
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Redundancy and Complexity Metrics for
Big Data Classification: Towards Smart
Data
JESUS MAILLO1, ISAAC TRIGUERO2, (Member, IEEE), and FRANCISCO HERRERA1,3,
(Senior Member, IEEE)
1The Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
2Computational Optimisation and Learning Lab (COL), School of Computer Science, University of Nottingham, Nottingham NG8 1BB, United Kingdom
3Faculty of Computing and Information Technology, King Abdulaziz University (KAU) Jeddah, Saudi Arabia

Corresponding author: Jesus Maillo (e-mail: jesusmh@decsai.ugr.es).

ABSTRACT
It is recognized the importance of knowing the descriptive properties of a dataset when tackling a data
science problem. Having information about the redundancy, complexity and density of a problem allows
us to make decisions as to which data preprocessing and machine learning techniques are most suitable.
In classification problems, there are multiple metrics to describe the overlapping of the features between
classes, class imbalances or separability, among others. However, these metrics may not scale up well when
dealing with big datasets, or may not simply be sufficiently informative in this context. In this paper, we
provide a package of metrics for big data classification problems. In particular, we propose two new big
data metrics: Neighborhood Density and Decision Tree Progression, which study density and accuracy
progression by discarding half of the samples. In addition, we enable a number of basic metrics to handle big
data. The experimental study carried out in standard big data classification problems shows that our metrics
can quickly characterize big datasets. We identified a clear redundancy of information in most datasets, so
that, discarding randomly 75% of the samples does not drastically affect the accuracy of the classifiers used.
Thus, the proposed big data metrics, which are available as a Spark-Package, provide a fast assessment of
the shape of a classification dataset prior to applying big data preprocessing, toward smart data.

INDEX TERMS Big Data, Smart Data, Classification, Redundancy, Complexity, Apache Spark

I. INTRODUCTION
In many different applications, we are collecting large
amounts of data with the purpose of obtaining useful insights
through a Knowledge Discovery in Databases process [1].
Their nature is very diverse, with implications for society in
all its fields, such as theoretical physics in studies carried out
at CERN [2], implications for politics [3], new challenges
posed in social media [4] or advances in medical applications
[5], among others.

Despite the ease of finding/gathering large amounts of data
in a multitude of fields, this data needs to be preprocessed to
discard those samples that are disruptive, and select the data
that provides quality information for machine learning. This
process, included in the denominated Smart Data technolo-
gies [6], aims to obtain quality data [7] through the applica-
tion of data preprocessing algorithms [8]. In [9], we discussed
the use of the k Nearest Neighbors (kNN) algorithm [10] as

a key technique capable of imputing missing values [11] and
reducing redundant [12] and noisy data [13] to obtain quality
data from big datasets. In addition, there are contributions as
proposed by Liu et al. [14], where the results are improved
and the runtime reduced in classification problems by select-
ing the appropriate classification rule according to a given
neighborhood, instead of using the complete dataset. In [15],
the authors deal with the large dissimilarity data by proposing
an evidential clustering method that obtains good results with
the random selection of part samples to decrease the runtime
and space complexity.

The main assumption of most current research in big
data is that having more data would enable better insights.
However, having more data does not necessarily imply that
we can obtain more relevant information, and may result
in unnecessary computational cost. Smart data technologies
alleviate this issue [9]. However, the application of very so-

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

phisticated big data preprocessing algorithms may also not be
needed if, for example, we identify high levels of redundancy.
With this hypothesis and the problem highlighted, we ask the
following question:

• When is Big Data too much data for machine learning?
To appropriately answer this question, we need to know the

characteristics of the dataset to be addressed before applying
any big data preprocessing or machine learning algorithm. In
that way, we may avoid running time-consuming techniques
without knowing if they are necessary. To achieve this, there
are metrics that mainly measure three aspects: complexity
[16], which is defined as the difficulty in classifying unseen
samples; redundancy [17] that refers to the existence of in-
stances where the information they provide is already present
in other instances; and density [18] which represents a high
number of instances in relation to the domain of the problem.

These metrics are commonly used in the field of auto
machine learning [19] as extracted features from a dataset,
which help determine the best pipelines (i.e. combination
of preprocessing and learning algorithms) for a new given
dataset [20]. However, existing metrics were developed for
standard problems [21], quality measures present problems
of computational scalability in order to tackle big datasets.
These problems come from their design, for example: density
metrics based on the pruning of completely connected graphs
[22], or complexity metrics based non-linearity of classifier
based on sequential classification algorithms [23], both with
very high computational complexity.

In this paper, we postulate that the big data literature is
often neglecting the fact that there is redundancy in the data.
Collect and store data for the sake of it may cause data storage
and computational problems. Therefore, it is necessary to
characterize a problem by means of complexity, redundancy
and density metrics prior to applying big data preprocessing
or machine learning algorithms.

We propose two new big data metrics to measure den-
sity and complexity, called Neighborhood Density (ND) and
Decision Tree Progression (DTP) respectively, to detect the
redundancy of information in big datasets and reduce their
size when necessary, alleviating the issues mentioned above.

The main contributions of this paper are:
A) We proposed two new big data metrics:

• ND presents the proximity of samples by calculating
the percentual difference of the Euclidean distance,
which is calculated with all available data, and with
the half of them randomly chosen.

• DTP measures complexity and redundancy by train-
ing two decision trees with the totality of the data,
and discarding half of them randomly. The percentual
difference of the accuracy obtained with each model
is calculated to reflect the loss of information.

Moreover, we implement some of the best-known met-
rics in the literature [21] re-designed for execution in
big datasets. An open source Spark-based [24] package
has been developed that includes the two proposed

metrics and a set of literature metrics, which is available
on the spark-packages platform: https://spark-packages.
org/package/JMailloH/ComplexityMetrics

B) Redundancy has been analized.An experimental study
has been carried out composed of ND and DTP, as well
as literature metrics adapted to the big data environment
and three classification algorithms. In addition, a ran-
dom data subsampling analyis has been carried out at
different levels to investigate the effect of the sample
size.

The remainder of this paper is organized as follows.
Section II introduces state-of-the-art on scalable complexity
metrics selected for experimental study. Then, Section III de-
tails the two proposed metrics and analyze their complexity.
Section IV and Section V describe the experimental setup and
multiple analyses of results, respectively. Finally, Section VI
outlines the conclusions and future work.

II. COMPLEXITY MEASURES
This section provides insights about the complexity metrics
existing in the literature that have been selected to be devel-
oped in Spark. Thus, these metrics can be calculated over
large datasets. Lorena et al. [21] perform an extensive review
of existing metrics in the literature to study the complexity of
problems.

For the definition of metrics, we consider a dataset T
formed by n samples. Each sample is composed of (x, y),
where the input variables is described as an array x =
[x1, ..., xm], also named in the document as features. The
output variable y is composed by nc classes.

A. F1. MAXIMUM FISHER’S DISCRIMINANT RATIO
This metric measures the overlap between the features of the
different classes of the problem. Specifically, it calculates the
overlap of each feature separately, and takes the highest.

Orriols puig et al. [25] propose different equations for
the F1 metric, differentiating continuous or ordinal features.
However, for the development of this publication we selected
the proposal of Mollineda et al. [26] which deals with binary
problems (classification problems composed of two classes)
and multiclass problems. F1 is calculated for each feature
separately, and finally the most restrictive of all is returned:

F1 =
m

max
i=1

rfi (1)

rfi is computed as defined Equation 2.

rfi =

∑nc

j=1 ncj (µ
fi
cj − µ

fi)2∑nc

j=1

∑ncj

l=1(x
j
li − µ

fi
cj )

2
(2)

Where ncj is the number of instances of the class j, µfi
cj is

the average of the i-th feature of the samples of the class j,
µfi is the average of the i-th feature of all instances and xjli
is the specific value of the i-th feature for a particular sample
x.

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The F1 is a complexity metric with a reduced computa-
tional cost, and this makes it of high interest for big data prob-
lems. However, it only studies overlapping domains between
instances of different classes, considering single feature. This
decreases the quality of the extracted information.

Its computational complexity is O(m · n). The metric
domain is [0,+∞], and it is inversely proportional, meaning
that if the resulting value is high, the complexity of the
problem will be low.

B. F2. VOLUME OF OVERLAPPING REGION
The F2 metric calculates the overlap between the samples
of the different classes. In this case, it considers the domain
(maximum and minimum values) of all features. For this
reason, it is called “Volume” of overlapping region. Cummins
[27] proposes the metric defined in Equation 3.

F2 =
m∏
i

max{0,minmax(fi)−maxmin(fi)}
maxmax(fi)−minmin(fi)

(3)

Let fi and cj be the i-th feature and the j-th class respec-
tively, where:
· minmax(fi) = min(max(f c1i ),max(f c2i ) . . .max(f cji ))
· minmin(fi) = min(min(f c1i ),min(f c2i ) . . .min(f cji ))
· maxmax(fi) = max(max(f c1i ),max(f c2i ) . . .max(f cji ))
· maxmin(fi) = max(min(f c1i ),min(f c2i ) . . .min(f cji ))

Although it has a computational cost higher than F1, it
represents a more realistic simulation of the operation of the
classifiers because it considers multiple features. However,
it does not count the number of affected instances in the
overlapping area, it only considers the overlapping domain.

Its computational complexity isO(m·n·nc) and its domain
is [0, 1]. It is directly proportional, therefore, a value 1 in the
metric means a high complexity.

C. F3. MAXIMUM INDIVIDUAL FEATURE EFFICIENCY
The basis of this complexity metrics is to account for whether
classes are linearly separable by a single feature [25]. To do
this, it calculates the ratio of examples that are not in the
overlap area and the total number of examples:

F3 = maxmi=1

n− no(fi)
n

(4)

Where no(fi) is the number of samples found in the
overlap area, whose membership is defined by Equation 5.

no(fi) =
n∑

j=1

I(xji > maxmin(fi) ∧ xji < minmax(fi))

(5)
I returns value 1 if the condition is satisfied, and 0 if

the condition is unsatisfied. Thus, it counts the number of
samples in the overlap area.

With the equations presented, the efficiency of each feature
is defined as the fraction of all remaining instances separable

by the mentioned feature. Thus, the highest separability ob-
tained by a single feature is counted. F3 is a restrictive com-
plexity metric, because it considers its separability by only
one feature. Data mining algorithms extract knowledge and
patterns related to all features and the relationship between
them.

The F3 metric addresses the major disadvantage of the F1
and F2 metrics by counting the number of samples affected.
However, similar to F1, it only considers a single feature.

Its computational complexity is O(m · n · nc), with a
domain of [0, 1]. The metric is inversely proportional to the
complexity.

D. F4. COLLECTIVE FEATURE EFFICIENCY
The F4 metric [25] is a natural extension of the F3 metric,
which adds a more restrictive component by considering all
features. The process of calculating the metric consists of the
following three iterative steps:

1) F3 is computed to determine which feature is the most
discriminatory.

2) The instances that are outside the overlap area corre-
sponding to the feature selected in step 1 are discarded.

3) The feature selected in step 1 is removed, and the
procedure is repeated until all features are considered.

It is formally described in Equation 6.

F4 =
n− no(fmax(Tl))

n
(6)

Considering that the set Ti is subject to the changes de-
scribed in the iterative procedure, fmax(Ti) is:

fmax(Ti) = {fj |maxmj=1n− no(fj))} (7)

The F4 metric is the most appropriate in the literature
for studying the complexity of a classification problem. It
counts the number of samples affected, and also considers
all features in an iterative process. As a disadvantage, it is the
slowest of the proposed metrics because of its counting and
iteration process.

Its computational complexity is higher than F3, because it
iterates on all features O(m2 · n · nc). In the same way as
F3, complexity is inversely proportional to the value of the
metric, and its domain is [0, 1].

E. C1. ENTROPY OF CLASS PROPORTIONS
Lorena et al. [28] proposes an entropy-based metric to mea-
sure the imbalance between classes [29]. The mathematical
expression is presented in Equation 8.

C1 = − 1

log(nc)

nc∑
i=1

pi log(pi) (8)

Where pi represents the proportion of instances of the class
i (pi = ni/n).

It has a computational complexity ofO(n). The metric do-
main is [0, 1] and is inversely proportional to the complexity.

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A value of 1 indicates a perfect balance between the number
of instances of the different classes.

F. C2. IMBALANCE RATIO
It is the most widely used metric in the literature to measure
class imbalance in classification problems. The selected ap-
proach is proposed by Tanwani et al. [30] to handle multiclass
problem. The Equation 9 presents the mathematical expres-
sion to calculate C2.

C2 =
nc − 1

nc

nc∑
i=1

ni
n− ni

(9)

C2 is an important metric for the information it provides
and its fast calculation. Classifiers significantly reduce the
quality of their results when fed with imbalanced datasets
[31], knowing about the imbalance ratio allows the correct
application of preprocessing techniques to balance the num-
ber of class instances. Thus improve the results obtained by
classifiers.

Its computational complexity is O(n), and the metric
domain is [1,+∞]. The relationship between the metric and
the complexity of the problem is directly proportional, so a
value of 1 indicates a perfect balance between classes.

III. BIG DATA METRICS: NEIGHBORHOOD DENSITY
AND DECISION TREE PROGRESSION
This section presents the two proposed metrics specifically
designed to deal with big datasets. Section III-A motivates
the design and development of the two proposed metrics.
Neighborhood Density (Section III-B) takes as its basis the
distance between samples and how discarding half of the
samples affects it. Decision Tree Progression (Section III-C)
shows the progression of the accuracy obtained by Decision
Tree with all instances and dropping half of them. Finally,
it summarizes the implemented metrics (Section III-D) that
compose the open source package ComplexityMetrics.

A. MOTIVATION
To the best of our knowledge, there are no specific metrics for
big data problems in the literature. The design and creation of
complexity and density metrics capable of providing valuable
information and scaling up to big datasets is an underde-
veloped area. From this necessity, we designed two specific
metrics with the nearest neighbors (1NN) and DT algorithms
to study density and complexity respectively.

The ND metric is based on the 1NN algorithm, using the
Euclidean distance as a measure of similarity. By discarding
instances, the distance increases and the percentage differ-
ence determines the density. The 1NN algorithm is used
because using larger values for the number of neighbors
would dilute the information provided by the metric. The
main goal of this metric is to compute the churn in density of
the dataset when removing randomly a subset of instances. To
do this, we calculate the average distance between instances.
If we use k>1 the probability of using the same instances to

compute the average distance among instances will increase,
and therefore the metric would lose information. The DTP
metric is based on the Decision Tree classifier. Decision
Tree was selected because of its high scalability in both
the training and classification stages, to quickly characterize
the problem. Using accuracy as a metric, the percentage
difference is calculated by randomly discarding half of the
instances. Any classifier that satisfies these characteristics
can be replaced to have a complexity metric based on a
classifier with a different behavior.

In order to propose density and complexity metrics for
big data problems, percentage values have been prefixed in
terms of the number of instances involved. Thus, a balance
is obtained between runtime and a quality representation of
the density and complexity of the dataset. These values are
the following: 10% validation and 90% training, as well as
a random sub-sampling of 50%. In addition, using very high
or low percentages may lead the metric to extreme situations.
This is why we suggest those values.

B. ND. NEIGHBORHOOD DENSITY

In this subsection, we present an original proposal for esti-
mating density loss in a dataset based on neighborhood. For
the design of the ND metric, we based on the hypothesis
that the distance ratio represents the density of the dataset.
However, simply the distance between the samples is not
enough information, as it varies depending on the dataset
without implying a higher or lower density. In order to pro-
vide valuable information, we will calculate the variation of
the mean distance between the samples of a dataset, counting
the whole dataset, and reducing it by half.

To do this, the mean distance between all instances is
calculated, considering the nearest neighbor. Afterwards, half
of the samples are randomly drawn, and the procedure is
repeated to obtain the mean distance again. The percentage
increase of the distance will be the value that indicates the
density.

Figure 1 and Algorithm 1 describe the workflow for calcu-
lating the ND metric, which is explained below:

1) We start from the complete dataset, and split it into
2, leaving 90% of the data in a set that we will call
neighborhood and the remaining 10% in one that will
be named validation.

2) The average distance of all instances of the validation
set is calculated, along to the neighborhood set. The dis-
tance is calculated as performed by the 1NN algorithm.
The average distance obtained will then be named d.

3) It takes half of the instances of the neighborhood set and
calculates again the average distance of all the instances
from validation set. The average distance obtained will
be named ds.

4) Once calculated d and ds, the result of the metric will be
the percentage difference of the distances. Equation 10
presents the mathematical expression performed.

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Neighborhood
KNN-IS
distance

ҧ𝑑

KNN-IS
distance

𝑑𝑠

50%
𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

Validation
Dataset

90% 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

10%

𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

FIGURE 1: Neighborhood Density Workflow

Algorithm 1 Neighborhood Density
Require: data

1: neighborhood, validation← randomSplit(data,90%,10%)
2: neighborhoodsub← sample(50%)
3:
4: d← averageDistance(neighborhood, validation)
5: ds← averageDistance(neighborhoodsub, validation)
6: return (d− ds/d) · 100

ND =
d− ds
d
· 100 (10)

Going deeper at the technical level, the development of the
ND metric code uses the kNN-IS algorithm [32] to calculate
1NN, KNN-IS algorithm gets the exact nearest neighbors,
implemented on the Spark platform.

C. DTP. DECISION TREE PROGRESSION
In this section, we detail the second original proposal for
estimating accuracy loss in a dataset with the decision tree
algorithm. In this occasion, for the design of the DTP metric,
we take the accuracy of the decision tree classifier as a
measure of complexity. However, accuracy by itself does not
enable us to know how complexity evolves with respect to
the number of instances of the dataset. To obtain valuable
information, we calculate the accuracy loss by excluding half
of the instances in the training.

To do this, a small sample is taken to be used as a test set
and then a DT is trained with the complete set and half of
the data. Accuracy is calculated with the two trained models
by classifying the same test set. The metric consists of the
percentage difference between the accuracy. If it returns a
negative value, it implies that you have obtained a better
result with the model trained with half of the data.

The metric workflow is presented in Figure 2 and the
Algorithm 2, which is composed of the following steps:

1) We start from the complete dataset, and split it into 2,
leaving 90% of the data in a set that we will call training
and the remaining 10% in one that will receive the name
of test.

Training
Decision
tree

𝑎𝑐𝑐

Decision
tree

𝑎𝑐𝑐𝑠

50%
𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

Test
Dataset

90% 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

10%

𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

FIGURE 2: Decision Tree Progression Workflow

Algorithm 2 Decision Tree Progression
Require: data

1: training, test← randomSplit(data,90%,10%)
2: trainingsub← sample(50%)
3:
4: acc← accuracyDT(training, test)
5: accs← accuracyDT(trainingsub, test)
6: return (acc− accs/acc) · 100

2) Afterwards, the DT is trained with the training set, and
the test set is classified, calculating the accuracy (acc).

3) One-half of the instances of the training set are dis-
carded, and will be called trainingsub. We train a new
DT with trainingsub set, and classify the test set, keep-
ing the accuracy (accs).

4) Once calculated acc and accs, we calculate the accuracy
percentage difference, following the Equation 11.

DTP =
acc− accs

acc
· 100 (11)

The DT code used is the one available in the MLLib
library. Its parameters are: Gini as impurity measure. Max-
imum depth equal to 20 and maximum number of samples
per bins set to 32.

D. SOFTWARE PACKAGE: COMPLEXITY METRICS
All metrics presented in this paper are as a free software
package ComplexityMetrics hosted in the spark-packages
[33] library available at: https://spark-packages.org/package/
JMailloH/ComplexityMetrics.

The metrics have been developed under the Map Reduce
paradigm [34] providing them with scalability to address
large datasets. Specifically, the Apache Spark framework [24]
has been selected due to its popularity and results against
other distributed proposals [35]. In particular, the literature
metrics have been implemented using the official machine
learning library, MLlib [36], specifically with the Statistics
class. The Statistics class calculates in a very efficient way
the maximum, minimum and average values of each feature
of the complete dataset. With these statistical values, the
mathematical expressions for each metric described in the
Section II are computed, obtaining the overlap by filtering

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: Summary of the metrics

Abbreviation Name| Minimum Maximum Proportionality Computational Complexity
F1 Maximum Fisher’s discriminant ratio 0 +∞ 1/ ∝ O(m · n)
F2 Volume of overlapping region 0 1 ∝ O(m · n · nc)
F3 Maximum individual feature efficiency 0 1 1/ ∝ O(m · n · nc)
F4 Collective feature efficiency 0 1 1/ ∝ O(m2 · n · nc)
C1 Entropy of class portions 0 1 1/ ∝ O(n)
C2 Imbalance ratio 1 +∞ ∝ O(n)

ND Neighborhood Density −∞ +∞ ∝ O(n2 ·m+ n2·m
2

)

DTP Decision Tree Progression −∞ +∞ ∝ O(n ·m · log(n) + n·m·log(n)
2

)

the instances when it is necessary. The technical details of
the original proposals have already been described in the
Sections III-B and III-C.

Table 3 summarizes the abbreviation and name of each
metric, indicating also the minimum and maximum value
they can take, whether the complexity is directly or inversely
proportional (∝ and 1/ ∝, respectively) to the value of
the metric (Column Proportionality), and the computational
complexity.

The computational complexity indicated is the sequential
execution one. All implementations have been adapted to
be executed in a distributed way using Spark’s primitive
operations, providing high scalability to all of them.

IV. EXPERIMENTAL SET-UP
This section presents the details of the experimental set-up. It
describes the datasets used (Section IV-B), the classification
algorithms used and their parameters (Section IV-C), and fi-
nally, the hardware and software characteristics under which
the experimentation has been carried out (Section IV-A).

A. SOFTWARE AND HARDWARE SPECIFICATION
The experiments have been executed in a cluster dedicated to
distributed computing. The cluster is composed of a master
node, and 14 compute nodes. Regarding software configura-
tion: Spark (version 2.2.1), Scala (version 2.11.6) and HDFS
(Version 2.6.0-cdh5.8.0) on the CentOS operating system
(version 6.5).

The hardware performance of each machine is as follows:
two Intel Xeon CPU E5-2620 processors (2 GHz), with 12
threads each (6 cores), 64 GB main memory and 15 MB
cache memory. The connection between the machines is
Infiniband at 40 Gb/s speed. With this configuration, the
cluster can host a total of 256 map operations in parallel.

B. DATASETS
The experimental study consists of 6 standard big classi-
fication datasets extracted from the UCI repository [37].
They have been selected for their high relevance in previous
experimental studies in the field of big data classification.
Table 2 summarizes the number of samples, features, and
classes for each dataset.

For the experimentation carried out, a 5 fold cross-
validation scheme was followed, with 80% dedicated to
training and 20% to testing. In addition, the experimentation

TABLE 2: Description of the datasets

Dataset #Samples #Features #Classes
Higgs 11,000,000 28 2

Ht_sensor 928,991 11 3
Skin 245,057 3 2
Susy 5,000,000 18 2

Watch_acc 3,540,962 20 7
Watch_gyr 3,205,431 20 7

TABLE 3: Instances for each dataset version

Dataset #Instances #Instances Training
Test 100% 75% 50% 25%

Higgs 2,200,000 8,800,000 6,600,000 4,400,000 2,200,000
Ht_sensor 185,798 743,193 557,395 371,596 185,798

Skin 49,011 196,046 147,034 98,023 49,011
Susy 1,000,000 4,000,000 3,000,000 2,000,000 1,000,000

Watch_acc 708,192 2,832,770 2,124,577 1,416,385 708,192
Watch_gyr 641,086 2,564,345 1,923,259 1,282,172 641,086

has the particularity of making versions of each dataset by
random subsampling, this technique is typically known as
random undersampling (RUS) [38]. RUS is used in problems
of class imbalance, to reduce the number of samples of the
majority class and facilitate the learning of the classification
algorithm used later. However, our objective is different, we
want to know if we need all the samples or if they contain
redundant information. Thus, following the cross validation
scheme, on the one hand, RUS is applied to the training parti-
tion maintaining the same proportion of classes. On the other
hand, RUS is not applied to the test partition, allowing to
compare the accuracy results between the different classifiers
and different sub-sampling levels performed. Table 3 shows
the number of instances in the test and train partitions for
each applied subsampling level.

C. CLASSIFIERS AND PARAMETERS
All metrics described in Section II have been used for exper-
imentation. In addition, in order to cover a larger behavior
in the experimental study, we have used three classification
algorithms with different characteristics. These three algo-
rithms are developed for Big Data problems, and represent
three families of algorithms: based on instances or similarity,
entropy and weight optimization. The algorithms used and
their parameters are listed below:

• Local Hybrid Spill tree Fuzzy k Nearest Neighbors
(LHS-FkNN) [39]1: This algorithm is based on similar-
ity, namely the Euclidean distance. The parameter used

1https://spark-packages.org/package/saurfang/spark-knn

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

is k = 7, both in the class membership degree stage and
the classification stage.

• Decision Tree (DT)2 : This classifier is based on entropy
and information gain. In the experiment carried out, it
has been used a maximum depth of 20 and a maximum
number of samples per leaf equal to 32. Gini impurity
measure how often a randomly instance of the dataset
is wrongly classified if it will be randomly labeled
according to the distribution of labels of the dataset.

• Multilayer Perceptron (MLP)3 : classifier based on
weight adjustment, is a type of artificial feedforward
neural network. For this experiment, we have used 2
hidden layers of 10 and 5 neurons, respectively. With
a block size of 1000 and the maximum number of
iterations equal to 500.

In Map Reduce-like implementations, it is also important
to know the number of map tasks used. In all cases, 256
map operations have been used, which coincide with the
maximum available in the cluster.

As we are dealing with standard classification problems,
the accuracy metric was used to measure the quality of the
results of the three classification algorithms used. The accu-
racy is calculated by dividing the number of well-classified
samples by the number of total samples.

V. ANALYSIS OF RESULTS
In this section, we study the results obtained by the classifi-
cation algorithms and the metrics developed (Section V-A),
its implications with data redundancy (Section V-B) and the
scalability through the runtime (Section V-C).

A. METRICS AND ACCURACY ANALYSIS
The study is designed to analyze the importance of the quality
and quantity of the data available in a big data problem.
Specifically, a sub-sampling study is performed at 75%, 50%
and 25% to analyze whether a large amount of available data
is necessary, or the dataset contains redundant information.

Table 4 show for the three classifiers used and each one of
the metrics, the value obtained with the complete set (100%),
and with the subsamples made, keeping 75%, 50% and 25%
of the samples.

According to the results obtained, we can present the
following conclusions:

• Focusing on the ND metric, there is an incremental pro-
gression from 100% of the samples as they are discarded
in blocks of 25%. This shows how dropping instances
also reduces the density of the dataset. Reducing the
density in the dataset leads to a lack of representation in
the problem, and consequently, to an increase in its com-
plexity. However, if we compare the density obtained
with the complete dataset, and the density with 25%, the
difference presented is very small. This shows us that we
can discard instances without drastically affecting the

2https://spark.apache.org/docs/2.2.1/ml-classification-regression.html#decision-tree-classifier
3https://spark.apache.org/docs/2.2.1/ml-classification-regression.html#multilayer-perceptron-classifier

density obtained. To ensure this behavior, we can see
the slight decrease in accuracy in the classifiers used,
even slightly increasing with MLP.

• If we consider the DTP metric, it always keeps under 1
except for the Higgs dataset, up to 3. These low values
represent the low loss of accuracy involved in discarding
half of the dataset while training the DT classifier. In
fact, if we compare DTP with 100% versus 25%, the
differences are minimal. This information shows us that
by discarding 75% of the instances, there is a minimal
difference in the percentage loss of accuracy with re-
spect to having all the instances.

• The accuracy of the classification algorithms does not
drastically change even when 75% of the samples are
drop randomly, which shows a clear redundancy of
information. Going deeper into the analysis, we see how
LHS-FkNN and DT are affected more by density loss. In
the case of LHS-FkNN it is because it bases its learning
on similarity, specifically on the Euclidean distance,
thus defining the boundaries between classes. DT bases
its learning on entropy, and specifically on the value
taken by each node of the tree when deciding which
class it belongs to. However, MLP learns by adjusting
the weights of each neuron. For this reason, accuracy
is maintained at similar values, improving slightly its
results if we compare having 100% of the samples
versus taking 25%.

• The F1 metric remains stable despite discarding in-
stances. This shows how discarding instances does not
affect the complexity of the problem. In addition, if we
support the results of F1 with the accuracy obtained,
it consolidates the existence of redundancy, and how
discarding instances does not significantly harm the
classifiers, improving the results for the MLP algorithm.

• C1 and C2 metrics, related to the problem of class
imbalance, measure the entropy of classes and the ratio
of imbalance respectively. Both show the almost per-
fect balance of all the datasets, except Skin, where C2
indicates us that there are double as many instances of
one class with respect to the other. These metrics alone
do not provide all the information desired to address
a big data problem, and therefore require new metrics
specific to large datasets. Joining several metrics gets
useful information. An example would be the following:
we have a dataset with C2 greater than 1, with DTP
and ND with low values. This presents a high density
and redundancy of information, with a moderate com-
plexity. Thus, it would be more appropriate to apply
sub-sampling techniques (such as instance selection or
random undersampling) to reduce the size of the dataset
as opposed to applying over-sampling techniques (such
as prototype generation or random oversampling).

• Finally, to highlight a weakness detected in the metrics
F2, F3 and F4, that belonging to the state-of-the-art in
non-big data classification problems. The information
they provide is contrary to that reflected by the accu-

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4: Progression of results with each subsampling

Higgs dataset Ht_sensor dataset
Metric 100% 75% 50% 25% Metric 100% 75% 50% 25%

LHS-FkNN 0.6200 0.6178 0.6153 0.6076 LHS-FkNN 0.9999 0.9998 0.9997 0.9996
DT 0.6995 0.6969 0.6927 0.6830 DT 0.9997 0.9997 0.9997 0.9992

MLP 0.6738 0.6728 0.6730 0.6756 MLP 0.7268 0.7346 0.7279 0.7308
ND 3.5079 3.8493 4.2407 4.6521 ND 48.0838 54.4227 59.5184 61.9404
DTP 3.0444 3.1627 3.3830 3.1459 DTP 0.0180 0.0261 0.0396 0.1009
F1 0.0112 0.0112 0.0111 0.0112 F1 0.0228 0.0227 0.0226 0.0228
F2 0.0000 0.0000 0.0000 0.0000 F2 0.0000 0.0000 0.0000 0.0000
F3 0.9411 0.9411 0.9411 0.9411 F3 0.4036 0.4034 0.4036 0.4038
F4 0.5002 0.5002 0.5001 0.4999 F4 0.4036 0.4034 0.4036 0.4038
C1 0.9974 0.9974 0.9974 0.9975 C1 0.9961 0.9962 0.9961 0.9962
C2 1.0071 1.0071 1.0071 1.0070 C2 1.0065 1.0064 1.0065 1.0063

Skin dataset Susy dataset
Metric 100% 75% 50% 25% Metric 100% 75% 50% 25%

LHS-FkNN 0.9932 0.9929 0.9929 0.9924 LHS-FkNN 0.7476 0.7448 0.7410 0.7343
DT 0.9987 0.9986 0.9984 0.9982 DT 0.7771 0.7736 0.7689 0.7601

MLP 0.9921 0.9982 0.9912 0.9942 MLP 0.7992 0.7992 0.7991 0.7990
ND 6.9607 7.5177 9.2297 11.4003 ND 8.9968 9.0249 9.0141 9.0726
DTP 0.0327 0.0367 0.0401 0.0396 DTP 0.9894 1.1731 1.1063 1.2900
F1 0.3813 0.3812 0.3828 0.3845 F1 0.1091 0.1092 0.1094 0.1095
F2 0.3091 0.3068 0.3026 0.2890 F2 0.0000 0.0000 0.0000 0.0000
F3 0.3694 0.3710 0.3718 0.3732 F3 0.5542 0.5557 0.5557 0.5596
F4 0.1094 0.1097 0.1112 0.1147 F4 0.1000 0.1000 0.3001 0.3000
C1 0.7367 0.7369 0.7384 0.7396 C1 0.9948 0.9948 0.9948 0.9949
C2 2.0402 2.0395 2.0310 2.0245 C2 1.0145 1.0144 1.0144 1.0142

Watch_acc dataset Watch_gyr dataset
Metric 100% 75% 50% 25% Metric 100% 75% 50% 25%

LHS-FkNN 0.9528 0.9485 0.9423 0.9290 LHS-FkNN 0.9771 0.9741 0.9698 0.9605
DT 0.9113 0.9118 0.9080 0.9036 DT 0.9006 0.9005 0.8973 0.8874

MLP 0.6978 0.7016 0.6957 0.7047 MLP 0.6780 0.6809 0.6950 0.7026
ND 57.2443 61.0654 70.8231 91.8570 ND 57.4098 69.5357 81.5532 91.4943
DTP 0.2299 0.5808 0.3975 0.6139 DTP 0.6598 0.7048 0.9522 0.6138
F1 0.0558 0.0558 0.0558 0.0556 F1 0.0867 0.0867 0.0867 0.0867
F2 0.0083 0.0080 0.0075 0.0064 F2 0.0007 0.0007 0.0007 0.0008
F3 1.0000 1.0000 1.0000 1.0000 F3 1.0000 1.0000 1.0000 1.0000
F4 1.0000 1.0000 1.0000 1.0000 F4 1.0000 1.0000 1.0000 1.0000
C1 0.9958 0.9958 0.9958 0.9957 C1 0.9985 0.9985 0.9985 0.9985
C2 1.0033 1.0033 1.0033 1.0034 C2 1.0011 1.0011 1.0011 1.0011

racy reported by the classifiers, generating interest and
relevance to the proposed metrics.

B. REDUNDANCY ANALYSIS
Once all metrics have been analyzed, we are ready to answer
the question raised:

When is Big Data too much data for machine learning?
Much data is not necessary, in the datasets used, based

mainly on three aspects that occur when 75% of the instances
are randomly dropped:

• First, DTP shows how complexity remains very low ei-
ther with the complete set or after discarding instances.

• Second, ND shows a slight increase despite gradually
discarding 25% of the instances, if the density of the
datasets were low, this increase should be more abrupt
and the metric values should be higher.

• Third, accuracy does not suffer a high loss for LHS-
FkNN and DT, increasing slightly for MLP.

C. SCALABILITY ANALYSIS

Below we present the runtime results of classifiers and met-
rics, with the aim of analyzing the scalability of the models
and the influence of the number of samples. Figures 3 and
4 plot the runtime for literature metrics and our proposals,
respectively, showing for each of them the 4 sub-sampling
levels.

According to these runtimes, we extract the following
analysis:

• The metrics in the literature have very fast runtimes,
reaching a maximum of approximately 200 seconds for
the Higgs dataset. In addition, the difference between
the runtime of 100% of the data and 25% is not very
high, which shows an excelent scalability of the metrics.

• In relation to the proposed metrics, ND obtains higher
runtimes than the other metrics. In addition, it increases
considerably if we compare 25% against 100%. This
shows how the number of instances affects runtime.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0

5

10

15

20

25

30

35

40

45

50

F1 F2 F3 F4 C1 C2 F1 F2 F3 F4 C1 C2 F1 F2 F3 F4 C1 C2 F1 F2 F3 F4 C1 C2 F1 F2 F3 F4 C1 C2

Ht_sensor Skin Susy Watch_acc Watch_gyr

100% 25%

0

25

50

75

100

125

150

175

200

F1 F2 F3 F4 C1 C2

Higgs

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

FIGURE 3: Runtime of literature metrics

0

2000

4000

6000

8000

10000

12000

Higgs Susy

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

0

100

200

300

400

500

600

700

Ht_sensor Skin Watch_acc Watch_gyr

100% 75% 50% 25%

(a) ND: Neighborhood Density

0

50

100

150

200

250

300

350

Higgs Susy

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

0

10

20

30

40

50

60

70

80

Ht_sensor Skin Watch_acc Watch_gyr

100% 75% 50% 25%

(b) DTP: Decision Tree Progression

FIGURE 4: Runtime of proposed metrics

0

100

200

300

400

500

600

700

LH
S-

Fk
N

N D
T

M
LP

Higgs

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

0

20

40

60

80

100

120

140

160

180

200

LH
S-

Fk
N

N D
T

M
LP

LH
S-

Fk
N

N D
T

M
LP

LH
S-

Fk
N

N D
T

M
LP

LH
S-

Fk
N

N D
T

M
LP

LH
S-

Fk
N

N D
T

M
LP

Ht_sensor Skin Susy Watch_acc Watch_gyr

100%

25%

FIGURE 5: Runtime of classifiers

DTP is faster than ND and is more robust in scalability,
as it is less affected by the number of instances. It
is very important to remember the results obtained in
the previous section, where it is shown that ND and
DTP are the metrics that provide best information to
the problem. Thus, obtaining the values of the proposed
metrics allows us to know if we are facing problems

where we can discard instances and keep the results very
close.

After analyzing the scalability of the metrics, it is neces-
sary to analyze the impact of the instance reduction in the
classifiers. For this purpose, Figure 5 shows the runtime of
the three classifiers with the 6 datasets, for their full version
(100%) and maximum subsample applied (25%).

As expected, all the algorithms show a great reduction in
runtime. LHS-FkNN and MLP achieve the greatest reduction
in runtime. The reason is the LHS-FkNN algorithm is an
instance-based method and reducing the number of instances
decreases the number of comparisons to be made at the
classification stage. On the other hand, MLP is based on
weighting through an iterative process, for this reason, a high
number of instances is affected in complexity by the number
of iterations performed to train the model. DT remains more
stable, slightly affected by the number of instances due to the
design of the algorithm to train the tree in a distributed way.

The most relevant analysis that can be extracted involves
the runtime. The time spent in obtaining the metrics can
lead us to the conclusion of reducing the dataset by half, or
keeping only 25% without significantly affecting the quality
of the classifier. In addition, it allows us to perform more

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

experiments to determine which is the algorithm that learns
most about our problem and optimize the parameters of the
classifiers. For example, we can see a realistic scenario: we
find a problem where the ND and DTP metrics obtain low
values, and in addition the C1 and C2 metrics show us a class
imbalance problem. We can apply random undersampling, to
produce a balance between classes and improve the quality
of the results. Moreover, by reducing the size of the dataset,
we can spend more time on finding a better solution to the
problem, such as using preprocessing techniques to filter
noisy instances or optimize the parameters of the classifier.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, two metrics have been proposed to study the
complexity and density in big data problems: ND and DTP
study density and accuracy progression by discarding half of
the samples randomly. In addition, some basic metrics have
been adapted from the literature to handle big dataset. The
design based on Spark allows us to characterize large datasets
in a short period of time, obtaining valuable information. The
developed metrics are available in the open source repos-
itory Spark-packages called ComplexityMetrics at: https://
spark-packages.org/package/JMailloH/ComplexityMetrics

According to the study carried out through the proposed
metrics, it is common for big datasets to show redundancy
information in their samples. This high redundancy allows us
to reduce the size to 25% of the samples without drastically
affecting the accuracy obtained by the classifiers, achieving
a significant faster runtimes. This shows that the number of
instances in big datasets used is more than necessary, and
highlights the need to prioritize preprocessing techniques to
obtain smart data.

As a final conclusion, we have to emphasize the fact of
redundancy in many big data classification problems, where
with a much smaller set, a small quality dataset, we can have
similar or better results. Here the challenge is in obtaining
smart data with the minimum necessary size.

As future work we believe that the proposed metrics have
a great potential to be integrated in the area of auto machine
learning techniques [19] in the big data context. A good
starting point would be to design a technique that allows us
to determine the necessary size to tackle a big data classifica-
tion problem, reducing the number of instances significantly
without affecting the results obtained, toward a reduced smart
data.

In addition, complexity metrics similar to DTP can be
developed by changing the base classifier, to study how the
reduction of the dataset affects other classifier families.

ACKNOWLEDGMENTS

This contribution has been supported by the Spanish National
Research Project TIN2017-89517-P. J. Maillo hold a FPU
scholarship from the Spanish Ministry of Education.

REFERENCES
[1] T. B. Ho, “Knowledge discovery,” in Knowledge Science. CRC Press,

2016, pp. 70–93.
[2] P. V. Coveney, E. R. Dougherty, and R. R. Highfield, “Big data need big

theory too,” Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, vol. 374, no. 2080, p. 20160153,
2016.

[3] R. J. Gonzalez, “Hacking the citizenry?: Personality profiling, big data and
the election of donald trump,” Anthropology Today, vol. 33, no. 3, pp. 9–
12, 2017.

[4] Z. Tufekci, “Big questions for social media big data: Representativeness,
validity and other methodological pitfalls,” in Eighth International AAAI
Conference on Weblogs and Social Media, 2014.

[5] T. B. Murdoch and A. S. Detsky, “The inevitable application of big data to
health care,” Jama, vol. 309, no. 13, pp. 1351–1352, 2013.

[6] J. A. Ramos, J. B. Rollins, and D. G. Wilhite, “Smart data caching using
data mining,” Mar. 22 2011, Google Patents US Patent 7,912,812.

[7] D. Ardagna, C. Cappiello, W. Samá, and M. Vitali, “Context-aware data
quality assessment for big data,” Future Generation Computer Systems,
vol. 89, pp. 548–562, 2018.

[8] S. García, J. Luengo, and F. Herrera, Data preprocessing in data mining.
Springer, 2015.

[9] I. Triguero, D. García-Gil, J. Maillo, J. Luengo, S. García, and F. Herrera,
“Transforming big data into smart data: An insight on the use of the k-
nearest neighbors algorithm to obtain quality data,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 2, p. e1289,
2019.

[10] T. M. Cover, P. Hart et al., “Nearest neighbor pattern classification,” IEEE
transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[11] J. Luengo, S. García, and F. Herrera, “On the choice of the best imputation
methods for missing values considering three groups of classification
methods,” Knowledge and Information Systems, vol. 32, no. 1, pp. 77–108,
2012.

[12] M. H. ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah, and
S. U. Khan, “Big data reduction methods: a survey,” Data Science and
Engineering, vol. 1, no. 4, pp. 265–284, 2016.

[13] D. García-Gil, F. Luque-Sánchez, J. Luengo, S. García, and F. Herrera,
“From big to smart data: Iterative ensemble filter for noise filtering in big
data classification,” International Journal of Intelligent Systems, vol. 34,
no. 12, pp. 3260–3274, 2019.

[14] Z. Liu, Q. Pan, J. Dezert, and G. Mercier, “Hybrid classification system
for uncertain data,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 47, no. 10, pp. 2783–2790, Oct 2017.

[15] T. Denœux, S. Sriboonchitta, and O. Kanjanatarakul, “Evidential cluster-
ing of large dissimilarity data,” Knowledge-Based Systems, vol. 106, pp.
179 – 195, 2016.

[16] L. P. F. Garcia, A. C. Lorena, M. C. P. de Souto, and T. K. Ho, “Classifier
recommendation using data complexity measures,” in 24th International
Conference on Pattern Recognition (ICPR), Aug 2018, pp. 874–879.

[17] I. Muslea, S. Minton, and C. A. Knoblock, “Selective sampling with
redundant views,” in AAAI/IAAI, 2000, pp. 621–626.

[18] M. Sugiyama, T. Suzuki, and T. Kanamori, Density ratio estimation in
machine learning. Cambridge University Press, 2012.

[19] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning.
Springer, 2019.

[20] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter, Auto-sklearn: Efficient and Robust Automated Machine
Learning. Cham: Springer International Publishing, 2019, pp. 113–134.

[21] A. C. Lorena, L. P. Garcia, J. Lehmann, M. C. Souto, and T. K. Ho,
“How complex is your classification problem?: A survey on measuring
classification complexity,” ACM Computing Surveys (CSUR), vol. 52,
no. 5, p. 107, 2019.

[22] L. P. Garcia, A. C. de Carvalho, and A. C. Lorena, “Effect of label noise in
the complexity of classification problems,” Neurocomputing, vol. 160, pp.
108–119, 2015.

[23] A. Hoekstra and R. P. Duin, “On the nonlinearity of pattern classifiers,”
in Proceedings of 13th International Conference on Pattern Recognition,
vol. 4. IEEE, 1996, pp. 271–275.

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Presented as
part of the 9th USENIX Symposium on Networked Systems Design and
Implementation NSDI 12, 2012, pp. 15–28.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2991800, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[25] A. Orriols-Puig, N. Macia, and T. K. Ho, “Documentation for the data
complexity library in c++,” Ph.D. dissertation, Universitat Ramon Llull,
La Salle, 2010.

[26] R. A. Mollineda, J. S. Sánchez, and J. M. Sotoca, “Data characterization
for effective prototype selection,” in Iberian Conference on Pattern Recog-
nition and Image Analysis. Springer, 2005, pp. 27–34.

[27] L. Cummins, “Combining and choosing case base maintenance algo-
rithms,” PhD Thesis, University College Cork, 2013.

[28] A. C. Lorena, I. G. Costa, N. Spolaôr, and M. C. De Souto, “Analysis
of complexity indices for classification problems: Cancer gene expression
data,” Neurocomputing, vol. 75, no. 1, pp. 33–42, 2012.

[29] N. V. Chawla, Data Mining for Imbalanced Datasets: An Overview.
Boston, MA: Springer US, 2010, pp. 875–886.

[30] A. K. Tanwani and M. Farooq, “Classification potential vs. classification
accuracy: a comprehensive study of evolutionary algorithms with biomed-
ical datasets,” in Learning Classifier Systems. Springer, 2009, pp. 127–
144.

[31] A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Her-
rera, Learning from imbalanced data sets. Springer, 2018.

[32] J. Maillo, S. Ramírez, I. Triguero, and F. Herrera, “kNN-IS: an iterative
spark-based design of the k-Nearest Neighbors classifier for big data,”
Knowledge-Based Systems, vol. 117, pp. 3–15, 2017.

[33] Spark packages contributors, “Spark Packages: A community index of
third-party packages for Apache Spark,” 2020, https://spark-packages.
org/, [Online; accessed 15 January 2020].

[34] J. Dean and S. Ghemawat, “Map Reduce: A flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[35] C.-F. Tsai, W.-C. Lin, and S.-W. Ke, “Big data mining with parallel
computing: A comparison of distributed and mapreduce methodologies,”
Journal of Systems and Software, vol. 122, pp. 83 – 92, 2016.

[36] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, and et al., “Mllib: Machine
learning in apache spark,” The Journal of Machine Learning Research,
vol. 17, no. 1, p. 1235–1241, Jan. 2016.

[37] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[38] S.-J. Yen and Y.-S. Lee, Under-Sampling Approaches for Improving
Prediction of the Minority Class in an Imbalanced Dataset. Springer
Berlin Heidelberg, 2006, pp. 731–740.

[39] J. Maillo, S. García, J. Luengo, F. Herrera, and I. Triguero, “Fast and
scalable approaches to accelerate the fuzzy k nearest neighbors classifier
for big data,” IEEE Transactions on Fuzzy Systems, 2019 - In press.

JESUS MAILLO received the B.Sc. and M.Sc.
degrees in computer science from the University
of Granada, Granada, Spain, in 2014 and 2015. He
is currently pursuing the Ph.D. degree in the De-
partment of Computer Science and Artificial Intel-
ligence in the University of Granada. His research
interests include data mining, data preprocessing
and big data.

ISAAC TRIGUERO received his M.Sc. and
Ph.D. degrees in Computer Science from the Uni-
versity of Granada, Granada, Spain, in 2009 and
2014, respectively. He is currently an Assistant
Professor of Data Science since June 2016. His
work is mostly concerned with the research of
novel methodologies for big data analytics. Dr
Triguero has published more than 70 international
publications in the fields of Big Data, Machine
Learning and Optimisation (H-index=24 and more

than 2200 citations on Google Scholar). He is a Section Editor-in-Chief of
the Machine Learning and Knowledge Extraction journal, and an associate
editor of the Big Data and Cognitive Computing journal, and the IEEE
Access journal. He has acted as Program Co-Chair of the IEEE Conference
on Smart Data (2016), the IEEE Conference on Big Data Science and En-
gineering (2017), and the IEEE International Congress on Big Data (2018).
Dr Triguero is currently leading a Knowledge Transfer Partnership project
funded by Innovative UK and the energy provider E.ON that investigates
Smart Metering data.

FRANCISCO HERRERA (SM’15)received his
M.Sc. in Mathematics in 1988 and Ph.D. in Math-
ematics in 1991, both from the University of
Granada, Spain. He is a Professor in the Depart-
ment of Computer Science and Artificial Intelli-
gence at the University of Granada and Director of
the Andalusian Research Institute in Data Science
and Computational Intelligence (DaSCI). He’s an
academician in the Royal Academy of Engineer-
ing (Spain).

He has been the supervisor of 49 Ph.D. students. He has published
more than 500 journal papers, receiving more than 82000 citations (Scholar
Google, H-index 139). He has been selected as a Highly Cited Researcher
(in the fields of Computer Science and Engineering, respectively, 2014 to
present, Clarivate Analytics).

He currently acts as Editor in Chief of the international journal "Informa-
tion Fusion" (Elsevier). He acts as editorial member of a dozen of journals.

He received the several honors and awards, among others: ECCAI Fellow
2009, IFSA Fellow 2013, 2010 Spanish National Award on Computer
Science ARITMEL to the "Spanish Engineer on Computer Science", In-
ternational Cajastur "Mamdani" Prize for Soft Computing (Fourth Edition,
2010), IEEE Transactions on Fuzzy System Outstanding 2008 and 2012
Paper, 2011 Lotfi A. Zadeh Prize Best paper Award (IFSA Association),
2013 AEPIA Award to a scientific career in Artificial Intelligence, 2014
XV Andalucía Research Prize Maimónides, 2017 Andalucía Medal (by the
regional government of Andalucía), 2018 “Granada: Science and Innovation
City” award.

His current research interests include among others, Computational In-
telligence (including fuzzy modeling, computing with words, evolutionary
algorithms and deep learning), information fusion and decision making, and
data science (including data preprocessing, prediction, singular problems,
and big data).

VOLUME 4, 2016 11


