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ABSTRACT
This article considers the issue of testing for an explosive bubble in financial time series in the presence of deterministic level
shifts. We demonstrate that the sign-based variants of the Phillips-Shi-Yu test retain their asymptotic validity in the presence of
level shifts under a weak restriction on the number of shifts that occur. This is in contrast to the original Phillips-Shi-Yu test which
only remains valid under a joint restriction involving both the number and magnitudes of the level shifts. We find, through Monte
Carlo simulation, that the original test can display substantial over-size in the presence of level shifts, without a corresponding
increase in power, while the sign-based variants are largely unaffected in both regards. The sign-based tests therefore offer robust
and powerful methods for detecting an explosive autoregressive regime in a financial time series that potentially contains level
shifts. Empirical applications of the different tests are provided using intraday Bitcoin log price data and daily Nasdaq price data.
JEL Classification: C12, C22, C58

1 | Introduction

Empirical identification of explosive behaviour in financial asset
price series is closely related to the study of rational bubbles,
with a rational bubble deemed to have occurred if explosive char-
acteristics are manifest in the time path of prices, but not for
the dividends. As a consequence, methods for testing for explo-
sive time series behaviour have been a focus of much recent
research. Phillips [1] [PSY] model potential bubble behaviour
using a time-varying autoregressive specification, which allows
for an explosive autoregressive regime (or possibly multiple such
regimes) in an otherwise unit root autoregression. They suggest
testing for such a property using a double supremum of for-
ward and backward recursive right-tailed Dickey-Fuller unit root
statistics. The PSY testing approach has rapidly gained status as
a standard tool for the detection of rational bubbles.
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Motivated by the well-known stylised fact that time-varying, and
typically nonstationary, unconditional volatility is seen to be
present in the first differences of many financial series (see, e.g.,
Rapach et al. [2]), Harvey et al. [3] [HLZ] suggest a modification
of the PSY testing approach that, unlike the standard PSY test,
is size-robust in the presence of time-varying volatility. Instead of
forming the PSY statistic from the double sequence of sub-sample
Dickey-Fuller statistics applied to the level of an observed series,
𝑦𝑡 say, HLZ form the PSY statistic applied to the series of cumu-
lated signs of the first differences of the data, that is a cumulation
of 𝑠𝑖𝑔𝑛(Δ𝑦𝑡) = Δ𝑦𝑡∕||Δ𝑦𝑡

||. Since 𝑠𝑖𝑔𝑛(Δ𝑦𝑡) is exact invariant to the
variance of Δ𝑦𝑡, the HLZ implementation of the PSY test is, by
construction, size robust to time-varying volatility present in Δ𝑦𝑡.
As this simple sign-based procedure relies on an assumption of
a zero median in the underlying innovation process, HLZ also
propose a generalised version which is robust to departures from
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this assumption, based on cumulation of recursively demeaned
𝑠𝑖𝑔𝑛(Δ𝑦𝑡).

In this article, we investigate another robustness property of the
sign-based approaches to PSY testing for explosive autoregressive
behaviour. This is its robustness to the occurrence of level shifts
in the observed series 𝑦𝑡. In the context of asset price series with
high frequency data, such discontinuities, usually referred to as
jumps, feature widely; see, inter alia, Eraker [4], Lee and Mykland
[5], Lee [6], Bajgrowicz et al. [7] and Laurent and Shi [8]. Here
they can be attributable to, for example, news or announcement
effects. For lower frequency data, level shifts in prices are more
typically associated with over-arching effects that tend to impact
markets as a whole, commonly referred to as structural changes
in a macroeconomic context. These may arise from, for example,
policy changes, macroeconomic regime changes, or international
conflict.

Given the prevalence of level shifts in financial time series, it is
important to consider their impact on Dickey-Fuller type unit
root tests. It is well documented that failure to account for level
shifts in standard left-tailed unit root tests (against an alterna-
tive of stationarity) can lead to size distortions. The direction
and severity of such size distortions involves a complex interplay
between the number, magnitude and locations of the level shifts.
In efforts to avoid size distortions due to neglected level shifts,
the standard approaches involve first identifying the number and
locations of level shifts and subsequently using dummy variables
to isolate their effects, following on from Perron [9] and Vogel-
sang and Perron [10] and the many extensions and refinements
thereof. However, all such approaches suffer from the drawback
that it is entirely possible to under-estimate the number of level
shifts and (even if that is not a consideration) poorly estimate
their locations. In practical terms, such procedures really only
work satisfactorily for a small number of fairly easily identifi-
able large shifts that are not in close proximity. When there is a
large number of shifts of modest magnitude these dummy vari-
able methods are liable to perform badly in terms of location
estimation and, consequently, fail to correct the problem of size
distortions.

A sign-based approach is almost entirely unaffected by the pres-
ence of level shifts. A level shift occurring at time 𝑡 (i.e., one period
shift inΔ𝑦𝑡) can at most only have the effect of changing the value
of 𝑠𝑖𝑔𝑛(Δ𝑦𝑡), relative to its shift-free value, from +1 to −1 or −1
to +1. As a result of this, the magnitude of the level shift is effec-
tively rendered irrelevant. In terms of PSY tests, this translates
into asymptotic size robustness of the sign-based PSY tests in the
presence of level shifts, a property not shared by the standard
test. Only a weak condition on the allowable number of shifts is
required. In contrast, the original test only remains asymptoti-
cally valid if a restriction is made involving a trade-off between
the number of shifts allowed and their corresponding magni-
tudes. The sign-based approaches also bypass any need to attempt
the potentially unsatisfactory procedure of detecting level breaks
via searching for them and testing their individual significance,
before constructing the PSY statistic from the dummy variable
regression-adjusted data.

In this article, we quantify the extent to which the PSY and
sign-based PSY tests are affected by the presence of level shifts

through an analysis of their limiting null distributions. While
HLZ discuss very briefly the impact of a finite number of level
shifts on these tests, we permit the number of shifts to be depen-
dent on the sample size and provide a formal analytical treatment
of the role of level shifts in the asymptotic behaviour of the tests.
We subsequently evaluate the finite sample sizes and powers of
the procedures using Monte Carlo simulations, with generating
processes that vary the number and magnitudes of the shifts. For
the PSY tests, typically, the shifts lead to substantially increased
size but without a corresponding increase in power. Encourag-
ingly, the sign-based tests are much less affected by the presence
of level shifts; instead, reliable size control and good levels of
power are observed, with the level shifts having relatively little
effect on the rejection frequency. We also provide empirical illus-
trations using intraday Bitcoin log price data and daily Nasdaq
price data.

The rest of the article is organised as follows. Section 2 introduces
the unit root null model allowing level shifts, and section 3 out-
lines the PSY and sign-based PSY tests. In section 4, we present
the asymptotic properties of the tests under the null in the pres-
ence of level shifts (proofs of the asymptotic results being pro-
vided in an Appendix). Section 5 compares the finite sample
size of the tests and also evaluates their power characteristics
under an alternative that contains an explosive autoregressive
regime. Our empirical illustrations are given in section 6, and
some conclusions are offered in section 7. In this article, we adopt
the following notation: 𝕀(.) denotes the indicator function; ⌊⋅⌋
the integer part; ⇒ weak convergence and

𝑝
−−→ convergence in

probability.

2 | The Unit Autoregressive Root Model With
Level Shifts

To characterise the null hypothesis for the tests, we will consider
an observed time series process {𝑦𝑡} generated according to the
following DGP:

𝑦𝑡 = 𝜇0 +
𝑛𝑇∑
𝑖=1

𝜇𝑖,𝑇 𝕀(𝑡 ≥ 𝑡𝑖) + 𝑢𝑡, 𝑡 = 1, . . . , 𝑇 ,

𝑢𝑡 = 𝑢𝑡−1 + 𝜀𝑡, 𝑡 = 2, . . . , 𝑇 . (1)

We assume that the initial condition 𝑢1 is such that 𝑢1 = 𝑜𝑝(𝑇 1∕2),
and 𝜀𝑡 is a zero-mean innovation process whose precise assump-
tions are detailed below. Under this DGP, 𝑢𝑡 is a unit autoregres-
sive root process throughout the full sample period. This model
thereby represents the null hypothesis for PSY-type tests for a
bubble; these tests have as their alternative hypothesis a model
containing a regime (or more than one regime) where 𝑢𝑡 fol-
lows an explosive autoregressive process (see section 5.2 for an
example).

The model for the observed process 𝑦𝑡 in (1) admits a constant
term 𝜇0 and 𝑛𝑇 ≥ 0 deterministic level shifts (or jumps) at time
periods 𝑡𝑖, 𝑖 = 1, . . . , 𝑛𝑇 , with respective magnitudes 𝜇𝑖,𝑇 ≠ 0, 𝑖 =
1, . . . , 𝑛𝑇 . We assume, without loss of generality, that the level
shifts follow the natural ordering 1 ≤ 𝑡1 < 𝑡2 < · · · < 𝑡𝑛𝑇

≤ 𝑇 , so
the level of 𝑦𝑡 shifts from 𝜇0 to 𝜇0 + 𝜇1,𝑇 at time 𝑡 = 𝑡1, then to
𝜇0 + 𝜇1,𝑇 + 𝜇2,𝑇 at time 𝑡 = 𝑡2 and so on. Importantly, we do not
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assume knowledge of either the number of level shifts, 𝑛𝑇 , or
the locations of the shifts, 𝑡𝑖. Moreover, we entertain the possibil-
ity that the number of level shifts and their magnitudes are not
fixed but can depend on 𝑇 . In what follows, we use 𝑛𝑡 to denote
the total number of level shifts occurring up to time 𝑡; that is
𝑛𝑡 =

∑𝑛𝑇

𝑖=1𝕀(𝑡 ≥ 𝑡𝑖). Our focus in this article will be testing the unit
root null hypothesis using right-tailed Dickey-Fuller-type tests,
cf. PSY, in the context of the observed process 𝑦𝑡 undergoing 𝑛𝑇

level shifts.

For the innovation process 𝜀𝑡, we make the following
assumptions:

Assumption 1. 𝜀𝑡 ∼ 𝐼𝐼𝐷(0, 𝜎2) with 𝐸(|𝜀𝑡|𝑗) < ∞ for some
𝑗 ≥ 4.

Assumption 2. The 𝐶𝐷𝐹 of 𝜀𝑡, denoted 𝐹 (.), satisfies
𝐹 (0) = 1∕2.

Remark 1. Assumption 1 will be used to establish the limit
distribution of the partial sum process [PSP] of 𝜀𝑡, which is
needed for the limit distribution of the PSY statistic. Assump-
tions 1 and 2 are used for the corresponding PSP of 𝑠𝑖𝑔𝑛(𝜀𝑡),
as required for the basic non-recursively demeaned sign-based
PSY statistic. Assumption 2 implies that 𝐸(𝑠𝑖𝑔𝑛(𝜀𝑡)) = 0, which
is necessary for the invariance principle of the PSP of the uncen-
tred signs to hold.1 Assumption 1 is also used (but without
requiring Assumption 2) for the corresponding PSP of 𝑠𝑖𝑔𝑛(𝜀𝑡) −
𝐸[𝑠𝑖𝑔𝑛(𝜀𝑡)], which is required for the recursively demeaned
sign-based PSY statistic. These assumptions follow directly from
HLZ, apart from our additional simplifying assumption of con-
stant volatility in the 𝜀𝑡 process which is made primarily
for expository purposes and could be relaxed along the lines
of HLZ.

Under Assumption 1, the following invariance principle holds for
the PSP of 𝜀𝑡:

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=1

𝜀𝑡 ⇒ 𝜎𝑊 (𝑟)

where 𝑊 (𝑟) is a standard Brownian motion process. Under
Assumptions 1 and 2, a corresponding invariance principle for
the PSP of 𝑠𝑖𝑔𝑛(𝜀𝑡) is given by

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=1

𝑠𝑖𝑔𝑛(𝜀𝑡) ⇒ 𝑊 𝑠
1 (𝑟)

where 𝑊 𝑠
1 (𝑟) is also a standard Brownian motion process (corre-

lated with 𝑊 (𝑟)). Lastly, under Assumption 1 alone, that is, where
Assumption 2 is not imposed,

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=1

{
𝑠𝑖𝑔𝑛(𝜀𝑡) − 𝐸[𝑠𝑖𝑔𝑛(𝜀𝑡)]

}
⇒ 𝜎𝑠𝑊

𝑠
2 (𝑟)

where 𝑊 𝑠
2 (𝑟) is again a standard Brownian motion process (cor-

related with 𝑊 (𝑟)), and 𝜎2
𝑠
= 𝑉 𝑎𝑟[𝑠𝑖𝑔𝑛(𝜀𝑡)].

As regards the level shifts, we present the following pairs of
assumptions, with Assumption 3 relevant for the PSY test and
Assumption 4 appropriate for the sign-based tests:

Assumption 3. (i) sup𝑟∈[0,1]
|||∑𝑛⌊𝑟𝑇 ⌋

𝑖=1 𝜇𝑖,𝑇

||| = 𝑂(𝑇 𝛼𝑛,𝜇 ) with 0 ≤
𝛼𝑛,𝜇 ≤ 1∕2. (ii)

∑𝑛𝑇

𝑖=1𝜇
2
𝑖,𝑇

= 𝑜(𝑇 ).

Assumption 4. 𝑛𝑇 = 𝑂(𝑇 𝛼𝑛 ) with 0 ≤ 𝛼𝑛 ≤ 1∕2.

Remark 2. Assumptions 3 and 4 are made for the PSY and
sign-based PSY statistics, respectively, to ensure that the level
shifts can feature (but not dominate) the relevant limit null dis-
tributions. We note that Assumption 3 for the PSY test involves
requirements on both the number of level shifts 𝑛𝑇 and the shift
magnitudes 𝜇𝑖,𝑇 , whereas Assumption 4 for the sign-based vari-
ants is weaker in the sense that only the number of shifts is
restricted, not the shift magnitudes. By way of simple examples,
suppose the shift magnitudes are common (𝜇𝑖,𝑇 = 𝜇𝑇 ) and the
number of shifts is given by 𝑛𝑇 = 𝑂(𝑇 1∕4), then Assumption 3(i)
additionally imposes that the magnitudes 𝜇𝑇 are at most 𝑂(𝑇 1∕4);
alternatively, if 𝑛𝑇 = 𝑂(1), Assumption 3(ii) restricts the shift
magnitude to be at most 𝑜(𝑇 1∕2). No such constraints on the shift
magnitudes are involved under Assumption 4.

3 | The PSY and Sign-Based PSY Tests

In this section, we briefly outline the test of PSY and the corre-
sponding sign-based variants of HLZ. The PSY statistic is given by

𝑃𝑆𝑌 = sup
𝜆1∈[0,1−𝜋]

sup
𝜆2∈[𝜆1+𝜋,1]

𝐷𝐹 (𝜆1, 𝜆2) (2)

where 𝐷𝐹 (𝜆1, 𝜆2) denotes the standard Dickey-Fuller statistic,
that is, the t-ratio for �̂�(𝜆1, 𝜆2) in the fitted ordinary least squares
(OLS) regression

Δ𝑦𝑡 = �̂�(𝜆1, 𝜆2) + �̂�(𝜆1, 𝜆2)𝑦𝑡−1 + �̂�𝑡 (3)

calculated over the sub-sample period 𝑡 = ⌊𝜆1𝑇 ⌋, . . . , ⌊𝜆2𝑇 ⌋.
That is

𝐷𝐹 (𝜆1, 𝜆2) =
�̂�(𝜆1, 𝜆2)√

�̂�2(𝜆1, 𝜆2)
∑⌊𝜆2𝑇 ⌋

𝑡=⌊𝜆1𝑇 ⌋(𝑦𝑡−1 − 𝑦
)2

where 𝑦 = (⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋ + 1)−1∑⌊𝜆2𝑇 ⌋
𝑡=⌊𝜆1𝑇 ⌋𝑦𝑡−1 and �̂�2(𝜆1, 𝜆2) =

(⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋ − 1)−1∑⌊𝜆2𝑇 ⌋
𝑡=⌊𝜆1𝑇 ⌋�̂�2

𝑡
. The 𝑃𝑆𝑌 statistic is therefore

the supremum of a double sequence of statistics with minimum
sample length ⌊𝜋𝑇 ⌋, with right-tailed testing of 𝑃𝑆𝑌 performed
to distinguish between the null and an explosive autoregressive
alternative.

The first sign-based analogue of (2) proposed by HLZ is based
on the cumulative sum of signs, 𝐶𝑡 =

∑𝑡

𝑖=2𝑠𝑖𝑔𝑛(Δ𝑦𝑖), 𝑡 = 2, . . . , 𝑇 ,
and is given by

𝑠𝑃𝑆𝑌 = sup
𝜆1∈[0,1−𝜋]

sup
𝜆2∈[𝜆1+𝜋,1]

𝑠𝐷𝐹 (𝜆1, 𝜆2)

where 𝑠𝐷𝐹 (𝜆1, 𝜆2) denotes the t-ratio for �̂�(𝜆1, 𝜆2) in the fitted
(without intercept) OLS regression

Δ𝐶𝑡 = �̂�(𝜆1, 𝜆2)𝐶𝑡−1 + 𝑒𝑡 (4)
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calculated over the period 𝑡 = ⌊𝜆1𝑇 ⌋, . . . , ⌊𝜆2𝑇 ⌋, that is,

𝑠𝐷𝐹 (𝜆1, 𝜆2) =
�̂�(𝜆1, 𝜆2)√

�̂�2(𝜆1, 𝜆2)
∑⌊𝜆2𝑇 ⌋

𝑡=⌊𝜆1𝑇 ⌋𝐶2
𝑡−1

where �̂�2(𝜆1, 𝜆2) = (⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋)−1∑⌊𝜆2𝑇 ⌋
𝑡=⌊𝜆1𝑇 ⌋𝑒2

𝑡
.

The second sign-based analogue of (2) proposed by HLZ,
denoted 𝑠𝑃𝑆𝑌 , takes the same form as 𝑠𝑃𝑆𝑌 above, but
with 𝐶𝑡 redefined as the recursively demeaned variant
𝐶𝑡 =

∑𝑡

𝑖=2

{
𝑠𝑖𝑔𝑛(Δ𝑦𝑖) − (𝑖 − 1)−1∑𝑖

𝑗=2𝑠𝑖𝑔𝑛(Δ𝑦𝑗)
}

, 𝑡 = 2, . . . , 𝑇 .
As with 𝑃𝑆𝑌 , right-tailed testing is used for 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 .

4 | Large Sample Behaviour of 𝑷𝑺𝒀 , 𝒔𝑷𝑺𝒀

and 𝒔𝑷𝑺𝒀

We now consider the large sample behaviour of 𝑃𝑆𝑌 , 𝑠𝑃𝑆𝑌 and
𝑠𝑃𝑆𝑌 under the null model presented in section 2, where 𝑛𝑇

level shifts are present in the series 𝑦𝑡. Our results are given in
the next three theorems, noting that we rely on different assump-
tions regarding the number and magnitude of level shifts for 𝑃𝑆𝑌

compared to 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 .

Theorem 1. For the null model (1), under Assumptions 1
and 3,

𝑃𝑆𝑌 ⇒ sup
𝜆1∈[0,1−𝜋]

sup
𝜆2∈[𝜆1+𝜋,1]

𝐿(𝜆1, 𝜆2)

where

𝐿(𝜆1, 𝜆2) =
𝐻(𝜆2)2 − 𝐻(𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2
𝜆1

𝐻(𝑟)2𝑑𝑟

,

𝐻(𝑟) = 𝐻(𝑟) − (𝜆2 − 𝜆1)−1∫
𝜆2

𝜆1

𝐻(𝑠)𝑑𝑠

and

𝐻(𝑟) =

{
𝑊 (𝑟) 0 ≤ 𝛼𝑛,𝜇 < 1∕2
𝑊 (𝑟) + 𝜎−1𝐽 (𝑟) 𝛼𝑛,𝜇 = 1∕2

with

𝐽 (𝑟) = lim
𝑇→∞

(𝑇 −1∕2
𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝜇𝑖,𝑇 )

Remark 3. We observe that the limit null distribution of 𝑃𝑆𝑌

is dependent on both the number of level shifts and their mag-
nitudes, via 𝛼𝑛,𝜇 . 𝑃𝑆𝑌 will obtain its usual null limit distribu-
tion provided 0 ≤ 𝛼𝑛,𝜇 < 1∕2, since under that condition, 𝐻(𝑟) =
𝑊 (𝑟). If, however, 𝛼𝑛,𝜇 = 1∕2, an additive term proportional to
𝐽 (𝑟) appears in 𝐻(𝑟). In essence, 𝐽 (𝑟) is a limit measure of the
total amount of asymptotically non-negligible level shift that
has occurred up to time ⌊𝑟𝑇 ⌋. Given that 𝐿(𝜆1, 𝜆2) essentially
depends on the squares of 𝐻(𝑟), we would expect the limit distri-
bution of 𝑃𝑆𝑌 to be right-shifted in the case 𝛼𝑛,𝜇 = 1∕2, regard-
less of the sign of 𝐽 (𝑟), relative to the 0 ≤ 𝛼𝑛,𝜇 < 1∕2 case where
𝐽 (𝑟) is absent. We would anticipate, therefore, that 𝑃𝑆𝑌 is likely
to be over-sized in the 𝛼𝑛,𝜇 = 1∕2 case, with the over-size increas-
ing in the magnitude of 𝐽 (𝑟). Note that, when 𝛼𝑛,𝜇 = 1∕2, 𝐽 (𝑟) can

still be zero for some values of 𝑟 (e.g., the sum of positive and neg-
ative level shifts up to time ⌊𝑟𝑇 ⌋ could be zero), but this cannot
be the case for all 𝑟. We do not consider the case 𝛼𝑛,𝜇 > 1∕2, since
here the deterministic level shifts component of the DGP would
entirely dominate the limit behaviour of 𝑃𝑆𝑌 .

Theorem 2. For the null model (1), under Assumptions 1, 2
and 4,

𝑠𝑃𝑆𝑌 ⇒ sup
𝜆1∈[0,1−𝜋]

sup
𝜆2∈[𝜆1+𝜋,1]

𝐿𝑠(𝜆1, 𝜆2)

where
𝐿𝑠(𝜆1, 𝜆2) =

𝐻𝑠(𝜆2)2 − 𝐻𝑠(𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2
𝜆1

𝐻𝑠(𝑟)2𝑑𝑟

and

𝐻𝑠(𝑟) =

{
𝑊 𝑠

1 (𝑟) 0 ≤ 𝛼𝑛 < 1∕2
𝑊 𝑠

1 (𝑟) + 𝐾𝑠(𝑟) 𝛼𝑛 = 1∕2

with

𝐾𝑠(𝑟) = lim
𝑇→∞

(𝑇 −1∕2
𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
+ 𝜇𝑖,𝑇 ) − 𝑇 −1∕2

𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
))

where |𝐾𝑠(𝑟)| ≤ 2𝜅𝑟 ≤ 2𝜅1 with 𝜅𝑟 = lim𝑇→∞ 𝑇 −1∕2𝑛⌊𝑟𝑇 ⌋.

Theorem 3. For the null model (1), under Assumptions 1 and
4,

𝑠𝑃𝑆𝑌 ⇒ sup
𝜆1∈[0,1−𝜋]

sup
𝜆2∈[𝜆1+𝜋,1]

𝐿
𝑠
(𝜆1, 𝜆2)

where

𝐿
𝑠
(𝜆1, 𝜆2) =

𝐺
𝑠
(𝜆2)2 − 𝐺

𝑠
(𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2
𝜆1

𝐺
𝑠
(𝑟)2𝑑𝑟

with
𝐺

𝑠
(𝑟) = 𝐺𝑠(𝑟) − ∫

𝑟

0
𝑥−1𝐺𝑠(𝑥)𝑑𝑥

and

𝐺𝑠(𝑟) =

{
𝑊 𝑠

2 (𝑟) 0 ≤ 𝛼𝑛 < 1∕2
𝑊 𝑠

2 (𝑟) + 𝜎−1
𝑠

𝐾𝑠(𝑟) 𝛼𝑛 = 1∕2

with 𝜎2
𝑠
= 𝑉 𝑎𝑟[𝑠𝑖𝑔𝑛(𝜀𝑡)] and 𝐾𝑠(𝑟) as defined in Theorem 2.

Remark 4. In contrast to the limit null distribution of 𝑃𝑆𝑌 ,
it is seen that the limit null distributions of 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌

are dependent on the number of level shifts, via 𝛼𝑛, but not on
their orders of magnitude. When 0 ≤ 𝛼𝑛 < 1∕2, 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌

will obtain the same null limit distributions as in HLZ, since
then 𝐻𝑠(𝑟) = 𝑊 𝑠

1 (𝑟) and 𝐺𝑠(𝑟) = 𝑊 𝑠
2 (𝑟). However, if 𝛼𝑛 = 1∕2, the

term 𝐾𝑠(𝑟) appears in 𝐻𝑠(𝑟) and 𝐺𝑠(𝑟), and therefore we would
expect 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 to be over-sized. Note that while the
𝜇𝑖,𝑇 appear in the expression for 𝐾𝑠(𝑟), this term is bounded by
±2𝜅1 for any orders of magnitude for the 𝜇𝑖,𝑇 , hence we would
expect the degree of over-size to be largely unaffected by the mag-
nitude of the level shifts. It can also be seen that when 𝛼𝑛 = 1∕2,
the limit behaviour of 𝑠𝑃𝑆𝑌 depends on 𝜎2

𝑠
= 𝑉 𝑎𝑟[𝑠𝑖𝑔𝑛(𝜀𝑡)] (via

the dependence of 𝐺𝑠(𝑟) on this quantity), with 𝜎𝑠 ≠ 1 in general
when Assumption 2 is not imposed. Note that, when 𝛼𝑛 = 1∕2,
𝐾𝑠(𝑟) can be zero for some values of 𝑟, but not for all 𝑟. Again,
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we do not consider the case 𝛼𝑛 > 1∕2, since here the number of
level shifts present in the DGP could dominate the behaviour of
the statistic.

In summary, our theoretical results show that the sign-based PSY
tests offer a natural advantage over the original PSY test when
considering an environment with level shifts of unknown mag-
nitude. More specifically, provided the number of level shifts is
of a smaller order than 𝑇 1∕2, then irrespective of the magnitude
of the level shifts, the sign-based PSY tests will retain the same
asymptotic null distributions as in the case of no level shifts,
and therefore the tests can be applied using the standard crit-
ical values reported in HLZ. In contrast, asymptotic validity of
the standard PSY test (developed in the case of no level shifts)
only holds when the magnitude of the level shifts is restricted,
with a trade-off between the number of level shifts and their per-
mitted magnitudes. At a practical level, assuming the number
of level shifts present is 𝑜(𝑇 1∕2), these findings suggest that the
sign-based PSY tests will be size robust, whereas the PSY test
would be expected to display size distortions, particularly when
large magnitude level shifts are present.

Remark 5. While our focus in this article is on test robustness
to level shifts, HLZ show that the sign-based PSY tests embody
inherent robustness to unconditional heteroskedasticity in the
innovations 𝜀𝑡, since 𝑠𝑖𝑔𝑛(𝜎𝑡𝜀𝑡) = 𝑠𝑖𝑔𝑛(𝜀𝑡) for any positive 𝜎𝑡. The
same is not true of the PSY test, as HLZ demonstrate.

Remark 6. We have assumed thus far that 𝜀𝑡 is serially uncor-
related. If 𝜀𝑡 is a finite order stationary autoregressive process
then the extension to the 𝑃𝑆𝑌 procedure is to augment the fitted
regression (3) with lagged values ofΔ𝑦𝑡. For 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 , the
method proposed in HLZ for dealing with serial correlation (see
section 8.1 of HLZ) is not appropriate in the context of level shifts,
since the correction involved uses augmented DF-type regres-
sions which neglect the level shifts. Instead, the corresponding
adjustment we propose is to augment the regression (4) with
lagged values of Δ𝐶𝑡. According to the discussion in Section 2.6.1
of Fan and Yao [11], 𝜀𝑡 is 𝛽-mixing with coefficients decaying to
0 exponentially fast and Δ𝐶𝑡 = 𝑠𝑖𝑔𝑛(Δ𝑦𝑡) is a measurable trans-
form of Δ𝑦𝑡 that possesses the same mixing properties as 𝜀𝑡 and
also trivially has 𝛽-mixing coefficients decaying at least as fast
as that of Δ𝑦𝑡. Then by Theorem 2.1 of Paparoditis and Politis
[12], the result of Theorem 2 still holds. On a cautionary note,
when ⌊𝜆1𝑇 ⌋, . . . , ⌊𝜆2𝑇 ⌋ is small, it is possible that the matrix
𝑀 = [Δ𝐶, 𝐶−1,Δ𝐶−1, Δ𝐶−2, . . . ] can be less than (or close to less
than) full rank; this can easily be checked by examining the eigen-
values of 𝑀 ′𝑀 . As a practical measure we suggest that in such
cases calculation of 𝑠𝐷𝐹 (𝜆1, 𝜆2) or 𝑠𝐷𝐹 (𝜆1, 𝜆2) is not attempted,
effectively excluding it from consideration when calculating the
supremum. This is only an issue we have encountered for small
𝑇 and short intervals 𝜆2 − 𝜆1.

5 | Finite Sample Comparison of the Tests

In this section, we consider the finite sample sizes and pow-
ers of the 𝑃𝑆𝑌 , 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 tests in the presence of level
shifts. Throughout this section, our simulations are based on 2000
Monte Carlo replications. We calculate the tests using 𝜋 = 0.1,

and conduct right-tail tests at the 0.05-level, using finite sam-
ple critical values generated under the null model (1) with 𝜀𝑡 ∼
𝐼𝐼𝐷𝑁(0, 1) in the absence of any level shifts, for each value of 𝑇

considered.

5.1 | Finite Sample Size

We first consider the size of the tests for a range of sample
sizes, in relation to the asymptotic results of the previous section,
using 𝑇 = {100, 200, 400, 800, 1600}. Here, we initially set 𝜀𝑡 ∼
𝐼𝐼𝐷𝑁(0, 1) (as in the computation of the critical values), and set
𝑢1 = 𝜀1 and 𝜇0 = 0 (all tests are invariant to 𝜇0). The level shifts in
(1) are specified as follows. We introduce a total of 𝑛𝑇 = ⌊𝑘𝑇 𝛼𝑛⌋
level shifts, divided into 𝑛+

𝑇
= 𝑝𝑛𝑇 (rounded to the nearest inte-

ger) positive shifts and 𝑛−
𝑇
= 𝑛𝑇 − 𝑛+

𝑇
negative shifts, with the set-

tings 𝑝 = {0.8, 0.6}.2 The corresponding shift magnitudes are set
to 𝜇𝑖,𝑇 = ±𝜇𝑇 with 𝜇𝑇 = 𝜇𝑇 𝛼𝜇 , 𝜇 > 0 (such that the 𝑛+

𝑇
positive

level shifts have magnitude 𝜇𝑇 , and the 𝑛−
𝑇

negative level shifts
have magnitude −𝜇𝑇 ). The locations, 𝑡𝑖, of the level shifts are
generated as 𝑛𝑇 independent drawings from a ⌊𝑇 × 𝑈 [0, 1]⌋ + 1
distribution, excluding the possibility of repeated shift timings;
these drawings are also independent across replications.

We consider the following three constellations of settings for the
number and magnitude of the level shifts:

Case 1. {𝛼𝑛, 𝛼𝜇} = {0.5, 0}, 𝑘 = {1, 2}, 𝜇 = {2.5, 5}.

Case 2. {𝛼𝑛, 𝛼𝜇} = {0.25, 0.25}, 𝑘 = {3, 6}, 𝜇 = {1, 2}.

Case 3. {𝛼𝑛, 𝛼𝜇} = {0, 0}, 𝑘 = {5, 10}, 𝜇 = {2.5, 5}.

The three cases are distinguished by the 𝛼𝑛 and 𝛼𝜇 rates at which
the number and magnitude of level shifts increases in 𝑇 . Within
each case, two settings for 𝑘 and 𝜇 are chosen, to allow us to see
the impact of smaller and larger numbers and magnitudes. Under
Case 1, sup𝑟∈[0,1]

|||∑𝑛⌊𝑟𝑇 ⌋
𝑖=1 𝜇𝑖,𝑇

||| = 𝑂(𝑇 0.5), that is, 𝛼𝑛,𝜇 = 0.5, hence
we would expect the size of the 𝑃𝑆𝑌 test to be affected by the level
shifts, given the large sample results of Theorem 1. Since 𝛼𝑛 =
0.5 in this case, we would also expect the size of the 𝑠𝑃𝑆𝑌 and
𝑠𝑃𝑆𝑌 tests to be affected, given the results of Theorems 2 and 3.
Under Case 2, sup𝑟∈[0,1]

|||∑𝑛⌊𝑟𝑇 ⌋
𝑖=1 𝜇𝑖,𝑇

||| = 𝑂(𝑇 0.5), that is, 𝛼𝑛,𝜇 = 0.5,
and again the size of 𝑃𝑆𝑌 would be expected to be impacted by
the shifts. In contrast, in this case we would expect 𝑠𝑃𝑆𝑌 and
𝑠𝑃𝑆𝑌 to be correctly sized in large samples, given that here 𝛼𝑛 =
0.25. Finally, under Case 3, sup𝑟∈[0,1]

|||∑𝑛⌊𝑟𝑇 ⌋
𝑖=1 𝜇𝑖,𝑇

||| = 𝑂(1), that is,
𝛼𝑛,𝜇 = 0, and also 𝛼𝑛 = 0, hence we would expect all tests to be
correctly sized asymptotically.

Tables 1–3 report the finite sample sizes of the tests correspond-
ing to Cases 1-3 respectively. First consider Table 1, which pro-
vides results for Case 1. For both 𝑝 = 0.8 and 𝑝 = 0.6, we find
that 𝑃𝑆𝑌 is never correctly sized, and the degree of over-size is
increasing in 𝑘 and 𝜇, the parameters controlling the number and
magnitude of level shifts, respectively. This is consistent with the
large sample theory of the previous section (see Remark 3), with
the term 𝐽 (𝑟) being larger in magnitude for larger 𝑘 and/or 𝜇,
other things equal. These size distortions are clearly observed for
all sample sizes considered, and are most apparent for 𝑝 = 0.8,
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TABLE 1 | Finite sample sizes of nominal 0.05-level tests: Case 1, 𝛼𝑛 = 0.5, 𝛼𝜇 = 0.

𝒑 = 0.8 𝒑 = 0.6

𝒌 𝝁 𝑻 𝒏𝑻 𝝁𝑻 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀

1 2.5 100 10 2.5 8 2 0.073 0.064 0.063 6 4 0.063 0.049 0.058
200 14 2.5 11 3 0.076 0.072 0.055 8 6 0.054 0.059 0.056
400 20 2.5 16 4 0.097 0.070 0.048 12 8 0.059 0.052 0.046
800 28 2.5 22 6 0.092 0.070 0.050 17 11 0.060 0.056 0.048

1600 40 2.5 32 8 0.095 0.061 0.054 24 16 0.060 0.047 0.053
1 5 100 10 5 8 2 0.164 0.065 0.063 6 4 0.124 0.050 0.058

200 14 5 11 3 0.166 0.073 0.056 8 6 0.112 0.059 0.058
400 20 5 16 4 0.198 0.070 0.049 12 8 0.107 0.051 0.047
800 28 5 22 6 0.182 0.070 0.051 17 11 0.096 0.054 0.049

1600 40 5 32 8 0.196 0.063 0.055 24 16 0.083 0.047 0.054
2 2.5 100 20 2.5 16 4 0.123 0.126 0.070 12 8 0.071 0.046 0.053

200 28 2.5 22 6 0.121 0.108 0.054 17 11 0.059 0.048 0.050
400 40 2.5 32 8 0.166 0.119 0.048 24 16 0.070 0.052 0.048
800 56 2.5 45 11 0.203 0.121 0.049 34 22 0.081 0.056 0.050

1600 80 2.5 64 16 0.198 0.119 0.050 48 32 0.072 0.059 0.045
2 5 100 20 5 16 4 0.240 0.126 0.069 12 8 0.149 0.045 0.052

200 28 5 22 6 0.268 0.111 0.054 17 11 0.131 0.048 0.051
400 40 5 32 8 0.337 0.121 0.050 24 16 0.115 0.052 0.048
800 56 5 45 11 0.414 0.126 0.048 34 22 0.122 0.057 0.050

1600 80 5 64 16 0.425 0.119 0.048 48 32 0.105 0.059 0.045

TABLE 2 | Finite sample sizes of nominal 0.05-level tests: Case 2, 𝛼𝑛 = 0.25, 𝛼𝜇 = 0.25.

𝒑 = 0.8 𝒑 = 0.6

𝒌 𝝁 𝑻 𝒏𝑻 𝝁𝑻 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀

3 1 100 9 3.162 7 2 0.089 0.059 0.046 5 4 0.079 0.048 0.046
200 11 3.761 9 2 0.118 0.066 0.050 7 4 0.088 0.051 0.053
400 13 4.472 10 3 0.109 0.061 0.053 8 5 0.090 0.056 0.051
800 15 5.318 12 3 0.128 0.055 0.050 9 6 0.090 0.054 0.044

1600 18 6.325 14 4 0.105 0.046 0.051 11 7 0.073 0.041 0.056
3 2 100 9 6.325 7 2 0.193 0.059 0.046 5 4 0.165 0.048 0.046

200 11 7.521 9 2 0.259 0.066 0.050 7 4 0.201 0.051 0.053
400 13 8.944 10 3 0.238 0.061 0.053 8 5 0.185 0.056 0.051
800 15 10.637 12 3 0.266 0.055 0.050 9 6 0.165 0.054 0.044

1600 18 12.649 14 4 0.227 0.046 0.051 11 7 0.141 0.041 0.056
6 1 100 18 3.162 14 4 0.127 0.099 0.071 11 7 0.085 0.052 0.062

200 22 3.761 18 4 0.216 0.094 0.054 13 9 0.097 0.042 0.047
400 26 4.472 21 5 0.219 0.083 0.043 16 10 0.098 0.055 0.044
800 31 5.318 25 6 0.250 0.075 0.050 19 12 0.100 0.051 0.056

1600 37 6.325 30 7 0.249 0.063 0.050 22 15 0.084 0.044 0.049
6 2 100 18 6.325 14 4 0.245 0.099 0.071 11 7 0.165 0.052 0.062

200 22 7.521 18 4 0.394 0.094 0.054 13 9 0.198 0.042 0.047
400 26 8.944 21 5 0.421 0.083 0.043 16 10 0.214 0.055 0.044
800 31 10.637 25 6 0.441 0.075 0.050 19 12 0.195 0.051 0.056

1600 37 12.649 30 7 0.433 0.063 0.050 22 15 0.154 0.044 0.049
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TABLE 3 | Finite sample sizes of nominal 0.05-level tests: Case 3, 𝛼𝑛 = 0, 𝛼𝜇 = 0.

𝒑 = 0.8 𝒑 = 0.6

𝒌 𝝁 𝑻 𝒏𝑻 𝝁𝑻 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀

5 2.5 100 5 2.5 4 1 0.060 0.055 0.056 3 2 0.062 0.048 0.059
200 5 2.5 4 1 0.057 0.051 0.057 3 2 0.056 0.052 0.055
400 5 2.5 4 1 0.054 0.053 0.051 3 2 0.050 0.051 0.049
800 5 2.5 4 1 0.053 0.051 0.049 3 2 0.051 0.049 0.051

1600 5 2.5 4 1 0.052 0.050 0.049 3 2 0.053 0.050 0.050
5 5 100 5 5 4 1 0.111 0.055 0.056 3 2 0.108 0.047 0.059

200 5 5 4 1 0.095 0.051 0.056 3 2 0.089 0.052 0.054
400 5 5 4 1 0.076 0.053 0.051 3 2 0.070 0.051 0.049
800 5 5 4 1 0.068 0.051 0.049 3 2 0.065 0.049 0.051

1600 5 5 4 1 0.059 0.050 0.049 3 2 0.056 0.049 0.050
10 2.5 100 10 2.5 8 2 0.073 0.064 0.063 6 4 0.063 0.049 0.058

200 10 2.5 8 2 0.070 0.053 0.054 6 4 0.053 0.050 0.050
400 10 2.5 8 2 0.061 0.059 0.049 6 4 0.055 0.054 0.051
800 10 2.5 8 2 0.061 0.051 0.051 6 4 0.058 0.046 0.051

1600 10 2.5 8 2 0.056 0.049 0.053 6 4 0.051 0.049 0.055
10 5 100 10 5 8 2 0.164 0.065 0.063 6 4 0.124 0.050 0.058

200 10 5 8 2 0.131 0.054 0.054 6 4 0.101 0.050 0.050
400 10 5 8 2 0.111 0.059 0.049 6 4 0.089 0.054 0.052
800 10 5 8 2 0.085 0.051 0.051 6 4 0.068 0.047 0.051

1600 10 5 8 2 0.070 0.049 0.053 6 4 0.057 0.049 0.055

where there are substantially more positive than negative level
shifts. When 𝑝 = 0.6, there is potential for a greater degree of can-
cellation of the level shifts within a given sub-sample window,
resulting in less over-size than in the 𝑝 = 0.8 case. As regards
𝑠𝑃𝑆𝑌 , there is evidence of some, more modest, over-size when
𝑝 = 0.8, although there is very little in the way of size distortions
when 𝑝 = 0.6. As expected given our theoretical results, the size
distortions associated with 𝑠𝑃𝑆𝑌 are almost entirely unaffected
by the magnitude of the level shifts, with very similar results
obtained for the two different settings of 𝜇 considered. The 𝑠𝑃𝑆𝑌

test shows little evidence of size distortion for either 𝑝 = 0.8 or
𝑝 = 0.6, thereby displaying an inherently greater robustness to
level shifts than 𝑠𝑃𝑆𝑌 . The fact that almost no size distortions are
observed is somewhat surprising, given the results of Theorem 3,
which show that the large sample distribution of 𝑠𝑃𝑆𝑌 , like that
for 𝑠𝑃𝑆𝑌 , does depend on the level shift-dependent term 𝐾𝑠(𝑟).
Evidently, the recursive demeaning has the effect of reducing the
impact of the level shifts on the size of the test. This feature is
in part related to the uniformly distributed locations of the level
shifts; in unreported simulations where non-uniform locations
were generated, over-size in 𝑠𝑃𝑆𝑌 was observed. The overall pic-
ture from Table 1 is that, in this Case 1 setting where all tests are
asymptotically affected by the presence of level shifts, 𝑃𝑆𝑌 is by
far the most size distorted procedure, with 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 dis-
playing a considerable greater degree of robustness.

Next consider Table 2. Here, the results are for Case 2, where
our theoretical results suggest that 𝑃𝑆𝑌 should be over-sized
in large samples, whereas 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 should be correctly

sized. The finite sample size results in the table indeed show that
𝑃𝑆𝑌 is over-sized, whereas both the sign-based variants con-
trol size extremely well. When 𝑝 = 0.8, some modest over-sizing
is seen for 𝑠𝑃𝑆𝑌 and, to a lesser extent, 𝑠𝑃𝑆𝑌 , for the smaller
sample sizes and larger number of level shifts, but these distor-
tions are diminishing as the sample size increases. In contrast,
the over-size associated with 𝑃𝑆𝑌 is evident for all sample sizes
and level shift settings, and can be very substantial, particularly
when 𝑝 = 0.8. As was observed in Table 1, the over-size of 𝑃𝑆𝑌 is
increasing in both the number and magnitude of the level shifts.
The general finding for Case 2 is again that 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 offer
considerably better size control than 𝑃𝑆𝑌 .

In Table 3, the results are given for Case 3, where both the num-
ber and magnitude of the level shifts are not increasing in the
sample size, and all three tests should have asymptotically cor-
rect size according to Theorems 1–3. Indeed we see this feature
borne out in the results, with all tests close to nominal size for
the largest sample size considered. In the smaller sample sizes,
whereas 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 retain excellent size control across
the different level shift number and magnitude settings, some
non-trivial over-size is observed for 𝑃𝑆𝑌 for the larger magni-
tude level shifts. Once again, 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 emerge as the tests
with superior finite sample size properties relative to 𝑃𝑆𝑌 .

Finally, given that 𝑠𝑃𝑆𝑌 relies on Assumption 2, that is, that
the distribution of the errors has zero median, it is of interest
to evaluate the sizes of the procedures when this assumption is
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TABLE 4 | Finite sample sizes of nominal 0.05-level tests: Case 2, 𝛼𝑛 = 0.25, 𝛼𝜇 = 0.25, 𝜒2(𝜈) errors, 𝑝 = 0.8.

𝝂 = 5 𝝂 = 10

𝒌 𝝁 𝑻 𝒏𝑻 𝝁𝑻 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀

0 0 100 0 0 0 0 0.048 0.221 0.093 0.036 0.121 0.075
200 0 0 0 0 0.041 0.361 0.062 0.040 0.199 0.065
400 0 0 0 0 0.051 0.651 0.060 0.050 0.386 0.049
800 0 0 0 0 0.056 0.941 0.050 0.049 0.655 0.048

1600 0 0 0 0 0.051 1.000 0.055 0.045 0.944 0.050
6 2 100 18 6.325 14 4 0.248 0.048 0.056 0.238 0.040 0.060

200 22 7.521 18 4 0.380 0.108 0.058 0.372 0.052 0.051
400 26 8.944 21 5 0.423 0.370 0.055 0.420 0.158 0.047
800 31 10.637 25 6 0.454 0.800 0.048 0.456 0.426 0.051

1600 37 12.649 30 7 0.449 0.997 0.054 0.427 0.848 0.046

violated. To this end, we next consider finite sample size simu-
lations where the critical values for all tests are obtained using
𝜀𝑡 ∼ 𝐼𝐼𝐷𝑁(0, 1), as above, but now where the simulated DGPs
make use of an asymmetric error distribution; specifically we
set 𝜀𝑡 ∼ 𝐼𝐼𝐷𝜒2(𝜈), with 𝜈 = {5, 10}, standardised to have zero
mean and unit variance. We consider Case 2 and in Table 4
report results both when no level shifts are present (𝑘 = 0) and
a case where level shifts occur (𝑘 = 6 with 𝜇 = 2). As might be
expected, 𝑠𝑃𝑆𝑌 lacks size control for these asymmetric errors,
with over-size worsening in the sample size. This is essentially
due to the fact that the test omits any form of mean correction to
the sign process. In contrast, 𝑠𝑃𝑆𝑌 displays excellent size con-
trol, irrespective of whether level shifts are present or not, due
to the recursive demeaning of the sign process in that procedure.
The 𝑃𝑆𝑌 test is correctly sized when no level shifts are present
but, in line with the results for Table 2, is subject to substantial
over-size when level shifts occur. It is clear then that if concern
exists regarding asymmetry of the error distribution, 𝑠𝑃𝑆𝑌 rep-
resents the only reliable procedure in terms of size control in the
possible presence of level shifts.

5.2 | Finite Sample Power

We next consider the finite sample powers of the tests, using the
sample size 𝑇 = 200. As regards the specification of the alterna-
tive hypothesis, we replace 𝑢𝑡 in (1) with the following:

𝑢𝑡 =
⎧⎪⎨⎪⎩

𝑢𝑡−1 + 𝜀𝑡, 𝑡 = 2, . . . , ⌊𝜏1𝑇 ⌋,
(1 + 𝛿)𝑢𝑡−1 + 𝜀𝑡, 𝑡 = ⌊𝜏1𝑇 ⌋ + 1, . . . , ⌊𝜏2𝑇 ⌋,
𝑢𝑡−1 + 𝜀𝑡, 𝑡 = ⌊𝜏2𝑇 ⌋ + 1, . . . , 𝑇

(5)

where 𝛿 ≥ 0 and 0 < 𝜏1 < 𝜏2 < 1. When 𝛿 > 0, the 𝑢𝑡 process
changes at time ⌊𝜏1𝑇 ⌋ from unit root to explosive autoregressive
dynamics (with explosive offset 𝛿), providing a model of bubble
behaviour. The explosive behaviour terminates at time ⌊𝜏2𝑇 ⌋, at
which point the process reverts to unit root behaviour. We set
𝜏1 = 0.3, 𝜏2 = 0.7 and 𝛿 ∈ {0.00, 0.01, 0.02, 0.03, 0.04, 0.05}, with
𝛿 = 0 representing the null model and the 𝛿 > 0 values repre-
senting different alternatives (with increasing 𝛿 corresponding to
increasing levels of explosivity). As before, we specify 𝑢1 = 𝜀1 and

𝜇0 = 0 (all tests are again invariant to 𝜇0). We set 𝜀𝑡 ∼ 𝐼𝐼𝐷𝑁(0, 1)
and specify the level shifts in the same way as our size simula-
tions, covering Cases 1-3.

Table 5 presents results for Case 1. In very general terms, we
observe that the power levels associated with the different tests
do not change much across the settings for the level shifts (𝑘, 𝜇

and 𝑝). For 𝑃𝑆𝑌 this is in contrast to the size results, where the
number and magnitude of positive and negative level shifts has
a substantial impact on the rejection frequency. Some exceptions
to this general observation occur for 𝑃𝑆𝑌 when 𝑘 = 2 and 𝜇 = 5,
that is, where the level shifts are most pronounced; for example,
when 𝑝 = 0.8, power is higher for 𝛿 = 0.01 than the correspond-
ing power for other 𝑘 and 𝜇, driven by the large size found in this
case. Comparing the powers of the different tests, we observe that
the powers of 𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 are largely similar, despite the fact
that the sizes of the 𝑃𝑆𝑌 test are generally well in excess of those
for 𝑠𝑃𝑆𝑌 . The powers of 𝑠𝑃𝑆𝑌 are somewhat lower than the
corresponding 𝑠𝑃𝑆𝑌 powers for the smaller values of 𝛿, which
might be expected given that 𝑠𝑃𝑆𝑌 does not suffer from the mod-
est over-size seen for 𝑠𝑃𝑆𝑌 . Exceptions to these comments again
arise for the case of 𝑘 = 2 and 𝜇 = 5: when 𝑝 = 0.8, 𝑃𝑆𝑌 power
exceeds that of 𝑠𝑃𝑆𝑌 for small 𝛿, due to its substantial over-size;
when 𝑝 = 0.6, the power of 𝑃𝑆𝑌 falls below that of 𝑠𝑃𝑆𝑌 for
moderate 𝛿.

The results for Case 2 are presented in Table 6. As was the case
in Table 5, the powers for 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 are pretty insensi-
tive to the settings for the level shifts (𝑘, 𝜇 and 𝑝). In contrast,
the power of 𝑃𝑆𝑌 for small and moderate 𝛿 varies more widely
with the level shift settings. The changes in power across the dif-
ferent level shift settings correspond very closely to the pattern of
size distortion for 𝑃𝑆𝑌 across these settings. Generally, the only
cases where 𝑃𝑆𝑌 displays substantial power gains over 𝑠𝑃𝑆𝑌

are cases where 𝑃𝑆𝑌 suffers from substantial over-size and 𝛿

is relatively small. Moreover, 𝑠𝑃𝑆𝑌 can have power levels that
exceed those of 𝑃𝑆𝑌, while simultaneously possessing greater
size control—see, for example, cases of moderate 𝛿 when 𝑘 = 6
and 𝑝 = 0.6. We observe that 𝑠𝑃𝑆𝑌 has power lower than 𝑠𝑃𝑆𝑌

for smaller 𝛿, with this modest power loss representing the cost
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TABLE 5 | Finite sample powers of nominal 0.05-level tests: Case 1, 𝛼𝑛 = 0.5, 𝛼𝜇 = 0, 𝑇 = 200, 𝜏1 = 0.3, 𝜏2 = 0.7.

𝒑 = 0.8 𝒑 = 0.6

𝒌 𝝁 𝒏𝑻 𝝁𝑻 𝜹 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀

1 2.5 14 2.5 0.00 11 3 0.076 0.072 0.055 8 6 0.054 0.059 0.056
0.01 11 3 0.126 0.146 0.075 8 6 0.103 0.138 0.075
0.02 11 3 0.393 0.420 0.241 8 6 0.389 0.423 0.239
0.03 11 3 0.726 0.724 0.630 8 6 0.734 0.720 0.629
0.04 11 3 0.888 0.881 0.842 8 6 0.888 0.883 0.847
0.05 11 3 0.958 0.950 0.936 8 6 0.958 0.949 0.938

1 5 14 5 0.00 11 3 0.166 0.073 0.056 8 6 0.112 0.059 0.058
0.01 11 3 0.193 0.147 0.074 8 6 0.139 0.139 0.074
0.02 11 3 0.365 0.420 0.238 8 6 0.330 0.422 0.236
0.03 11 3 0.684 0.722 0.620 8 6 0.671 0.717 0.622
0.04 11 3 0.864 0.879 0.837 8 6 0.866 0.882 0.840
0.05 11 3 0.950 0.949 0.933 8 6 0.951 0.947 0.936

2 2.5 28 2.5 0.00 22 6 0.121 0.108 0.054 17 11 0.059 0.048 0.050
0.01 22 6 0.157 0.173 0.066 17 11 0.090 0.115 0.058
0.02 22 6 0.371 0.410 0.221 17 11 0.344 0.390 0.219
0.03 22 6 0.695 0.709 0.587 17 11 0.692 0.700 0.587
0.04 22 6 0.875 0.866 0.825 17 11 0.874 0.867 0.821
0.05 22 6 0.952 0.945 0.928 17 11 0.952 0.946 0.923

2 5 28 5 0.00 22 6 0.268 0.111 0.054 17 11 0.131 0.048 0.051
0.01 22 6 0.286 0.175 0.066 17 11 0.147 0.114 0.059
0.02 22 6 0.372 0.405 0.214 17 11 0.271 0.385 0.210
0.03 22 6 0.626 0.699 0.563 17 11 0.590 0.697 0.567
0.04 22 6 0.840 0.860 0.806 17 11 0.826 0.862 0.804
0.05 22 6 0.938 0.936 0.917 17 11 0.932 0.940 0.911

of the recursive demeaning that achieves size robustness to asym-
metric errors.

Finally, Table 7 reports the results for Case 3. Here, we find that
𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 have generally similar levels of power to each
other, with 𝑠𝑃𝑆𝑌 a little lower, whereas the powers of all tests
vary little with the level shift settings. It is apparent that in this
case of fixed number and magnitude of level shifts, there is little
between the powers of 𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 , in line with there being
little in the way of size distortion.

Overall we find the finite sample power of the sign-based tests
to display a high degree of robustness to the presence and mag-
nitude of level shifts, in contrast to the 𝑃𝑆𝑌 test which can dis-
play changes in power when level shifts are present in the data.
Together with the size results of the previous sub-section, the sim-
ulation results show that the 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 tests possesses
attractive properties relative to 𝑃𝑆𝑌 when applied to series where
level shifts can be prevalent.

6 | Empirical Applications

The data series we consider in our applications are (i) the
5-minute Bitcoin log price and (ii) the daily Nasdaq 100 price. For
each application, the 𝑃𝑆𝑌 , 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 tests are calculated
with one lagged difference term incorporated in the augmented
associated regressions. We compute 𝑝-values for each test using
simulated null distributions of the tests, with one lagged differ-
ence term, for the specific sample size 𝑇 , using a random walk
simulation DGP with innovations 𝜀𝑡 ∼ 𝐼𝐼𝐷𝑁(0, 1) and no level
shifts, cf. the null DGP in our size simulations. These simulations
are based on 2000 Monte Carlo replications.

We assess level shift activity using the Lee and Mykland [5] jump
detection procedure in two ways. For a given data series, we cal-
culate the number of significant level shifts, which we denote
as 𝑛, applying the standardised |(𝑖)| statistic (see Definition 1
and Lemma 1 of their article), detecting jumps when the stan-
dardised statistic exceeds the 0.05-level significance threshold.
We also compute a measure of aggregate daily level shift activ-
ity as the absolute value of the sum of significant (𝑖) statistics,
denoted ||∑𝑛 (𝑖)||. Specifics of the applications are given below.
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TABLE 6 | Finite sample powers of nominal 0.05-level tests: Case 2, 𝛼𝑛 = 0.25, 𝛼𝜇 = 0.25, 𝑇 = 200, 𝜏1 = 0.3, 𝜏2 = 0.7.

𝒑 = 0.8 𝒑 = 0.6

𝒌 𝝁 𝒏𝑻 𝝁𝑻 𝜹 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀

3 1 11 3.761 0.00 9 2 0.118 0.066 0.050 7 4 0.088 0.051 0.053
0.01 9 2 0.158 0.149 0.071 7 4 0.125 0.135 0.069
0.02 9 2 0.396 0.425 0.253 7 4 0.376 0.424 0.254
0.03 9 2 0.729 0.723 0.635 7 4 0.731 0.723 0.634
0.04 9 2 0.883 0.877 0.847 7 4 0.881 0.879 0.846
0.05 9 2 0.952 0.951 0.939 7 4 0.955 0.955 0.940

3 2 11 7.521 0.00 9 2 0.259 0.066 0.050 7 4 0.201 0.051 0.053
0.01 9 2 0.279 0.149 0.071 7 4 0.225 0.135 0.069
0.02 9 2 0.408 0.425 0.253 7 4 0.358 0.424 0.254
0.03 9 2 0.685 0.723 0.634 7 4 0.663 0.723 0.633
0.04 9 2 0.863 0.876 0.846 7 4 0.861 0.879 0.846
0.05 9 2 0.946 0.951 0.938 7 4 0.948 0.955 0.939

6 1 22 3.761 0.00 18 4 0.216 0.094 0.054 13 9 0.097 0.042 0.047
0.01 18 4 0.241 0.168 0.069 13 9 0.119 0.117 0.060
0.02 18 4 0.393 0.404 0.234 13 9 0.315 0.387 0.227
0.03 18 4 0.696 0.706 0.589 13 9 0.669 0.707 0.587
0.04 18 4 0.872 0.863 0.832 13 9 0.867 0.868 0.826
0.05 18 4 0.952 0.942 0.929 13 9 0.951 0.948 0.930

6 2 22 7.521 0.00 18 4 0.394 0.094 0.054 13 9 0.198 0.042 0.047
0.01 18 4 0.396 0.168 0.069 13 9 0.213 0.117 0.060
0.02 18 4 0.449 0.404 0.234 13 9 0.289 0.387 0.227
0.03 18 4 0.636 0.705 0.584 13 9 0.567 0.707 0.585
0.04 18 4 0.841 0.863 0.824 13 9 0.810 0.867 0.825
0.05 18 4 0.935 0.941 0.926 13 9 0.920 0.948 0.928

6.1 | Bitcoin Log Price Data

We use intraday Bitcoin log price data for the period
September-November 2018. Bitcoin is a digital-only peer-to-peer
asset designed to work as a medium of exchange. It uses cryp-
tographic techniques to add verified transactions to a publicly
distributed ledger known as the Blockchain, a task that is incen-
tivised by a transaction fee along with newly created bitcoins. (A
full breakdown of the technology behind the storage, creation,
and transactions involving bitcoins can be found in Böhme
et al. [13].) Since its initial introduction in Nakamoto [14], the
cryptocurrency has gone on to have a reputation as a speculative
asset among economists. We use Bitcoin price data obtained
from Coinbase, one of the largest global online exchanges for
cryptocurrencies, and the largest exchange that offers a direct
pairing between Bitcoin and more standard currencies, rather
than cryptocurrency alternatives. The data are obtained directly
via Coinbase’s Application Programming Interface, allowing
direct access to historical price data, rather than a weighting of
different exchanges. The close price is sampled at the 5-minute

frequency for the Bitcoin-USD trading pair; this sampling fre-
quency then consists of a total of 26,208 observations for the
three month period.3

Rather than simply apply the tests to the full sample period, giv-
ing one single set of results, we make use of this long data set by
splitting it into 91 sub-samples, each of which contains observa-
tions on one day (i.e., 91 non-overlapping sub-samples, each of
𝑇 = 288 5-minute observations). The daily series are plotted in
Figure 1. On visual inspection, it appears that many of the series
display evidence of level shifts, while there appears to be little
visual evidence of explosive behaviour; indeed, the date range
was chosen due to this being a period where bubble behaviour
is largely considered to be absent. Within each sub-sample, we
conduct the 𝑃𝑆𝑌 , 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 tests, and also measure the
degree of level shift activity. Using the data in this way allows us
to evaluate, across multiple samples, whether there is a pattern
connecting the level shift activity with the outcomes of the differ-
ent tests. Our supposition would be that, given the series do not
generally appear to be explosive, rejections by any of the tests are
likely to be spurious, and attributable to the effects of level shifts.
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TABLE 7 | Finite sample powers of nominal 0.05-level tests: Case 3, 𝛼𝑛 = 0, 𝛼𝜇 = 0, 𝑇 = 200, 𝜏1 = 0.3, 𝜏2 = 0.7.

𝒑 = 0.8 𝒑 = 0.6

𝒌 𝝁 𝒏𝑻 𝝁𝑻 𝜹 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏+
𝑻

𝒏−
𝑻

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀

5 2.5 5 2.5 0.00 4 1 0.057 0.051 0.057 3 2 0.056 0.052 0.055
0.01 4 1 0.110 0.149 0.074 3 2 0.103 0.147 0.073
0.02 4 1 0.424 0.447 0.262 3 2 0.425 0.448 0.259
0.03 4 1 0.759 0.738 0.642 3 2 0.761 0.738 0.637
0.04 4 1 0.901 0.885 0.859 3 2 0.900 0.885 0.859
0.05 4 1 0.963 0.958 0.942 3 2 0.962 0.957 0.942

5 5 5 5 0.00 4 1 0.095 0.051 0.056 3 2 0.089 0.052 0.054
0.01 4 1 0.140 0.148 0.073 3 2 0.122 0.147 0.072
0.02 4 1 0.398 0.447 0.260 3 2 0.394 0.448 0.258
0.03 4 1 0.735 0.738 0.638 3 2 0.735 0.738 0.634
0.04 4 1 0.890 0.884 0.857 3 2 0.889 0.884 0.858
0.05 4 1 0.958 0.958 0.942 3 2 0.960 0.956 0.940

10 2.5 10 2.5 0.00 8 2 0.070 0.053 0.054 6 4 0.053 0.050 0.050
0.01 8 2 0.113 0.143 0.070 6 4 0.102 0.141 0.070
0.02 8 2 0.422 0.425 0.258 6 4 0.403 0.426 0.250
0.03 8 2 0.742 0.728 0.636 6 4 0.744 0.729 0.639
0.04 8 2 0.896 0.878 0.844 6 4 0.892 0.879 0.842
0.05 8 2 0.962 0.955 0.942 6 4 0.958 0.955 0.942

10 5 10 5 0.00 8 2 0.131 0.054 0.054 6 4 0.101 0.050 0.050
0.01 8 2 0.162 0.143 0.070 6 4 0.131 0.140 0.069
0.02 8 2 0.371 0.424 0.256 6 4 0.352 0.425 0.247
0.03 8 2 0.696 0.727 0.627 6 4 0.699 0.728 0.631
0.04 8 2 0.883 0.878 0.842 6 4 0.875 0.878 0.841
0.05 8 2 0.957 0.955 0.941 6 4 0.956 0.954 0.941

For the Dickey-Fuller tests, we set 𝜋 = 0.125 such that the mini-
mum sample length is 36 observations, corresponding to a three
hour period. For the Lee and Mykland jump test, we use a window
width of 𝐾 = ⌊𝜋𝑇 ⌋ + 2 = 38 (which equates to 36 observations
in the bipower variation formula). Table 8 presents the results
for each daily sub-sample 𝑗 = 1, . . . , 91, with the results listed in
descending order of the level shift magnitude measure ||∑𝑛 (𝑖)||.
The 𝑝-values are highlighted using the colour coding of red,
orange and yellow for rejections at the 0.01-, 0.05- and 0.10-levels,
respectively, and green for non-rejections at the 0.10-level.

We find that 𝑃𝑆𝑌 rejects (strongly) in just under half of the daily
series, whereas 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 very rarely reject at conven-
tional significance levels. What is of particular interest is that
most of the 𝑃𝑆𝑌 rejections, especially the strongest rejections,
are for series where the aggregate level shift magnitude mea-
sure ||∑𝑛 (𝑖)|| is greatest. This feature of 𝑃𝑆𝑌 rejecting in series
where there is a large degree of level shift activity, combined with
non-rejections from 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 , suggest that no explosive

behaviour is in fact present, and that the 𝑃𝑆𝑌 rejections are spu-
rious, driven by the effects of the level shifts. This accords pre-
cisely with what we would expect from our theoretical and simu-
lation results, and visual inspection of the plots of the series. On
the few occasions where 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 reject the null, it is also
interesting to observe that the number of detected level shifts 𝑛 is
typically large. Recall that while the 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 tests do not
require a condition on the magnitude of level shifts to be asymp-
totically correctly sized, the number of level shifts still requires a
restriction, hence a large number of level shifts in a finite sam-
ple could result in these tests displaying spurious rejections of
the null.

The overall picture from this first application is that use of a bub-
ble detection procedure that is not robust to level shifts, such
as 𝑃𝑆𝑌 , runs the risk of spuriously detecting a bubble, when
applied to a series without explosive characteristics, but sub-
ject to frequent and/or large magnitude level shifts. In contrast,
use of the sign-based procedures 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 offer a far
greater degree of robustness to level shifts, and are considerably
less likely to mistake level shift activity in a series for bubble
behaviour.
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FIGURE 1 | Intraday Bitcoin log price, day 𝑗 within September-November 2018.

6.2 | Nasdaq Price Data

We next consider data for the Nasdaq 100 index daily closing
price over the period 3 January 1995 to 31 December 2001, which
yields 𝑇 = 1763 observations. The Nasdaq 100 is an index of top
100 non-financial firms listed on the Nasdaq exchange, and is
heavily concentrated on technology companies. We chose this
period deliberately as it features the growth of the so-called “dot-
com bubble” (together with its subsequent collapse). The data
were obtained from the Investing.com website. Figure 2 plots this

data series. Visually, and in sharp contrast to the Bitcoin series in
Figure 1, the price series does indeed appear to contain a bub-
ble regime ending in early March 2000, but, significantly, also
appears largely free of any level shift activity. For conformity with
the Bitcoin application above, we use 𝜋 = 0.125, which gives a
window width of 𝐾 = ⌊𝜋𝑇 ⌋ + 2 = 222 in the Lee and Mykland
test. The results are shown in Table 9. Here, extremely strong
rejections of the unit root null are obtained from each of the
𝑃𝑆𝑌 , 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 tests, thereby confirming the presence
of the “dotcom bubble”. There is also only very modest evidence
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FIGURE 1 | (Continued)

of level shift activity since the number of jumps and their aggre-
gate measure are small—at least when measured relative to what
we observed for the higher frequency Bitcoin log price series in
Table 8 (which is what we might expect). We would expect con-
formity of bubble inference across tests in this case and have little
concern here that the rejection by the 𝑃𝑆𝑌 test is being spuri-
ously induced by level shifts. Finally, we also examined the log of
the Nasdaq price series. In terms of the level shift measures, here
we find 𝑛 = 4 and ||∑𝑛 (𝑖)|| = 1.943, with even less jump activity
apparent in the log data than its unlogged version. The 𝑝-value
associated with 𝑃𝑆𝑌 increases from 0.000 in the unlogged data to

0.222 for the log prices, overturning the rejection of the unit root
null at conventional significance levels and thereby failing to find
evidence of a bubble. We would not want to associate this sensi-
tivity of inference with being a weakness of the 𝑃𝑆𝑌 test, but
just to note that transforming the data in this way does have con-
sequences for inference. In contradistinction, the 𝑝-values asso-
ciated with 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 for the log data remain exactly as
reported in Table 9 because the values of the 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌

statistics are exact invariant to strictly monotonic transforma-
tions of the data. We view this as another potentially appealing
property of the sign-based tests.
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FIGURE 1 | (Continued)
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TABLE 8 | Test 𝑝-values and level shift measures: daily sub-samples of 5-minute Bitcoin log price.

𝒋 𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏 |∑𝒏 (𝒊)| 𝒋 𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏 |∑𝒏 (𝒊)|
59 0.000 0.017 0.266 14 262.55 51 0.095 0.806 0.685 7 17.37
70 0.002 0.705 0.062 10 207.19 16 0.639 0.914 0.986 4 16.52
5 0.156 0.420 0.926 12 112.05 42 0.784 0.281 0.880 2 16.42
65 0.003 0.230 0.211 9 79.44 69 0.779 0.705 0.456 15 15.81
8 0.059 0.106 0.475 8 76.26 48 0.003 0.622 0.939 8 14.64
45 0.000 0.504 0.276 8 67.50 10 0.919 0.788 0.602 4 13.87
75 0.000 0.491 0.225 12 62.97 23 0.863 0.619 0.598 4 13.66
85 0.000 0.351 0.381 8 59.20 29 0.723 0.596 0.730 2 13.23
67 0.000 0.151 0.871 7 55.10 36 0.009 0.120 0.232 6 12.96
27 0.003 0.808 0.812 2 51.13 46 0.000 0.829 0.907 5 12.28
52 0.123 0.382 0.575 12 50.82 44 0.011 0.199 0.158 9 12.27
9 0.011 0.501 0.729 6 50.50 80 0.012 0.317 0.996 4 12.01
54 0.082 0.372 0.462 9 50.45 82 0.626 0.956 0.944 2 11.91
58 0.003 0.121 0.232 14 44.02 87 0.000 0.830 0.659 4 11.61
38 0.000 0.580 0.017 7 43.47 28 0.000 0.913 0.801 7 11.22
64 0.683 0.699 0.462 5 41.90 74 0.981 0.645 0.728 2 10.85
56 0.921 0.719 0.927 5 41.46 71 0.274 0.078 0.460 21 10.57
37 0.015 0.667 0.705 8 35.66 62 0.315 0.703 0.093 15 10.13
86 0.000 0.498 0.968 7 34.50 33 0.359 0.276 0.475 6 9.81
76 0.030 0.829 0.262 5 33.75 18 0.081 0.671 0.704 3 8.78
21 0.000 0.073 0.324 5 32.03 31 0.843 0.566 0.716 7 8.16
11 0.740 0.920 0.934 3 31.66 6 0.614 0.792 0.664 6 7.82
49 0.325 0.835 0.248 7 31.31 12 0.810 0.600 1.000 3 7.76
83 0.403 0.601 0.904 5 30.91 43 0.018 0.532 0.351 16 7.56
63 0.610 0.618 0.589 4 28.84 15 0.742 0.624 0.517 6 7.24
57 0.379 0.071 0.767 4 26.51 34 0.990 0.222 0.871 7 6.83
7 0.078 0.928 0.313 6 26.12 91 0.109 0.160 0.949 1 6.08
89 0.000 0.312 0.955 3 25.55 41 0.600 0.883 0.668 5 5.64
24 0.536 0.756 0.967 7 25.23 88 0.876 0.391 0.921 3 5.59
30 0.015 0.964 0.978 6 25.03 26 0.036 0.520 0.317 5 5.52
2 0.611 0.992 0.760 6 24.94 77 0.327 0.602 0.820 3 5.51
35 0.000 0.811 0.704 3 24.69 47 0.596 0.324 0.474 3 5.22
14 0.136 0.902 0.980 5 23.59 79 0.653 0.895 0.911 6 4.51
55 0.890 0.237 0.746 4 23.52 90 0.150 0.306 0.232 3 4.45
17 0.000 0.413 0.288 6 20.88 3 0.150 0.974 0.944 2 3.57
60 0.000 0.392 0.943 9 20.44 50 0.072 0.395 0.695 6 3.45
73 0.461 0.132 0.265 14 20.20 19 0.003 0.157 0.843 10 3.14
81 0.003 0.302 0.800 4 19.44 66 0.296 0.400 0.890 8 2.23
13 0.184 0.880 0.802 7 19.01 20 0.362 0.928 0.882 4 1.84
1 0.107 0.795 0.896 9 18.98 4 0.049 0.243 0.184 8 1.78
40 0.155 0.156 0.019 6 18.52 72 0.022 0.396 0.438 6 0.99
53 0.011 0.842 0.152 7 18.09 39 0.187 0.045 0.147 10 0.90
68 0.958 0.399 0.104 6 18.07 84 0.191 0.902 0.998 2 0.87
61 0.005 0.124 0.557 15 17.87 25 0.347 0.298 0.293 4 0.63
32 0.592 0.497 0.482 5 17.78 22 0.016 0.365 0.728 6 0.25
78 0.939 0.668 0.914 3 17.68

Note: Cells highlighted in red, orange and yellow correspond to rejections at the 0.01-, 0.05- and 0.10-levels, respectively. Cells highlighted in green correspond to non-rejections at the 0.10-level.
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FIGURE 2 | Daily Nasdaq 100 price, 3 January 1995 to 31 December 2001.

TABLE 9 | Test 𝑝-values and level shift measures: daily Nasdaq 100 price.

𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒔𝑷𝑺𝒀 𝒏 |∑𝒏 (𝒊)|

0.000 0.000 0.004 4 14.702
Note: Cells highlighted in red correspond to rejections at the 0.01-level.

7 | Conclusion

In this article, we have analysed the impact of the number and
magnitude of deterministic level shifts on the PSY test for explo-
sive autoregressive behaviour and its sign-based variants. We find
that the two sign-based tests offer a natural advantage over the
original PSY test in the presence of level shifts of unknown mag-
nitude. While the sign PSY tests retain their asymptotic validity
under a restriction only on the number of level shifts, validity of
the PSY test requires a joint restriction involving both the number
and magnitudes of the level shifts. Our Monte Carlo simulations
demonstrate that the PSY test can be badly over-sized in the pres-
ence of level shifts, while the sign-based variants offer far superior
size control in such circumstances. Moreover, the sign-based tests
remain competitive in terms of power with the PSY test, despite
the latter’s over-size when level shifts are present. The sign-based
tests therefore offer a more robust and powerful method for
detecting an explosive autoregressive regime in a financial time
series that potentially contains level shifts. We applied the tests to
daily sub-samples of recent intraday Bitcoin log price data, focus-
ing on a period where explosive behaviour did not seem to be
apparent. We found that level shift activity was prevalent in these
samples, and in samples where this activity was particularly evi-
dent, the PSY test frequently appeared to (falsely) indicate the
presence of explosive episodes, in contrast to the sign-based tests
for which rejections were rarely found. Our second application
was to Nasdaq data across the “dotcom bubble” period, a series
for which explosive behaviour is apparent and level shift activ-
ity is found to be low. Here, all three tests provide similar infer-
ence, with strong rejections of the null confirming the presence
of explosive behaviour.
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Endnotes
1 Assumption 2 also implies the median of 𝜀𝑡 is zero, in addition to the

zero mean assumption from Assumption 1; the imposed distributional
assumption on 𝜀𝑡 is only slightly weaker than assuming the distribution
of 𝜀𝑡 is symmetric about zero.

2 Note that similar results are obtained on replacing 𝑝 with 1 − 𝑝, hence
we only consider values of 𝑝 > 0.5.

3 Across this period, eleven observations were not recorded in the dataset;
in these cases, we linearly interpolated neighbouring observations to
proxy for these missing values.
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Appendix A

Proofs of Theorems

The 𝑃𝑆𝑌 , 𝑠𝑃𝑆𝑌 and 𝑠𝑃𝑆𝑌 statistics are invariant to 𝜇0 so in what fol-
lows we can set 𝜇0 = 0 without loss of generality.

Proof of Theorem 1. We first note that a little manipulation shows that
𝐷𝐹 (𝜆1, 𝜆2) can be written in the form

𝐷𝐹 (𝜆1, 𝜆2) =
𝑇 −1(𝑦⌊𝜆2𝑇 ⌋ − 𝑦)2 − 𝑇 −1(𝑦⌊𝜆1𝑇 ⌋ − 𝑦)2 − 𝑇 −1∑⌊𝜆2𝑇 ⌋

𝑡=⌊𝜆1𝑇 ⌋(Δ𝑦𝑡)2

2
√

�̂�2(𝜆1, 𝜆2)𝑇 −2∑⌊𝜆2𝑇 ⌋
𝑡=⌊𝜆1𝑇 ⌋(𝑦𝑡−1 − 𝑦)2

We now examine the behaviour of 𝑦⌊𝑟𝑇 ⌋:

𝑇 −1∕2𝑦⌊𝑟𝑇 ⌋ = 𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=1

𝜀𝑡 + 𝑇 −1∕2
𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝜇𝑖,𝑇 (A1)

Considering the second term of (A1),

𝑇 −1∕2
𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝜇𝑖,𝑇 =

{
𝑜(1) 0 ≤ 𝛼𝑛,𝜇 < 1∕2
𝑂(1) 𝛼𝑛,𝜇 = 1∕2

So,

𝑇 −1∕2𝑦⌊𝑟𝑇 ⌋ ⇒
{

𝜎𝑊 (𝑟) 0 ≤ 𝛼𝑛,𝜇 < 1∕2
𝜎𝑊 (𝑟) + 𝐽 (𝑟) 𝛼𝑛,𝜇 = 1∕2

= 𝜎𝐻(𝑟) (A2)

where 𝐽 (𝑟) = lim𝑇→∞(𝑇 −1∕2∑𝑛⌊𝑟𝑇 ⌋
𝑖=1 𝜇𝑖,𝑇 ). Applying (A2) we therefore find,

via the CMT, that

𝑇 −1(𝑦⌊𝜆2𝑇 ⌋ − 𝑦)2 ⇒ 𝜎2𝐻(𝜆2)2 (A3)

𝑇 −1(𝑦⌊𝜆1𝑇 ⌋ − 𝑦)2 ⇒ 𝜎2𝐻(𝜆1)2 (A4)

𝑇 −2
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋(𝑦𝑡−1 − 𝑦)2 ⇒ 𝜎2∫
𝜆2

𝜆1

𝐻(𝑟)2𝑑𝑟 (A5)

where

𝐻(𝑟) = 𝐻(𝑟) − (𝜆2 − 𝜆1)−1∫
𝜆2

𝜆1

𝐻(𝑠)𝑑𝑠

Next, using Δ𝑦𝑡 = 𝜀𝑡 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑡), we have

𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋(Δ𝑦𝑡)2 = 𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋𝜀
2
𝑡
+ 𝑇 −1

⌊𝜆2𝑇 ⌋∑
𝑡=⌊𝜆1𝑇 ⌋𝜇

2
𝑖,𝑇
𝕀(𝑡 = 𝑡𝑖)

+ 2𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋𝜀𝑡𝜇𝑖,𝑇 𝕀(𝑡 = 𝑡𝑖) (A6)

Regarding the second term of (A6),

𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋𝜇
2
𝑖,𝑇
𝕀(𝑡 = 𝑡𝑖) ≤ 𝑇 −1

𝑛𝑇∑
𝑖=1

𝜇2
𝑖,𝑇

= 𝑜(1)

by virtue of Assumption 3(ii).

The third term of (A6) is 𝑜𝑝(1) since it has zero mean, while

𝑉 𝑎𝑟

[
𝑇 −1

⌊𝜆2𝑇 ⌋∑
𝑡=⌊𝜆1𝑇 ⌋𝜀𝑡𝜇𝑖,𝑇 𝕀(𝑡 = 𝑡𝑖)

]
= 𝜎2𝑇 −2

⌊𝜆2𝑇 ⌋∑
𝑡=⌊𝜆1𝑇 ⌋𝜇

2
𝑖,𝑇
𝕀(𝑡 = 𝑡𝑖)

= 𝑜(1)

Hence,

𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋(Δ𝑦𝑡)2 = 𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋𝜀
2
𝑡
+ 𝑜(1) + 𝑜𝑝(1)

𝑝
−−→ (𝜆2 − 𝜆1)𝜎2 (A7)

Lastly, it is easily shown that

�̂�2(𝜆1, 𝜆2) = (⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋ + 1)−1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋(Δ𝑦𝑡)2 + 𝑜𝑝(1)
𝑝
−−→ 𝜎2 (A8)

in view of (A7).

Combining (A3), (A4), (A5), (A7) and (A8), we obtain

𝐷𝐹 (𝜆1, 𝜆2) ⇒
𝐻(𝜆2)2 − 𝐻(𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2
𝜆1

𝐻(𝑟)2𝑑𝑟

= 𝐿(𝜆1, 𝜆2)

and the result of Theorem 1 then follows.

Proof of Theorem 2. We can write 𝑠𝐷𝐹 (𝜆1, 𝜆2) in the form

𝑠𝐷𝐹 (𝜆1, 𝜆2) =
𝑇 −1𝐶2⌊𝜆2𝑇 ⌋ − 𝑇 −1𝐶2⌊𝜆1𝑇 ⌋ − 𝑇 −1∑⌊𝜆2𝑇 ⌋

𝑡=⌊𝜆1𝑇 ⌋(Δ𝐶𝑡)2

2
√

�̂�2(𝜆1, 𝜆2)𝑇 −2∑⌊𝜆2𝑇 ⌋
𝑡=⌊𝜆1𝑇 ⌋𝐶2

𝑡−1

Next,

𝑇 −1∕2𝐶⌊𝑟𝑇 ⌋ = 𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

𝑠𝑖𝑔𝑛(Δ𝑦𝑡)

= 𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

𝑠𝑖𝑔𝑛(𝜀𝑡 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑡))
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Now,

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

𝑠𝑖𝑔𝑛(𝜀𝑡 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑡))

= 𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=1

𝑠𝑖𝑔𝑛(𝜀𝑡) + 𝑇 −1∕2
𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
+ 𝜇𝑖,𝑇 )

− 𝑇 −1∕2
𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
)

Here,

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=1

𝑠𝑖𝑔𝑛(𝜀𝑡) ⇒ 𝑊 𝑠
1 (𝑟)

while

||||||𝑇 −1∕2
𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
+ 𝜇𝑖,𝑇 ) − 𝑇 −1∕2

𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
)
||||||

≤ 2𝑇 −1∕2𝑛⌊𝑟𝑇 ⌋
=

{
𝑜(1) 0 ≤ 𝛼𝑛 < 1∕2
𝑂(1) 𝛼𝑛 = 1∕2

(A9)

Now we can write

lim
𝑇→∞

(𝑇 −1∕2
𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
+ 𝜇𝑖,𝑇 ) − 𝑇 −1∕2

𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
))

=

{
0 0 ≤ 𝛼𝑛 < 1∕2
𝐾𝑠(𝑟) 𝛼𝑛 = 1∕2

(A10)

with |𝐾𝑠(𝑟)| bounded by 2 lim𝑇→∞ 𝑇 −1∕2𝑛⌊𝑟𝑇 ⌋ = 2𝜅𝑟 from (A9). Hence,

𝑇 −1∕2𝐶⌊𝑟𝑇 ⌋ ⇒
{

𝑊 𝑠
1 (𝑟) 0 ≤ 𝛼𝑛 < 1∕2

𝑊 𝑠
1 (𝑟) + 𝐾𝑠(𝑟) 𝛼𝑛 = 1∕2

= 𝐻𝑠(𝑟) (A11)

Using (A11), the CMT then shows that

𝑇 −1𝐶2⌊𝜆2𝑇 ⌋ ⇒ 𝐻𝑠(𝜆2)2 (A12)

𝑇 −1𝐶2⌊𝜆1𝑇 ⌋ ⇒ 𝐻𝑠(𝜆1)2 (A13)

𝑇 −2
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋𝐶
2
𝑡−1 ⇒ ∫

𝜆2

𝜆1

𝐻𝑠(𝑟)2𝑑𝑟 (A14)

Next,

𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋(Δ𝐶𝑡)2 = 𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋{𝑠𝑖𝑔𝑛(Δ𝑦𝑡)}2

= 𝑇 −1(⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋ + 1) → 𝜆2 − 𝜆1 (A15)

It is also easily shown that

�̂�2(𝜆1, 𝜆2) = (⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋)−1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋{𝑠𝑖𝑔𝑛(Δ𝑦𝑡)}2 + 𝑜𝑝(1)
𝑝
−−→ 1 (A16)

in view of (A15).

Taken together, (A12), (A13), (A14), (A15) and (A16), we find

𝐷𝐹 (𝜆1, 𝜆2) ⇒
𝐻𝑠(𝜆2)2 − 𝐻𝑠(𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2
𝜆1

𝐻𝑠(𝑟)2𝑑𝑟

leading to the result of Theorem 2.

Proof of Theorem 3. The proof follows along the same lines as that of
Theorem 2. Here,

𝑇 −1∕2𝐶⌊𝑟𝑇 ⌋ = 𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

{
𝑠𝑖𝑔𝑛(Δ𝑦𝑡) − (𝑡 − 1)−1

𝑡∑
𝑗=2

𝑠𝑖𝑔𝑛(Δ𝑦𝑗 )

}

= 𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

{
𝑠𝑖𝑔𝑛(𝜀𝑡 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑡))

−(𝑡 − 1)−1
𝑡∑

𝑗=2
𝑠𝑖𝑔𝑛(𝜀𝑗 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑗))

}

= 𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

{
𝑠𝑖𝑔𝑛(𝜀𝑡 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑡)) − 𝐸[𝑠𝑖𝑔𝑛(𝜀𝑡)]

}
− 𝑇 −1∕2

⌊𝑟𝑇 ⌋∑
𝑡=2

{
(𝑡 − 1)−1

𝑡∑
𝑗=2

{𝑠𝑖𝑔𝑛(𝜀𝑗 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑗))

−𝐸[𝑠𝑖𝑔𝑛(𝜀𝑗 )]}

}

Now,

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

{
𝑠𝑖𝑔𝑛(𝜀𝑡 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑡)) − 𝐸[𝑠𝑖𝑔𝑛(𝜀𝑡)]

}
= 𝑇 −1∕2

⌊𝑟𝑇 ⌋∑
𝑡=1

{
𝑠𝑖𝑔𝑛(𝜀𝑡) − 𝐸[𝑠𝑖𝑔𝑛(𝜀𝑡)]

}
+ 𝑇 −1∕2

𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
+ 𝜇𝑖,𝑇 ) − 𝑇 −1∕2

𝑛⌊𝑟𝑇 ⌋∑
𝑖=1

𝑠𝑖𝑔𝑛(𝜀𝑡𝑖
)

Here,

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=1

{
𝑠𝑖𝑔𝑛(𝜀𝑡) − 𝐸[𝑠𝑖𝑔𝑛(𝜀𝑡)]

}
⇒ 𝜎𝑠𝑊

𝑠
2 (𝑟)

and, using (A10), we can then write

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

{𝑠𝑖𝑔𝑛(𝜀𝑡 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑡)) − 𝐸[𝑠𝑖𝑔𝑛(𝜀𝑡)]}

⇒ 𝜎𝑠

{
𝑊 𝑠

2 (𝑟) 0 ≤ 𝛼𝑛 < 1∕2
𝑊 𝑠

2 (𝑟) + 𝜎−1
𝑠

𝐾𝑠(𝑟) 𝛼𝑛 = 1∕2

= 𝜎𝑠𝐺
𝑠(𝑟)

Similarly,

𝑇 −1∕2
⌊𝑟𝑇 ⌋∑
𝑡=2

{
(𝑡 − 1)−1

𝑡∑
𝑗=2

{𝑠𝑖𝑔𝑛(𝜀𝑗 + 𝜇𝑖,𝑇 𝕀(𝑡𝑖 = 𝑗)) − 𝐸[𝑠𝑖𝑔𝑛(𝜀𝑗 )]}

}

⇒ 𝜎𝑠∫
𝑟

0
𝑥−1𝐺𝑠(𝑥)𝑑𝑥

and so

𝑇 −1∕2𝐶⌊𝑟𝑇 ⌋ ⇒ 𝜎𝑠

{
𝐺𝑠(𝑟) − ∫

𝑟

0
𝑥−1𝐺𝑠(𝑥)𝑑𝑥

}
= 𝜎𝑠𝐺

𝑠
(𝑟)

18 of 19 Oxford Bulletin of Economics and Statistics, 2025

 14680084, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12668 by T

est, W
iley O

nline L
ibrary on [07/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The CMT then shows that

𝑇 −1𝐶2⌊𝜆2𝑇 ⌋ ⇒ 𝜎2
𝑠
𝐺

𝑠
(𝜆2)2,

𝑇 −1𝐶2⌊𝜆1𝑇 ⌋ ⇒ 𝜎2
𝑠
𝐺

𝑠
(𝜆1)2,

𝑇 −2
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋𝐶
2
𝑡−1 ⇒ 𝜎2

𝑠∫
𝜆2

𝜆1

𝐺
𝑠
(𝑟)2𝑑𝑟

Next,

𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋(Δ𝐶𝑡)2 =

𝑇 −1
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋
{

𝑠𝑖𝑔𝑛(Δ𝑦𝑡) − (𝑡 − 1)−1
𝑡∑

𝑗=2
𝑠𝑖𝑔𝑛(Δ𝑦𝑗 )

}2

= 𝑇 −1(⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋ + 1)

×
[
(⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋ + 1)−1

×
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋
{

𝑠𝑖𝑔𝑛(Δ𝑦𝑡) − (𝑡 − 1)−1
𝑡∑

𝑗=2
𝑠𝑖𝑔𝑛(Δ𝑦𝑗 )

}2⎤⎥⎥⎦
𝑝
−→(𝜆2 − 𝜆1)𝜎2

𝑠

It is also easily shown that

�̂�2(𝜆1, 𝜆2) = (⌊𝜆2𝑇 ⌋ − ⌊𝜆1𝑇 ⌋)−1

×
⌊𝜆2𝑇 ⌋∑

𝑡=⌊𝜆1𝑇 ⌋
{

𝑠𝑖𝑔𝑛(Δ𝑦𝑡) − (𝑡 − 1)−1
𝑡∑

𝑗=2
𝑠𝑖𝑔𝑛(Δ𝑦𝑗 )

}2

+ 𝑜𝑝(1)

𝑝
−−→ 𝜎2

𝑠

Collecting results we find

𝑠𝐷𝐹 (𝜆1, 𝜆2) ⇒
𝐺

𝑠
(𝜆2)2 − 𝐺

𝑠
(𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2
𝜆1

𝐺
𝑠
(𝑟)2𝑑𝑟

leading to the result of Theorem 3.
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