%
due to the internal heat pipe arrangement, the system maintained an airflow rate of up
to 10 L/s per person. The authors suggested that fan integration could further improve
ventilation rates, reaffirming the cooling efficacy of heat pipes.

A numerical study by Calautit et al. [47] compared the integration of evaporative cooling
and heat pipes into a commercial windcatcher. Both systems achieved comparable temperature
drops of up to 15 ◦C. However, heat pipes were favored due to their ability to conserve water,
even though both approaches required working fluids (water or ethanol) for consistent cooling.
Nevertheless, these studies did not address the inability of windcatchers to consistently
stabilize supply air temperatures, a challenge that PCMs could potentially overcome.

1.4.2. PCMs—Thermal Energy Storage Integration with Windcatchers

PCMs are highly effective for thermal energy storage due to their substantial latent heat
capacity, which allows for significant cooling load shifts from peak to off-peak periods [49].
PCMs can absorb and release latent heat with minimal temperature variation, enabling the
reduction in and stabilization of air temperatures for effective passive cooling [50,51].

O’Connor et al. [52] demonstrated that PCM integration in ventilation systems is feasi-
ble, as PCMs exert minimal impact on airflow pressure. Despite limited research on PCM
integration into windcatchers, the results of existing studies suggest significant potential.
For instance, Seidabadi et al. [53] conducted a heat transfer study using MATLAB software
on a two-sided windcatcher integrated with PCMs. However, the authors first developed
the model as a two-dimensional (2D) model and later extended to three-dimensional (3D)
model. The heat and mass transfer codes were developed in MATLAB using the PDSIMUL
time-dependent function to solve the differential equations for PCM phase change and
energy balance. These calculations were then integrated with the Finite Element Method
(FEM) to simulate PCM behavior and airflow dynamics. Overall, the system achieved a
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15 K reduction in air temperature and maintained temperature stability for 7 h, although heat
transfer efficiency was reduced due to the PCM’s placement within the windcatcher walls.

Lizana et al. [54] improved air–PCM heat transfer by integrating PCMs directly into
the airstream of a ventilated cooling ceiling. Similarly, Rouault et al. [55] found that
the shape and arrangement of PCM profiles within a latent heat thermal energy storage
(LHTES) ventilation system strongly influenced heat transfer and melting performance.
Abdo et al. [56] reported a 9.85% temperature reduction (2.78 ◦C) when PCMs were placed
directly within the airstream of a two-sided windcatcher.

Despite these promising findings, research on the thermal energy storage performance
of multidirectional windcatchers remains scarce.

1.5. Gap in Knowledge, Novelty, and Aims

The studies discussed clearly show that the potential to enhance windcatcher ven-
tilation has been thoroughly explored. Recent research has also focused on enhancing
the cooling performance of windcatchers, with heat pipes playing a prominent role in
these studies.

Some investigations have explored the use of heat pipes with cold-water storage for
unidirectional (one-sided) windcatcher cooling [17,18], while others have examined heat
pipes in two-sided windcatcher configurations [57]. However, a significant drawback of
these systems is the need for continuous water replacement in the storage tanks to ensure
effective heat transfer. In contrast, PCMs offer a more streamlined system configuration
while improving windcatcher cooling and thermal energy storage performance. Essentially,
PCMs serve a dual function as both heat transfer devices and heat sinks.

The existing literature highlights that PCMs have a substantial latent heat storage
capacity [58], with minimal temperature fluctuations during phase transitions [59]. This
capability enables the shifting of peak cooling loads to off-peak periods [51], which can be
advantageous for enhancing windcatcher cooling and thermal energy storage. Despite these
benefits, there is a limited understanding of how PCMs can be integrated into windcatcher
systems. In particular, the effect of incorporating encapsulated PCMs into multidirectional
windcatchers, especially those designed for hybrid ventilation, remains underexplored.
Furthermore, the impact of wind speed on the thermal energy storage performance of
hybrid multidirectional windcatcher systems also remains poorly understood, underscoring
the need for further investigation. This gap raises several key research questions:

■ How can encapsulated PCMs be optimally integrated into hybrid multidirectional
windcatchers to improve both cooling and thermal energy storage performance with-
out compromising overall ventilation effectiveness?

■ What influence will variations in wind speed and angle have on the system’s cooling,
thermal energy storage, and overall ventilation performance?

To address these questions and overcome the cooling and thermal energy storage
deficiencies of traditional windcatchers, this study introduces a novel solar fan-assisted
multidirectional windcatcher that incorporates encapsulated PCM tubes (E-PCM-Ts) di-
rectly within its airstreams. The system’s novelty lies in the vertical integration of E-PCM-Ts
within the airstreams, enhancing heat transfer and addressing temperature stabilization
challenges. Additionally, the use of a wall-mounted solar fan, rather than a roof-mounted
one, effectively reduces the airflow resistance caused by PCMs, functioning as a secondary
airflow vent.

This study aims to assess the feasibility of integrating E-PCM-Ts as a cooling and
thermal energy storage solution for multidirectional windcatchers without compromising
ventilation performance. To achieve this, this study evaluates the impact of wind speeds,
wind angles, and different E-PCM-T configurations on the system’s thermal energy storage,
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cooling performance, and ventilation effectiveness. A numerical analytical approach based
on validated computational fluid dynamics (CFD) models was employed. The windcatcher
model’s ventilation performance was validated initially, followed by validation of the
E-PCM-T thermal energy storage performance. Finally, the integrated hybrid system with
E-PCM-Ts was thoroughly assessed.

2. Methods
2.1. Proposed System

As illustrated in Figure 3, the proposed system incorporates encapsulated phase-
change material tubes (E-PCM-Ts) within a solar fan-assisted multidirectional windcatcher.
The X-shaped partition divides the windcatcher airstreams into four quadrants, preventing
crossflow within the system. A wall-mounted axial solar fan ensures hybrid ventilation by
minimizing airflow fluctuations and reducing resistance caused by the E-PCM-Ts within
the airstreams.
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Figure 3. The hybrid multidirectional windcatcher system with E-PCM-Ts.

To investigate the impact of E-PCM-T inclusion in the windcatcher, two distinct
arrangements of E-PCM-Ts were proposed. In the first arrangement (Case 1), as shown in
Figure 4, the windcatcher was integrated with 48 E-PCM-Ts placed solely within the supply
airstream. In the second arrangement (Case 2), 48 E-PCM-Ts were placed in each of the
four windcatcher airstreams, resulting in a total of 197 E-PCM-Ts evenly distributed across
all quadrants.

The operation of the proposed system relies on three simultaneous processes: airflow,
thermal energy storage, and air cooling. As illustrated in Figure 5, warm outdoor air enters
through the windward vents of the windcatcher and passes directly over the E-PCM-Ts
in the supply airstreams. This direct interaction facilitates efficient heat transfer, allowing
the E-PCM-Ts to absorb and store heat from the incoming air. Consequently, the supply
air temperature (Ts) is effectively reduced before being delivered into the ventilated space.
Simultaneously, as cooling occurs in the supply airstream, stale and warm air is expelled
from the ventilated room through the exhaust vents located on the leeward side of the
windcatcher [17].
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2.2. Geometry and Computational Domain

The 3D geometry of the proposed system was initially developed using Rhino 6 CAD
software and then refined into a simplified computational model using the ANSYS 18.0 De-
sign Modeler within the ANSYS Workbench environment. The fluid volume of the model
was extracted from the solid model to simplify the physical domain for computational
simulation. As shown in Figure 6, the computational domain includes the macroclimate
(representing the outdoor airflow domain), the solar fan-assisted multidirectional wind-
catcher integrated with E-PCM-Ts, and the microclimate (representing the single-zone
ventilated room). To prevent reverse flow within the macroclimate domain, the far-field
pressure outlet was extended 20 m from the inlet boundary.
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2.3. Material Selection

The optimal PCM melting temperature, Tm,r, for the set average room temperature,
Tr, was derived from Equations (1) and (2), based on the studies by Peippo et al. [60] and
Nazir et al. [61]. As a result, RT28HC paraffin, a commercially available Rubitherm GmbH
PCM product with a melting temperature of 28 ◦C (301.15 K) and a solid-state specific heat
capacity of 1650 J/kg K−1 was selected [55].

Tm,r = Tr +
Q

h × ts
(1)

where Q represents the absorbed heat in a room per unit area surface in Jm−2, stored based
on a diurnal storage cycle, and ts = tc + td. The wall surface heat transfer coefficient is
given as h in Wm−2 K−1.

Tr =
tcTd + tdTn

tc + td
(2)

where Td represents the daytime room temperature, and Tn represents the nighttime room
temperature based on the PCM charging (tc) and discharging (td) times.

This choice aligns with the recommended thermo-properties for PCMs suitable for hot
outdoor conditions, as specified in the studies by Sheriyev et al. [62] and Lei et al. [63]. For
this study, the selected PCM was encapsulated in rectangular aluminum tubes measuring
50 × 60 × 500 mm, with a conduction thickness of 0.001 mm. The thermophysical properties
of the PCM and its encapsulation material, aluminum, are presented in Table 2.



Energies 2025, 18, 848 11 of 36

Table 2. Thermophysical properties of RT28HC PCM encapsulated in aluminum tube [55,64]. s—PCM
in solid state, l—PCM in liquid state.

Properties PCM (RT28 HC) Aluminum Encapsulation
Material (Al)

Melting temperature (K) 301.15 -
Temperature (K) 300.15 (s), 302.15 (l) -

Specific heat capacity (J/kg K−1) 1650 (s), 2200 (l) 910
Density (kg/m3) 880 (s), 768 (l) 2719

Thermal conductivity (W/m K−1) 0.2 -
Dynamic viscosity (kg/m s) 0.00238 -

Latent heat (J/kg) 245,000 -
Melting volume expansion (%) 14 -

Kinematic viscosity (mm/s) 3.1 × 10−6

The PCM mass for a single E-PCM-T based on its volume and density was calculated
using Equation (3):

VPCM,tube = Wt × Ht·Lt·lf (3)

where Wt is the tube width, Ht is the tube height, tube length is Lt, and lf is the PCM
volume fraction (default value is 1, assuming PCM completely fills the tube).

PCM mass for a single E-PCM-T is calculated using Equation (4):

mPCM,total = VPCM,tube·ρPCM (4)

PCM mass for N E-PCM-Ts scaled across the system was calculated using the following:

mPCM,total = mPCM,tube·N (5)

Accordingly, PCM volume per E-PCM-T was 0.0015 m3, with a mass of 1.32 kg. The
total PCM in Case 1 was 63.36 kg (15.52 MJ energy storage) and in Case 2, 260.04 kg
(63.61 MJ energy storage). Despite its large mass, the PCM offers a high energy storage per
unit volume offering a better energy density solution that requires significantly less weight
than that of other traditional thermal storage materials like concrete or water [65] to store
the same energy.

2.4. CFD Numerical Modeling

Numerical modeling was performed using Ansys Fluent 18.0 CFD software. The
transient 3D RANS (Reynolds-Averaged Navier–Stokes) with standard k–ε turbulence
model was adopted to simulate the airflow. The turbulence intensity at the windward inlet
of the flow domain was assumed to be 5%, and the turbulent viscosity ratio was assumed
to be 10, consistent with the CFD methodology outlined by [40]. The Finite Volume Method
(FVM) and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) were employed
to solve the governing equations without any modifications, as described by [66].

As indicated in Figure 7, twelve monitoring points were created in the CFD model to
monitor all properties throughout the numerical simulation aligned with the vector points
in Calautit et al.’s experimental model [35]. The PCM phase transition and heat transfer
problem were solved using the numerical algorithm for the “Stefan problem” during the
simulation exercise discussed in Prakash et al.’s study [67].
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2.4.1. Assumptions

The following assumptions were adopted during the numerical simulation:

• The initial temperature of the PCM was set at 293 K (20 ◦C).
• Volume expansion of the PCM during phase change was neglected in the

solution computation.
• The PCM was considered isotropic, with uniform thermal conductivity.
• All thermophysical properties were assumed to be homogenous and constant, inde-

pendent of temperature variations.
• Convective heat loss around the windcatcher and room walls was neglected, assuming

adiabatic conditions.
• Airflow in the model was assumed to be incompressible, transient, and turbulent.

2.4.2. Governing Equations

Based on the assumptions stated in Section 2.4.1, the model’s airflow physical be-
havior and the PCM–air heat transfer interfaces are governed by Equations (6)–(14) in
Section Governing Equations for the Airflow Within the Model and Section Governing
Equations for the PCM Phase Transition Heat Transfer Interfaces, respectively.

Governing Equations for the Airflow Within the Model

Within the k-ε turbulence model, airflow transport is governed by the conservation
equations for mass, momentum, and energy, which are fundamental in describing all
turbulence model transport phenomena.

Conservation of mass:
δρ

δtj
+

δ

δt
(ρui) = 0 (6)

where the fluid velocity in the model is represented by u, the density of air is represented
by ρ, and time is t.
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Momentum conservation:

∂(ρu)
∂t

+∇·(ρuu) = −∇p + ρg +∇·(µ∇u)−∇·τt (7)

The vectors in the equations are represented as p, pressure, and g, gravitational accel-
eration. The molecular dynamic viscosity is represented as µ; τt represents the turbulence
stress divergence that occurs due to the velocity fluctuations caused by the auxiliary stresses
in the model.

Energy conservation:

∂(ρe)
∂t

+∇·(ρeu) = ∇·(keff∇T)−∇·
(
∑i hiji

)
(8)

where e represents specific internal energy and effective heat conductivity, keff; the temper-
ature of the air is represented by T; and hi represents the fluid-specific enthalpy while ji is
the mass flux.

Turbulent kinetic energy:

∂(ρk)
∂t

+∇·(ρku) = ∇·[αkkeff∇k] + Gk + Gb − ρϵ (9)

Gk is the TKE source caused by the average velocity gradient; Gb represents the
TKE source based on buoyancy force; the turbulent Prandtl constants are represented by
constants αk and αε; and vectors C1ε, C2ε, and C3ε are the empirical model constants.

Energy dissipation rate:

∂

∂t
(ρYi) +∇·(ρuYi) = −∇·

→
Ji + Ri + Si (10)

where
→
Ji represents the fusion flux of species i, Ri represents the net rate of production of

species I, and Si is the rate of creating species by addition from the dispersed phase and
any user-defined sources.

Governing Equations for the PCM Phase Transition Heat Transfer Interfaces

The PCM was modeled based on the Stefan problem using the temperature method.
Hence, the equations solve the temperature distribution and phase change that occur within
the PCM. By tracking temperature as a key variable, this method effectively represents the
heat transfer and thermal conductivity behavior of the PCM during its phase change. It
avoids the need to delve into intricate fluid dynamics details, phase-change interfaces, or
complex multiphysics interactions within the PCM, thus reducing computational resource
demands and balancing the CFD modeling complexity and the accuracy of the result. Based
on this, the PCM temperature variation and melting phase transition in the 3D model are
described using continuity Equations (11) and (12) for melting and solidification, along
with momentum Equation (13) [68].

∇·
→
U = 0 (11)

where U is the 3D velocity vector :
→
U =

(
Ux,Uy,Uz

)
. (12)

ρf

(
∂
→
u

∂t
+

→
u ·∇→

u

)
= −∇p + µf∇2→u + ρf

→
gβ(Tf − Tm) +

C(1 − fl)
2

S + fl
3

→
u (13)
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where β is the thermal expansion coefficient (1/K), the simulation coefficients are repre-
sented by S and C, while the PCM liquid fraction is represented by fl. g is the gravitational
acceleration vector. Tf is the fluid temperature and Tm is the melting temperature.

Furthermore, the PCM liquid fraction, fl, during the simulation is given by
Equation (10). fl is a function of T temperature which is applied across the 3D tempera-
ture field. The Ts PCM temperature in a solid state is 300.15 K (27 ◦C) and the Tl PCM
temperature in a liquid state is 301.15 K (29 ◦C).

fl =


0 T < Ts

T−Ts
Tl−Ts

Ts < T < Tl

1 T > Tl

(14)

2.4.3. Mesh Generation and Adaptation

Two non-uniform hybrid computational meshes were generated for the Case 1 and
Case 2 models. As shown in Figure 8, the regions around the E-PCM-Ts were refined using
face meshing techniques to achieve higher mesh density in critical areas. This refinement
was essential to accurately resolve the airflow and heat transfer phenomenon. It was
particularly focused on the region circled in red in Figure 8, where steep temperature and
velocity gradients were anticipated to occur. By enhancing the mesh resolution in these
zones, the simulations provided more precise predictions of heat transfer rates and airflow
behavior. This targeted meshing strategy effectively captured the complex thermal and
fluid interactions within the E-PCM-T region, offering deeper insights into the modeling
intricacies. A grid sensitivity analysis, discussed in Section 2.4.4, ensured that the error in
the posterior estimate was negligible.
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2.4.4. Grid Sensitivity Analysis

A grid sensitivity analysis was performed to ensure an insignificant posterior estimate
error by systematically varying the mesh size from coarse to fine grids [69]. As presented
in Table 3, the mesh sizes ranged from 4.6 million to 14.5 million elements. The fine mesh
for the Case 1 model, which included 11.6 million elements and 2.2 million nodes, and
the Case 2 model, with 14.5 million elements and 2.8 million nodes, exhibited minimal
discretization error and were selected for further analysis.
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Table 3. Grid independence study.

Case 1 Model
(E-PCM-Ts Placed Only
in the Supply Airstream)

Case 2 Model
(E-PCM-Ts Placed in
All Four Airstreams)

Mesh
Grading

E-PCM-T Face
Element Size [mm] Nodes Elements Nodes Elements

Fine 10 2,207,331 11,684,429 2,899,882 14,512,606
Medium 12 1,276,807 7,141,564 1,969,358 9,969,741
Coarse 15 822,564 4,683,093 1,515,115 7,511,270

2.4.5. Timestep Independence Study

A timestep independence study was conducted to ensure numerical stability and
accuracy in the simulation results. This study tested timesteps of 60, 40, 10, and 5 on the
selected mesh models. The solution iterated at each timestep and residuals for velocity
components, continuity, and energy were monitored until they stabilized with no further
variations. The smallest average error was observed with a 5-timestep configuration for
velocity outputs, ensuring both accuracy and computational efficiency. Consequently, a
5-timestep configuration was adopted for all simulations.

2.4.6. Boundary Conditions

The inlet air temperature Tin at the macroclimate boundary was set to 308.15 K
(35 ◦C), representing a typical outdoor temperature (Tout) in hot climatic conditions. The air
velocity varied between 1.88 m/s and 3 m/s. To prevent reverse flow, a pressure outlet was
positioned at the extended macroclimate domain. The model incorporated a gravitational
force of −9.81 m/s2, while the domain walls were assigned a roughness height of 0.001 Ks.
Atmospheric pressure was assumed throughout the simulation. Relaxation factors were set
as follows: 0.3 for pressure, 0.7 for momentum, and 1 for energy.

For the E-PCM-Ts, the initial temperature was maintained at 293.15 K (20 ◦C). A solar
fan static pressure jump of 10 Pa was defined. Monitoring points were established along
the microclimate ZY plane to collect relevant data, enabling the observation of supply
airflow rates, pressure, and temperature. The thermal storage heat transfer of the PCM was
analyzed by assessing the liquid fraction (fl) at 120 flow time intervals.

2.4.7. Solution Convergence

The simulation was conducted with an inlet air velocity of 1.88 m/s at wind angles of
0◦ and 45◦. Supply airflow rates, pressure, and temperature profiles were monitored at all
twelve points identified in Figure 7. Additionally, the PCM heat transfer rate was closely
observed at 120 s intervals of flow time, with a particular focus on the liquid fraction and
average weighted temperature profiles of the PCM. Convergence was achieved when all
monitored residuals and properties showed no further changes, ensuring stability and
accuracy. Energy conservation was verified to exhibit no errors, confirming the reliability
of the solution.

3. Validation of Numerical Method
The validation of the numerical methods was conducted separately for the windcatcher

airflow model and the E-PCM-T liquid fraction performance verification model. Both CFD
prediction models were compared with experimental data from previous studies [37,55].
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3.1. Windcatcher Airflow Model Validation

Before integrating E-PCM-Ts into the windcatcher model, a validation of the wind-
catcher’s airflow performance was carried out. This step ensured the reliability of the CFD
model before implementing further modifications. A 1:10 scale model was used for the
initial validation, ensuring that its dimensions, boundary conditions, and grids aligned
with the experimental setup reported in [37]. The experimental setup in the literature
aimed to replicate realistic operating conditions, maintaining a low blockage ratio of 4.8%,
which required no corrections. Indoor airflow was measured using a Testo 425 hot-wire
anemometer, manufactured by Testo SE & Co. KGaA, located in Titisee-Neustadt, Baden-
Württemberg, Germany, with a velocity reading uncertainty between ±0.5% and 1.0%.
Pressure coefficients were measured using a DPM ST650 micromanometer with a 166T
ellipsoidal Pitot static tube, both manufactured by Dwyer Instruments, Inc. (Michigan City,
IN, USA), which provided readings with an uncertainty of ±1.0% and a valid calibration
range of ±11◦. Smoke visualization tests were conducted to observe airflow patterns,
including short-circuiting and vortex formation.

Following successful validation, the model was scaled up to a full-scale (1:1) configuration
for a more accurate analysis of the thermal storage performance in the proposed system.

Confidence limits for the average weighted indoor air velocity data from CFD pre-
dictions (Cp) were compared against experimental observations (Co) at 12 monitoring
points (Figure 8). Statistical performance was evaluated using three widely recognized
metrics [70]. The normalized mean-square error (NMSE) [71] is governed by Equation (15),
the Fractional Bias (FB) is governed by Equation (16), and the fraction of predictions within
a factor of two observations (FAC2) is governed by Equation (17) [72].

NMSE =

(
Co − Cp

)2

CoCp
(15)

FB =

(
Co − Cp

)
0.5
(
Co + Cp

) (16)

FAC2 = fraction of data that satisfies 0.5 ≤
Cp

Co
≤ 2.0 (17)

where “Co” represents the experiment observations, the data set average is represented by
“C”, and “Cp” represents the model predictions.

Results from the windcatcher airflow model validation exercise for the twelve (12)
monitored points (P1–P12-exhaust) are presented in Table 4. High airflow rates at 0.47 m/s,
1.19 m/s, and 2.82 m/s were observed at P7, P10-bottom, and P11-supply in the CFD predictions
compared to in the experimental observations, as shown in Figure 9. However, the maxi-
mum percentage deviation occurred at P8 at 32%. P2 and P6 exhibited the least deviation
at 0%. As highlighted in Figure 10, the overall average percentage error between the CFD
predictions and the observations was 3% for the NMSE, 12% when the FB method was
used, and an average value of 1.07 for the FAC2 method.

The slight discrepancies seen between the airflow behavior in the CFD results and
the experimental data in points 3, 5, 7, 10-bottom, and 11-supply may be attributed to the
differences in some of the boundary condition assumptions, which may have influenced
the airflow pattern prediction in the model. Additionally, the effect of re-scaling the model
caused a slight mismatch in the Reynolds numbers and thermal characteristics within the
model. However, overall, validation results indicate that the confidence limits and accuracy
of the CFD airflow model predictions are in strong correlation with [37].
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Table 4. Average weighted velocities and errors at monitor points P1–P12-exhaust for CFD predictions
and experimental observations data from the literature.

Monitor Points P1 P2 P3 P4 P5 P6 P7 P8 P9 P10-bottom P11-supply P12-exhaust

V for Co [m/s] 0.29 0.22 0.28 0.25 1.05 0.22 0.23 0.28 0.29 0.81 2.51 0.30
V for Cp(L) [m/s] 0.30 0.20 0.30 0.31 1.08 0.21 0.22 0.29 0.29 0.79 2.50 0.32
V for Cp [m/s] 0.32 0.21 0.17 0.30 1.19 0.21 0.47 0.16 0.27 1.19 2.82 0.37

D% 1 0 28 4 1 0 22 32 1 15 1 4
FAC2 1.12 0.93 0.59 1.21 1.13 0.96 1.60 0.57 0.92 1.47 1.12 1.23

Average FAC2 1.07
NMSE 3%

FB 12%
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3.2. E-PCM-T Liquid Fraction Model Validation

The validation of the E-PCM-T model involved comparing the spatial average liquid
fraction per-flow rate in the CFD predictions of three different E-PCM-T models with the
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experimental observations in Rouault et al.’s study [55] under similar boundary conditions.
The experiment was set up by placing aluminum-encapsulated PCM tubes inside an energy
storage unit. This unit consisted of 42 horizontally layered PCM-filled aluminum tubes
arranged parallel to each other within a wooden casing. As described in [55], thermocouples
were installed in the storage unit to measure temperature variations during the experiment,
facilitating heat transfer analysis. External heat transfer was also maintained at zero during
the measurements to align the experimental measurements better with the simulation
results. A temperature measurement error of ±0.7 ◦C was adopted at the inlet, with an
overall measurement uncertainty of 1.5%.

To validate the CFD model with the experimental data, Co(E), the CFD predictions,
Cp, of the PCM liquid fraction, fl, and the temperature variation, ∆T, in the encapsulation
material (aluminum tube) during the PCM phase change in this study were monitored
for 600 min of simulation time. The Cp of fl in the current study was compared with Co(E)

and Co(N) from Rouault et al.’s study [58], as shown in Figure 11. Figure 12 illustrates
the variation in the Cp of the encapsulation tube temperature Tt in the current study
compared to the Co(E) and Co(N) from Rouault et al.’s study [55]. The maximum deviation
in tube temperature, Tt, between Co(E) and Cp was approximately 2.048. Despite this slight
deviation, the CFD model effectively validated its accuracy in simulating this aspect of heat
transfer, particularly for tube temperatures.

As indicated in Table 5, the NSME statistical calculation reveals a 4.15% and
0.03% deviation from the experimental observations for fl and the air temperature T.
However, no deviation was observed in Tt. The FB deviation percentage was 4.76%, 0.52%,
and 1.64% for the models of fl, Tt, and T, respectively. Using FAC2, the deviation was
at 1.20, 1.00, and 1.00 for the same monitored properties, respectively. Meanwhile, the
maximum deviation values between Co(E) in the literature and Cp in the current study
were 0.29, 2.05, and 6.64, respectively. The deviation in T was the most significant of all
properties measured.
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Table 5. Values of NMSE, FB, and FAC2 statistical deviation calculations for PCM liquid fraction,
encapsulation tube temperature, and air temperature.

NMSE (%) FB (%) FAC2 Maximum Deviation Value
Between Co(E) and Cp

PCM liquid fraction 4.15 4.76 1.20 0.29
Encapsulation tube

temperature (k) 0.00 0.52 1.00 2.05

air temperature (k) 0.03 1.64 1.00 6.64

There were slight differences in boundary condition assumptions due to the scaling
factor applied in the CFD model. However, the temperature variation trend over time
closely aligned with the expected heat transfer behavior, which was the primary focus of
the validation process. As a result, the emphasis was placed on the relative changes in
temperature rather than the exact initial temperature values. Nonetheless, the Cp value
of the E-PCM-T model showed strong agreement with data from the literature, further
reinforcing the validity of the model.

4. Results and Discussion
4.1. Ventilation Performance Assessment

This section presents the results of the numerical analysis of ventilation performance
for the two windcatcher models (Case 1 and Case 2), highlighted in Figure 4. Simulations
were conducted under varied inlet wind speeds (Vin) at 1.88 m/s and 3 m/s, with the inlet
wind angle (V∞) ranging from 0◦ to 45◦. The impact of solar fan inclusion on ventilation
performance was also analyzed.

4.1.1. Impact of Varying Outdoor Wind Speeds on Ventilation Performance

The impact of varying wind speeds on the model’s ventilation performance was evalu-
ated, with results indicating that higher wind velocities significantly improved ventilation.
For example, as shown in Figure 13a,b, the effect of wind speed variation is visually appar-
ent. The differences in contour grading demonstrate that increasing Vin from 1.88 m/s to
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3 m/s enhanced airflow velocity through the model, highlighting the direct relationship
between wind speed and ventilation efficiency.

Energies 2025, 18, 848 20 of 38 
 

 

wind angle (V∞) ranging from 0° to 45°. The impact of solar fan inclusion on ventilation 
performance was also analyzed. 

4.1.1. Impact of Varying Outdoor Wind Speeds on Ventilation Performance 

The impact of varying wind speeds on the model’s ventilation performance was eval-
uated, with results indicating that higher wind velocities significantly improved ventila-
tion. For example, as shown in Figure 13a,b, the effect of wind speed variation is visually 
apparent. The differences in contour grading demonstrate that increasing Vin from 1.88 
m/s to 3 m/s enhanced airflow velocity through the model, highlighting the direct rela-
tionship between wind speed and ventilation efficiency. 

 

Figure 13. Contour showing the variation in the air velocity magnitude in Case 1 when (a) Vin is at 
1.88 m/s and (b) Vin is at 3 m/s. 

The graphs in Figures 14a,b and 15a,b further highlight in detail the velocity profile 
at each monitor point. The main increments in air velocity were observed at P11-supply in 
both models. However, a 72% increase (from 0.46 m/s to 0.80 m/s) occurred in Case 1 as 
Vin increased from 1.88 m/s to 3 m/s (Figure 14a,b). 
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though the absolute velocities were lower than those of Case 1. 
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1.88 m/s and (b) Vin is at 3 m/s.

The graphs in Figures 14a,b and 15a,b further highlight in detail the velocity profile at
each monitor point. The main increments in air velocity were observed at P11-supply in both
models. However, a 72% increase (from 0.46 m/s to 0.80 m/s) occurred in Case 1 as Vin

increased from 1.88 m/s to 3 m/s (Figure 14a,b).
Similarly, according to Figure 15a,b, Case 2 exhibited a 69% increase in air velocity at

P11-supply with a velocity increase from 0.37 m/s to 0.61 m/s under the same conditions,
though the absolute velocities were lower than those of Case 1.

Figure 16 shows that higher airflow occurred at P11-supply and near the wall at P9. This
may be due to turbulence in those zones. But airflow dropped significantly at P2 and P8,
with values ranging from 0.05 to 0.14 m/s and 0.7 to 0.16 m/s when Vin was 1.88 m/s
and 3 m/s, respectively. This suggests that those regions at P2 and P8 could be prone to
stagnation of air. Although Case 2 provided better air velocity at eye level (1.5 to 1.7 m
from the floor) at P6-mid-supply, with a velocity of 0.42 m/s, Case 1 demonstrated better
ventilation performance overall, with Vin of 3 m/s delivering more effective airflow.
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Figure 16. Comparison of air velocity variation in Cases 1 and 2 based on Vin 1.88 m/s and
3 m/s scenarios.

Figure 17a,b further compare the air velocity at P11-supply, the base of the room at
P10-bottom, and the amount of air exiting the space when Vin was at 1.88 m/s. The outlet air
velocity was monitored at P12-outlet, located just below P12-exhaust. In both cases, air velocity
continued to decrease as air moved from the supply to the base. Case 1 shows better airflow
distribution. In Case 1, velocity only decreased from 0.46 m/s at P11-supply to 0.33 m/s at
P10-bottom and exited at 0.17 m/s (Figure 17a). Case 2 followed a similar trend but with
slightly lower values: 0.38 m/s at P11-supply, 0.31 m/s at P10-bottom, and 0.16 m/s at the exit
(Figure 17b). The lower airflow in Case 2 is likely due to the placement of E-PCM-T units
in both the exhaust and supply airstreams, reducing air movement out of the space.

These results highlight the importance of higher inlet velocities for improving airflow,
particularly in areas prone to stagnation. The 3 m/s Vin scenario provided better ventilation
in both cases, with Case 1 performing more effectively overall.
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m/s), followed by 45° (0.41 m/s) and 0° (0.37 m/s). Similarly, at P12-outlet, the 30° V∞ scenario 
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4.1.2. Impact of Varying Outdoor Wind Angles on Ventilation Performance

The results from the two graphs in Figures 18 and 19 highlight the effect of different
wind angle airflow scenarios on the model performance.

Figure 18 compares air velocities at the supply and outlet for wind angles at 0◦, 30◦,
and 45◦. At the supply, the 30◦ wind angle (V∞) scenario achieved the highest velocity
(0.61 m/s), followed by 45◦ (0.41 m/s) and 0◦ (0.37 m/s). Similarly, at P12-outlet, the
30◦ V∞ scenario recorded the highest outlet air velocity (0.28 m/s), followed by
45◦ (0.20 m/s) and 0◦ (0.16 m/s). This shows that 30◦ offers the best airflow perfor-
mance. However, a 33% velocity reduction between supply and outlet air was observed in
the 30◦ scenario due to turbulence and energy dissipation, marking the highest decrease
among all V∞ scenarios.
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Figure 19 further demonstrates the effectiveness of the 30◦ V∞ scenario in enhancing
airflow directly at P11-supply. Comparing Cases 1 and 2, the 30◦ V∞ scenario in Case 2
achieved the highest velocity (1.11 m/s), representing a 50% improvement in the hybrid
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ventilation performance compared to the 0◦ V∞ scenario (0.61 m/s). The wind angle effect
on the windcatcher’s ventilation was not as pronounced at V∞ 0◦ and 45◦, compared to V∞

at 30◦. But V∞ still impacted the hybrid ventilation performance more in Case 2 than in
Case 1. For Case 1, velocities were slightly lower, with minimal differences between the
45◦ (0.79 m/s) and 0◦ (0.80 m/s) V∞ scenarios.
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the windcatcher.

These findings emphasize the superior performance of the 30◦ V∞ scenario in Case 2,
particularly at P11-supply, where it significantly enhances airflow. Overall, the 30◦ V∞

scenarios consistently delivered optimal airflow performance by improving air distribution
and reducing stagnation. This suggests the importance of wind angles in optimizing air
circulation in such systems.

4.1.3. Air Pressure Distribution in the Model

Figure 20 compares air pressure (P) across two case models: Case 1 (V∞ = 0◦ and
45◦) and Case 2 (V∞ = 0◦ and 45◦). Case 1a (V∞ = 0◦) recorded the lowest P values, with
−0.66 Pa at the supply (Ps) and −0.76 Pa at the exhaust (Pe). P increased with higher wind
angles, with Case 1b (V∞ = 45◦) reaching 9.16 Pa at the supply and 9.10 Pa at the exhaust.
Case 2b at V∞ of 45◦ showed the most balanced air pressure difference, with 8.02 Pa at the
supply and 8.00 Pa at the exhaust.

The contours presented in Figure 21 specifically compare the air pressure distribution
between Cases 1 and 2 at 7750 s flowtime. From the color gradient seen in the contours
presented, it can be inferred that Case 2 indicates a lower air pressure distribution than
Case 1.

The graphs in Figure 22a,b present more detailed interpretations of the air pressure
difference in the model. Accordingly, a drop in the supply air pressure (Ps) from 3.11 Pa to
−0.66 Pa over the first 2500 s is observed (Figure 22a). At the same time, a sharp decrease
in the exhaust air pressure (Pe) occurred, from 26.40 Pa to 0.76 Pa, indicating a significant
pressure reduction. The pressure drops in Case 2 were more pronounced than in Case 1
(Figure 22b). This sharp drop could be because of high turbulence at the beginning of the
simulation or potential air leakages at the supply.
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According to Figure 22b, at the beginning of the simulation, Pe in Case 2 was 30.61 Pa 
and then dropped to −8.53 Pa after 2500 s, while Ps decreased from 5.42 Pa to −8.41 Pa. A 

Figure 20. Air pressure comparison across four windcatcher model cases with varying V∞ at
0◦ and 45◦. Setup 1 represents Case 2 model at V∞ = 90◦ and Vin = 1.88 m/s. Setup 2 rep-
resents Case 1 model at V∞ = 90◦ and Vin = 1.88 m/s. Setup 3 represents Case 2 model at
V∞ = 45◦ and Vin = 1.88 m/s. Setup 4 represents Case 1 model at V∞ = 45◦ and Vin = 1.88 m/s.
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According to Figure 22b, at the beginning of the simulation, Pe in Case 2 was 30.61 Pa
and then dropped to −8.53 Pa after 2500 s, while Ps decreased from 5.42 Pa to −8.41 Pa.
A stable air pressure and flow condition was maintained from 2500 s to 25,000 s. By the
end of the simulation time at 25,000 s, a positive–negative pressure equilibrium was nearly
achieved. This positive–negative pressure equilibrium implies that the ventilation system
functioned effectively.

4.2. Cooling Performance Assessment

The cooling performance of the model was assessed at the different Vin of 1.88 m/s and
3 m/s. In addition, the effect of different E-PCMT arrangements on system performance at
an inlet air temperature (Tin) of 308.15 K (35 ◦C) is presented.

4.2.1. The Impact of Varying Outdoor Wind Speeds on Cooling Performance

Figure 23 displays the air temperature (T) profile for Case 1 and Case 2, recorded at
12 points (P1–P12-outlet). Results collated after 1.4 h (5000 s simulation time) showed that
the highest drops in T occurred at P11-supply. When Vin was 1.88 m/s, P11-supply dropped to
305.87 K (32.72 ◦C) and 306.57 K (33.42 ◦C) when Vin increased to 3 m/s in Case 2. This
indicates that more pronounced cooling occurred at lower wind speeds.
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At an outdoor inlet air temperature (Tin) set at 308.15 K (35 ◦C), cooling lasted up
to 20,000 s of flow time in Case 1 when Vin was 1.88 m/s (Figure 24a). From the start of
the simulation until 2500 s, a sharp drop in air temperature was observed at P11-supply,
followed by a steady decline until 20,000 s, after which the temperature rose sharply again
(Figure 24a). As Vin increased to 3 m/s (Figure 24b), the sharp temperature rise occurred
earlier, at 15,000 s. Temperature drops were more stable at other monitor points (P1 to
P10-bottom) compared to at P11-supply.

Overall, the air temperature values during the effective cooling period ranged be-
tween 305.87 K (32.72 ◦C) in the best-case scenario and 307.30 K (34.15 ◦C) in the worst-case
scenario. The results also indicate that increased wind speed accelerated cooling, achieving
faster thermal equilibrium but with reduced duration. In contrast, lower wind speeds sus-
tained a more prolonged cooling period, indicating better temperature stability. The system
achieved a maximum air temperature drop of 2.28 ◦C, representing a 6.51% improvement
in cooling at its optimal performance.
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4.2.2. Impact of E-PCMT Arrangement on Cooling Performance

The findings in Figures 25 and 26 highlight the significant influence of the E-PCM-
T arrangement on the thermal performance of the system. Figure 25 compares the air
temperature contours of Case 1 and Case 2. The contours show a slower but steadily
progressive temperature change in the ventilation space in Case 2 compared to in Case 1.
At 2500 s, Case 1 achieved a faster temperature reduction and maintained a larger cool
zone near the inlet, indicating immediate cooling at the source. However, this effect was
short-lived. In contrast, Case 2 exhibited gradual temperature reduction, better regulation,
and fewer hot spots, resulting in more balanced cooling over time. The initial cooling
advantage in Case 1 was offset by the sustained temperature stability and uniform cooling
in Case 2, which persisted throughout the simulation.

As shown in Figure 26a, the optimized E-PCM-T placement in Case 2 improved air–
PCM interaction, resulting in a 7% reduction in Ts Compared to Case 1, which achieved only
a 6% reduction, Case 2 benefits more from the effectiveness of the E-PCM-T arrangement in
maximizing cooling performance.

The improvement in heat transfer dynamics in the exhaust channel in Case 2 is also
highlighted in Figure 26b, where a consistent reduction pattern in the Te profile is observed.
This indicates better thermal stability in Case 2 than in Case 1, which exhibited an earlier
rise in Te and less cooling stability over time. By the conclusion of the 25,000 s simulation
cycle, Case 2 maintained a Te of 307.17 K (34.02 ◦C) compared to the less stable performance
of Case 1, which reached 308.09 K (34.94 ◦C).

Slight temperature non-uniformity and reduced heat transfer at certain points may
have resulted from gaps that developed between the PCM and tube wall during phase
change, a phenomenon not explicitly captured in this study. Nevertheless, overall, the
E-PCM-T arrangements influenced both supply (Ts) and exhaust air (Te) temperatures.
But Case 2 benefited more from the enhanced air–PCM interaction due to its E-PCM-T
arrangement in the exhaust airstream.
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4.3. Thermal Energy Storage Performance Assessment

The assessment of the thermal energy storage performance of the model was only
based on the charging cycle of the PCM, representing the PCM heat absorption cycle
for cooling the incoming air. The effects of variations in wind speeds and E-PCM-T
arrangements inside the model are presented in Sections 4.3.1 and 4.3.2.

4.3.1. Impact of Varying Outdoor Wind Speeds on Thermal Energy Storage Performance

Comparing Figure 27a,b, it is observed that the PCM in the E-PCM-Ts in the exhaust
air streams discharged faster as Vin increased from 1.88 m/s to 3 m/s. However, that of the
supply airstream discharged more rapidly in both scenarios.
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In Case 2, when Vin is 1.88 m/s (Figure 27a), the liquid fraction (fl) of the PCM in the
supply airstream was 0.35 at 20,000 s, while in the other airstreams, fl was around 0.18.
Between 20,000 s and 25,000 s, fl in the supply airstream sharply increased to 0.89, with
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complete melting at 30,000 s. In contrast, the PCM in the other airstreams melted more
steadily, completing at 35,000 s to 40,000 s.

When Vin increases to 3 m/s, the PCM discharging completes faster. As shown in
Figure 27b, fl in the supply airstream was 0.31 at 20,000 s, while in the other airstreams,
fl ranged from 0.21 to 0.17. A sharp rise in fl occurred between 20,000 s and 25,000 s,
reaching 0.99, while the other PCM reached full melting by 30,000 s.

Comparing the results presented in Figure 27a,b, it can be inferred that the improved
thermal energy storage performance of the model is achieved at lower V values. In addition,
higher wind speeds increase the rate of the PCM discharging, reducing the time required
for temperature stabilization.

4.3.2. Impact of E-PCMT Arrangement on Thermal Storage Performance

The impact of the E-PCM-T arrangement on the thermal energy storage performance
of Case 1 and Case 2 was studied based on three parameters: PCM discharging cycles,
PCM temperature variation, and air temperature stabilization. The liquid fraction contour
in Figure 28 shows that from 12,750 s, the PCM in the supply airstream in Case 1 began to
melt faster than in Case 2. Although a uniform melting pattern was observed in both cases
at 7750 s, PCM melting in the exhaust airstreams occurred in a bottom-up direction after
7750 s and throughout the rest of the simulation. PCM melting in the supply airstreams
progressed in the opposite direction to the top-down one. The heat absorption at the base
of the PCM in the exhaust airstream in Case 2 improved cooling capacity, leading to better
thermal regulation compared to in Case 1.
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Figure 29a,b compare the PCM charging cycles in Case 1 and Case 2 and their impact
on Ts variation. According to Figure 29b, the slower charging cycle in Case 2 delayed sharp
temperature increases. As a result, a gradual rise was seen in Ts from 305.87 K (32.72 ◦C) to
306.16 K (33.01 ◦C) between 2500 s and 20,000 s at fl of 0.35. By 25,000 s, Ts rose slightly to
307.77 K (34.62 ◦C) as the fl increased to 0.86, confirming relatively stable cooling.

In contrast, Case 1 exhibited faster charging with less thermal stability (Figure 29a).
In this case, Ts increased from 306.02 K (32.87 ◦C) to 306.27 K (33.12 ◦C) by 20,000 s at a
fl of 0.38, followed by a sharp rise to 308.27 K (35.12 ◦C) at a fl of 0.66. The results suggest
the potential of the Case 2 configuration to offer better cooling and enhanced temperature
stabilization. With such stability ability in windcatcher, there is greater potential for their
adaptability in a wider range of indoor environments and conditions.

The PCM temperature Tpcm in relation to the E-PCMT arrangement in Case 1 and
Case 2 is presented in Figure 30 for the duration of the cooling performance of the model,
which took place from 0 to 20,000 s. An increase in Tpcm from the initial temperature
of 293 K (20 ◦C) was observed for both Case 1 and Case 2. However, between 10,000 s
and 15,000 s, the rate of increase in Tpcm in Case 1 superseded that of Case 2 by 0.4%,
indicating a 1.1 K temperature difference. Unlike in the Case 1 model, ∆Tpcm was gradual
in Case 2 throughout the PCM charging cycle up to 20,000 s. The results presented in
Figures 29 and 30 imply that the E-PCMT arrangement impacts the duration at which
reduced Ts is sustained to achieve stabilized cooling.
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5. Conclusions
This paper examined the potential of windcatchers and their hybridization for effective

ventilation in buildings. Existing studies highlight the challenges of achieving efficient and
stable cooling with hybrid multidirectional windcatchers despite their ventilative potential,
particularly in hot climates with low wind conditions.

By introducing a solar fan-assisted multidirectional windcatcher integrated with verti-
cally encapsulated PCM tubes (E-PCM-Ts), this research explored an innovative solution to
improve the cooling and thermal energy storage performance in such windcatcher systems
without compromising ventilation performance. The system’s novelty, as discussed in this
paper, lies in the vertical integration of E-PCM-Ts within the airstreams, which enhances
heat transfer and addresses the temperature stabilization challenges of traditional wind-
catchers. The use of a wall-mounted solar fan, instead of a roof-mounted one, effectively
reduces airflow resistance caused by the PCMs, serving as a consistent secondary airflow
vent in addition to the natural ventilation strategy.

Using validated CFD models, this study investigated the effects of wind speeds, angles,
and E-PCM-T configurations, leading to the following key findings.

5.1. Ventilation Performance

Higher wind speeds (Vin) improved ventilation, with Case 1 achieving a 72% air
velocity increase at P11-supply and Case 2 achieving 69%. Wind angles (V∞) of 30 ◦ had the
most significant impact, enhancing ventilation by 50%. Adequate hybrid ventilation was
achieved with supply air velocities averaging between 0.37 and 0.60 m/s. This hybrid
ventilation is especially beneficial for maintaining indoor comfort in low wind conditions,
widening the potential application to several building types, particularly in regions with
limited wind conditions.

5.2. Cooling Performance

Case 2 demonstrated superior cooling stability, achieving a 6.5% temperature reduction
at V∞ of 0◦ and Vin of 1.88 m/s. Results showed a maximum air temperature drop of
2.28 ◦C at a wind speed of 1.88 m/s and wind angle of 0◦. Reduced temperatures were
sustained for up to 7 h, compared to 4.2–6 h for higher Vin. This implies that during peak
periods, extended thermal comfort can be achieved, reducing reliance on traditional air
conditioning systems.

5.3. Thermal Energy Storage

Lower Vin values enhanced PCM performance by prolonging the cooling period. PCM
melting was completed by 35,000 s in Case 1 and 30,000–40,000 s in Case 2, depending on
wind conditions. The stable temperatures achieved through the prolonged PCM phase-
change process minimize indoor temperature fluctuations and reduce the need for frequent
active cooling interventions.

Acceptable temperature reduction and stabilization were achieved in the CFD models.
However, slight temperature non-uniformity at certain points may have been because of
gaps between the PCM and tube wall due to PCM volume expansion during the phase
change, which was not accounted for in this study. This possibly may have increased the
PCM wall thermal resistance, affecting the heat transfer predictions slightly.

Overall, the findings from this study confirm the potential of PCM-integrated hybrid
multidirectional windcatchers to deliver sustainable, energy-efficient cooling and venti-
lation. Their adaptability to varying wind conditions ensures consistent performance in
low wind conditions. As a result, they offer a practical alternative to traditional wind-
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catchers and mechanical cooling systems, making them suitable for diverse building types,
including residential, commercial, and institutional applications.

5.4. Future Research

Future research will focus on optimizing the configuration of E-PCM-Ts to further
enhance cooling and storage performance. Alternative PCM materials and encapsulation
techniques that can improve the system’s efficiency and adaptability across diverse climates
will be explored. Dynamic meshing will be incorporated, and PCM volume expansion
and contraction will be considered in the modeling process to capture these effects and
further optimize the model for more accurate results. Exploring the potential for large-scale
implementation across various building types would be valuable to deepen the current
study further. Hence, economic feasibility studies will be conducted to establish cost-
effectiveness. To further assess the scalability and long-term performance of the system,
field testing under real-world conditions will also be undertaken. These anticipated future
research efforts aim to position the system as a practical and viable ventilative cooling
solution for wider building applications.
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Nomenclature

Q absorbed heat in a room per unit area surface.
T air temperature
V air velocity
Td daytime room temperature
ρ density of air
keff effective heat conductivity
Te exhaust air temperature
Ve exhaust air velocity
C data set average
Cp CFD model predictions
C1ε empirical model constant
C2ε empirical model constant
C3ε empirical model constant
Co experiment observations
Pe exhaust air pressure
hi fluid-specific enthalpy
u fluid velocity in the model
→
Ji fusion flux of species
g gravitational acceleration
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Tin inlet air temperature
V∞ inlet wind angle
Vin inlet wind speed
di inner tube dimeter
ji mass flux
µ molecular dynamic viscosity
Ri net rate of production of species
Tn nighttime room temperature
Tm,r optimal PCM melting temperature
Tout outdoor temperature
do outer tube diameter
tc PCM charging time
ρPCM PCM density
td PCM discharging time
fl PCM liquid fraction
MPCM PCM mass
Tpcm PCM temperature
∆Tpcm PCM temperature difference
Ts PCM temperature at solid
lf PCM volume fraction
VPCM,tube PCM volume
D% percentage deviation at every data point
P point
p air pressure
Si rate of creating species by addition
s seconds
Tr set average room temperature
S simulation coefficient
i species
e specific internal energy
Ps supply air pressure
Ts supply air temperature
Vs supply air velocity
∆T temperature difference
β thermal expansion coefficient
t time
Gk TKE source caused by average velocity gradient
Gb TKE source based on buoyancy force
Tt tube temperature
Lt tube length
Ht tube height
Wt tube width
αk turbulent Prandtl constant
αε turbulent Prandtl constant
τt turbulence stress divergence due to the velocity fluctuations by the auxiliary stresses
Glossary
AC Air conditioning
Case 1 Windcatcher model assisted by solar fan with E-PCM-Ts included in only supply airstream
Case 2 Windcatcher model assisted by solar fan with E-PCM-Ts included in all four airstreams
CFD Computational fluid dynamics
E-PCM-T Encapsulated phase-change material tubes
GHG Global greenhouse gas
HVAC Heating, ventilation, and air conditioning
PCM Phase-change material
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