
Element Distinctness and Bounded Input Size in
Private Set Intersection and Its Variants

Xavier Carpent1, Seoyeon Hwang2, and Gene Tsudik2

1 University of Nottingham, Nottingham, UK
2 University of California, Irvine, Irvine, USA

Abstract. This paper considers a Private Set Intersection (PSI) proto-
col variant in which a lower bound on one party’s input set size is enforced
while keeping that size secret. This variant is suitable for settings where
one party (server) imposes a minimum size on the other party’s (client’s)
input to obtain the computation result, and the latter wants to keep its
input size private. In this context, two possible types of client misbehav-
ior are: (1) generating and using fake set elements, and/or (2) duplicating
genuine set elements. The former can be addressed via pre-authorizing
all client elements by a trusted party, which translates into the so-called
Authorized PSI (APSI). However, the latter is not easy to tackle.

To this end, we construct a protocol for Proof of Element-Distinctness
(PoED) whereby one party convinces the other that all of its input ele-
ments are distinct, without revealing any information about them. Using
it as a building block, we then construct a PSI variant, called All-Distinct
Private Set Intersection (AD-PSI), that outputs the set intersection only
when the client inputs all distinct elements. We also present some AD-
PSI variants in which using duplicates can cause unexpected information
leakage. Combining the AD-PSI with previous work for upper-bounded
PSI, we construct a Bounded-Size-Hiding-PSI (B-SH-PSI) that outputs
the intersection only if the client’s input size satisfies the server’s require-
ment on both lower and upper bounds while keeping that size private.
Finally, we present a protocol that prevents both types of misbehavior,
called All-Distinct Authorized PSI (AD-APSI).

Keywords: Private Set Intersection, Input Correctness, Element Dis-
tinctness, Bounded Input, Size-Hiding

1 Introduction

Private Set Intersection (PSI) is a cryptographic primitive that allows two par-
ties to compute the intersection of their private input sets, without revealing any
information about the set elements outside the intersection to each other. It has
garnered a lot of attention from various privacy-preserving applications, such
as contact tracing [25,75], online targeted advertising [45], genomic testing [51],
botnet detection [59], TV program history matching [47], private contact dis-
covery [23,38], and private matchmaking [79].

2 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

Due to its functionalities applicable to numerous real-world applications,
there has been a long line of work in PSI and its variants (details in Section 2),
starting from the earliest forms in 1980s [56,73]. While most PSI protocols reveal
set (input) sizes as part of the protocol, [3] constructed the first PSI variant –
Size-Hiding PSI (SH-PSI) – that allows one party (Client) to learn the inter-
section while keeping its input set size private against the other party (Server).
Building upon this size-hiding property, Bradley et. al. [6] and Cerulli et. al. [9]
suggested upper-bounding Client’s input set size to prevent it from learning too
much information about Server’s input set.

This paper focuses on a related question: lower-bounding Client’s input set
size while keeping it private. That is, suppose that Server requires Client to have
at least l elements in its input set to run the PSI protocol with Server’s set. This
requirement might be useful in social network settings, such as Facebook and
LinkedIn, where a popular/prominent user would agree to connect to another
user only if the latter has at least l genuine friends/followers to e.g., block the
stalkers who keep creating bogus accounts and requesting to connect.

If we relax the size-hiding property, lower-bounding Client input size is
straightforward: Server simply checks whether the Client set size (revealed as
part of the PSI interaction) is ≥ l, and if not, aborts the protocol. However, this
only works if Client is honest. A dishonest Client can bypass this requirement
by (1) generating and using fake set elements, and/or (2) duplicating its genuine
set elements. Then, since PSI protocols typically obfuscate (often by blinding)
Client set elements, Server cannot distinguish between the genuine and fake
input elements.

One intuitive way to mitigate this misbehavior is via auditing: a trusted third
party (TTP) regularly verifies the Client input by examining the transcripts of
PSI protocol and looking for duplicate or spurious elements. However, this would
be too late since the dishonest Client already obtained the intersection.

To deal with the type-(1) misbehavior, so-called Authorized PSI (APSI) tech-
niques [19,20,77] have been proposed. This is achieved by having an offline TTP
that pre-authorizes Client input by signing each element. Later, during PSI
interaction, Server (implicitly or explicitly) verifies these signatures without
learning Client input. This way, Client cannot obtain signatures of spurious
elements, and thus, cannot learn the intersection using fake elements. However,
APSI protocols cannot cope with the type-(2) misbehavior, i.e., Client can still
bypass the requirement by using duplicated (TTP-authorized) signed elements.
This prompts a natural question:

Can Client prove that each of its private input elements is not duplicated,
i.e., all input elements are distinct while keeping them private?

To answer this question, we first investigate if current PSI protocols can detect
duplicates (see Section 2.4). A few prior results [5,49] proposed protocols for
Private Multiset3 Intersection (PMI) which allows multiset inputs. However, we
note that their goal is different because it outputs the intersection multiset, not

3 Recall that, a multiset allows duplicate elements, while a set does not.

Element Distinctness and Bounded Input Size in PSI & Its Variants 3

the intersection set, which yields more information than PSI, e.g., the number
of occurrences (i.e., multiplicities) of common elements.

Next, we show how to prove element distinctness in two-party settings,
whereby one party convinces the other that its input elements are all distinct,
without revealing any information about them. We use the term element dis-
tinctness (a.k.a. element uniqueness) problem from the computational complex-
ity theory: given n numbers x1, ..., xn, return “Yes” if all xi’s are distinct, and
“No” otherwise. To the best of our knowledge, there is no prior work in the two-
party settings where one party proves element distinctness of its private input
to the other party. We call this Proofs of Element-Distinctness (PoED).

We propose a concrete PoED construction by generalizing the two billiard
balls problem, which can be an independent interest. Using this PoED con-
struction as a building block, we propose a new PSI variant, called All-Distinct
Private Set Intersection (AD-PSI), and its construction. Informally speaking,
AD-PSI allows Client to learn the intersection only if all of its input elements
are distinct. It additionally guarantees that Client learns no information, not
even Server input size, if it uses any duplicates as input.

Then, we extend AD-PSI to three PSI variants where using duplicates can
be more problematic: (1) AD-PSI-Cardinality (AD-PSI-CA) that outputs the
cardinality of the intersection; (2) Existential AD-PSI (AD-PSI-X) that outputs
whether the intersection is non-empty; and (3) AD-PSI with Data Transfer (AD-
PSI-DT) that transfers associated data along with the intersection; only when
Client inputs all distinct elements. We also show a Bounded-Size-Hiding-PSI
(B-SH-PSI) construction with both upper and lower bound on Client input,
combining our AD-PSI with prior work on upper-bounded size-hiding PSI (U-
SH-PSI) [6,9], which shows the applicability of PoED and AD-PSI.

Note that the protocols above work in the case where Client cannot generate
fake elements, and to expand Client’s capabilities to both type-(1) and type-
(2) misbehavior, including a TTP is unavoidable. To fill this gap, we finally
present an All-Distinct Authorized PSI (AD-APSI) protocol that prevents both
duplicate and spurious elements by ensuring the validity of Client input. We
specify desired security properties for AD-APSI and prove that the proposed
protocol satisfies them.

To summarize, the contributions of this work are:

– A PoED protocol with security analysis;
– Definition of AD-PSI and concrete construction with security proofs;
– Three AD-PSI variants: AD-PSI-CA, AD-PSI-X, AD-PSI-DT;
– Extension of U-SH-PSI to B-SH-PSI with both upper and lower bounds on

Client input set size; and
– Definition of AD-APSI and concrete construction with security proofs;

Organization: After overviewing related work and preliminaries in Section 2,
Section 3 presents a PoED construction and its analysis. Then, Section 4 defines
AD-PSI and proposes a concrete protocol, followed by some variants in Sec-
tion 5. Section 6 constructs a B-SH-PSI protocol atop U-SH-PSI, and Section 7
demonstrates an AD-APSI protocol and its security proofs.

4 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

2 Related Work & Background

2.1 Private Set Intersection (PSI)

Private Set Intersection (PSI) in two-party computation is an interaction be-
tween Client and Server that computes the intersection of their private input
sets. A long line of work on PSI can be classified according to the underlying
cryptographic techniques: (1) Diffie-Hellman key agreement [6,19,44,56,73]; (2)
RSA [18,20,21]; (3) cryptographic accumulators [3,20]; (4) oblivious transfer (or
oblivious pseudorandom function) [10,40,42,46,50,60,63,65,66,67,68,69,70]; (5)
Bloom filter [22,24,64,69]; (6) oblivious polynomial evaluation [16,30,32,41,49];
and (7) generic multiparty computation [24,43,69,13,55]. This paper considers
the one-sided PSI where Client learns the result. Most efficient protocols incur
O(n) computation/communication costs, where n is the input set size.

2.2 PSI Variants

Some PSI variants reveal less information than the actual intersection. For ex-
ample, PSI-CA [18,22,25,72,76] outputs only the cardinality of the intersection,
and PSI-X [8] outputs a one-bit value reflecting whether the intersection is non-
empty. On the other hand, some reveal more information, such as associated data
for each intersecting element [20,78] or additional private computation results
(e.g., sum or average) along with the intersection [45,57,52,55]. The latter is more
interesting because of their realistic applications, such as statistical analysis for,
e.g., advertisement conversion rate [45], of intersecting data.

2.3 PSI with Restrictions

Certain PSI variants place conditions for Client to obtain the result. For exam-
ple, threshold PSI (t-PSI) reveals the intersection only if the cardinality of the
intersection meets a Server-set threshold value [32,33,39,68,78,79], and its vari-
ants, such as t-PSI-CA or t-PSI-DT (also called, threshold secret transfer) [78],
reveals the intersection or additional data only when the threshold restriction is
met or reveals only the cardinality, otherwise. Zhao and Chow [78] extend this to
PSI with a generic access structure so that Client can learn the result only when
the intersection satisfies a certain structure. Also, they build the below/over t-
PSI [79] such that Client can reconstruct the secret key used by Server only
when the threshold condition is met, which inspires some steps in our protocols.

On the other hand, Bradley et. al. [6] first suggest the Bounded-Size-Hiding-
PSI which restricts the Client input, i.e., Client learns the intersection only if
the size of its input does not exceed a Server-set upper bound in the random
oracle model, and later Cerulli et. al. [9] improve it to be secure in the standard
model. Compared to the other PSI literature which naturally reveals the input
set sizes during the computation, [6] and [9] additionally hide that cardinality
information from each other. We note that there has been no PSI variant that
places a lower bound (or both lower and upper bounds) on Client input.

Element Distinctness and Bounded Input Size in PSI & Its Variants 5

2.4 PSI with Multiset Input

We now consider how current PSI protocols handle multisets. Note that ad-
versary models in PSI literature do include malicious input. Loosely speak-
ing, Honest-but-Curious (HbC) (a.k.a. semi-honest) adversaries try to learn as
much as possible while honestly following the protocol, while malicious adver-
saries arbitrarily deviate from the protocol. However, according to Lindell and
Pinkas [54], such adversaries can not be prevented from refusing to participate
in a protocol, supplying arbitrary input, or prematurely aborting a protocol in-
stance. Since PSI security is generally based on sets, multisets can be viewed
as malicious inputs. PSI protocols do not offer security against multiset inputs.
i.e., Security against malicious adversaries does not mean that multiset inputs
are “automatically” handled.

It turns out that some PSI protocols are incompatible with multiset inputs
because they assume set input, i.e., distinctness of all elements. For example, [5]
and [43] obliviously sort elements and compare the adjacent elements to compute
the intersection by checking for equality [43] or erasing each element once [5].
Thus, these protocols output incorrect results with multiset inputs. Furthermore,
PSI protocols based on Cuckoo hashing [30,65,68,69] can encounter unexpected
errors with multiset inputs. Cuckoo hashing maps each input element into a hash
table using some hash functions such that each bin contains at most one element.
Since the hash of the same input value is always the same, duplicates can cause
an infinite loop (to find an available bin) or result in a waste of resources, e.g.,
repeating steps until a certain threshold and increasing the stash size.

There exist some PSI protocols that either enforce input element distinct-
ness or are compatible with multiset inputs. For example, the party creates a
polynomial that has roots on its input values in [16,32,49] to perform oblivious
polynomial evaluation, which by nature filters the duplicates. [64] also guarantees
the set input by a new data structure, called PaXoS, which disables encoding
any non-distinct elements. On the other hand, security of [40,46] is unaffected
by duplicates because it uses an oblivious pseudo-random function to obtain
some (random-looking) numbers for its private elements, and then compare the
received messages.

Our work focuses on PSI protocols that are incompatible with multiset inputs
and suggests adding some simple steps to ensure element distinctness of private
input so that they can work properly.

2.5 Zero-Knowledge Proofs

The notion of Zero-Knowledge Proof (ZKP) is first introduced by [35] which
is the zero-knowledge interactive proof system. Informally, an interactive proof
system for a language L is defined between a prover (Prv) and a verifier (V rf)
with a common input string x and unbiased coins, where Prv tries to convince
V rf that x is indeed in L while keeping their coin tosses private. It must be
complete, i.e., for any x ∈ L, V rf accepts, and sound, i.e., for any x /∈ L,

6 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

V rf rejects no matter what Prv does. The interactive proof is zero-knowledge if
given only x, V rf could simulate the entire protocol transcript by itself without
interacting with Prv. A proof-of-knowledge [29,4] is an interactive proof where
Prv tries to convince V rf that it has “knowledge” tying the common input x,
which requires the completeness and knowledge extractibility (stronger notion of
soundness) properties. Knowledge extractibility (a.k.a.validity) is that for any
Prv who can make V rf accept its claim with non-negligible probability, there
exists an efficient programK called knowledge extractor, such thatK can interact
with Prv and output a witness w of the statement x ∈ L. Zero-Knowledge
Proof of Knowledge (ZKPoK) adds the zero-knowledge property on top of them.
Compared to ZKP, ZKPoK keeps the one-bit information (whether x ∈ L or
not) private from V rf , thus realizing “zero”-knowledge.

2.6 Homomorphic Encryption

Homomorphic encryption (HE) is a special type of encryption that allows users
to perform certain arithmetic operations on encrypted data such that results are
meaningfully reflected in the plaintext. It is called Fully Homomorphic Encryp-
tion (FHE) when a HE supports both unlimited addition and multiplication of
ciphertexts. Whereas, a scheme that supports a limited number of operations of
either type is called Somewhat Homomorphic Encryption (SWHE) and a scheme
that supports only one operation type is called Partially Homomorphic Encryp-
tion (PHE). There are many PHE schemes such as [14,15,17,26,36,62,58,61,48,71].
For example, ElGamal encryption scheme [26] is a well-known PHE supporting
multiplication, and a variant of ElGamal [15] having gm instead of m and Pail-
lier [62] are well-known PHE schemes supporting addition.

3 Proving Element Distinctness

We first define Proofs of Element-Distinctness (PoED) in the two-party settings
where Prv proves element distinctness of its private input elements to V rf . i.e.,
PoED is an interactive proof system, where Prv tries to convince V rf that its
input C := [c1, ..., cn] consists of distinct elements, without revealing any other
information about each ci. As a result, V rf accepts or rejects the Prv’s claim.
Following the notation for ZKPoK introduced by [7], PoED is denoted as:

PK{C | ei = f(ci) for each ci ∈ C, and

ci ̸= cj for ∀ci, cj ∈ C such that i ̸= j},

where f is a function that “hides” ci so that V rf does not learn any information
about ci from ei, while it “binds” ci to ei so that Prv cannot change ci once ei
is computed, e.g., via randomized encryption or cryptographic commitments.

Element Distinctness and Bounded Input Size in PSI & Its Variants 7

Proving Element Distinctness with λ Puzzles

Public: G = ⟨g⟩, a group with operator ·, and λ: a sec. param.

pk : the public key of Prv, while correlated sk kept private

Prv (C = [c1, ..., cn]) V rf (⊥)
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ..., λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(u)

Ek := πk(e1,k, ..., en,k)

for k = 1, ..., λ : E1, ..., Eλ key ← H(π1, ..., πλ)

Determine π
′
k s.t.

Decsk(Ek) = π
′
k(C)

key
′ ← H(π

′
1, ..., π

′
λ)

key′
return Accept, if key = key

′

return Reject, otherwise

Fig. 1. The PoED-puzzle Protocol. (Enc,Dec) can be any PHE over G. Pn is a set of
random permutations for n elements. H is a cryptographic hash function that maps the
arbitrary-length messages to κ-bit values. u is the unit element of the message space.

3.1 Puzzle-Based PoED Construction

The main idea starts from the well-known two billiard balls problem where Prv
has two billiard balls and (honest) V rf is color-blind. To convince V rf that two
balls have different colors, the following “puzzle” is repeated k times:
1. Prv puts a ball in each hand of V rf
2. V rf puts both hands behind its back and decides (at random) whether to

switch the balls
3. V rf shows the balls to Prv
4. Prv declares whether a switch occurred
5. If Prv answers incorrectly, V rf concludes that Prv cheated
If Prv answers correctly k times, V rf concludes that, with probability 2−k, the
balls have different colors.

Extending this problem to many balls, we construct a PoED protocol and
call it PoED-puzzle protocol. Instead of the color-blind V rf , Prv encrypts each
element with its public key under an encryption scheme satisfying the ciphertext
indistinguishability (IND) property. Since all IND-secure encryption schemes are
non-deterministic, Prv can hide the information about the input elements.

To form the puzzles such that V rf can generate while Prv can solve only
when all input elements are distinct, PoED-puzzle needs a PHE scheme over a
cyclic group G4 of prime order with a generator g. i.e., Assume that each of Prv
input values is a group element in G, or we can assume a deterministic map that
maps each input value ci to a group element in G. Since any PHE allows V rf

4 We sometimes denote G as a subgroup of Z∗
p whose prime order is known, which will

be explicitly indicated in such case.

8 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

to re-randomize received ciphertexts by multiplying the encryption of the unit
element u (under Prv’s public key), this computation gives a new ciphertext of
the same plaintext without learning/requiring anything about the plaintext.

Finally, V rf chooses a random permutation π from Pn, the set of all per-
mutations of length n, and shuffles the re-randomized ciphertexts with π, as if
it “switches or not” in the two billiard balls problem. Once it receives a puzzle,
Prv decrypts each ciphertext with its private key, determines the permutation
π′ that shuffles original elements to received elements, and forwards π′ to V rf .
V rf accepts if π′ = π.

There is a probability that Prv can solve the puzzle without having all dis-
tinct elements. In the worst case when Prv uses only one duplicate, Prv can
correctly solve the puzzle with 50% probability. To make the cheating probability
low, the puzzle should be repeated λ times, such that 1/2λ becomes negligible.

Since each puzzle is independent, V rf can hash the puzzles (using a suitable
cryptographic hash function H) and check this hash value, instead of repeating
this three-message exchange multiple times for each puzzle. This reduces the
number of communication rounds and associated delays. Fig. 1 presents the
PoED-puzzle protocol described above.

3.2 Analysis of PoED-puzzle Protocol

Theorem 1. Assuming an IND-secure PHE scheme (Enc,Dec) over a cyclic
group G, a secure cryptographic hash function H : {0, 1}∗ → {0, 1}κ, and the sta-
tistical security parameter λ, the PoED-puzzle protocol described in Section 3.1
is a secure PoED protocol.

(Sketch Proof) Completeness is straightforward because only one correct per-
mutation π exists for distinct elements, and honest Prv can easily determine
π after decrypting the ciphertexts. For the knowledge extractability, the private
key of the underlying encryption scheme can be seen as the witness. Suppose
Prv does not know the private key. Then, by the IND and homomorphic prop-
erty, re-randomized and shuffled ciphertexts from V rf are indistinguishable from
random strings in the ciphertext space. Furthermore, after decryption, the prob-
ability of having duplicates and solving the puzzle correctly is at most 2−λ which
is set to be negligible by the security parameter λ. Lastly, zero-knowledgeness
naturally follows from the IND property, since all V rf can observe are the ci-
phertexts encrypted by an IND secure PHE. ⊓⊔

Table 1 summarizes the computation and communication complexities of the
PoED-puzzle protocol with λ puzzles. C is denoted by the ciphertext space of
Enc and H generates a κ-bit hash result. Overall, both complexities are O(λn),
where n is the Prv input size.

4 PSI with Element Distinctness Check

Using the PoED as a building block, now we propose a new variant of PSI that
requires all the input elements to be distinct, which we call All-Distinct Private
Set Intersection (AD-PSI).

Element Distinctness and Bounded Input Size in PSI & Its Variants 9

Table 1. Cost Analysis of the PoED-puzzle Protocol

Computation Cost

Operation \ Entity
Prv V rf

Offline Online Online
Encryption n 0 λn
Decryption 0 λn 0

Modular multiplication 0 0 λn
Random permutations (of length n) 0 0 λ
Cryptographic hash (input length) 0 λn λn

Equality check 0 0 1

Group Communication Cost

C (λ+ 1)n
{0, 1}κ 1

4.1 Adversary Model

Among the two parties participating in the computation, Client and Server,
we consider Server to be HbC while Client can be malicious. This assumption
is reasonable in real-life scenarios because Server is the one who provides the
service to Client and multiple barriers (e.g., law/regulation, security systems
for their data, and loss of trust deriving loss of customers) exist for them to be
malicious. However, Client typically maintains less secure systems and much less
data than Server so they may be eager to learn more from Server’s large dataset.
Note that we consider a stronger guarantee than normal malicious security in
PSI literature, as now we aim to enforce the input correctness for Client.

4.2 Definition of AD-PSI

We define AD-PSI directly, instead of defining PSI and adding features. We
follow the definitions of client and server privacy in related work [31,32,34,40]. Let
V iewΠ

A∗(C,S, λ) denotes a random variable representing the view of adversary
A∗ (acting as either Client or Server) during an execution of Π on inputs C
and S and the security parameter λ.

Definition 1 (All-Distinct Private Set Intersection (AD-PSI)). consists
of two algorithms: {Setup, Interaction}, where:
– Setup: an algorithm selecting global/public parameters;
– Interaction: a protocol between Client and Server on respective inputs: a

multiset C = [c1, ..., cn] and a set S = {s1, ..., sm}, resulting in Client ob-
taining the intersection of the two inputs;

An AD-PSI scheme satisfies the following properties:
– Correctness: At the end of Interaction, Client outputs the exact intersection

of two inputs, only when the elements in C are all distinct. It outputs ⊥, o.w.
– Server Privacy: For every PPT adversary A∗ acting as Client, we say that

a AD-PSI scheme Π guarantees the server privacy if there exists a PPT
algorithm PC such that

{PC(C, C ∩ S, λ)}(C,S,λ)

c
≈ {V iewΠ

A∗(C,S, λ)}(C,S,λ)

10 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

i.e., on each possible pair of inputs (C,S, λ), Client’s view can be efficiently
simulated by PC on input (C, C ∩ S, λ).

– Client Privacy: For every PPT adversary A∗ acting as Server, we say that
a AD-PSI scheme Π guarantees the client privacy if there exists a PPT
algorithm PS such that

{PS(S, λ)}(C,S,λ)

c
≈ {V iewΠ

A∗(C,S, λ)}(C,S,λ)

i.e., on each possible pair of inputs (C,S, λ), Server’s view can be efficiently
simulated by PS on input (S, λ).

We note that the security definition above is equivalent to the generic “real-vs-
ideal” world simulation definition in the semi-honest model, as shown in [34],
with the ideal functionality F below:

1. Wait for an input multiset C = [c1, .., cn] from Client.
2. Wait for an input set S = {s1, ..., sm} from Server.
3. Give output (|S|, C ∩ S) to Client if C includes all distinct elements,

or output (|S|), otherwise.
4. Give output (|C|) to Server.

Fig. 2. Ideal Functionality F for AD-PSI

According to the definition above, we propose a construction using PoED-
puzzle protocol, so-called AD-PSI-puzzle, in the following section.

4.3 A Construction for AD-PSI based on PoED-puzzle

AD-PSI-puzzle protocol starts with the PoED-puzzle protocol, i.e., Client en-
crypts each input element in G (or the mapped values for each input element to
G with a public map) under a PHE and sends the ciphertexts to Server, and
Server generates a secret key key, derived from multiple puzzles that shuffle
re-randomized ciphertexts with random permutations. Note that now the un-
derlying PHE scheme needs to be multiplicatively homomorphic (instead of any
PHE) for the correct computation below.

For computing the intersection without revealing the other elements, Server
hides Client’s ciphertexts and its own input values with the same random el-
ement R ∈ Z∗p. i.e., Server first homomorphically exponentiates Client ele-

ments with R by eRi , which is defined by R homomorphic operations, for each
ei = Enc(ci),∀i (by multiplying ei R times or directly exponentiating R5). For
its own input values, Server computes sRj for each sj ∈ S so that if some ci and

5 Usually, exponentiation of the underlying plaintext can be done more efficiently
than multiplying the ciphertext R times. For example, in ElGamal, encryption of x
is Enc(x) = (gr, xhr) for some random r, and exponentiating to c can be done either
Enc(x) · ... · Enc(x) = (gR, xchR) = Enc(xc) or Enc(x)c = (gcr, xchcr) = Enc(xc).

Element Distinctness and Bounded Input Size in PSI & Its Variants 11

AD-PSI based on PoED-puzzle (AD-PSI-puzzle)

Public: (p, g, h,G) where G = ⟨g⟩, a subgroup of Z∗
p of prime order q,

λ : statistical secur ity parameter, pk : Prv’s public key,

Private: sk : Prv’s secret key correlated to pk

Client (C = [c1, ..., cn]) Server (S = {s1, ..., sm})
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ..., λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(1)

Ek := πk(e1,k, ..., en,k)

key ← H(π1, ..., πλ)

R ∈R Z∗
p

for i = 1, ..., n :

êi := e
R
i (= ei · ... · ei)

for j = 1, ...,m :

for k = 1, ..., λ :
E1, ..., Eλ, (ê1, ..., ên),

(t1, ..., tm)
tj := SEnc(key,H

′
(s

R
j))

Determine π
′
k s.t.

Decsk(Ek) = π
′
k(C)

key
′ ← H(π

′
1, ..., π

′
λ)

for j = 1, ...,m : t
′
j := SDec(key

′
, tj)

for i = 1, ..., n : di := H
′
(Decsk(êi))

return {ci ∈ C | di ∈ {t′1, ..., t
′
m}}

Fig. 3. AD-PSI-puzzle Protocol. (Enc,Dec) is a multiplicative PHE over G and
(SEnc, SDec) can be any symmetric encryption scheme over a key space {0, 1}κ. Pn

and H are same as Fig. 1

sj match, then the randomized cRi and sRj can also be matched. Then, it hashes

each sRj using a cryptographic hash function H ′ and encrypts them under a sym-

metric encryption scheme with a key key, i.e., tj := SEnc(key,H ′(sRj)). Thus,
unless Client can derive the right key, it cannot decrypt/learn any information
about Server elements.

When receiving the messages from Server, Client first derives the symmetric
key key′ by solving all the puzzles, as in PoED-puzzle. Then using the derived
key, Client decrypt tj ’s, obtains {t′j := H ′(sRj)}j , and compares them with d′is,

the hash values of the decryption of re-randomized ciphertexts, i.e., di := H ′(cRi)
for all i. Finally, Client outputs all ci’s such that di matches for some tj .

The protocol described above is depicted in Fig. 3. Due to the space limit,
we show the full security proofs of the following theorem in Appendix A.

Theorem 2. Assuming the hardness of the decisional Diffie-Hellman problem,
the protocol described in Fig. 3 is a secure AD-PSI scheme, satisfying the Defi-
nition 1 in ROM.

12 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

Though we define AD-PSI such that it does not reveal whether C satisfies the
element distinctness or not to Server, this one-bit information may be favored
by Server to save its computing resources. We discuss this alternative definition
and an idea of modifying the AD-PSI-puzzle protocol in the following section.

4.4 Alternative AD-PSI and Modified Construction

Checking the distinctness of C before proceeding to the next steps may be prefer-
able by Server with a large set S because the rest computation cost is linear
to |S|. Whereas, Client may be reluctant as it reveals whether Client used all
distinct elements to Server, i.e., a trade-off between client privacy and server
efficiency. For this alternative design, AD-PSI Correctness can be defined with
Server outputs (|C|, b) in Definition 1 instead, where b is a boolean result of
whether C satisfies the element distinctness. Likewise, F is modified as below:

1. Wait for an input multiset C = [c1, .., cn] from Client.
Abort if C includes any duplicates.

2. Wait for an input set S = {s1, ..., sm} from Server.
3. Give output (|S|, C ∩ S) to Client.
4. Give output (|C|) to Server.

Fig. 4. Ideal Functionality F for Alternative AD-PSI

To meet this definition, the AD-PSI-puzzle protocol (in Fig. 3) can be mod-
ified as in Fig. 5. i.e., Before the intersection computation phase, Server first
sends all the puzzles to Client and proceeds to the next phase only if Client
corrects all puzzles. Although this modification increases the number of commu-
nication rounds, Server can save its computation resources for the clients who
do not cheat and have enough elements (by size checking) and use this one-bit
information in another application (See Section 6).

Table 2 summarizes the computation and communication complexities of the
AD-PSI-puzzle protocols with λ puzzles. We denote the cost of the alternative
protocol in parentheses only when it has a different cost from the original one.
HE denotes the partial homomorphic encryption scheme and SE denotes the sym-
metric encryption scheme used in the protocol(s). CΠ represents the ciphertext
space of a schemeΠ and cryptographic hash functionsH andH ′ generate a κ-bit
and κ′-bit hash result, respectively. Overall, both complexities are O(λn +m),
where n is the Client input size (including duplicates, if any) and m is the
Server input size.

5 AD-PSI Variants

As mentioned earlier in Sections 1 and 2.4, duplication can be more problem-
atic in PSI variants that give additional/restricted information. In this section,

Element Distinctness and Bounded Input Size in PSI & Its Variants 13

AD-PSI-puzzle Alternative

Client (C = [c1, ..., cn]) Server (S = {s1, ..., sm})
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ..., λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(1)

for k = 1, ..., λ : E1, ..., Eλ Ek := πk(e1,k, ..., en,k)

π
′
k s.t. Decsk(Ek) =π

′
k(C) key ← H(π1, ..., πλ)

key
′ ← H(π

′
1, ..., π

′
λ)

key′

Abort if key
′ ̸= key

R ∈R Z∗
p

êi := e
R
i , ∀i ∈ [1, n]

for i = 1, ..., n : {êi}i, {tj}j , tj := H
′
(s

R
j), ∀j ∈ [1,m]

di := H
′
(Dec(êi))

return {ci ∈ C | di ∈ {t1, ..., tm}}

Fig. 5. Alternative AD-PSI Protocol

we further discuss how duplication can leak more information, and propose a
solution for each variant using AD-PSI. Although the solutions are simple, we
provide the figures for each protocol in Appendix B for better presentation.

Note that we follow the convention in PSI literature and do not consider the
information leakage after multiple executions which will naturally reveal more
than the one they are supposed to reveal in a single execution. For example, when
Client deliberately adjusts its input elements to PSI-X and the protocol outputs
‘No’ in the previous rounds and ‘Yes’ in the next round, then Client learns that
the exact element added in the last round is in the Server set. Though this is
interesting, we consider it as a future work.

5.1 PSI-CA with Element Distinctness (AD-PSI-CA)

Recall that PSI-CA outputs only the cardinality of the intersection set. Suppose
Client uses a single element as input to PSI-CA. In that case, although it is
not malicious behavior, Client can learn if that exact element is in S, which is
more information than it is supposed to learn. Furthermore, by repeating PSI-
CA with different single elements, it can eventually learn the intersection set, or
the entire S if the message space is small enough. To prevent this, Server may
want to restrict the minimum input set size as l and check if |C| > l during the
computation phase.

However, Client still can bypass this simple check by duplicating a single
element n times where n is greater than l. Although Server does not abort as
the Client set size n is larger than l, the PSI-CA result with this input will
be either ‘0’ or ‘1’ which reveals if the single element is in S or not. Thus, the

14 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

Table 2. Cost Analysis of AD-PSI-puzzle Protocols. We present the cost of the alter-
native protocol in (·) only when it is different from the original cost.

Computation Cost of AD-PSI-puzzle (and its alternative)

Operation Entity
Client Server

Offline Online Online
HE.Encryption n 0 λn
HE.Decryption 0 (λ+ 1)n 0

Modular Multiplication 0 0 (λ+R)n
Random number generation (in Z∗

p) 0 0 1
Random permutations (of length n) 0 0 λ

Cryptographic hash
of input length λn 0 1 1
of input length |M| 0 n m

Equality check 0 0 0 (1)
Involvement check (i.e., if a ∈ A) 0 n 0

SE.Encryption 0 0 m (0)
SE.Decryption 0 m (0) 0

Group Communication Cost

CHE (λ+ 2)n
CSE m

{0, 1}κ 0 (1)

{0, 1}κ
′

0 (m)
#(rounds) 1 (2)

simple size check is not enough, and Server needs a way to check the element
distinctness of C, which we call AD-PSI-Cardinality (AD-PSI-CA).

The definition of AD-PSI-CA is similar to the one of AD-PSI, except that
(|S|, |S∩C|) is the Client output for correctness, and what the ideal functionality
gives to Client as output. Adding this feature can be simply done by modifying
the AD-PSI-puzzle protocol: Server additionally chooses a random permutation
π and sends the permuted ciphertexts êi := eRπ(i) instead of êi := eRi . Since the
ciphertexts are randomized with R by Server, and Client does not know π, now
Client cannot match the di’s to the original ci’s. Furthermore, AD-PSI-puzzle
guarantees that Client cannot solve the puzzle correctly with overwhelming
probability when using duplicated inputs. Therefore, Client learns |C ∩ S|, only
when it uses all distinct input elements.

5.2 PSI-X with Element Distinctness (AD-PSI-X)

PSI-X outputs very limited information, only the boolean result of whether the
intersection of two private input sets is non-empty. Likewise, although Server
decides on a lower-bound restriction on the size of C, Client can obtain more
information than the boolean result by using a small input set, because if the
result is ‘1’ (i.e., intersection exists), each element is in S with the probability of
1/|C|. Server, thus, may have more motivation to restrict the size of C to reduce
this probability.

Element Distinctness and Bounded Input Size in PSI & Its Variants 15

One way to construct a AD-PSI-Existence (AD-PSI-X) protocol is to add
our PoED phase to the FHE-based PSI-X protocol. The basic idea of the FHE-
based PSI-X protocol is to encrypt each element under an FHE, compute the
subtraction of every pair of C and S, and multiply all subtractions (with a
random number) so that the decryption result can be zero if any of the pairs
match. i.e., It computes the encryption of R ·Πi,j(ci−sj) for a random R, which
becomes the encryption of zero if any pair of ci and sj matches. The recent
benchmark [37] on FHE libraries shows that the addition can be done within
100 ms while multiplication requires about 1 second over the integer encoding in
many libraries, such as Lattigo [2], PALISADE [1], SEAL [53], and TFHE [12].
The PoED phase can be easily added: Server can add the shuffling phase before
the PSI-X steps, and just encrypt the final message with the key derived from
the puzzles as in the PoED-puzzle protocol.

5.3 PSI-DT with Element Distinctness (AD-PSI-DT)

PSI-DT transfers additional data associated with the intersecting elements. Since
this gives more data other than the intersection, when Server restricts the Client
input size, Client without enough elements may have more motivation to cheat
and bypass the restriction to obtain them. AD-PSI with data transfer (AD-PSI-
DT) is defined similarly to AD-PSI, except it outputs (|S|, I := S ∩C, {Dj}sj∈I)
for Client.

An AD-PSI-DT protocol can be constructed as follows: It is the same as
AD-PSI-puzzle protocol until randomizing Client ciphertexts. Then, for Server
input elements, Server computes one more hash (or a one-way function) H ′′ and
encrypts them under the key derived from the puzzles, i.e., tj := SEnc(key,H ′′(s′j)),

where s′j := H ′(sRj). For the associated data to transfer, Server encrypts each
Dj using the pre-image of H ′′, i.e., D′j := SEnc(s′j , Dj), and sends them along
with the other messages. This prevents Client from trying all decryption results
as key to decrypt the associated data.

Receiving the messages from Server, Client performs the same steps to
learn the intersection as AD-PSI. To obtain the associated data, Client uses
the matching di’s for its own (randomized) values to decrypt and get the data.
Security for the non-intersecting elements follows the security of AD-PSI, and the
one-way property of H ′′ and the security of the underlying symmetric encryption
scheme guarantee the security of the associated data.

6 Completing Bounded-Size-Hiding-PSI

As mentioned in Section 2.3, Bounded-Size-Hiding-PSI was introduced in [6],
extending the concept of Size-Hiding-PSI (SH-PSI) from [3] by adding an upper
bound on the size of Client input set C, |C|. For clarification, we denote this
primitive by Upper-bounded-SH-PSI (U-SH-PSI). Now we propose a Bounded-
Size-Hiding-PSI (B-SH-PSI) protocol with complete, both lower and upper,
bounds on |C|.

16 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

In B-SH-PSI, Server publishes its restriction rules, L for lower bound and
U for upper bound, for |C|. i.e., Server wants Client to obtain the intersection
only when L ≤ |C| ≤ U . On the other hand, Client wants to hide its input size
as well as any information about its elements from Server. Fig. 6 shows the
ideal functionality FB for B-SH-PSI described above.

1. Wait for input C = [c1, ..., cn] from Client.
2. Wait for input S = {s1, ..., sm} from Server.
3. Abort if C does not contain at least L distinct elements, or |C| > U .

Give the output (|S|, C ∩ S) to Client only if L ≤ |C| ≤ U .
4. Give output b to Server, where b is the boolean value of whether |C| ≥ L.

Fig. 6. Ideal Functionality FB for B-SH-PSI

We construct a B-SH-PSI protocol using U-SH-PSI and the AD-PSI-puzzle
protocols as building blocks, and briefly present it in Fig. 7. To enforce that
Client cannot learn any information about the intersection without satisfying
both upper- and lower-bound requirements, we need the alternative AD-PSI-
puzzle protocol (in Section 4.4) that reveals the one-bit information if C satisfies
the lower-bound or not.

Recall that Client cannot obtain the next message from Server with over-
whelming probability if CL includes any duplicates. Also, since Server can see
the size of CL during the AD-PSI phase, it can just abort (or send an error
message to Client) if CL does not satisfy the lower bound L. Otherwise, Server
stores this size |CL| and sends some puzzles for AD-PSI to Client. The honest
Client can enclose the first message (the accumulator for the rest of the elements
in C, i.e., C∗ := C \CL), msg1, along with the key′ derived from the given puzzles.
If key′ is correct, Server proceeds to the steps for U-SH-PSI using msg1 and the
upper bound, U ′ := (U −|CL|), or aborts, otherwise. Client obtains I1 := CL∩S
from the response for AD-PSI (denoted by msg2 in Fig. 7), and I2 := C∗ ∩ S
from the one for U-SH-PSI (denoted by msg3 in Fig. 7), which are combined to
the final result, I := I1 ∪ I2.

The security and efficiency of the idea above rely on the ones of underlying
AD-PSI and U-SH-PSI protocols. The AD-PSI phase guarantees that C satisfies
the lower bound L. Although there is no duplicate check in the U-SH-PSI phase,
Client does not have the motivation for duplicating the elements because Client
can learn the result only when |C∗| ≤ U ′ (i.e., duplicates limit Client more,
especially when |C| is close to U).

7 Authorized PSI with Element Distinctness

So far, we have seen multiple PSI and its variant protocols that check the du-
plicity of input values. However, as noted in Section 1, malicious Client can
still bypass these duplicity checks by generating random inputs instead of du-
plicating valid inputs. And what is the meaning of “valid” inputs? To examine

Element Distinctness and Bounded Input Size in PSI & Its Variants 17

Overview of B-SH-PSI

Client(C = [c1, ..., cn]) Server(S = {s1, ..., sm}, L, U)

Select CL ⊆ C s.t. |CL| ≥ L Publish L,U (with certs)

and c
′
i ̸= c

′
j , for ∀c′i, c

′
j ∈ CL Set empty table T with (id, size)

Select C∗ ⊆ C s.t. (C \ CL) ⊆ C∗

ei := Enc(ci), ci ∈ CL E := {ei}i If |E| < L : Abort

Generate puzzles
puzzles key := H(puzzles)

key′, msg1 If key
′ ̸= key : Abort

Proceed steps for U-SH-PSI

Compute the outputs,
msg2, msg3

I1 from msg2, I2 from msg3

(i.e., I1 = CL ∩ S, and I2 = C∗ ∩ S)
return I := I1 ∪ I2

Fig. 7. Idea of B-SH-PSI with input bound [L,U]. msg1 and msg3 denote the first
and responding messages for the U-SH-PSI protocol, whereas the others denote the
messages for the alternative AD-PSI-puzzle protocol in Fig. 5

if Client uses valid inputs, including a trusted third party (TTP) who signs on
valid inputs and later audits and punishes any invalid inputs is inevitable. i.e.,
Authorized PSI (APSI) that not only checks the element distinctness but also
the validity of the input values. This section presents two versions of APSI: (v1)
stateful APSI, where TTP tracks Client input values, and (v2) stateless APSI,
where TTP does not save/track any information about Client input values.

7.1 AD-APSI Definition

Adopting the definitions of APSI from the related work [19,20,74,77] and re-
ferring to the definitions of general two-party computation from [28,34], secure
AD-APSI can be defined as below. Let REALΠ

A(z),P (C, S, λ) be the output of

honest party and the adversary A corrupting P (either Client or Server) after
a real execution of an AD-APSI protocol Π, where Client has input (potentially
multi)set C, Server has input set S, A has auxiliary input z, and the security
parameter is λ. Let IDEALFSim(z),P (C,S, λ) be the analogous distribution in
an ideal execution with a trusted party who computes the ideal functionality F
defined below.

Definition 2 (All-Distinct Authorized PSI (AD-APSI)). is a tuple of
three algorithms: {Setup, Authorize, Interaction}, where

– Setup: an algorithm selecting global/public parameters;
– Authorize: a protocol between Client and TTP resulting in Client commit-

ting to its input, C = [c1, ..., cn], and TTP issuing authorizations, one for
each element of C; and

18 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

– Interaction: a protocol between Client and Server on respective inputs: a
(multi)set C and a set S, resulting in Client obtaining the intersection of
two inputs;

An AD-APSI scheme satisfies the following properties:

– Correctness: At the end of Interaction, Client outputs the exact intersection
of two inputs, only when the elements in C are all distinct and authorized by
TTP. Otherwise, Client outputs ⊥;

– Server Privacy: Client learns no information about the subset of S that is
not in the intersection, except its size. More formally, an AD-APSI scheme
securely realizes the server privacy in the presence of malicious adversaries
corrupting Client if for every real-world adversary A, there exists a simulator
Sim such that, for every C, S, and auxiliary input z,

{REALΠ
A(z),Client(C,S, λ)}λ

c
≈ {IDEALF

Sim(z),Client(C,S, λ)}λ

– Client Privacy: Server learns no information about Client input elements,
except its size, authorization status, and element distinctness. More formally,
an AD-APSI scheme securely realizes the client privacy in the presence of
malicious adversaries corrupting Server if for every real-world adversary A,
there exists a simulator Sim such that, for every C, S, and z,

{REALΠ
A(z),Server(C,S, λ)}λ

c
≈ {IDEALF

Sim(z),Server(C,S, λ)}λ

where the ideal functionality F is defined as follows:

– Authorize : (F forwards the messages between Client and TTP and re-
members the authorized elements for Client)
1. Wait for an authorization request from Client, requesting TTP to au-

thorize an element c
2. Forward the request to TTP who either accepts or rejects it
3. If TTP accepts, it forwards the messages from TTP to Client and re-

members that TTP has authorized c for Client. Otherwise, it replies
abort to Client

– Interaction : (F receives input elements from Client and Server and out-
puts the intersection to Client, only when Client inputs are all distinct and
authorized, while giving Client input size and verification result (for autho-
rization and duplication) to Server)
1. Wait for an input (multi)set C = [c1, .., cn] from Client
2. Wait for an input set S = {s1, ..., sm} from Server
3. While sending |C| to Server, send abort to Client if C includes (1) any

unauthorized element, or (2) duplicated elements. Otherwise, compute
the intersection of C and S and send (|S|, C ∩S) to Client. It also sends
b to Server, where b is the result(s) for verifying the existence of (1)
(and (2) in stateless version) above with their cardinality(ies).

For clear notation, we denote the functionalities above as FAuth and F∩.

Element Distinctness and Bounded Input Size in PSI & Its Variants 19

7.2 AD-APSI Construction

The main idea is from the double spending detection in [11]. i.e., TTP first
divides each input value into two factors, where these factors are not revealed
to anyone except Client. For the stateful TTP, the factors can be computed by
choosing a random value in Z∗p as the first factor and calculating the rest. For the
stateless TTP, the first factor is computed so that it is unique per element value,
e.g., with a pseudo-random function (under TTP’s secret key) for each element
in C, and the second factor is calculated by dividing the element with the first
factor. Then, the TTP signs a message such that it can be easily re-computed
by a third party while not revealing each factor so that anyone with the message
can verify the signature with the TTP’s public key.

In the online phase, Client sendsGC , the pre-computed values that effectively
hide two factors for each input value, and Σ, all the signatures given by TTP.
Then, Server first verifies each signature with a newly-computed message with
GC and aborts if any signature verification fails. In the stateless TTP version,
Server additionally checks if there are any same elements in GC and aborts if
so. If all passed, Server now proceeds to the intersection computation phase,
similar to the other PSI protocols. i.e., It first chooses a random number R
to hide its elements, and computes tj , which can be also pre-computed. Then,
Server exponentiates each gei,1 to the same R so that Client can compute
the same form, compare, and obtain the intersection result. Fig. 8 shows the
aforementioned offline and online phases with stateful and stateless TTP options,
with an example form of message, mi := H(gei,1 , gei,2) for each ci = ei,1 ∗
ei,2 (mod p) in C. In the offline phase, Client can pre-computeGC once it receives
all the factors from TTP, or TTP can also send GC along with the others, which
is the trade-off between communication cost and Client’s computation cost.

7.3 Security Analysis

Theorem 3. The protocol described in Section 7.2 is a secure AD-APSI scheme,
satisfying Definition 2 in ROM.

(Sketch proof) Duplicated elements get caught by either the stateful TTP
or Server (when TTP is stateless) because the GC element is always the same
for an input value. Also, Server detects if any unauthorized elements are used
via signature verification. For the honest C (i.e., with all authorized and distinct
elements), Client outputs the exact intersection of C and S because, for ci = sj ,

di := H(êi
ei,2) = H((gei,1R)ei,2) = H(gciR) = H(gsjR) = tj

Server responds only when all signature verification and duplication checks are
passed, and tj ’s do not reveal any information about sj by randomizing with R
and hashing with a cryptographic hash function. Lastly, client privacy depends
on both computational Diffie-Hellman problem and the secure signature scheme.

⊓⊔
We provide the full security analysis of Theorem 3 in Appendix C.

20 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

AD-APSI Offline Phase with v1) Stateful and v2) Stateless TTP

Public: (p, g,G) where G = ⟨g⟩, a subgroup of Z∗
p of order q, PK : TTP’s public key

Private: K : TTP’s secret key, SK : TTP’s private key, paired with PK

TTP Client (C = [c1, ..., cn])

for ∀i : C

v1) Abort if ∃cj ∈ C, s.t. cj = ci, j ̸= i.

Otherwise, ei,1 ∈R Z∗
p,

v2) ei,1 = PRFK(ci, ‘Client
′
)

ei,2 = ci/ei,1 (mod p)

σi = SignSK(H(g
ei,1 , g

ei,2)) {(ei,1, ei,2, σi)}ni=1

Compute

GC := {(gei,1 , g
ei,2)}ni=1

AD-APSI Online Phase with v1) Stateful and v2) Stateless TTP

Public: (p, g,G) where G = ⟨g⟩, a subgroup of Z∗
p of or der q, PK : TTP’s public key

Client (C = [ci]i, EC = [(ei,1, ei,2)]i Server (S = [s1, ..., sm])

Σ = {σi}i, GC = [(g
ei,1 , g

ei,2)]i)

GC, Σ For ∀i :

V erfPK(H(g
ei,1 , g

ei,2), σi) =
?
1

Abort, if not

v2) Abort if ∃gi = gj ∈ GC for i ̸= j

R ∈R Z∗
p

tj := H
′
(g

sjR), j = 1,,m

êi := (g
ei,1)

R
, i = 1, ..., n{tj}j , {êi}i

di := H
′
(êi

ei,2)

return {ci|di ∈ {tj}j}

Fig. 8. All-Distinct Authorized PSI (AD-APSI) scheme. PRF is a pseudo-random
function, (Sign, V erf) is a digital signature scheme over {0, 1}κ, and H,H ′ are cryp-
tographic hash functions.

8 Conclusion

This paper investigated two malicious behaviors for private input – using dupli-
cated and spurious elements – and suggested checking the input validity in PSI
and its variants. We proposed a PoED construction, PoED-puzzle, using PHE
and a generalized version of the two billiard balls problem, and using it as a
building block, we introduced a new PSI variant, AD-PSI, with a formal defi-
nition. We presented an AD-PSI protocol based on PoED-puzzle and analyzed
its security according to the definition. We also provided ideas of three AD-PSI
variants, AD-PSI-CA, AD-PSI-X, and AD-PSI-DT, where duplicates cause more
information leakage without PoED, and proposed a B-SH-PSI scheme with both
upper and lower bounds on the client input size, using AD-PSI and U-SH-PSI.
Lastly, we formalized the definition of AD-APSI that assesses both misbehaviors
on client input and suggested a construction with its security analysis.

Element Distinctness and Bounded Input Size in PSI & Its Variants 21

References

1. Palisade homomorphic encryption software library. Online: https:

//palisade-crypto.org/ (2017)
2. Lattigo v4. Online: https://github.com/tuneinsight/lattigo (Aug 2022),

ePFL-LDS, Tune Insight SA
3. Ateniese, G., De Cristofaro, E., Tsudik, G.: (if) size matters: size-hiding private set

intersection. In: International Workshop on Public Key Cryptography. pp. 156–173.
Springer Berlin Heidelberg (2011)

4. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Advances in Cryp-
tology — CRYPTO’ 92. pp. 390–420 (1993)

5. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In:
Proceedings of the 7th ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS) (2012)

6. Bradley, T., Faber, S., Tsudik, G.: Bounded size-hiding private set intersection. In:
International Conference on Security and Cryptography for Networks. pp. 449–467.
Springer, Springer International Publishing (2016)

7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Advances in Cryptology — CRYPTO ’97. pp. 410–424 (1997)

8. Carpent, X., Faber, S., Sander, T., Tsudik, G.: Private set projections & variants.
In: Proceedings of the 2017 on Workshop on Privacy in the Electronic Society
(WPES ’17). Association for Computing Machinery (2017)

9. Cerulli, A., De Cristofaro, E., Soriente, C.: Nothing refreshes like a repsi: Reactive
private set intersection. In: Applied Cryptography and Network Security. pp. 280–
300 (2018)

10. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious prf. In: Advances in Cryptology – CRYPTO 2020. pp. 34–63. Springer
International Publishing (2020)

11. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Advances in Cryp-
tology – CRYPTO’ 88. pp. 319–327. Springer New York (1990)

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: Fast fully homomor-
phic encryption library over the torus. https://github.com/tfhe/tfhe.(2017),
accessed: 2022-01-31

13. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Security and Cryptography for Networks (2018)

14. Clarkson, J.B.: Dense probabilistic encryption. In: Proceedings of the Workshop
on Selected Areas of Cryptography. pp. 120–128 (1994)

15. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Advances in Cryptology – EUROCRYPT ’97. pp.
103–118. Springer Berlin Heidelberg (1997)

16. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Applied Cryptography and Network Security. pp. 125–142 (2009)

17. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Public Key Cryptography. pp. 119–
136 (2001)

18. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Cryptology and Network Security, pp. 218–231.
Springer (2012)

19. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Advances in Cryptology - ASIACRYPT
2010. pp. 213–231 (2010)

https://palisade-crypto.org/
https://palisade-crypto.org/
https://github.com/tuneinsight/lattigo
https://github.com/tfhe/tfhe. (2017)

22 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

20. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Financial Cryptography and Data Security. pp. 143–159 (2010)

21. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection. In:
Trust and Trustworthy Computing. pp. 55–73 (2012)

22. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality
using bloom filter. In: Information Security. pp. 209–226. Springer International
Publishing (2015)

23. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: Scaling private contact
discovery. Proceedings on Privacy Enhancing Technologies pp. 159–178 (2018)

24. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS (2013)

25. Duong, T., Phan, D.H., Trieu, N.: Catalic: Delegated psi cardinality with appli-
cations to contact tracing. In: Advances in Cryptology – ASIACRYPT 2020. pp.
870–899. Springer International Publishing (2020)

26. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

27. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Advances in Cryptology. pp. 10–18 (1985)

28. Evans, D., Kolesnikov, V., Rosulek, M.: A Pragmatic Introduction to Secure Multi-
Party Computation (2018)

29. Fiege, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing. pp. 210–217.
STOC ’87, Association for Computing Machinery (1987)

30. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. Journal of Cryptology 29(1), 115–155 (2016)

31. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Theory of Cryptography. pp. 303–324. Springer Berlin
Heidelberg (2005)

32. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Advances in Cryptology - EUROCRYPT 2004. pp. 1–19 (2004)

33. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set inter-
section. In: Advances in Cryptology – EUROCRYPT 2019. pp. 154–185. Springer
International Publishing (2019)

34. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press (2004)

35. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing. pp. 291–304. STOC ’85 (1985)

36. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing. pp. 365–377. STOC ’82 (1982)

37. Gouert, C., Mouris, D., Tsoutsos, N.G.: Sok: New insights into fully homomorphic
encryption libraries via standardized benchmarks. Proc. Priv. Enhancing Technol.
2023(3), 154–172 (2023)

38. Hagen, C., Weinert, C., Sendner, C., Dmitrienko, A., Schneider, T.: All the num-
bers are us: Large-scale abuse of contact discovery in mobile messengers. IACR
Cryptology ePrint Archive p. 1119 (2020)

39. Hallgren, P., Orlandi, C., Sabelfeld, A.: Privatepool: Privacy-preserving rideshar-
ing. In: IEEE 30th Computer Security Foundations Symposium (CSF) (2017)

Element Distinctness and Bounded Input Size in PSI & Its Variants 23

40. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Theory of Cryptography.
pp. 155–175 (2008)

41. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Public Key Cryptography – PKC 2010. pp. 312–331 (2010)

42. Hemenway Falk, B., Noble, D., Ostrovsky, R.: Private set intersection with linear
communication from general assumptions. In: Proceedings of the 18th ACM Work-
shop on Privacy in the Electronic Society. pp. 14–25. WPES’19, Association for
Computing Machinery (2019)

43. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS. ISOC (2012)

44. Huberman, B., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: ACM Conference on Electronic Commerce (1999)

45. Ion, M., Kreuter, B., Nergiz, A.E., Patel, S., Saxena, S., Seth, K., Raykova, M.,
Shanahan, D., Yung, M.: On deploying secure computing: Private intersection-sum-
with-cardinality. In: 2020 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 370–389 (2020)

46. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to
adaptive ot and secure computation of set intersection. In: Theory of Cryptography.
pp. 577–594 (2009)

47. Kajita, K., Ohtake, G.: Private set intersection for viewing history with efficient
data matching. In: HCI International 2022 Posters. pp. 498–505. Springer Interna-
tional Publishing (2022)

48. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In: Public Key Cryptography – PKC 2007. pp. 315–329 (2007)

49. Kissner, L., Song, D.: Privacy-preserving set operations. In: Advances in Cryptol-
ogy – CRYPTO 2005. pp. 241–257 (2005)

50. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
prf with applications to private set intersection. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. pp. 818–829.
CCS, Association for Computing Machinery (2016)

51. Kolesnikov, V., Rosulek, M., Trieu, N.: SWiM: Secure wildcard pattern matching
from ot extension. In: Financial Cryptography and Data Security: 22nd Interna-
tional Conference, FC 2018, Nieuwpoort, Curaçao, February 26 – March 2, 2018,
Revised Selected Papers. pp. 222–240. Springer-Verlag (2018)

52. Kulshrestha, A., Mayer, J.: Estimating incidental collection in foreign intelligence
surveillance: Large-Scale multiparty private set intersection with union and sum.
In: 31st USENIX Security Symposium. pp. 1705–1722. USENIX Association (2022)

53. Laine, K., Chen, H., Player, R.: Simple encrypted arithmetic library (seal). https:
//github.com/microsoft/SEAL.(2017), accessed: 2022-01-31

54. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. Journal of Cryptology 28(2), 312–350 (Apr
2015)

55. Ma, J.P.K., Chow, S.S.M.: Secure-computation-friendly private set intersection
from oblivious compact graph evaluation. ASIA CCS ’22 (2022)

56. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. 1986 IEEE Symposium on
Security and Privacy pp. 134–134 (1986)

57. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious secu-
rity for private intersection-sum with cardinality. In: Advances in Cryptology –
CRYPTO 2020. pp. 3–33. Springer International Publishing (2020)

https://github.com/microsoft/SEAL. (2017)
https://github.com/microsoft/SEAL. (2017)

24 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

58. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: Proceedings of the 5th ACM Conference on Computer and Communications
Security. pp. 59–66. CCS ’98 (1998)

59. Nagaraja, S., Mittal, P., Hong, C., Caesar, M., Borisov, N.: BotGrep: Finding bots
with structured graph analysis. In: Usenix Security (2010)

60. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-
section. In: CCS ’21: ACM SIGSAC Conference on Computer and Communications
Security. pp. 1151–1165 (2021)

61. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Advances in Cryptology — EUROCRYPT’98. pp. 308–318 (1998)

62. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Advances in Cryptology — EUROCRYPT ’99. pp. 223–238. Springer
Berlin Heidelberg (1999)

63. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Spot-light: Lightweight private set
intersection from sparse ot extension. In: Advances in Cryptology – CRYPTO 2019.
pp. 401–431. Springer International Publishing (2019)

64. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Psi from paxos: Fast, malicious
private set intersection. In: Advances in Cryptology – EUROCRYPT 2020. pp.
739–767. Springer International Publishing (2020)

65. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on ot
extension. ACM Transactions on Privacy and Security (TOPS) 21, 1–35 (2016)

66. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection
using permutation-based hashing. In: Proceedings of the 24th USENIX Conference
on Security Symposium. pp. 515–530. SEC’15, USENIX Association (2015)

67. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based psi
with linear communication. In: Advances in Cryptology – EUROCRYPT 2019.
pp. 122–153. Springer International Publishing (2019)

68. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based psi via
cuckoo hashing. In: Advances in Cryptology – EUROCRYPT 2018. pp. 125–157.
Springer International Publishing (2018)

69. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on
OT extension. In: 23rd USENIX Security Symposium (USENIX Security 14). pp.
797–812. USENIX Association (2014)

70. Rindal, P., Schoppmann, P.: Vole-psi: Fast oprf and circuit-psi from vector-ole. In:
Advances in Cryptology – EUROCRYPT 2021. pp. 901–930. Springer International
Publishing (2021)

71. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

72. Sathya Narayanan, G., Aishwarya, T., Agrawal, A., Patra, A., Choudhary, A.,
Pandu Rangan, C.: Multi Party Distributed Private Matching, Set Disjointness
and Cardinality of Set Intersection with Information Theoretic Security. In: CANS
(2009)

73. Shamir, A.: On the power of commutativity in cryptography. In: Automata, Lan-
guages and Programming. pp. 582–595 (1980)

74. Stefanov, E., Shi, E., Song, D.: Policy-enhanced private set intersection: Sharing
information while enforcing privacy policies. In: Public Key Cryptography – PKC
(2012)

75. Takeshita, J., Karl, R., Mohammed, A., Striegel, A., Jung, T.: Provably secure
contact tracing with conditional private set intersection. In: Security and Privacy in
Communication Networks. pp. 352–373. Springer International Publishing (2021)

Element Distinctness and Bounded Input Size in PSI & Its Variants 25

76. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to as-
sociation rule mining. Journal of Computer Security 13(4) (2005)

77. Wen, Y., Gong, Z., Huang, Z., Qiu, W.: A new efficient authorized private set inter-
section protocol from Schnorr signature and its applications. Cluster Computing
21(1), 287–297 (Mar 2018)

78. Zhao, Y., Chow, S.: Are you the one to share? secret transfer with access structure.
Proceedings on Privacy Enhancing Technologies – PETS’17 (2017)

79. Zhao, Y., Chow, S.S.: Can you find the one for me? In: Proceedings of the 2018
Workshop on Privacy in the Electronic Society. pp. 54–65. WPES’18, Association
for Computing Machinery (2018)

Appendix A Security Proof for AD-PSI-puzzle

Theorem 2. The protocol described in Figure 3 is a secure AD-PSI scheme,
satisfying the Definition 1 in ROM.

Proof. Correctness: For an honest Client with distinct input elements, there
exists only one permutation πk such that πk(C) = Dec(Ek). This is because
the decryption results remain the same after the re-randomization due to the
homomorphic property of the ElGamal scheme on multiplication. Thus, honest
Client derives the same permutations as the ones Server used and the de-
rived key′, the hash of these permutations, is equal to key. Client gets the
Server’s tags, {t′j = H ′(sRj)}j by symmetric-decrypting each of them. Since

di = H ′(Dec(êi)) = H ′(Dec(eRi)) = H ′(cRi), with overwhelming probability
(due to the collision resistance of the cryptographic hash functions), we have
t′j = di ⇔ sRj = cRi ⇔ sj = ci. Therefore, Client obtains correct intersection
{ci}i∈I , with I := {i | di ∈ {t′1, ..., t′w}} with distinct input elements.

On the other hand, we show that any clients with duplicated elements in their
input cannot obtain the intersection with overwhelming probability. Let’s look
at the case where a corrupted Client has the highest probability of successfully
cheating, i.e., with C = [c1, ..., cn] with (n− 1) distinct items and one duplicate.
Without loss of generality, let’s say c1 = c2, and the others are all distinct. In
this case, the probability that Client obtains the intersection is the same as the
probability that Client guesses λ correct permutations, so 2−λ, which is negli-
gible with a sufficiently large λ.

Client Privacy: Assume that Server is corrupted. Showing the client privacy
is relatively easy: it only sends to Server the encryption of the element in its
set. Assuming two input sets with the same sizes, if the adversary corrupting
Server can distinguish whether Client used which set as an input, then it can
be used for IND-CPA of the ElGamal encryption system. Since it is well-known
that the ElGamal encryption system is semantically secure [27] assuming the
hardness of the decisional Diffie-Hellman problem which is reduced to DLP, the
adversary cannot distinguish which set is used as well as learn anything about
the Client’s set elements.

Server Privacy: Assume that Client is corrupted, denoted by Client∗. To
claim server privacy, we need to show that the Client’s view can be efficiently

26 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

simulated by a PPT algorithm SimC . The simulator SimC can be constructed as
follows:

1. SimC builds two tables T = ((π1, ..., πλ), k) and T ′ = (m,h′) to answer the
H and H ′ queries, respectively.

2. After getting the message (G, p, g, h) and {ei}ni=1 of a corrupted real-world
client Client∗, SimC picks λ random permutations from Pn and n random
numbers ri,j from Z where i = 1, ..., n for each j = 1, ..., λ. Then, SimC re-
randomizes and shuffles {ei}ni=1 by multiplying (gri,j , hri,j) to each ei’s for
i = 1, ..., n, say ei,j , and applying the permutation πj to {ei,j}ni=1, for each
j, say Ej := πj(e1,j , ..., en,j).

3. Also, SimC picks random R ∈ Z, and exponentiates each component of ei’s,
i.e., êi := eRi = (eRi,1, e

R
i,2) for i = 1, ..., n. SimC also picks m random elements

from M, say u1, ..., um.
4. SimC encrypts each uj using SymE with the key, key := H(π1, ..., πλ), i.e.,

tj := SymE(key, uj), and replies {Ek}λk=1, {êi}ni=1, {tj}mj=1 to Client∗.
5. Then, SimC answers the H,H ′ queries as follows:

– For each query (π1, ..., πλ) to H, SimC checks if ∃ ((π1, ..., πλ), key) ∈ T
and returns key if so. Otherwise, SimC picks a random key ∈R K and
checks if ∃((π′1, ..., π′λ), key′) ∈ T such that key′ = key. If so, output
fail1 and aborts. Otherwise, it adds ((π1, ..., πλ), key) to T and returns
key to Client∗ as H(π1, ..., πλ).

– For each query m to H ′, SimC checks if (m,h′) ∈ T ′. If so, SimC returns
h′. Otherwise, SimC picks a random h′ ∈R M, and checks if ∃(m′′, h′′) in
T ′ where h′′ = h′ and m′′ ̸= m. If so, SimC outputs fail2 and aborts.
Otherwise, SimC adds (m,h′) to T ′ and returns h′ to Client∗ as H ′(m).

This finishes the construction SimC . The ideal-world server Server that in-
teracts with the ideal function f , which answers the queries from SimC as the
ideal-world client Client, gets ⊥ from f , and the real-world server Server which
interacts with Client∗ in the real protocol also outputs ⊥. We now argue that
Client∗’s view in the interaction with Server and with SimC constructed as
above are indistinguishable. The Client∗’s view is different only if one of the
following happens:

– fail1 occurs: This happens if ∃(Q′ := (π′1, ..., π
′
λ), key

′) such that key′ =
key but Q′ ̸= Q existing in T , for a randomly chosen key from K for the
query Q = (π1, ..., πλ) to H. This means a collision of H is found, i.e.,
H(Q) = H(Q′) where Q ̸= Q′. This occurs with negligible probability by
the collision resistance of H.

– fail2 occurs: This happens if there exists the entry (m′′, h′′) such that
h′′ = h′ but m′′ ̸= m existing in T ′, for a randomly chosen h′ from M for the
query m to H ′. This means a collision of H ′ is found, i.e., H ′(m′′) = H ′(m)
where m′′ ̸= m. This happens with negligible probability due to the collision
resistance of H ′.

Since all events above happen with negligible probability, Client∗’s views in
the real protocol with the real-world server Server can be efficiently simulated
by SimC in the ideal world. ⊓⊔

Element Distinctness and Bounded Input Size in PSI & Its Variants 27

Appendix B AD-PSI Variants

This section presents the figures of the protocols described in Section 5, AD-
PSI-CA in Fig. 9, AD-PSI-X in Fig. 10, and AD-PSI-DT in Fig. 11, respectively.

AD-PSI-CA

Public: (p, g, h,G) whe re G = ⟨g⟩, a subgroup of Z∗
p of order q,

λ : statistical sec urity parameter, pk : Prv’s public key,

Private: sk : Prv’s secret key correlated to pk

Client (C = [c1, ..., cn]) Server (S = {s1, ..., sm})
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ..., λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(u)

Ek := πk(e1,k, ..., en,k)

key ← H(π1, ..., πλ)

R ∈R Z∗
p, π ∈R Pn

for i = 1, ..., n :

êi := e
R
π(i)

for j = 1, ...,m :

for k = 1, ..., λ :
E1, ..., Eλ, (ê1, ..., ên),

(t1, ..., tm)
tj := SEnc(key,H

′
(s

R
j))

Determine π
′
k s.t.

Decsk(Ek) = π
′
k(C)

key
′ ← H(π

′
1, ..., π

′
λ)

for j = 1, ...,m : t
′
j := SDec(key

′
, tj)

for i = 1, ..., n : di := H
′
(Decsk(êi))

return |di | di ∈ {t′1, ... , t
′
m}|

Fig. 9. AD-PSI-Cardinality (AD-PSI-CA) Protocol with same notation as Fig. 3

Appendix C Security Proof for AD-APSI

Theorem 3. The protocol described in Section 7.2 is a secure AD-APSI scheme,
satisfying Definition 2 in ROM.

Proof. Correctness: For an honest Client with all authorized and distinct el-
ements, the stateful TTP generates authentic signatures for each element so
that Server can verify the signatures correctly. For the stateless TTP, instead
of tracking all the input values of Client, TTP generates unique and deter-
ministic factors of the input. Thus, Server can tell when Client uses dupli-
cated elements as the corresponding elements in GC are the same. When Server

28 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

AD-PSI-X

Public: (p, g, h,G) whe re G = ⟨g⟩, a subgroup of Z∗
p of order q,

λ : statistical sec urity parameter, pk : Prv’s public key,

Private: sk : Prv’s secret key correlated to pk

Client (C = [c1, ..., cn]) Server (S = {s1, ..., sm})
for i = 1, ..., n : for j = 1, ...,m :

eci := Encpk(ci) esj := Encpk(sj)(ec1, ..., ecn)

for k = 1, ..., λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := eci · Encpk(1)

Ek := πk(e1,k, ..., en,k)

key ← H(π1, ..., πλ)

ê := 1

for ∀i, j :

ˆei,j := Add(eci, (esj)
−1

)

ê = Mult(ê, ei,j)

for k = 1, ..., λ : E1, ..., Eλ, t̂ t̂ := SEnc(key, ê
R
), R ∈ Z∗

p

Determine π
′
k s.t.

Dec(Ek) = π
′
k(C)

key
′ ← H(π

′
1, ..., π

′
λ)

t := SDec(key
′
, t̂)

return YES, if Dec(t) = 0, or NO, otherwise

Fig. 10. AD-PSI-Existence (AD-PSI-X) Protocol with same notation as Fig. 3 except
that (Enc,Dec) should be a FHE over G satisfying Add(Enc(a), Enc(b)) = Enc(a+ b)
and Mult(Enc(a), Enc(b)) = Enc(a ∗ b).

replies, Client outputs the exact intersection of C and S because, for ci = sj ,
di := H ′(êi

ei,2) = H ′((gei,1R)ei,2) = H ′(gciR) = H ′(gsjR) = tj . Therefore, du-
plicated elements in C are caught by either the stateful TTP or Server (when
TTP is stateless), unauthorized (i.e., not signed by TTP) elements are caught
by Server, and honest Client obtains the exact intersection of the two input sets.

For server and client privacy, we show that the distribution of protocol execu-
tion in the real world is computationally indistinguishable from the output from
interaction with F in the ideal world, assuming the same corrupted party (either
Client or Server). Since the interaction between Server and Client is during
the online phase for Interaction, it is compared with F∩ (recall Definition 2),
assuming C is authorized with FAuth.

Server Privacy: Assume that Client is corrupted, denoted by Client∗. We
show that the distribution of Client∗ outputs in the real world can be efficiently
simulated by a PPT SimC constructed as below.

Element Distinctness and Bounded Input Size in PSI & Its Variants 29

AD-PSI-DT

Public: (p, g, h,G) whe re G = ⟨g⟩, a subgroup of Z∗
p of ord er q,

λ : statistical security parameter, pk : Prv’s public ke y,

Private: sk : Prv’s secr et key correlated to pk,

C = (c1, ..., cn),S = {(s1, D1), ..., (sm, Dm)}
Client (C) Server (S)
for i = 1, ..., n :

ei := Encpk(ci)
(e1, ..., en) for k = 1, ..., λ :

πk ∈R Pn

for i = 1, ..., n :

ei,k := ei · Encpk(1)

Ek := πk(e1,k, ..., en,k)

key ← H(π1, ..., πλ)

R ∈R Z∗
p

for i = 1, ..., n :

êi := e
R
i

for j = 1, ...,m :

s
′
j := H

′
(s

R
j)

tj := SEnc(key,H
′′
(s

′
j))

for k = 1, ..., λ :
E1, ..., Eλ, (ê1, ..., ên),

(t1, ..., tm), (D′
1, ..., D

′
m)

D
′
j := SEnc(s

′
j , Dj)

Determine π
′
k s.t.

Decsk(Ek) = π
′
k(C)

key
′ ← H(π

′
1, ..., π

′
λ)

for j = 1, ...,m : t
′
j := SDec(key

′
, tj)

for i = 1, ..., n : di := H
′
(Decsk(êi))

return {(ci, Dj) | ci ∈ C such that H
′′
(di) = t

′
j for some j ∈{1, ...,m}

and Dj := SDec(di, D
′
j) for such j}

Fig. 11. AD-PSI-Data Transfer (AD-PSI-DT) Protocol with same notation as Fig. 3.
Additionally, H ′′ is a one-way function that maps k-bit messages to k-bit messages.

1. SimC builds two tables T1 = ((m1,m2), h) and T2 = (m,h′) to answer the H
and H ′ queries, respectively.

2. After getting the messages GC := {gi,1, gi,2}i and Σ of a corrupted real-
world client, Client∗, SimC verifies the received signatures with respect to
each H(gi,1, gi,2) via Verf and TTP’s public key. If any of those fails, it
aborts. (Likewise, for the stateless version, SimC also checks the duplicates
in GC and aborts if any.

3. Otherwise, SimC picks m random elements, u1, ..., um, in G and computes
tj := H ′(uj) for j = 1, ...,m. It also picks a random R, computes {êi = gRi,1}i,
and replies {êi}i and {tj}m to Client∗.

4. For each query to H and H ′, SimC answers as follows:

30 Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

– For each query (m1,m2) to H, SimC checks if exists((m1,m2), h) ∈ T1

and returns h if so. Otherwise, SimC picks a random h (from the same
space as other values) and checks if exists((m̃1, m̃2), h̃) ∈ T1 such that
h = h̃. If so, output fail1 and abort. Otherwise, it adds ((m1,m2), h)
to T1 and returns h to Client∗ as H((m1,m2)).

– For each query m to H ′, SimC checks if exists(m,h′) ∈ T2 and returns
h′ if so. Otherwise, SimC picks a random h′ (from the same space as
other values) and checks if exists(m̃, h̃) ∈ T2 such that h′ = h̃. If so,
output fail2 and abort. Otherwise, it adds (m,h′) to T2 and returns h′

to Client∗ as H ′(m).
This finishes the SimC construction. The Client∗’s view in the interaction

with SimC above is different from the view in the real-world interaction with the
real server, Server, only if fail1 or fail2 happen. However, due to the collision
resistance property of cryptographic hash functions H,H ′, they occur with neg-
ligible probability. Thus, Client∗’s view when interacting with Server can be
efficiently simulated by SimC in the ideal world. For the outputs, the ideal-world
server Server that interacts with F∩, which answers the queries from SimC as
the ideal-world Client, Client, receives (|C, b) from F∩. On the other hand, the
real-world (honest) server Server that interacts with Client∗ in the real proto-
col also outputs (learns) (|C, b). i.e., Server interacting with SimC and Server
interacting with Client∗ yield the identical outputs.

Client Privacy: Similarly, now we assume a corrupted server, Server∗, and
show that Server∗’s view in the real world can be efficiently simulated by a
PPT simulator, SimS , constructed as below. Intuitively, SimS sits between F∩
and Server∗, and interacts with both in such a way that Server∗ is unable to
distinguish protocol runs with SimS from real-world protocol runs with Client.
First, SimS builds tables T1 and T2, and answers similarly to SimC above for
H and H ′ queries. Then for inputs, since Client and TTP communicate in the
offline phase before the online phase, the authorized elements for Client are
made available to SimS . SimS uses a subset of authorized elements during the
simulation to emulate Client’s behavior. If Server∗ does not abort and reply
({tj}j , {êi}i), SimS checks if êi

ei,2 ∈ {tj}j . If so, SimS adds si := ei,1ei,2 (mod p)
in S, and otherwise, adds a dummy element in Z∗p in S. Then, SimS plays the

role of the ideal-world server, Server, using S to respond to the queries from
the ideal client (Client). Since SimS uses the authorized inputs, Server∗’s view
in the interaction with SimS is identical to the view in the interaction with
honest Client in the real world. Also, the output of the ideal-world client Client
that interacts with F∩, which answers the queries from SimS as the ideal-world
Server, Server, is identical to the output of the real-world Client interacting
with Server∗ as (|S, C∩S), only when all inputs in C are authorized and distinct.

⊓⊔

	Element Distinctness and Bounded Input Size in Private Set Intersection and Its Variants

