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Abstract
It is shown that every algebraic quantum field theory has an underlying functorial
field theory which is defined on a suitable globally hyperbolic Lorentzian bordism
pseudo-category. This means that globally hyperbolic Lorentzian bordisms between
Cauchy surfaces arise naturally in the context of algebraic quantum field theory. The
underlying functorial field theory encodes the time evolution of the original theory,
but not its spatially local structure. As an illustrative application of these results, the
algebraic and functorial descriptions of a free scalar quantum field are compared in
detail.
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1 Introduction and summary

The mathematical axiomatization of quantum field theory (QFT) is a long-standing
and important problem in mathematical physics, dating back to the early 1950s when
Wightman proposed a first set of axioms for relativistic QFT. Over the subsequent
decades, the field of mathematical QFTwent through substantial developments, which
to date have manifested themselves into a variety of approaches to this subject, includ-
ing most notably: (1) functorial QFT (FFT), going back to ideas of Witten, Atiyah and
Segal [1, 45, 48], (2) algebraic QFT (AQFT), initiated by Haag and Kastler [31], and
(3) factorization algebras, developed by Costello and Gwilliam [19, 20].

Themain idea behind FFT [1, 45, 48] is to describe a QFT in terms of a functor from
a bordism category to a suitable target category, for instance that of vector spaces. The
typical interpretation of such a functor is as the assignment of a state space to each
(m−1)-dimensional manifold and of a linear map to each m-dimensional bordism.
These linear maps encode a concept of ‘time evolution’ along the bordisms. Since its
inception, the field of FFT has gone through immense internal developments, which
proceeded in parallel with the development of novel higher categorical structures in
pure mathematics. Most notable are the proposal of extended FFTs [2] which assign
higher categorical data to manifolds of any codimension (see also [18, 38] for the
mathematical foundations), and the concept of geometric FFTs [47] in which the
bordisms are endowedwith additional geometric structures, such as ametric. Concrete
examples of the latter have been constructed in [16, 17, 35–37] and their extended
versions have been developed and studied in [26, 27].

The main idea behind AQFT [31] and factorization algebras [19, 20] is crucially
different from that of FFT. In contrast to state spaces, these approaches focus on the
observables of aQFT,which are assigned locally to suitable open subsets of spacetime.
In physics terminology, one may say that these approaches focus on the Heisenberg
picture of quantum theory, while FFT typically emphasizes the Schrödinger picture.
AQFT has also gone through substantial internal developments over the past decades,
leading in particular to a locally covariant version [15, 21], defined on all globally
hyperbolic Lorentzian manifolds in contrast to only the Minkowski spacetime as in
the original work [31], the incorporation of powerful operadic techniques [12], and
the development of homotopical and higher categorical generalizations [9, 11] that are
relevant for the description of gauge theories [22, 23].

Having available multiple axiomatizations of QFT triggers a series of important
questions, in particular whether different axiomatizations are compatible with each
other and, if that is the case, how they can be related. The relationship between AQFT
and factorization algebras, in the relativistic context where the geometric side consists
of globally hyperbolic Lorentzian spacetimes, is by now well understood due to the
works of Gwilliam and Rejzner [29, 30] and of Benini et al. [7, 8]. The main results of
these papers are an equivalence theorem betweenAQFTs and factorization algebras on
globally hyperbolicLorentzianmanifolds (subject to somemild additional conditions),
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and a dictionary relating examples on both sides. In contrast to this, the relationship
between FFT and AQFT or factorization algebras is currently less investigated and
understood. The only works in this direction which we are aware of are the paper [43]
by Schreiber, which shows that taking endomorphism algebras of an extended FFT
defines an AQFT, and the paper [34] by Johnson-Freyd, which presents some general
ideas on how to pass between the Schrödinger and Heisenberg picture in QFT.

The main goal of the present paper is to show that every AQFT has an underlying
FFTwhich is defined on a globally hyperbolic Lorentzian version of the Stolz-Teichner
geometric bordism pseudo-categories [47]. Our results show that globally hyperbolic
Lorentzian bordisms appear naturally in AQFT and that they capture, in a precise
sense, exactly those parts of an AQFT that are related to time evolution. Let us
explain our results in more precise terms. In Theorem 4.10, we construct a functor
F(−) : AQFTm → FFTt.s.

m from the groupoid of m-dimensional AQFTs (see Defini-
tion 4.3) to the groupoid of m-dimensional globally hyperbolic Lorentzian FFTs (see
Definition 4.4) that satisfy the time-slice axiom. It is important to emphasize that our
FFTs take values in algebras, as do AQFTs, which means that Theorem 4.10 does not
describe a transition between the Heisenberg and Schrödinger picture. Our compari-
son functor has a geometric origin, which lies in the similarities between the category
Locm of globally hyperbolic Lorentzian spacetimes used in AQFT (see Definition 2.4)
and the globally hyperbolic Lorentzian bordism pseudo-category LBordm , which we
develop in Sect. 3. The functor F(−) : AQFTm → FFTt.s.

m from Theorem 4.10 is
faithful, but in spacetime dimension m ≥ 2, it fails to be full and essentially sur-
jective. This means that passing from an AQFT A ∈ AQFTm to its underlying FFT
FA ∈ FFTt.s.

m is forgetful. We identify those parts of the AQFT that the functor F(−)

forgets with its spatially local structure, given by morphisms in Locm which are not
Cauchy in the sense of Definition 2.6. This interpretation is mathematically substan-
tiated by Theorem 4.11, in which we show that forgetting the spatially local structure
on the AQFT side, by restricting to the subcategory Caum ⊆ Locm consisting only of
Cauchy morphisms, gives an equivalence between such spatially global AQFTs and
FFTs. Since the spatially local structure is a phenomenon that only occurs in spacetime
dimension m ≥ 2, our results provide an equivalence AQFT1 � FFTt.s.

1 in m = 1
dimension (see Corollary 4.12). In future work, we intend to upgrade Theorem 4.11
to a comparison theorem between QFTs with spatially local structures. While the
details of this generalization are currently not clear to us, we would like to mention
the following two potential approaches: On the one hand, one could consider as in
[25, Remark 4.9] and [49, Sect. 9] richer bordism double categories than LBordm
from Sect. 3 which also encode non-Cauchy morphisms in the vertical dimension. On
the other hand, one could try to generalize the Lorentzian bordism pseudo-category
LBordm to a pseudo-operad in order to encode spatially local structure through higher
arity operations associated with disjoint subsets of a Cauchy surface.

The outline of the remainder of this paper is as follows. In Sect. 2, we recall some
basic concepts from Lorentzian geometry and the theory of pseudo-categories that
are required to state and prove our results. In Sect. 3, we define a globally hyperbolic
Lorentzian variant of the Stolz-Teichner geometric bordism pseudo-categories [47],
which is needed to introduce a globally hyperbolic Lorentzian variant of FFTs in
Definition 4.4. Our main results are contained in Sect. 4. Theorem 4.10 shows that
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there exists a faithful functor F(−) : AQFTm → FFTt.s.
m that assigns to each AQFT

an underlying globally hyperbolic Lorentzian FFT satisfying the time-slice axiom.
This functor is in general not an equivalence (unless in the very special case of m = 1
spacetimedimensions (seeCorollary 4.12)), but it forgets the spatially local structure of
AQFTs. Theorem 4.11 then shows that, restricted to spatially global AQFTs, we obtain
an equivalence. In Sect. 5, we test and illustrate our comparison results by studying
the simple example given by a free scalar quantum field. We describe this model both
as an AQFT and as an FFT, and then prove in Proposition 5.1 that the two different
descriptions are compatible with each other through our comparison theorems. This
example also illustrates nicely in a concrete context that the underlying FFT of an
AQFT encodes precisely its time evolution. Appendix A contains some technical
results about pseudo-categories that are needed in this paper.

2 Preliminaries

2.1 Lorentzian geometry

The aim of this section is to recall some basic definitions and properties of Lorentzian
manifolds. We refer the reader to [4] for an introduction and [40] for a comprehensive
textbook.

A Lorentzian manifold is a manifold M (always assumed to be without boundary)
that is endowed with a metric g of signature (−++ · · ·+). A nonzero tangent vector
0 �= v ∈ TpM at a point p ∈ M is called time-like if g(v, v) < 0, light-like if
g(v, v) = 0, and space-like if g(v, v) > 0. One says that the tangent vector 0 �= v ∈
TpM is causal if it is either time-like or light-like. A smooth curve γ : I → M , from
an open or closed interval I ⊆ R, is called time-like/light-like/space-like/causal if all
its tangent vectors γ̇ are time-like/light-like/space-like/causal.

A Lorentzian manifold M is called time-orientable if there exists a vector field
t ∈ �∞(T M) that is everywhere time-like. A time-orientation is an equivalence class
[t] of time-like vector fields for the following equivalence relation: Two time-like
vector fields t and t′ define the same time-orientation if g(t, t′) < 0. On a time-oriented
Lorentzian manifold M , one can distinguish between two types of time-like/causal
curves: A time-like/causal curve is called future directed if g(t, γ̇ ) < 0 and it is
past directed if g(t, γ̇ ) > 0. For any point p ∈ M , we introduce the chronological
future/past of p as the subset

I±M (p) :=
{
q ∈ M

∣∣∣∣ ∃ future/past directed time-like curve
γ : [0, 1] → M s.t. γ (0) = p and γ (1) = q

}
⊆ M , (2.1)

and the causal future/past of p as the subset

J±M (p) :=
{
q ∈ M

∣∣∣∣ q = p or ∃ future/past directed causal curve
γ : [0, 1] → M s.t. γ (0) = p and γ (1) = q

}
⊆ M . (2.2)
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Given any subset S ⊆ M , we define

I±M (S) :=
⋃
p∈S

I±M (p), J±M (S) :=
⋃
p∈S

J±M (p), (2.3)

and

IM (S) := I+M (S) ∪ I−M (S), JM (S) := J+M (S) ∪ J−M (S). (2.4)

The following definition introduces important types of subsets in a time-oriented
Lorentzian manifold.

Definition 2.1 Let M be a time-oriented Lorentzian manifold.

(a) A subset S ⊆ M is called causally convex if J+M (S) ∩ J−M (S) ⊆ S. In words, this
means that every causal curve in M that starts and ends in S is entirely contained
in S.

(b) Two subsets S, S′ ⊆ M are called causally disjoint if JM (S) ∩ S′ = ∅, or equiv-
alently S ∩ JM (S′) = ∅. In words, this means that there exists no causal curve in
M that connects S and S′.

Remark 2.2 Given two causally convex subsets S1, S2 ⊆ M , their intersection S1 ∩
S2 ⊆ M is again causally convex. This fact will be used frequently in our work. �

A generic (time-oriented) Lorentzian manifold M may have severe pathological
features such as closed time-like curves. These can be avoided by restricting to the
following well-behaved subclass of (time-oriented) Lorentzian manifolds.

Definition 2.3 A (time-oriented) Lorentzian manifold M is called globally hyperbolic
if it admits a Cauchy surface, i.e., a subset � ⊂ M that is met exactly once by each
inextensible time-like curve in M .

The following category of Lorentzian manifolds plays a fundamental role in AQFT
(see, e.g., [12, 15, 21, 28]).

Definition 2.4 For any integer m ≥ 1, the category Locm is defined by the following
objects and morphisms:

Obj: Oriented and time-oriented globally hyperbolic Lorentzian manifolds M (with-
out boundary) of fixed dimension m.

Mor: Orientation and time-orientation preserving isometric embeddings f : M →
M ′ whose image f (M) ⊆ M ′ is open and causally convex.

Composition is given by composition of maps, and the identities are the identity maps.

Remark 2.5 Every Locm-morphism f : M → M ′ admits a factorization

M

f

∼=

f
M ′

f (M)

⊆ (2.5)
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in the category Locm into an isomorphism (denoted, by abuse of notation, by the same
symbol) followed by a subset inclusion. This fact will be used frequently in our work.

�

The following distinguished types of morphisms in Locm play an important role in
AQFT and also in our present paper.

Definition 2.6 (a) A Locm-morphism f : M → M ′ is called a Cauchy morphism if
its image f (M) ⊆ M ′ contains a Cauchy surface of M ′.

(b) A pair of Locm-morphisms f1 : M1 → M ← M2 : f2 to a common target is
called causally disjoint if the images f1(M1) ⊆ M and f2(M2) ⊆ M are causally
disjoint subsets of M .

2.2 Pseudo-categories

The aim of this section is to recall some basic definitions from the theory of pseudo-
categories (see, e.g., [39]). Pseudo-categories are a weak version of internal categories
in a strict 2-category. In the context of our paper, the latter will be taken to be the strict
2-category Grpd of groupoids, functors and natural transformations. This means that
our pseudo-categories are special cases of (weak) double categories [33, 46] in which
all vertical morphisms and 2-cells are invertible. In the context of quantumfield theory,
pseudo-categories are a convenient framework to define geometric bordism categories
(see [47]).

Definition 2.7 A pseudo-category is a tuple

C = (C0, C1, s, t,� , u, a, l, r
)

(2.6)

which consists of the following data:

(i) A groupoid C0.
(ii) A span of groupoids and functors

C1t s

C0 C0
. (2.7)

(iii) A functor � : C1 ×C0 C1 → C1 from the (strict) fiber product

C1 ×C0 C1p1 p2

C1
s

C1
tC0

(2.8)
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which is a map of spans

C1 ×C0 C1t p1

�

s p2

C0 C0
C1t s

, (2.9)

where the triangles commute strictly.
(iv) A functor u : C0 → C1 which is a map of spans

C0id

u

id

C0 C0
C1t s

, (2.10)

where the triangles commute strictly.
(v) Natural isomorphisms (a, l, r) that fill the following diagrams of groupoids and

functors

C1 ×C0 C1 ×C0 C1
id×C0�

� ×C0 id C1 ×C0 C1
�⇐a

C1 ×C0 C1 � C1

(2.11a)

C1(ut)×C0 id

id

id×C0 (us)

C1 ×C0 C1
�

l⇒ r⇐ C1 ×C0 C1
�

C1

(2.11b)

The natural isomorphisms (a, l, r) are required to be globular, i.e., the images of their
components under s and t are identities in C0, and to satisfy the typical unity and
pentagon axioms (see, e.g., [33, Definition 12.3.7]).

Remark 2.8 A pseudo-category C consists of objects c ∈ C0, vertical morphisms (g :
c→ c′) ∈ C0, horizontal morphisms f ∈ C1 and 2-cells (α : f ⇒ f ′) ∈ C1. Using the
functors s and t , one can assign a source and a target in C0 to each horizontal morphism
and to each 2-cell. To distinguish between vertical and horizontal morphisms, we shall
denote the latter by a slashed arrow f : c0 � c1, where c0 = s( f ) and c1 = t( f ).
The 2-cells will be denoted by squares

123



   16 Page 8 of 43 S. Bunk et al.

c′0 /
f ′

c′1
α ⇒

c0

g0

/

f
c1

g1 , (2.12)

where g0 = s(α) and g1 = t(α). The compositions in the groupoids C0 and C1 define,
respectively, a vertical composition g′ g : c → c′′ of vertical morphisms g : c → c′
and g′ : c′ → c′′, and a vertical composition α′ α : f ⇒ f ′′ of 2-cells α : f ⇒ f ′
and α′ : f ′ ⇒ f ′′. These vertical compositions are strictly associative and unital with
respect to the identities (idc : c → c) ∈ C0 and (id f : f ⇒ f ) ∈ C1. The functor �
defines a horizontal composition f1 � f0 of horizontal morphisms f0 : c0 � c1 and
f1 : c1 � c2, and a horizontal composition of 2-cells

c′0 /

f ′0
c′1 /

f ′1
c′2

α0 ⇒ α1 ⇒

c0

g0

/

f0
c1

g1

/

f1
c2

g2
��−→

c′0 /

f ′1 � f ′0
c′2

α1 � α0 ⇒
c0

g0

/

f1 � f0
c2

g2 . (2.13)

These horizontal compositions are only weakly associative, with associator a, and
weakly unital, with unitors l and r, with respect to the units obtained by the functor
u : C0 → C1. Note that the two compositions of 2-cells satisfy the strict interchange
law

(α′1 α1)� (α′0 α0) = (α′1 � α′0) (α1 � α0) , (2.14)

as a consequence of the functoriality of � . �

Definition 2.9 A pseudo-functor F : C→ D between two pseudo-categories is a tuple

F = (F0, F1, F
�
, Fu) (2.15)

that consists of the following data:

(i) Two functors F0 : C0 → D0 and F1 : C1 → D1 inducing a map of spans, i.e.,
sD F1 = F0 sC and tD F1 = F0 tC.

(ii) Natural isomorphisms F� : �D (F1 × F1) ⇒ F1 �C and Fu : uD F0 ⇒ F1 uC.

The natural isomorphisms F� and Fu are required to be globular, i.e., the images of
their components under sD and tD are identities, and to satisfy analogous coherence
conditions to those of a monoidal functor (see, e.g., [33, Definition 12.3.18]).

Definition 2.10 A (vertical) transformation ζ : F ⇒ G between two pseudo-functors
F,G : C→ D consists of two natural transformations ζ 0 : F0 ⇒ G0 and ζ 1 : F1 ⇒
G1 which satisfy the following conditions:

(1) sD ζ 1 = ζ 0 sC and tD ζ 1 = ζ 0 tC.
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(2) For all horizontal morphisms f0 : c0 � c1 and f1 : c1 � c2, the compositions of
2-cells

G0(c0) /
G1( f1 � f0)

G0(c2)

ζ 1f1 � f0 ⇒
F0(c0)

ζ 0c0

/
F1( f1 � f0)

F0(c2)

ζ 0c2

F�
( f1, f0) ⇒

F0(c0) /

F1( f0)
F0(c1) /

F1( f1)
F0(c2)

=

G0(c0) /
G1( f1 � f0)

G0(c2)

G�
( f1, f0) ⇒

G0(c0) /
G1( f0)

G0(c1) /
G1( f1)

G0(c2)

ζ 1f0 ⇒ ζ 1f1 ⇒

F0(c0)

ζ 0c0

/

F1( f0)
F0(c1)

ζ 0c1

/

F1( f1)
F0(c2)

ζ 0c2

(2.16)

coincide.
(3) For all objects c ∈ C0, the compositions of 2-cells

G0(c) /
G1u(c)

G0(c)

ζ 1u(c) ⇒

F0(c)

ζ 0c

/
F1u(c)

F0(c)

ζ 0c

Fu
c ⇒

F0(c) /

uF0(c)
F0(c)

=

G0(c) /
G1u(c)

G0(c)

Gu
c ⇒

G0(c) /
uG0(c)

G0(c)

u(ζ 0c ) ⇒

F0(c)

ζ 0c

/

uF0(c)
F0(c)

ζ 0c

(2.17)

coincide.

The following result is shown in [39]. We also refer to [33, Chapter 12.3] for a
sufficiently detailed sketch.

Proposition 2.11 There is a (strict) 2-category PsCat whose objects are pseudo-
categories, morphisms are pseudo-functors and 2-morphisms are (vertical) transfor-
mations.

Remark 2.12 The 2-category PsCat is in fact a (2, 1)-category. Indeed, since the ver-
tical morphisms and 2-cells are invertible in any pseudo-category as in Definition 2.7,
each transformation as in Definition 2.10 is invertible. �

Of interest to us is the full 2-subcategory PsCatfib ⊆ PsCat of fibrant pseudo-
categories. The relevant definition from [46, Definition 3.4] simplifies in our case
because pseudo-categories are special double categories in which every vertical mor-
phism is invertible,which by [46, Lemma3.20] implies thatwe do not have to introduce
the concept of conjoints.

Definition 2.13 Let C ∈ PsCat be a pseudo-category.
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(a) A companion of a vertical morphism g : c0 → c1 is a horizontal morphism
ĝ : c0 � c1 together with 2-cells

c1 /
u(c1)

c1

⇒

c0

g

/

ĝ
c1

and

c0 /̂
g

c1

⇒

c0 /

u(c0)
c0

g , (2.18)

such that

c1 /
u(c1)

c1

⇒

c0

g

/̂
g

c1

⇒

c0 /

u(c0)
c0

g

=
c1 /

u(c1)
c1

u(g) ⇒
c0

g

/

u(c0)
c0

g (2.19a)

and

c0 /̂
g

c1

lĝ ⇒ ∼=
c0 /̂

g
c1 /

u(c1)
c1

⇒ ⇒

c0 /

u(c0)
c0

g

/

ĝ
c1

rĝ

⇒ ∼=
c0 /

ĝ
c1

=
c0 /̂

g
c1

idĝ ⇒

c0 /

ĝ
c1

. (2.19b)

(b) The pseudo-category C is called fibrant if every vertical morphism has a com-
panion. We denote by PsCatfib ⊆ PsCat the full 2-subcategory of fibrant
pseudo-categories.

Remark 2.14 In [46, Sect. 3], Shulman provides a list of technical lemmas for com-
panions. These enter frequently in proving our more technical results in Appendix A.

�

In the main part of this paper, we require constructions that allow us to assign to
an ordinary category C ∈ Cat a pseudo-category ι(C) ∈ PsCat and to a pseudo-
category C ∈ PsCat a suitably truncated ordinary category τ(C) ∈ Cat. The latter can
be viewed as the homotopy category of the pseudo-category C. These constructions
are developed in detail in Appendix A, where we also prove the following result.
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Theorem 2.15 There exists a 2-adjunction

τ : PsCatfib ⊥ Cat(2,1) : ι (2.20)

between the (2, 1)-category PsCatfib of fibrant pseudo-categories and the (2, 1)-
category Cat(2,1) of categories, functors and natural isomorphisms. In particular,
given any fibrant pseudo-category C ∈ PsCatfib and any ordinary category D ∈
Cat(2,1), there exists an equivalence (in fact, an isomorphism)

PsFun
(C, ι(D)

) ∼= Fun
(
τ(C),D)

(2.21)

between the groupoid PsFun
(C, ι(D)

)
of pseudo-functors from C to ι(D) and their

transformations, and the groupoid Fun
(
τ(C),D)

of ordinary functors from τ(C) to D
and their natural isomorphisms. These equivalences are natural in C and D.

Remark 2.16 The appearance of the (2, 1)-category Cat(2,1), in contrast to the
2-category Cat of categories, functors and (not necessarily invertible) natural trans-
formations, is due to the fact that every (vertical) transformation in PsCat is invertible
(see Remark 2.12). At the level of pseudo-categories, there exists a more general con-
cept of transformations, called horizontal or pseudo-natural [39, Section 3], which
are not necessarily invertible. We expect that Theorem 2.15 can be upgraded to a
bicategorical adjunction between the 2-category Cat and the bicategory of fibrant
pseudo-categories, pseudo-functors and horizontal transformations. This potential
generalization is, however, not needed in the present paper, because we are inter-
ested in describing groupoids of quantum field theories, and the invertible horizontal
transformations between pseudo-functors C → ι(D) coincide with the vertical trans-
formations from Definition 2.10. �

In the remainder of this section, we describe the action of the 2-functors ι and τ on
objects, which should allow the reader to understand the main concepts behind these
2-functors without being confronted with the more technical aspects of Appendix A.

Construction 2.17 Given any ordinary category C ∈ Cat, we define the pseudo-
category ι(C) ∈ PsCat by the following data (compare Definition 2.7):

(i) ι(C)0 = core(C) ⊆ C is the core of the given category, i.e., the maximal

subgroupoid consisting of all objects and all isomorphisms g : c ∼=−→ c′ in C.
(ii) ι(C)1 is the groupoid whose objects are morphisms ( f : c0 → c1) ∈ C and

whose morphisms are commutative squares

c′0
f ′

c′1

c0

∼=g0

f
c1

∼= g1 (2.22)
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in C with both vertically drawn morphisms being isomorphisms. (To ease nota-
tion, we will often suppress the symbols ∼=.) The source functor s sends such
square to the isomorphism g0 : c0 → c′0 in C, and the target functor t sends it
to the isomorphism g1 : c1 → c′1.

(iii) The horizontal composition functor � is defined by composition in C as

c′0
f ′0

c′1
f ′1

c′2

c0

g0

f0
c1

g1

f1
c2

g2
��−→

c′0
f ′1 f ′0

c′2

c0

g0

f1 f0
c2

g2 . (2.23)

(iv) The horizontal unit functor u is defined by the identities in C via

c′

c

g
u�−→

c′
idc′

c′

c

g

idc
c

g . (2.24)

(v) The associator and unitors are trivial, i.e., they consist of the identity natural
transformations.

Each pseudo-category of the form ι(C) is fibrant. Indeed, a companion of a vertical

morphism g : c ∼=−→ c′ is the same morphism ĝ = g drawn horizontally. �
Construction 2.18 Given any pseudo-category C ∈ PsCat, we define an ordinary
category τ(C) ∈ Cat by the following objects and morphisms:

Obj: Objects c ∈ C0 of the pseudo-category.
Mor: Equivalence classes [ f : c0 � c1] of horizontal morphisms for the following

equivalence relation: Two horizontal morphisms f : c0 � c1 and f ′ : c0 � c1
with the same source and target are equivalent if there exists a globular 2-cell

c0 /
f ′

c1
∼= ⇒

c0 /

f
c1

, (2.25)

which is automatically an isomorphism because C1 is a groupoid.
Composition of morphisms in the category τ(C) is defined by horizontal composition
[ f1] [ f0] := [ f1 � f0] of any choice of representatives and the identities are defined by
the horizontal unit [u(c)]. Associativity and unitality hold strictly because the natural
isomorphisms (a, l, r) from Definition 2.7 are globular; hence, they are trivial at the
level of equivalence classes. Note that the definition of τ(C) does not require that C is
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fibrant. The fibrancy condition will become crucial when defining the 2-functor τ on
2-morphisms (see Appendix A). �

3 The globally hyperbolic Lorentzian bordism pseudo-category

In this section we define an analogue of the geometric bordism pseudo-categories of
Stolz and Teichner [47] for globally hyperbolic Lorentzian manifolds. This allows us
to introduce a concept of functorial field theories in the Lorentzian context and to
compare the latter with algebraic quantum field theory. Before spelling out the details
of our bordism pseudo-categories, we would like to add two clarifying comments:

Remark 3.1 In analogy to [47], our bordisms do not have boundaries, but they have
marked codimension 1 hypersurfaces together with collar neighborhoods. These col-
lars are needed to obtain a well-defined gluing construction when bordisms are
endowed with geometric structures. In our case the geometric structures of central
interest consist of Lorentzian metrics. Controlling these collar neighborhoods is pre-
cisely the reason why we have to work with pseudo-categories instead of ordinary
categories. �

Remark 3.2 We are interested in oriented and time-oriented globally hyperbolic
Lorentzian manifolds, which by Definition 2.3 come with a distinguished class of sur-
faces, the Cauchy surfaces. The bordisms we consider in this work are thus described
by objects N ∈ Locm in the category introduced in Definition 2.4, and they go from a
Cauchy surface�0 ⊂ N to another one�1 ⊂ N that lies in the causal future of�0. In
physics terminology, our bordisms admit an interpretation in terms of time evolution
from a Cauchy surface to another one. By a fundamental result in Lorentzian geom-
etry [13, 14], each of these globally hyperbolic bordisms has an underlying manifold
N ∼= R×� that is diffeomorphic to a cylinder. This implies that our globally hyper-
bolic bordism pseudo-category only describes bordisms whose underlying manifolds
are cylinders. It is important to stress that such types of bordisms are still highly non-
trivial, because, in general, each cylinder R× � has a rich moduli space of globally
hyperbolic Lorentzian metrics. �

We will now define a pseudo-category LBordm ∈ PsCat of (m ≥ 1)-dimensional
oriented and time-oriented globally hyperbolic Lorentzian bordisms. For this we list
and explain all the required data from Definition 2.7.

The groupoid (LBordm)0: The groupoid (LBordm)0 of objects of the pseudo-
category LBordm ∈ PsCat is defined by the following objects and morphisms:

Obj: Pairs (M, �) consisting of an objectM ∈ Locm and a Cauchy surface� ⊂ M .
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Geometrically, one interprets such pairs as Cauchy surfaces � with collar
regions given by M , i.e.,

M

�
. (3.1)

Mor: Equivalence classes [W , g] : (M, �) → (M ′, �′) of pairs (W , g) consisting
of a causally convex open subset W ⊆ M that contains the Cauchy surface
� ⊂ W and of a Cauchy morphism g : W → M ′ in Locm satisfying g(�) =
�′. Two such pairs (W , g) and (W̃ , g̃) are equivalent if and only if there exists
a causally convex open subset Ŵ ⊆ W ∩ W̃ ⊆ M which contains the Cauchy
surface � ⊂ Ŵ , such that the restrictions g|Ŵ = g̃|Ŵ coincide.
It is convenient to visualize a representative (W , g) of the equivalence class
[W , g] : (M, �) → (M ′, �′) defining a morphism by a zig-zag

M W
⊆ g

M ′ (3.2)

of Cauchy morphisms in Locm , where it is always implicitly understood that
each object contains the relevant marked Cauchy surface and that each map
preserves these Cauchy surfaces. Geometrically, one interprets [W , g] as the
germ of a local Cauchy morphism

M

� ⊆
W

�

g

M ′

�′

(3.3)

that identifies locally isomorphic collar regions around Cauchy surfaces.

The identity morphisms [M, id] : (M, �) → (M, �) of the groupoid (LBordm)0
are defined as the equivalence classes of the zig-zags

M M
= id

M . (3.4)

To define the composition of two morphisms [W , g] : (M, �) → (M ′, �′) and
[W ′, g′] : (M ′, �′) → (M ′′, �′′), we choose any representatives, factorize the corre-
sponding chain of zig-zags as
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M W
⊆ g

M ′ W ′⊆ g′
M ′′

g−1(W ′)

⊆ g
(3.5a)

and define the composite morphism by

[W ′, g′] [W , g] := [
g−1(W ′), g′ g

] : (M, �) −→ (M ′′, �′′) , (3.5b)

where g−1(W ′) ⊆ M denotes the preimage of W ′ under g. (Note that the subset
g−1(W ′) = g−1

(
g(M) ∩ W ′) ⊆ M is causally convex by Remarks 2.2 and 2.5.)

One checks that every morphism [W , g] : (M, �) → (M ′, �′) in (LBordm)0 is an
isomorphism, with inverse given explicitly by [g(W ), g−1] : (M ′, �′) → (M, �).

The groupoid (LBordm)1: The groupoid (LBordm)1 of morphisms of the pseudo-
category LBordm ∈ PsCat is defined by the following objects and morphisms:

Obj: Tuples (N , i0, i1) : (M0, �0) � (M1, �1) consisting of an object N ∈ Locm
and zig-zags

M0 V0
⊆ i0

N V1
i1 ⊆

M1 (3.6a)

of Cauchy morphisms in Locm satisfying

�0 ⊂ V0 ⊆ M0 , �1 ⊂ V1 ⊆ M1 , i1(�1) ⊂ J+N
(
i0(�0)

)
. (3.6b)

The last condition states that, when embedded into N , the Cauchy surface �1
lies in the causal future of �0.
Geometrically, one interprets such a datum as a bordism

M0

�0 ⊆
V0

�0 i0

N

i0(�0)

i1(�1) i1

V1

�1 ⊆
M1

�1

(3.7)

from a small collar region V0 around �0, embedded via i0 into N , to a small
collar region V1 around�1, embedded via i1 into N . To avoid confusion, let us
emphasize that we have drawn this bordism vertically, despite the fact that it
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is a horizontal morphism in the pseudo-category, because the time dimension
is often drawn vertically (from bottom to top) in Lorentzian geometry.

Mor: Equivalence classes

(M ′
0, �

′
0) /

(N ′,i ′0,i ′1)
(M ′

1, �
′
1)

[Z , f ] �⇒

(M0, �0) /

(N ,i0,i1)
(M1, �1)

(3.8a)

of zig-zags

N Z
⊆ f

N ′ (3.8b)

of Cauchy morphisms in Locm satisfying

J+N
(
i0(�0)

) ∩ J−N
(
i1(�1)

) ⊂ Z , f i0(�0) = i ′0(�′
0) , f i1(�1) = i ′1(�′

1) .

(3.8c)

The equivalence relation is analogous to the one used for morphisms in
(LBordm)0, with the condition that J+N

(
i0(�0)

) ∩ J−N
(
i1(�1)

)
must be con-

tained in any smaller choice of Z .
The first condition in (3.8c) states that the time slab between the two embedded
Cauchy surfaces i0(�0) and i1(�1) in N must be contained in the subset
Z ⊆ N . Geometrically, one interprets [Z , f ] as the germ of a local Cauchy
morphism

N

i0(�0)

i1(�1)

⊆
Z

i0(�0)

i1(�1)

f

N ′

i ′0(�′0)

i ′1(�′1)

(3.9)

that identifies locally isomorphic collar regions around this time slab.

Identities and compositions in the groupoid (LBordm)1 are defined analogously to
the groupoid (LBordm)0 above.

123



Lorentzian bordisms in algebraic quantum field theory Page 17 of 43    16 

Source and target: The source functor is defined by

s : (LBordm)1 −→ (LBordm)0 ,(
(N , i0, i1) : (M0, �0) � (M1, �1)

)
�−→ (M0, �0) ,

(M ′
0, �

′
0) /

(N ′,i ′0,i ′1)
(M ′

1, �
′
1)

[Z , f ] �⇒

(M0, �0) /

(N ,i0,i1)
(M1, �1)

�−→
(M ′

0, �
′
0)

(M0, �0)

[
i−10

(
f −1

(
i ′0(V ′0)

))
,i ′−10 f i0

]
,

(3.10a)

with the action on morphisms given by the factorization

M0 V0
⊆ i0

N Z
⊆ f

N ′ V ′0
i ′0

∼=
i ′0

⊆
M ′

0

i−10

(
f −1

(
i ′0(V ′0)

))
⊆

i0
f −1

(
i ′0(V ′0)

)
⊆

f
i ′0(V ′0)

⊆ .

(3.10b)

The target functor is defined similarly by

t : (LBordm)1 −→ (LBordm)0 ,(
(N , i0, i1) : (M0, �0) � (M1, �1)

)
�−→ (M1, �1) ,

(M ′
0, �

′
0) /

(N ′,i ′0,i ′1)
(M ′

1, �
′
1)

[Z , f ] �⇒

(M0, �0) /

(N ,i0,i1)
(M1, �1)

�−→
(M ′

1, �
′
1)

(M1, �1)

[
i−11

(
f −1

(
i ′1(V ′1)

))
,i ′−11 f i1

]
,

(3.11a)

with the action on morphisms given by the factorization

M1 V1
⊆ i1

N Z
⊆ f

N ′ V ′1
i ′1

∼=
i ′1

⊆
M ′

1

i−11

(
f −1

(
i ′1(V ′1)

))
⊆

i1
f −1

(
i ′1(V ′1)

)
⊆

f
i ′1(V ′1)

⊆ .

(3.11b)
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Horizontal composition: Let us consider any two composable horizontalmorphisms,
i.e., bordisms, (N0, i00, i01) : (M0, �0) � (M1, �1) and (N1, i10, i11) : (M1, �1) �

(M2, �2). Defining the subsets

N−0 := J−N0

(
i01(V01 ∩ V10)

) ⊆ N0 , (3.12a)

N+1 := J+N1

(
i10(V01 ∩ V10)

) ⊆ N1 , (3.12b)

we obtain a commutative diagram

M0 V00
⊆ i00

N0 V01
i01 ⊆

M1 V10
⊆ i10

N1 V11
i11 ⊆

M2

i−100 (N−0 )

i− i00

⊆

i00

V01 ∩ V10

⊆

i01

⊆

i10

i−111 (N+1
)

i+ i11

⊆

i11

N−0

⊆

i−

N+1

⊆

i+

N−0 �V01∩V10 N+1
(3.13)

of Cauchy morphisms in Locm . We define the horizontal composite

(N1, i10, i11)� (N0, i00, i01) : (M0, �0) / (M2, �2) (3.14a)

of horizontal morphisms by

(N1, i10, i11)� (N0, i00, i01) :=
(
N−0 �V01∩V10 N+1 , i− i00, i+ i11

)
. (3.14b)

The geometric picture behind this construction is as follows: We take the intersection
V01∩V10 ⊆ M1 of the two small collar regions of�1 in the intermediate objectM1. The
intersection embeds via i01 into the first bordism N0 and we take the causal past N

−
0 =

J−N0

(
i01(V01∩V10)

) ⊆ N0 of its image. Similarly, the intersection embeds via i10 into

the second bordism N1 and we take the causal future N
+
1 = J+N1

(
i10(V01∩V10)

) ⊆ N1
of its image. The composed bordism (3.14) is then defined in terms of a pushout, i.e.,
by gluing the oriented and time-oriented globally hyperbolic Lorentzian manifolds
N−0 and N+1 along V01 ∩ V10.

Given two horizontally composable 2-cells

(M ′
0, �

′
0) /

(N ′0,i ′00,i ′01)
(M ′

1, �
′
1) /

(N ′1,i ′10,i ′11)
(M ′

2, �
′
2)

[Z0, f0] �⇒ [Z1, f1] �⇒

(M0, �0)

s[Z0, f0]

/

(N0,i00,i01)
(M1, �1) /

(N1,i10,i11)
(M2, �2)

t[Z1, f1] , (3.15)
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i.e., t[Z0, f0] = s[Z1, f1], there exists, by definition of source (3.10) and target (3.11),
a causally convex open subset W ⊆ V01 ∩ V10 ⊆ M1, containing the Cauchy surface
�1 ⊂ W , such that f ∩ := i ′−101 f0 i01

∣∣
W = i ′−110 f1 i10

∣∣
W . Defining the subsets

Z− := N−0 ∩ f −10 (N ′−0 ) ⊆ N0 , (3.16a)

Z+ := N+1 ∩ f −11 (N ′+1 ) ⊆ N1 , (3.16b)

Z∩ := i−101 (Z−) ∩ i−110 (Z+) ∩W ⊆ M1 , (3.16c)

we obtain a commutative diagram

N ′−0 V ′01 ∩ V ′10
i ′01 i ′10

N ′+1

Z−

⊆

f0

Z∩

⊆

i01 i10

f ∩

Z+

⊆

f1

N−0 V01 ∩ V10i01 i10
N+1

(3.17)

of Cauchy morphisms in Locm . This induces morphisms

N−0 �V01∩V10 N+1 Z− �Z∩ Z+⊆ f0� f ∩ f1
N ′−0 �V ′01∩V ′10 N

′+
1 (3.18)

between the pushouts of the rows, which we use to define the horizontal composite

[Z1, f1] �[Z0, f0] : (N1, i10, i11)� (N0, i00, i01) �⇒ (N ′1, i ′10, i ′11)� (N ′0, i ′00, i ′01)
(3.19a)

of 2-cells by

[Z1, f1] �[Z0, f0] :=
[
Z− �Z∩ Z+, f0 � f ∩ f1

]
. (3.19b)

Horizontal unit: We define the horizontal unit functor by

u : (LBordm)0 −→ (LBordm)1 ,

(M, �) �−→
(
(M, id, id) : (M, �) → (M, �)

)
,

(M ′, �′)

(M, �)

[W ,g] �−→
(M ′, �′) /

(M ′,id,id)
(M ′, �′)

[W ,g] �⇒

(M, �) /

(M,id,id)
(M, �)

. (3.20)
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Coherence isomorphisms: The horizontal composition of bordisms is not strictly
associative and unital due to potential mismatches of the gluing region V01∩V10 ⊆ M1
and the collar regions i−100 (N−0 ) ⊆ M0 and i−111 (N+1 ) ⊆ M2 in the defining diagram
(3.13), aswell as due to the fact that pushouts N−0 �V01∩V10N+1 are onlydefineduniquely
up to canonical isomorphism. We will now show that these potential mismatches lead
to canonical globular isomorphisms between the corresponding bordisms. This allows
us to define the coherence isomorphisms (a, l, r) of the pseudo-category LBordm .

Let us start with the following observation: For any bordism (N , i0, i1) :
(M0, �0) � (M1, �1) in LBordm , one can find causally convex open subsets
Ṽ0 ⊆ V0 and Ṽ1 ⊆ V1 that contain the marked Cauchy surfaces, i.e., �0 ⊂ Ṽ0
and �1 ⊂ Ṽ1, such that i0(Ṽ0) ⊆ J−N

(
i1(Ṽ1)

)
and i1(Ṽ1) ⊆ J+N

(
i0(Ṽ0)

)
. (For exam-

ple, take Ṽ0 := i−10

(
J−N

(
i1(V1)

)) ⊆ M0 and Ṽ1 := i−11

(
J+N

(
i0(V0)

)) ⊆ M1.) For any
causally convex open subset Ñ ⊆ N satisfying

J+N
(
i0(Ṽ0)

) ∩ J−N
(
i1(Ṽ1)

) ⊆ Ñ ⊆ N , (3.21a)

the associated commutative diagram

M0 V0
⊆ i0

N V1
i1 ⊆

M1

M0

id

Ṽ0⊆

⊆

i0
Ñ

⊆

Ṽ1

⊆

i1 ⊆ M1

id (3.21b)

defines a globular 2-cell isomorphism

(Ñ , i0, i1) ∼= (N , i0, i1) (3.21c)

inLBordm . This means that, up to a canonical isomorphism given by a globular 2-cell,
we can always make the collar regions V0 ⊆ M0 and V1 ⊆ M1 around the Cauchy
surfaces arbitrarily small and remove the unnecessary parts of the collar region around
the bordism.

Let us consider now the horizontal composition (N1, i10, i11)� (N0, i00, i01) of
two bordisms from (3.14). Given any causally convex open subset W ⊆ V01 ∩ V10
that contains the marked Cauchy surface, i.e., �1 ⊂ W , the associated commutative
diagram

N−0 V01 ∩ V10
i01 i10

N+1

J−N0

(
i01(W )

)
⊆

W
i01 i10

⊆

J+N1

(
i10(W )

)
⊆ (3.22a)
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induces a canonical isomorphism between the pushouts

J−N0

(
i01(W )

) �W J+N1

(
i10(W )

) ∼=−→ N−0 �V01∩V10 N+1 . (3.22b)

Together with (3.21), this implies that the composite bordism (N1, i10, i11)� (N0, i00,
i01) from (3.14) is canonically isomorphic, via a globular 2-cell

(N1, i10, i11)� (N0, i00, i01) ∼=
(
J−N0

(
i01(W )

) �W J+N1

(
i10(W )

)
, i− i00, i+ i11

)
,

(3.23a)

to the bordism that is defined by the chain of zig-zags

M0 Ṽ0
⊆ i−i00

J−N0

(
i01(W )

) �W J+N1

(
i10(W )

)
Ṽ2

i+i11 ⊆
M2 (3.23b)

of Cauchy morphisms in Locm for arbitrarily small causally convex open subsets
W ⊆ V01 ∩V10, Ṽ0 ⊆ i−100

(
J−N0

(
i01(W )

))
and Ṽ2 ⊆ i−111

(
J+N1

(
i10(W )

)
that contain the

marked Cauchy surfaces, i.e., �1 ⊂ W , �0 ⊂ Ṽ0 and �2 ⊂ Ṽ2.
With these preparations we can now define the coherence isomorphisms (a, l, r).

Using (3.21) and (3.23), the components of the associator a are given by the canonical
globular 2-cells

(
(N2, i20, i21)� (N1, i10, i11)

)
� (N0, i00, i01)

∼=
(
J−N0

(
i01(W1)

) �W1

(
J+N1

(
i10(W1)

) ∩ J−N1

(
i11(W2)

)) �W2 J+N2

(
i20(W2)

)
, i− i00, i+ i21

)

∼= (N2, i20, i21)�
(
(N1, i10, i11)� (N0, i00, i01)

)
, (3.24)

where the causally convex open neighborhoods W1 ⊆ V01 ∩ V10 of �1 ⊂ M1 and
W2 ⊆ V11 ∩ V20 of �2 ⊂ M2 are chosen sufficiently small such that i11(W2) ⊆
J+N1

(
i10(W1)

)
and i10(W1) ⊆ J−N1

(
i11(W2)

)
.

We now consider the left unitor l. Let (N , i0, i1) : (M0, �0) � (M1, �1) be a
horizontal morphism in LBordm . By (3.13), the composition (M1, id, id)� (N , i0, i1)
with the identity can be depicted as the horizontal chain of zig-zags in the diagram

J−N
(
i1(V1)

)
i−

V1
i1 ⊆

J+M1
(V1)

i+

M0 V ′0
⊆

i0

i−i0
J−N

(
i1(V1)

) �V1 J+M1
(V1) J+M1

(V1)
⊆

=

i+
M1

,

(3.25a)

where we have abbreviated

V ′0 := i−10

(
J−N

(
i1(V1)

)) ⊆ V0 . (3.25b)
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We define a 2-cell (M1, id, id)� (N , i0, i1) ⇒ (N , i0, i1) in LBordm by the vertical
data in the diagram

J−N (i1(V1))

i−

V1
i1 ⊆

J+M1
(V1)

i+

M0 V ′0
⊆

i0

i−i0
J−N

(
i1(V1)

) �V1 J+M1
(V1) J+M1

(V1)
⊆

=

i+
M1

V ′0

=

⊆

i−i0
i−

(
J−N

(
i1(V1)

))
⊆

j−

V1

⊆

=

i−i1

M0 V0⊆ i0
N V1 ⊆i1

M1

,

(3.26)

where j− is the inverse of themap i− after corestricting the codomain of i− to its image
(recall that i− is an isomorphism onto its image). Note that this 2-cell is globular. The
components of the left unitor l are given by the globular 2-cells

(M1, id, id)� (N , i0, i1) ∼= (N , i0, i1) (3.27)

which are defined by the diagram (3.26). The components of the right unitor r are
constructed similarly and they are given by globular 2-cells

(N , i0, i1)� (M0, id, id) =
(
J−M0

(V0) �V0 J+N
(
i0(V0)

)
, i−, i+ i1

) ∼= (N , i0, i1) .

(3.28)

Proposition 3.3 Theglobally hyperbolicLorentzianbordismpseudo-categoryLBordm
defined above is fibrant in the sense of Definition 2.13, i.e., LBordm ∈ PsCatfib. A
companion for the vertical morphism [W , g] : (M, �) → (M ′, �′) is given by the
horizontal morphism (M ′, g, id) : (M, �) � (M ′, �′) defined by

M W
⊆ g

M ′ M ′id = M ′ , (3.29)

together with the 2-cells

(M ′, �′) /
(M ′,id,id)

(M ′, �′)

[M ′,id] �⇒

(M, �)

[W ,g]

/

(M ′,g,id)
(M ′, �′)

and

(M, �) /
(M ′,g,id)

(M ′, �′)

[W ,g] �⇒

(M, �) /

(M,id,id)
(M, �)

[W ,g] .

(3.30)
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Proof Using the definition of the source and target functors in (3.10) and (3.11), one
checks that the 2-cells have the stated source and target, as required for a companion. It
thus remains to prove that the two composition identities (2.19) hold true. The vertical
composition identity (2.19a) follows directly from computing the vertical composition
[M ′, id] [W , g] = [W , g] : (M, id, id) ⇒ (M ′, id, id) and recalling the definition of
the unit 2-cell u([W , g]) = [W , g] from (3.20).

Let us consider now the horizontal composition identity (2.19b). Using the explicit
formulas for horizontal compositions of bordisms (3.14) and for 2-cells (3.19), we
compute the horizontal composition of the two middle squares in (2.19b) and find the
2-cell

[M ′, id] �[W , g] =
[
W �W J+M ′

(
g(W )

)
, g �g id

]
:

(
J−M (W ) �W J+M ′

(
g(W )

)
, i−, i+

)
�⇒

(
M ′ �M ′ M ′, i− g, i+

)
. (3.31)

The horizontal composition identity (2.19b) then follows by composing this vertically
with the relevant components of the left and right unitors from (3.26) and (3.28). Using
the explicit description of the unitors, one checks that the resulting 2-cell is the identity
2-cell. ��

For later use, we make the following observation.

Lemma 3.4 Let [W , g] : (M, �) → (M ′, �′) be any vertical morphism in LBordm.
Then the horizontal morphism (M ′, g, id) : (M, �) � (M ′, �′) given by our choice
of companion in Proposition 3.3 is horizontally weakly invertible by the horizontal
morphism (M ′, id, g) : (M ′, �′) � (M, �) defined by

M ′ M ′= id
M ′ W

g ⊆
M , (3.32)

i.e., there exist globular 2-cells such that

(M ′, id, g)� (M ′, g, id) ∼= (M, id, id),

(M ′, g, id)� (M ′, id, g) ∼= (M ′, id, id). (3.33)

Proof Using (3.14), one computes

(M ′, id, g)� (M ′, g, id) =
(
M ′ �M ′ M ′, i− g, i+ g

) ∼= (M ′, g, g) ∼= (M, id, id) .

(3.34)

In the second step we have identified the identity pushout with M ′ and in the last step
we have used the globular 2-cell [W , g] : (M, id, id) ⇒ (M ′, g, g).

Concerning the other composition, we use (3.14) again and compute

(M ′, g, id)� (M ′, id, g) =
(
J−M ′

(
g(W )

) �W J+M ′
(
g(W )

)
, i−, i+

)
∼= (M ′, id, id). (3.35)
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In the last step we have identified the pushout with M ′ and used the canonical globular
2-cells from (3.21) to resize the collar regions. ��

4 Comparison theorems between AQFT and FFT

In this section we prove comparison theorems between algebraic quantum field theo-
ries (AQFTs) and functorial field theories (FFTs) on the globally hyperbolic Lorentzian
bordism pseudo-category from Sect. 3. As target category for our quantum field theo-
ries, we take one of the following categories of ∗-algebras in an involutive symmetric
monoidal category (see, e.g., [10, 32]).

Definition 4.1 We fix an involutive symmetric monoidal category T and a (not nec-
essarily full) subcategory Alg ⊆ ∗AlguAs(T) of the category of associative and unital
∗-algebras in T.
Example 4.2 This definition covers the standard choices of target categories in AQFT.
The category ∗AlgC = ∗AlguAs(VecC) of associative and unital ∗-algebras over C is
obtained by choosing the involutive symmetric monoidal category T = VecC of com-
plex vector spaces with involution functorVecC → VecC , V �→ V given by complex
conjugation of vector spaces and linear maps. Choosing instead the involutive sym-
metric monoidal category T = BanC of Banach spaces over C, again with involution
given by complex conjugation, we obtain the category C∗AlgC ⊆ ∗AlguAs(BanC)

of C∗-algebras as a full subcategory of the category of Banach ∗-algebras. Further-
more, von Neumann algebras and normal unital ∗-homomorphisms form a (non-full)
subcategory W ∗AlgC ⊆ C∗AlgC ⊆ ∗AlguAs(BanC). �

Definition 4.3 Anm-dimensional algebraic quantum field theory (AQFT) is a functor
A : Locm → Alg from the categoryLocm of globally hyperbolicLorentzianmanifolds
(see Definition 2.4) to the category Alg in Definition 4.1 which satisfies the following
properties:

(1) Einstein causality: For all causally disjoint pairs f1 : M1 → M ← M2 : f2 of
Locm-morphisms (see Definition 2.6), the diagram

A(M1)⊗ A(M2)

A( f1)⊗A( f2)

A( f1)⊗A( f2)
A(M)⊗ A(M)

μM

A(M)⊗ A(M)
μ
op
M

A(M)

(4.1)

commutes, whereμ
(op)
M denotes the (opposite)multiplication on the algebraA(M).

(2) Time-slice axiom: For all Cauchy morphisms f : M → M ′ in Locm (see Defini-
tion 2.6), the Alg-morphism

A( f ) : A(M)
∼=−→ A(M ′) (4.2)

123



Lorentzian bordisms in algebraic quantum field theory Page 25 of 43    16 

is an isomorphism.

We denote by

AQFTm ⊆ Fun(Locm,Alg) (4.3)

the subgroupoid of all m-dimensional AQFTs and natural isomorphisms.

Definition 4.4 An m-dimensional globally hyperbolic Lorentzian functorial field the-
ory (FFT) is a pseudo-functor F : LBordm → ι(Alg) from the globally hyperbolic
Lorentzian bordism pseudo-category LBordm (see Sect. 3) to the pseudo-category
ι(Alg) that is obtained by applying Construction 2.17 to the category Alg in Defini-
tion 4.1. We denote by

FFTm := PsFun
(LBordm, ι(Alg)

)
(4.4)

the groupoid of all m-dimensional FFTs and (vertical) transformations (see Defini-
tion 2.10).

Remark 4.5 The choice of target pseudo-category ι(Alg) for FFTs in Definition 4.4
may seem somewhat unusual from the perspective of functorial or topological field
theories. Here one often interprets the values of an m-dimensional field theory on
(m−1)-dimensional manifolds as state spaces, with the m-dimensional bordisms act-
ing on these state spaces (see, e.g., [1, 45, 48]). In contrast, our variant of FFTs
describes the assignment of algebras of quantum observables to Cauchy surfaces with
collar regions (M, �) ∈ (LBordm)0, together with an action of globally hyperbolic
Lorentzian bordisms on these algebras. We explain in Sect. 5 how simple examples of
quantum field theories, in particular the free scalar quantum field, admit a description
in terms of an FFT valued in ι(Alg).

Our approach is, however, compatible with the observation that, in a topological
quantum field theory (TQFT) with state-observable correspondence, the value of the
TQFT on the (m−1)-sphere carries the structure of an algebra, which goes back to the
original article [44, Section 8]. (See also [42] for TQFTs valued in higher algebras.)
Indeed, the pair-of-pants bordism provides a canonical multiplication, while the cap
bordism from the empty set to the (m−1)-sphere specifies a unit element. For TQFTs
this is currently being developed further to operators supported on (m−1)-manifolds
of different shapes (see, e.g., [24]). �

Remark 4.6 Functorial field theories are usually defined as symmetric monoidal
functors between symmetric monoidal categories where, on the bordism side, the
symmetric monoidal structure consists of disjoint union of manifolds. It is important
to note that, in the present setting, there are no topology-changing bordisms since
we require the underlying Lorentzian manifolds to be globally hyperbolic, i.e., admit
Cauchy surfaces (see also Remark 3.2). As a consequence, each bordism inLBordm is
topologically a cylinder, and so at the level of FFTs disjoint spacetimes do not interact.
This means that there is no need for us to deal with the symmetric monoidal structure
on bordisms that is given by disjoint union. �
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Using Theorem 2.15, we obtain the following simplified description of FFTs which
considerably streamlines the proofs of our comparison theorems below.

Corollary 4.7 There exists an equivalence (in fact, an isomorphism)

FFTm ∼= Fun
(
τ(LBordm),Alg

)
(4.5)

between the groupoid of m-dimensional FFTs from Definition 4.4 and the groupoid of
ordinary functors from the category τ(LBordm) (see Construction 2.18) to Alg and
their natural isomorphisms.

In what follows we will always suppress this isomorphism and simply identify
FFTm = Fun

(
τ(LBordm),Alg

)
.

Remark 4.8 One should not misinterpret Corollary 4.7 as a statement that Stolz-
Teichner-type geometric bordism pseudo-categories as in [47] and Sect. 3 are not
needed to formalize FFTs. The truncated pseudo-category τ(LBordm) still carries the
relevant information about collar regions around Cauchy surfaces since it has the same
objects (M, �) ∈ τ(LBordm) as the pseudo-category LBordm . Such information is
important for gluing bordisms endowed with geometric data, including the bordisms
with Lorentzianmetrics we consider in this paper. It is typically not considered inmore
naive descriptions of bordism categories which work with manifolds with boundaries.
The result of Corollary 4.7 that FFTs admit an equivalent description in terms of
ordinary functors is a non-trivial consequence of the adjunction from Appendix A. �

Our next goal is to construct a functor

F(−) : AQFTm −→ FFTm (4.6)

that assigns to each AQFT an underlying FFT.

Construction 4.9 We first define the functor (4.6) on objects. Given anyA ∈ AQFTm ,
we define FA ∈ FFTm in terms of the following functor FA : τ(LBordm) → Alg:
To an object (M, �) ∈ τ(LBordm), this functor assigns the algebra

FA(M, �) := A(M) ∈ Alg . (4.7)

To a morphism
[
(N , i0, i1) : (M0, �0) � (M1, �1)

]
in τ(LBordm), i.e., an equiva-

lence class under globular 2-cells of a globally hyperbolic Lorentzian bordism (3.6)
represented by the Cauchy morphisms

M0 V0
⊆ i0

N V1
i1 ⊆

M1 , (4.8)

this functor assigns the Alg-morphism

FA

([N , i0, i1]
) : FA(M0, �0) = A(M0) −→ A(M1) = FA(M1, �1) (4.9a)
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defined by the commutative diagram

A(M0)
FA([N ,i0,i1])

A(M1)

A(V0)

∼=

A(i0)

∼=
A(N ) A(V1)

A(i1)

∼=
∼= . (4.9b)

Note that, as a consequence of the time-slice axiom from Definition 4.3, this diagram
consists of Alg-isomorphisms. The Alg-morphism FA

([N , i0, i1]
)
does not depend

on the choice of representative of the equivalence class
[
(N , i0, i1) : (M0, �0) �

(M1, �1)
]
. Indeed, given any other representative, we obtain from the definition of

2-cells (3.8) in LBordm a commutative diagram

M0 V ′0
⊆ i ′0

N ′ V ′1
i ′1 ⊆

M1

W0

⊆

⊆
i0

Z

⊆

f

W1

⊆

i1

⊆

M0 V0⊆ i0
N V1i1 ⊆ M1

(4.10)

of Cauchy morphisms in Locm , where the causally convex opens W0 and W1 with
the desired inclusion properties exist as a consequence of globularity of the 2-cell
and the definition of source (3.10) and target (3.11) in LBordm . Applying the AQFT
functor A : Locm → Alg to this diagram and using the time-slice axiom implies
independence of (4.9) of the choice of representative. We observe that the assignment
FA : τ(LBordm) → Alg is a functor since it preserves identities (3.20) and composi-
tions (3.14). The latter can be shown by applying the AQFT functorA : Locm → Alg
to the commutative diagram (3.13) of Cauchy morphisms in Locm that defines the
composition of bordisms.

We now define the functor (4.6) on morphisms. Given any morphism ζ : A ⇒ B
in AQFTm , i.e., a natural isomorphism with components ζM : A(M) → B(M) in
Alg, for all M ∈ Locm , we define the components

(Fζ )(M,�) := ζM : FA(M, �) = A(M) −→ B(M) = FB(M, �) (4.11)

in Alg, for all (M, �) ∈ τ(LBordm). These components are natural with respect to
all morphisms

[
(N , i0, i1) : (M0, �0) � (M1, �1)

]
in τ(LBordm) as a consequence

of the commutative diagram
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B(M0)

FB([N ,i0,i1])

B(V0)∼= ∼=
B(i0)

B(N ) B(V1)∼=
B(i1)

∼= B(M1)

A(M0)

FA([N ,i0,i1])

ζM0

A(V0)

ζV0

∼= ∼=
A(i0)

A(N )

ζN

A(V1)

ζV1

∼=
A(i1)

∼=
A(M1)

ζM1 , (4.12)

hence they define a morphism Fζ : FA ⇒ FB in the groupoid FFTm . Functoriality
of (4.6) is obvious. �

Summing up, we obtain our first comparison result:

Theorem 4.10 Construction 4.9 defines a functor F(−) : AQFTm → FFTm that
assigns to each AQFT an underlying FFT. This functor is faithful and its essential
image lies in the full subgroupoid

FFTt.s.
m ⊆ FFTm (4.13)

of FFTs that satisfy the following variant of the time-slice axiom: F ∈ FFTt.s.
m assigns

to each morphism
[
(N , i0, i1) : (M0, �0) � (M1, �1)

]
in τ(LBordm) an Alg-

isomorphism F
([N , i0, i1]

) : F(M0, �0)
∼=−→ F(M1, �1).

Proof Thefirst statement is proven inConstruction4.9.The second statement is evident
from (4.11) and the third one follows from the fact that FA

([N , i0, i1]
)
is defined in

terms of a composition of Alg-isomorphisms (see (4.9)). ��
The functor F(−) : AQFTm → FFTt.s.

m from Theorem 4.10 is clearly forgetful in
dimension m ≥ 2 since the bordism pseudo-category LBordm is constructed only out
of the (non-full) subcategory

Caum ⊆ Locm (4.14)

consisting of all objects M ∈ Locm and all Cauchy morphisms f : M → M ′ in
Locm . (Note that dimension m = 1 is special since Cau1 = Loc1.) This means
that the underlying FFT FA ∈ FFTt.s.

m of A ∈ AQFTm does not capture any of
the spatially local structure of AQFTs arising from non-Cauchy morphisms, such as
Einstein causality from Definition 4.3. This is compatible with the fact that geometric
FFTs in the sense of [47] are not extended and it suggests that one should interpret the
underlying FFT FA as a way to extract and describe only those parts of the AQFT A
that are related to time evolution. In future work, we will try to enhance the algebraic
structure on the FFT side in order to capture also the spatially local structure ofAQFTs.

We would like to mathematically substantiate this interpretation of the underlying
FFT in terms of time evolution. We do this by introducing a concept of spatially

123



Lorentzian bordisms in algebraic quantum field theory Page 29 of 43    16 

global AQFTs, which does not capture spatially local structures, and proving that the
groupoid of such objects is equivalent to the groupoid FFTt.s.

m of FFTs satisfying the
time-slice axiom from (4.13). More precisely, we define the groupoid

AQFTs.g.
m ⊆ Fun

(
Caum,Alg

)
(4.15)

of spatially global AQFTs by replacing in Definition 4.3 the category Locm by the
subcategory Caum ⊆ Locm of Cauchy morphisms. Note that the Einstein causality
axiom becomes void in this case since there are no causally disjoint pairs of Cauchy
morphisms; hence, an object A ∈ AQFTs.g.

m is simply a functor A : Caum → Alg
that satisfies the time-slice axiom from Definition 4.3 (2), and morphisms are natural
isomorphisms between such functors. The inclusion Caum ⊆ Locm of categories
defines a (forgetful) pullback functor res : AQFTm → AQFTs.g.

m through which the
functor F(−) from Construction 4.9 factorizes, i.e.,

AQFTm

res

F
(−)

FFTt.s.
m

AQFTs.g.
m

F
(−)

. (4.16)

The following comparison result shows that spatially global AQFTs are equivalent to
globally hyperbolic Lorentzian FFTs satisfying the time-slice axiom.

Theorem 4.11 The dashed functor in (4.16) defines an equivalence between the
groupoid AQFTs.g.

m of spatially global AQFTs (4.15) and the groupoid FFTt.s.
m of

FFTs which satisfy the time-slice axiom from (4.13).

Proof We have already observed faithfulness of the functor F(−) : AQFTs.g.
m →

FFTt.s.
m in Theorem 4.10, so it remains to prove fullness and essential surjectivity.

Fullness:Suppose thatwe are given two spatially globalAQFTsA,B ∈ AQFTs.g.
m and

a natural isomorphism ζ : FA ⇒ FB between the underlying FFTs, with components
denoted by

ζ(M,�) : FA(M, �) = A(M) −→ B(M) = FB(M, �) , (4.17)

for all (M, �) ∈ τ(LBordm). We now show that these components are independent of
the choice ofCauchy surface� ⊂ M .Given twoCauchy surfaces� ⊂ M and�′ ⊂ M
with �′ ⊂ J+M (�) in the causal future of �, there exists a bordism

[
(M, id, id) :

(M, �) � (M, �′)
]
in τ(LBordm) represented as in (3.6) by

M M
= id

M M
id =

M . (4.18)

Recalling (4.9), naturality of ζ with respect to such bordisms implies that ζ(M,�) =
ζ(M,�′) for all Cauchy surfaces satisfying �′ ⊆ J+M (�). The independence of ζ(M,�)
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from the choice of Cauchy surface � ⊂ M then follows from the fact that, for every
pair of Cauchy surfaces �,�′ ⊂ M , there exists another Cauchy surface �′′ ⊂ M in
the common causal future, i.e., �′′ ⊂ J+M (�)∩ J+M (�′). See, e.g., [8, Lemma 3.2] for
an explicit construction of the Cauchy surface �′′ ⊂ M .

It remains to verify that the components ζM := ζ(M,�) : A(M) → B(M) define
a natural isomorphism of functors from Caum to Alg, i.e., an AQFTs.g.

m -morphism.
Given any morphism f : M → M ′ in Caum and any choice of Cauchy surface
� ⊂ M , there exists a bordism

[
(M ′, f , id) : (M, �) � (M ′, f (�))

]
in τ(LBordm)

that is represented by

M M
= f

M ′ M ′id =
M ′ . (4.19)

By (4.9), we have that

FA

[
(M ′, f , id) : (M, �) � (M ′, f (�))

] = A( f ) (4.20)

and analogously for FB. Naturality of ζ : FA ⇒ FB with respect to such bordisms
then implies the required naturality property ζM ′ A( f ) = B( f ) ζM . Observing that the
functor F(−) maps this new natural isomorphism back to the original morphism (4.17)
in FFTt.s.

m completes the proof of fullness.
Essential surjectivity:Given any F ∈ FFTt.s.

m , we have to constructA ∈ AQFTs.g.
m and

a natural isomorphism F ∼= FA of FFTs. To define A(M) ∈ Alg for M ∈ Caum , we
build out of the family F(M, �) ∈ Alg of algebras, for all Cauchy surfaces � ⊂ M , a
single algebra which is independent of �. To that end, we consider the category �M

given by the poset of all Cauchy surfaces � ⊂ M in M with partial order defined by

� ≤ �′ :⇐⇒ �′ ⊂ J+M (�) . (4.21)

By the same argument as above (see also [8, Lemma 3.2]), this poset is directed.
Using (4.18), the FFT F restricts to a functor FM : �M → Alg which, due to the
time-slice axiom, sends all morphisms to isomorphisms. This is equivalent to a functor
FM : �M [All−1] → Alg on the localization of the category�M at all morphisms. The
fact that the poset�M is directed is equivalent to saying that the category it presents is
filtered. That, in turn, implies that the localized category�M [All−1] has a contractible
nerve [41, Section 1, Corollary 2]. Hence, the colimit

A(M) := colim
(
FM : �M [All−1] → Alg

)
∈ Alg (4.22a)

exists, independently of whether or not the categoryAlg is cocomplete, and the canon-
ical maps

ι� : F(M, �)
∼=−→ A(M) (4.22b)

in the cocone are Alg-isomorphisms, for all Cauchy surfaces � ⊂ M .
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We now define A : Caum → Alg on morphisms. Given any morphism f : M →
M ′ in Caum , we define the Alg-morphism A( f ) : A(M) → A(M ′) by the universal
property of colimits and the diagrams

A(M)
A( f )

A(M ′)

F(M, �)

ι�

F([M ′, f ,id]) F(M ′, f (�))

ι f (�) , (4.23)

for all Cauchy surfaces � ⊂ M , where the bordism (M ′, f , id) : (M, �) �

(M ′, f (�)) was defined in (4.19). Recalling the composition of bordisms (3.14),
one checks that this defines a functor A : Caum → Alg. The key step here is that, for
all Cauchy surfaces � ≤ �′ in �M , we have a commutative square

(M, �)
[M ′, f ,id]

[M,id,id]

(
M ′, f (�)

)
[M ′,id,id]

(M, �′) [M ′, f ,id]
(
M ′, f (�′)

)
(4.24)

in τ(LBordm), which can be shown by using the horizontal composition of bordisms
from (3.14) and the globular 2-cells in (3.21). Since the morphisms ι� , ι f (�) and, due
to the time-slice axiom, also F([M ′, f , id]) are invertible, it follows that A( f ) is even
an isomorphism in Alg. Therefore, we have constructed an object A ∈ AQFTs.g.

m .
It remains to construct a natural isomorphism ζ : F ⇒ FA. To achieve this, we

consider the components

ζ(M,�) := ι� : F(M, �) −→ A(M) = FA(M, �) , (4.25)

defined by the canonical maps into the colimit (4.22). As we observed above, these are
Alg-isomorphisms. We have to verify that they assemble into a natural transformation
F⇒ FA, i.e., that they fit into naturality squares

A(M0)
FA([N ,i0,i1])

A(M1)

F(M0, �0)

ζ(M0,�0)

F([N ,i0,i1]) F(M1, �1)

ζ(M1,�1) , (4.26)

for all morphisms
[
(N , i0, i1) : (M0, �0) � (M1, �1)

]
in τ(LBordm). Given such a

morphism, whose full data is spelled out in (3.6), we expand the associated naturality
square as
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A(M0)

FA([N ,i0,i1])

A(V0)∼= A(i0)
A(N ) A(V1)

A(i1) ∼= A(M1)

F(M0, �0)

F([N ,i0,i1])

ι�0

F(V0, �0)
F([M0,⊆,id]) F([N ,i0,id])

ι�0

F(N , i0(�0))

ιi0(�0)

F([N ,id,id])
F(N , i1(�1))

ιi1(�1)

F(V1, �1)
F([N ,i1,id]) F([M1,⊆,id])

ι�1

F(M1, �1)

ι�1

(4.27)

At the top we have used the construction in (4.9) of the morphism FA([N , i0, i1]). We
further observe that the triangle and the four squares commute as a consequence of
ι� being the canonical morphisms establishing the colimiting cocone (4.22) and the
commutative square (4.23).

To show that the lower part of the diagram commutes too, we first observe that the
left-facing bordisms in the bottom row are companions in the sense of Proposition 3.3.
By Lemma 3.4, they are horizontally weakly invertible as bordisms and thus strictly
invertible as equivalence class of bordisms. Explicitly, we find that the inverses are
given by

[M0,⊆, id]−1 = [M0, id,⊆] and [N , i1, id]−1 = [N , id, i1] (4.28)

in τ(LBordm). Using (3.14), as well as the canonical 2-cells in (3.21), we can compute
the compositions of the right-facing bordisms in the bottom row of (4.27) and find

[M1,⊆, id] ◦ [N , id, i1] ◦ [N , id, id] ◦ [N , i0, id] ◦ [M0, id,⊆]
= [N , id, i1] ◦ [N , id, id] ◦ [N , i0, id] = [N , i0, i1] . (4.29)

The commutativity of the bottom part of (4.27) then follows from the functoriality of
F. ��
Corollary 4.12 In m = 1 dimensions, the functor F(−) : AQFT1

�−→ FFTt.s.
1 defines

an equivalence between the groupoid of AQFTs and the groupoid of FFTs satisfying
the time-slice axiom.

Proof This follows directly from Theorem 4.11 and the fact thatCau1 = Loc1; hence,
one has AQFTs.g.

1 = AQFT1. ��

5 Comparing free scalar quantum field constructions

In this section we construct the free scalar quantum field, also known as the Klein-
Gordon quantum field, both as an AQFT in the sense of Definition 4.3 and as an
FFT in the sense of Definition 4.4. As target category we take the category ∗AlgC =∗AlguAs(VecC) of associative and unital ∗-algebras over C. We then compare the two
constructions using our Comparison Theorem 4.10 and find that they agree. This will
illustrate, through a simple example, our interpretation in Sect. 4 that the underlying
FFT of an AQFT captures a notion of time evolution.
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Preliminaries: We start by recalling some standard facts about the free scalar field on
globally hyperbolic Lorentzian manifolds. Details and proofs can be found in, e.g., [3,
5, 6] or in the textbook [4]. The classical free scalar field on M ∈ Locm is modeled
by real-valued functions 	 ∈ C∞(M) that satisfy the Klein-Gordon equation

PM	 := (
�M + m2

0

)
	 = 0 , (5.1)

where �M denotes the d’Alembertian and m2
0 ≥ 0 is a fixed mass parameter. Since

PM = �M+m2
0 is a normally hyperbolic differential operator on a globally hyperbolic

Lorentzian manifold M , it admits unique retarded and advanced Green’s operators. A
retarded/advanced Green’s operator is by definition a linear map G±M : C∞c (M) →
C∞(M) from compactly supported functions that satisfies the following properties:
For all ϕ ∈ C∞c (M),

(1) PM G±M (ϕ) = ϕ,
(2) G±M PM (ϕ) = ϕ, and
(3) supp

(
G±M (ϕ)

) ⊆ J±M
(
supp(ϕ)

)
.

The difference GM := G+M − G−M : C∞c (M) → C∞(M) between the retarded and
the advanced Green’s operator is called the causal propagator.

Associated with the classical free scalar field on M is a Poisson vector space con-
sisting of the quotient vector space

L(M) := C∞c (M)

PMC∞c (M)
(5.2a)

and the linear Poisson structure

τM : L(M)⊗ L(M) −→ R,

[ϕ1] ⊗ [ϕ2] �−→
∫
M

ϕ1 GM (ϕ2) volM , (5.2b)

where volM denotes the canonical volume form that is determined by the metric and
orientation of M ∈ Locm . The interpretation of L(M) is that of linear functions (i.e.,
observables) on the solution space Sol(M) := {	 ∈ C∞(M) : PM	 = 0}, which
are evaluated by using the non-degenerate integration pairing L(M) ⊗ Sol(M) →
R , [ϕ] ⊗	 �→ ∫

M ϕ 	 volM .
There exists an alternative description of the Poisson vector space (5.2) in terms of

the vector space

Solsc(M) :=
{
	 ∈ C∞sc (M) : PM	 = 0

}
(5.3a)

of solutions with space-like compact support and the linear Poisson structure

σM : Solsc(M)⊗Solsc(M) −→ R,

	1 ⊗	2 �−→
∫

�

(
	1 ∇n	2 −	2 ∇n	1

)
vol�, (5.3b)
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where � ⊂ M is an arbitrary choice of Cauchy surface, vol� denotes the canonical
volume form on � that is determined by the metric, orientation and time-orientation
of M ∈ Locm , and n ∈ �∞(T M |�) is the future-pointing unit normal vector field
of �. It is important to stress that the Poisson structure σM in (5.3) does not depend
on the choice of Cauchy surface � ⊂ M . The causal propagator defines a canonical
isomorphism

GM : L(M)
∼=−→ Solsc(M) (5.4)

of Poisson vector spaces, i.e., σM
(
GM [ϕ1],GM [ϕ2]

) = τM
([ϕ1], [ϕ2]

)
, for all

[ϕ1], [ϕ2] ∈ L(M).
In addition to the existence of retarded/advanced Green’s operators, the normally

hyperbolic differential operator PM also has a well-posed initial value problem on
every globally hyperbolic Lorentzian manifold M . The compactly supported initial
data on a Cauchy surface � ⊂ M for such second-order partial differential equation
are described by the vector space

Datac(�) := C∞c (�)⊕2, (5.5a)

which carries a canonical linear Poisson structure

τ� : Datac(�)⊗Datac(�) −→ R,

(φ1, π1)⊗ (φ2, π2) �−→
∫

�

(
φ1 π2 − φ2 π1

)
vol�. (5.5b)

Well-posedness of the initial value problem then implies that the linear map

res(M,�) : Solsc(M)
∼=−→ Datac(�) , 	 �−→ (

	|�,∇n	|�
)

(5.6)

that assigns to space-like compact solutions their initial data is an isomorphism. Due to
the independence of σM on the choice of Cauchy surface, this isomorphism preserves
the Poisson structures, i.e., τ�

(
res(M,�) 	1, res(M,�) 	2

) = σM
(
	1,	2

)
, for all

	1,	2 ∈ Solsc(M).
Summing up, we have presented three isomorphic descriptions

L(M)
GM

∼= Solsc(M)
res(M,�)

∼= Datac(�) (5.7)

of the Poisson vector space associatedwith the free scalar field on a globally hyperbolic
Lorentzian manifold M ∈ Locm with a choice of Cauchy surface � ⊂ M . Note that
the first two descriptions do not depend on the Cauchy surface� ⊂ M , while the third
description does not depend on the ambient space M of �.
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Finally, we recall that the canonical commutation relation (CCR) quantization of a
Poisson vector space V = (V , τ ) is the associative and unital ∗-algebra

CCR(V ) := T⊗
C
V

/
Iτ ∈ Alg (5.8)

that is defined as the quotient of the free ∗-algebra T⊗
C
V := ⊕

n≥0
(
V⊗n ⊗ C

)
by

the two-sided ∗-ideal Iτ generated by the commutation relations v1 ⊗ v2 − v2 ⊗
v1 − i τ(v1, v2)1, for all v1, v2 ∈ V . This quantization construction is functorial
CCR : PoVec→ Alg on the category of Poisson vector spaces and Poisson structure
preserving linear maps.

The AQFT construction: The standard construction of the free scalar quantum field as
an AQFT uses the first of the three isomorphic descriptions from (5.7). One interprets
L(M) as the linear classical observables of the theory and constructs an algebra of
quantum observables on M ∈ Locm in terms of CCR quantization

AKG(M) := CCR
(
L(M)

) ∈ Alg. (5.9)

Given any morphism f : M → M ′ in Locm , push-forward of compactly supported
functions defines a morphism L( f ) : L(M) → L(M ′) of Poisson vector spaces.
Applying the CCR-functor then yields an Alg-morphism

AKG( f ) : AKG(M) −→ AKG(M ′) . (5.10)

One easily checks that the assignment AKG : Locm → Alg given by (5.9) and (5.10)
defines a functor that satisfies the axioms of an AQFT from Definition 4.3. This
completes the construction of the free scalar quantum field

AKG ∈ AQFTm (5.11)

as an AQFT.

The FFT construction: To construct the free scalar quantum field as an FFT in the
sense of Definition 4.4, we use Corollary 4.7 and the third of the three isomorphic
descriptions from (5.7). To an object (M, �) ∈ τ(LBordm), we assign the algebra

FKG(M, �) := CCR
(
Datac(�)

) ∈ Alg (5.12)

that is obtained by CCR quantization of the Poisson vector space of compactly sup-
ported initial data on themarkedCauchy surface� ⊂ M . Consider now anymorphism[
(N , i0, i1) : (M0, �0) � (M1, �1)

]
in τ(LBordm), i.e., an equivalence class under

globular 2-cells of a globally hyperbolic Lorentzian bordism (3.6) represented by the
Cauchy morphisms

M0 V0
⊆ i0

N V1
i1 ⊆

M1 . (5.13)
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Observing that the Poisson vector spaces in (5.5) only depend on the Cauchy surface
and not on its collar region, we obtain two identities

FKG(M0, �0) = FKG(V0, �0), FKG(M1, �1) = FKG(V1, �1) (5.14a)

and two isomorphisms

CCR(Datac(i0|)) : FKG(V0, �0)
∼=−→ FKG(N , i0(�0)), (5.14b)

CCR(Datac(i1|)) : FKG(V1, �1)
∼=−→ FKG(N , i1(�1)). (5.14c)

The latter are induced by push-forward of compactly supported functions along the

orientation-preserving diffeomorphisms i0/1| : �0/1
∼=−→ ι0/1(�0/1) that are obtained

by restricting and co-restricting i0/1 : V0/1 → N to the Cauchy surfaces. We then
define the Alg-morphism

FKG
([N , i0, i1]

) : FKG(M0, �0) −→ FKG(M1, �1) (5.15a)

by the commutative diagram

FKG(M0, �0)
FKG([N ,i0,i1])

FKG(M0, �0)

FKG(V0, �0)

CCR(Datac(i0|)) ∼=

FKG(V1, �1)

CCR(Datac(i1|))∼=

FKG(N , i0(�0)) CCR(Solsc(N ))
∼=

CCR(res(N ,ι0(�0)))

∼=
CCR(res(N ,ι1(�1)))

FKG(N , i1(�1))

(5.15b)

ofAlg-isomorphisms. Note that the bottom horizontal zig-zag uses the Poisson vector
space isomorphisms (5.6) that are obtained from well-posedness of the initial value
problem. The interpretation of the Alg-isomorphism FKG

([N , i0, i1]
)
is as follows:

As input, it takes observables on the Cauchy surface �0 ⊂ M0 and identifies them
via i0| with observables on the diffeomorphic Cauchy surface i0(�0) ⊂ N . These
are then evolved in time through the bordism N via the well-posed initial value prob-
lem to a Cauchy surface i1(�1) ⊂ N in the causal future, and then identified via
i1| with observables on the Cauchy surface �1 ⊂ M1. Hence, the Alg-morphism
FKG

([N , i0, i1]
)
encodes a notion of time evolution along the bordism.

One easily checks that (5.15) does not depend on the choice of representative of
the equivalence class

[
(N , i0, i1) : (M0, �0) � (M1, �1)

]
defining a morphism in

τ(LBordm) and that the assignment FKG : τ(LBordm) → Alg given by (5.12) and
(5.15) is a functor. This defines the free scalar quantum field

FKG ∈ FFTt.s.
m (5.16)

as an FFT.
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Comparison: Applying Theorem 4.10 to the AQFT in (5.11) that describes the free
scalar quantum field, we obtain FAKG ∈ FFTt.s.

m that assigns to an object (M, �) ∈
τ(LBordm) the algebra

FAKG(M, �) = AKG(M) = CCR
(
L(M)

) ∈ Alg . (5.17)

Using the composite of the Poisson vector space isomorphism (5.7), we obtain an
Alg-isomorphism

CCR
(
res(M,�) GM

) : FAKG(M, �)
∼=−→ FKG(M, �) , (5.18)

for all objects (M, �) ∈ τ(LBordm), to the values of the alternative FFT (5.16) for
the free scalar quantum field.

Proposition 5.1 The components (5.18)define anFFTm-isomorphismFAKG

∼=−→ FKG
between the FFT obtained by applying Theorem 4.10 to the AQFT in (5.11) and the
FFT in (5.16). Hence, the AQFT and FFT constructions of the free scalar quantum
field are compatible with each other.

Proof We have to show that the components (5.18) are natural with respect to all
morphisms

[
(N , i0, i1) : (M0, �0) � (M1, �1)

]
in τ(LBordm). Recalling (4.9) and

(5.15), this follows directly by applying the CCR-functor CCR : PoVec→ Alg to the
commutative diagram

Datac(�0)
Datac(i0|)

Datac(i0(�0)) Datac(i1(�1)) Datac(�1)
Datac(i1|)

Solsc(M0)

res(M0,�0)

Solsc(V0)∼=

res(V0,�0)

Solsc(i0)
Solsc(N )

res(N ,i0(�0)) res(N ,i1(�1))

Solsc(V1)
Solsc(i1) ∼=

res(V1,�1)

Solsc(M1)

res(M1,�1)

L(M0)

GM0

L(V0)∼=

GV0

L(i0)
L(N )

GN

L(V1)
L(i1)

GV1

∼= L(M1)

GM1

(5.19)

of isomorphisms in the category of Poisson vector spaces. The functorial structure on
Solsc : Locm → PoVec is given by extending space-like compact solutions along
Locm-morphisms via the well-posed initial value problem. ��

A A 2-adjunction between pseudo-categories and categories

The goal of this appendix is to upgrade Constructions 2.17 and 2.18 to 2-functors and
to prove Theorem 2.15.

The 2-functor �: We define the 2-functor ι : Cat(2,1) → PsCatfib on objects as
explained in Construction 2.17. Given any functor F : C→ D between two ordinary
categories, we define the pseudo-functor ι(F) : ι(C) → ι(D) by the following data as
in Definition 2.9:
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(i) The functor ι(F)0 := F : ι(C)0 = core(C) → core(D) = ι(D)0 is given by
restricting the original functor F to the cores. The functor ι(F)1 : ι(C)1 → ι(D)1
is defined by applying the original functor F to commutative squares

c′0
f ′

c′1

c0

∼=g0

f
c1

∼= g1
ι(F)1�−→

F(c′0)
F( f ′)

F(c′1)

F(c0)

∼=F(g0)

F( f )
F(c1)

∼= F(g1) . (A.1)

(ii) The natural isomorphisms ι(F)
� and ι(F)u are trivial, i.e., the identity natural

transformations.

Given any natural isomorphism ζ : F ⇒ G between two ordinary functors F,G :
C → D, we define the transformation ι(ζ ) : ι(F) ⇒ ι(G) between the two pseudo-
functors ι(F), ι(G) : ι(C) → ι(D) by the following data as in Definition 2.10: The
natural transformation ι(ζ )0 : ι(F)0 ⇒ ι(G)0 is defined by the components

ι(ζ )0 :=
⎧⎨
⎩

G(c)

F(c)

∼=ζc : c ∈ C

⎫⎬
⎭ , (A.2)

which is well-defined because ζ is by hypothesis a natural isomorphism. The natural
transformation ι(ζ )1 : ι(F)1 ⇒ ι(G)1 is defined by the components

ι(ζ )1 :=

⎧⎪⎪⎨
⎪⎪⎩

G(c0)
G( f )

G(c1)

F(c0)

∼=ζc0

F( f )
F(c1)

∼= ζc1 : (
f : c0 → c1

) ∈ C

⎫⎪⎪⎬
⎪⎪⎭

. (A.3)

The conditions (1), (2) and (3) from Definition 2.10 clearly hold true.

The 2-functor �: We define the 2-functor τ : PsCatfib → Cat(2,1) on objects as
explained in Construction 2.18. Given any pseudo-functor F : C→ D, we define the
ordinary functor

τ(F) : τ(C) −→ τ(D),

c �−→ F0(c),

[ f : c0 � c1] �−→
[
F1( f ) : F0(c0) � F0(c1)

]
. (A.4)

This is well-defined on equivalence classes because F1 maps globular 2-cells in C to
globular 2-cells inD. The functor τ(F) preserves compositions and identities because
the coherence natural isomorphisms F� and Fu have globular components; hence,
they are trivial at the level of equivalence classes.
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Given any transformation ζ : F ⇒ G between twopseudo-functors F,G : C→ D,
we define the natural isomorphism τ(ζ ) : τ(F) ⇒ τ(G) between the two ordinary
functors τ(F), τ (G) : τ(C) → τ(D) by the components

τ(ζ ) :=
{[

ζ̂ 0
c : F0(c) � G0(c)

] : c ∈ C0
}

(A.5)

given by an arbitrary choice of companions for the components ζ 0
c : F0(c) → G0(c) of

ζ 0. By [46, Lemma 3.8], different choices of companions define the same equivalence
class; hence, the components of τ(ζ ) are well-defined. To prove that these components
are natural, i.e., [G1( f )] [ζ̂ 0

c0 ] = [ζ̂ 0
c1] [F1( f )] for all horizontal morphisms f : c0 �

c1 in C, we compose the 2-cell component ζ 1
f of the natural transformation ζ 1 : F1 ⇒

G1 with the 2-cells from the Definition 2.13 for the companions according to

F0(c0) /

ζ̂ 0c0
G0(c0) /

G1( f )
G0(c1) /

u(G0(c1))
G0(c1)

⇒ ζ 1f ⇒ ⇒
F0(c0) /

u(F0(c0))
F0(c0)

ζ 0c0

/

F1( f )
F0(c1)

ζ 0c1

/

ζ̂ 0c1

G0(c1)

. (A.6)

Using the unitors lD and rD, we obtain a globular 2-cell which, when passing to
equivalence classes, exhibits the naturality of τ(ζ ).

The 2-adjunction counit: We define a 2-natural transformation ε : τ ι ⇒ idCat(2,1)
that will serve as the counit for our 2-adjunction (2.20). Given any ordinary category
C ∈ Cat(2,1), one easily checks that τ ι(C) = C since there are no non-trivial globular
2-cells in ι(C). Similarly, one checks that τ ι(F) = F for all functors and τ ι(ζ ) = ζ

for all natural isomorphisms. This implies that

τ ι = idCat(2,1) (A.7)

as 2-functors, and hence we shall take for ε = Id the identity 2-natural transformation.

The 2-adjunction unit: We define a 2-natural transformation η : idPsCatfib ⇒ ι τ

that will serve as the unit for our 2-adjunction (2.20). For any fibrant pseudo-category
C ∈ PsCatfib, we define the pseudo-functor ηC : C → ιτ (C) by specifying the data
from Definition 2.9 as follows:

(i) The assignments

(ηC)0 : C0 −→ ιτ (C)0 = core(τ (C)),
c �−→ c ,

(g : c→ c′) �−→ [ĝ : c � c′] =: ([ĝ] : c→ c′
)

(A.8)
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and

(ηC)1 : C1 −→ ιτ (C)1,
( f : c0 � c1) �−→ [ f : c0 � c1] =:

([ f ] : c0 → c1
)
,

c′0 /
f ′

c′1
α ⇒

c0

g0

/

f
c1

g1 �−→
c′0

[ f ′]
c′1

c0

[ĝ0]

[ f ] c1

[ĝ1] (A.9)

are functors as a consequence of [46, Lemmas 3.12 and 3.13]. Commutativity of
the square in τ(C) follows by composing the 2-cell α with the 2-cells from the
Definition 2.13 for the companions according to

c0 /̂
g0

c′0 /
f ′

c′1 /

u(c′1)
c′1

⇒ α ⇒ ⇒
c0 /

u(c0)
c0

g0

/

f
c1

g1

/

ĝ1
c′1

(A.10)

and then passing to equivalence classes.
(ii) The natural isomorphisms (ηC)� and (ηC)u are trivial.
Using also [46, Lemma 3.16], one checks that the components ηC : C→ ιτ (C) define
a 2-natural transformation η : idPsCatfib ⇒ ι τ .

The triangle identities: Since ε = Id, the triangle identities reduce to showing
that ηι(C) = id, for all ordinary categories C ∈ Cat(2,1), and that τ(ηC) = id, for
all fibrant pseudo-categories C ∈ PsCatfib. These are elementary checks that can be
carried out using the explicit formulas from this appendix. This completes the proof
of Theorem 2.15.
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