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Abstract: The widespread oil extraction in the Niger Delta and the impacts on different
types of vegetation are poorly understood due to lack of ground access. This study aims to
determine the impact of oil spills on vegetation in the Niger Delta using a Landsat satellite-
derived normalised difference vegetation index (NDVI). The impact of oil spill volume and
time after an oil spill on the health of different types of vegetation were evaluated, and the
time series of the changes in NDVI were analysed to determine the medium- and long-term
responses of vegetation to oil spill exposure, using a combination of linear regression and
paired t-tests. With regards to the relationship between spill volume and NDVI, a moderate
correlation (R2 = 0.5018) was observed for spill volumes in the range of 401–1000 barrels for
sparse vegetation, for volumes greater than 1000 barrels for dense vegetation (R2 = 0.4356),
whilst no correlation was found for mangrove vegetation at any range of spill volume.
Similarly, the results of the paired t-test confirmed a significant difference (p-value < 0.05)
between the change in NDVI values for spill sites and non-spill sites for all vegetation
types, with the sparse vegetation being the most affected of the three types. However,
the impact of the oil spill on vegetation over a period is not statistically significant. The
outcomes of this study provide insights into how different types of vegetation in the Niger
Delta respond to oil spills, which could ultimately help in designing an oil spill clean-up
program to reduce the impact on the environment.

Keywords: normalised difference vegetation index (NDVI); vegetation health; vegetation
degradation; mangrove; sparse vegetation; dense vegetation; paired t-tests

1. Introduction
The impact of oil production activities on vegetation cover can be particularly devas-

tating, resulting in either its degradation or complete destruction. This can occur due to
changes in vegetation health and vigour following exposure to oil pollution [1–3], therefore
necessitating effective monitoring of vegetation health to help identify and mitigate the
impact of oil releases on the environment. The two main approaches for assessing and mon-
itoring the health of vegetation are field-based [4] or through satellite remote sensing [5].
Key advantages of the field-based approach include the ability to acquire measurements at
fine (i.e., leaf) scale and obtain under-canopy measurements and the flexibility in obtaining
measurements whenever required. Despite these advantages, field-based approaches can
consume considerable time, effort and resources, typically restricting their application to
small areas and rendering them unsuitable for regional, national and global monitoring [6].
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In addition, field-based approaches are challenging to implement in inhospitable locations,
whether due to security concerns or inaccessible terrain.

Progression in optical sensor technology has facilitated a great opportunity to under-
stand vegetation health/quality at various spatiotemporal scales previously regarded as
complex [7]. Remote sensing of vegetation has advanced significantly over the past half-
century due to advances in technology and analyses improving the ability to retrieve useful
plant biochemical, physiological and structural quantities across a range of spatial and tem-
poral scales [8]. Satellite remote sensing has become an essential tool in vegetation health
status monitoring because it provides a means of overcoming the limitations of field-based
approaches [9]. For instance, it provides routinely acquired remote measurements over
large areas, which permits regional, national and global monitoring, whilst overcoming
the challenges of working on the ground [9] in inhospitable locations. Moreover, several
satellite missions exist, e.g., Landsat, meaning that the vast historical archives of data that
have been acquired enable long-term spatiotemporal analysis of vegetation health and
other land cover changes. Accordingly, satellite remote sensing can play an important role
in detecting and responding to oil spills and assessing the impact they have on the envi-
ronment [1,10–14]. More broadly, satellite remote sensing data have been used to forecast
crop yield and assess natural forest expansion [15], biodiversity and conservation [16], and
drought monitoring [17,18] among other vegetation-related applications.

Vegetation indices derived from remotely sensed (satellite) data can be an efficient
tool for measuring vegetation status, growth, and biophysical parameters [19,20]. Among
the algorithms developed for remote estimation of biophysical characteristics of vegetation,
the mathematical combination of visible and near-infrared reflectance bands is the most
widely used [21]. These indices involve measuring electromagnetic energy reflected from
vegetation canopies using optical sensors [19,22]. These sensors can be either multi- or
hyperspectral sensors, with the indices computed from the reflectance measured at specific
wavelengths. In the case of the former, these indices can be grouped into broadband mul-
tispectral vegetation indices (BMVIs) and narrow-band multispectral vegetation indices
(NMVIs), depending on the wavebands they use [23]. Time series of vegetation indices
like the normalised difference vegetation index (NDVI) can be used to study vegetation
dynamics [24], as they have proven to be a robust indicator of terrestrial vegetation pro-
ductivity [25]. Such time series, therefore, provide a straightforward means of remotely
determining and monitoring vegetation health and change from space [14], which is es-
pecially beneficial for assessing the impact of oil pollution in areas that are difficult to
access on the ground. Among authors that have used remotely sensed vegetation indices
to monitor the impact of oil spills on the vegetation area [2,26].

The Niger Delta region has experienced oil production-related vegetation degradation
through two main pathways: oil spills onto the land and gas flares into the atmosphere.
For more than four decades, oil exploration and production activities have left a severely
degraded environment in the Niger Delta region [27]. However, in recent times, the issue
of oil spills in the Niger Delta was exacerbated due to militant activities in early 2006. A
substantial amount of crude oil pipeline vandalism in the Niger Delta was carried out
by militant groups with the excuse of fighting for better environmental management and
development of the region [28]. Approximately 80,000–300,000 barrels (bbl)/day—valued at
USD six billion—have been spilt into the environment in the Niger Delta in recent years [29].
Detecting oil spills and their impacts in polluted environs such as mangrove forests can be
challenging using in situ measurements and laboratory-based analysis techniques due to
security challenges and difficult terrain. As a more practical alternative, satellite remote
sensing presents itself as an effective tool for assessing and monitoring vegetation health
and status in polluted areas, especially over vast extents [30].
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Despite the obvious potential offered, studies attempting to monitor the impact of
oil spills in the Niger Delta region using satellite-derived vegetation indices are relatively
scarce. Previous studies examining the effect of oil spills on the health of vegetation in this
region using satellite-derived vegetation indices include Adamu Adamu [30] and Adamu
et al. [1,31,32]. These studies investigated the influence of oil spill volume and time gap
(i.e., number of days between oil spill events and subsequent satellite observations) on the
condition of mangrove forests in the Niger Delta region using various vegetation indices,
with the NDVI producing a stronger correlation between the volume of the oil spilt and
the NDVI values. Similarly, the study by Ansah et al. [10] used the best five performing
vegetation indices from [30] to compare the difference between vegetation at spill and
non-spill sites. In addition, Ozigis et al. [13] identified oil-impacted land in the region by
using a random forest classifier in conjunction with Landsat 8-derived vegetation health
indices. Further, Onyia et al. [33] monitored the impact of oil pollution on plant species
biodiversity at a regional scale by integrating a Hyperion satellite-derived normalised
difference vegetation vigour index (NDVVI) and field data. However, these previous
studies focus solely on detecting oil spills or determining the impact of oil pollution on
the health of only a single vegetation species (i.e., mangrove) or used the absolute NDVI
values. Thus, the impact of exposure to oil on the health of other types of vegetation found
in the Niger Delta region is still poorly understood. Furthermore, the studies that focus
specifically on the health of the vegetation in the region typically only compare the absolute
NDVI values for groups of spill and non-spill sites before and after oil spills. However,
comparing absolute values in this way fails to account for differences in the influence of
other external factors on the health of vegetation that may vary naturally between sites,
such as differences in soil nutrients and water availability. The novelty in this research is,
to the best of our knowledge, that this is the first study to monitor the impact of the oil spill
on three different types of vegetation and to use change-in-NDVI values.

Accordingly, there is a clear need for a more comprehensive understanding of the
impact of oil spills on vegetation in the Niger Delta region. This study, therefore, aims
to address this by determining the impact of oil spills on a range of vegetation types in
the Niger Delta region by analysing location-specific changes in satellite-derived NDVI
values at spill and non-spill sites. This will be achieved by (1) analysing the impact of
oil spill volume and time after an oil spill on the health of three types of vegetation and
(2) undertaking temporal monitoring of NDVI for the three types of vegetation to determine
their medium- and long-term responses to oil spills. For this study, the vegetation types are
divided into three broad categories: dense, sparse, and mangrove. The hypothesised result
is that (1) the oil spill volume and the time gap after the oil spill determines the impact of
the oil spill event on the vegetation; (2) there is a significant difference, as revealed by the
NDVI, between the health of vegetation exposed to oil spill compared to the vegetation
not exposed to oil spill and (3) different vegetation types will respond differently to the oil
spill events.

2. Materials and Methods
2.1. Study Area

The Niger Delta region (Nigeria) comprises nine oil-producing states—sometimes
called the political Niger Delta—hosting approximately 1500 communities and various oil
and gas companies [34]. Traditionally, the Niger Delta comprises the three states of Rivers,
Bayelsa and Delta States. These three states account for approximately 70% of Nigeria’s oil
spillage incidences [35]. The study area is located within longitudes 4◦55′ E and 7◦39′ E and
latitudes 4◦7′ N and 6◦33′ N (Figure 1a). All three states are oil and agricultural-producing
states. The climate in the Niger Delta region has been classified as a wet equatorial climate
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characterised by persistent cloud cover and few sunshine hours, which produces damp
weather conditions for most parts of the year [36]. The annual rainfall ranges from 1500
to 2000 mm in the northwestern portions of the Niger Delta [37]. The average monthly
temperature for the warmest months (from February to April) ranges from 28 to 33 ◦C,
whilst the average monthly temperature for the coolest months (from June to September)
ranges from 21 to 23 ◦C [38]. The Nigerian coastal geology is sedimentary, dominated by the
geology of the arcuate Niger Delta [39]. The large amount of sediment carried by the river
system over the centuries has resulted in a vast, relatively flat basin [40]. The river Niger
forms a complex network of channels that drain into the Gulf of Guinea, characterised by
rain-fed deltaic vegetation. The area is formed of fluvial and marine sediments built up
over the past 50 million years since the upper Cretaceous period [32]. The natural delta
of the Niger River is a vast sedimentary basin with deltaic deposits, which are comprised
mainly of medium to coarse unconsolidated sands, silt, clay, shale, and peat [38]. The three
lithostatic units in the Niger Delta were developed from the Akata Formation, Agbada
Formation, and Benin Formation [41].
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field picture of dense vegetation (d), sparse vegetation (e), and mangrove vegetation (f).

However, the vegetation in the Niger Delta region was grouped into three primary
types of cover for this study: (1) mangroves, which cover the coastal region of the delta,
along with brackish lagoon and river systems, and freshwater swamp forest; (2) dense
vegetation, which comprises rainforest; (3) sparse vegetation consisting of derived savannah
grassland. The dominant mangroves are Red Mangroves (Rhizophora spp.), which comprise
more than 90% of the vegetation in the mangrove zone [42]. Common species belonging to
the dense vegetation category are Oil Palm (Elaeis guineensis) and mango trees (Mangifera
indica), whereas the sparse vegetation category is dominated by Elephant grass (Pennisetum
purpureum), Spear grass (Panicum maximum), and Awolowo grass (Chromolaena odorata).
The sparse vegetation could be found in the seaward ecological zone, the outer edge of the



Appl. Sci. 2025, 15, 338 5 of 24

mangrove ecosystem away from the oceans [43]. Field photographs of the three main types
of vegetation found in the study area are shown in Figure 1d–f.

2.2. Data
2.2.1. Satellite-Derived Vegetation Index (NDVI)

Remote sensing Vegetation Indices (VIs) can be used to quantitative and qualitative
evaluate vegetation cover, vigor, and growth dynamics [19]. The choice of vegetation index,
the NDVI, was based on the result from Adamu [30], which shows that five spectral indices,
namely, the normalised difference vegetation index (NDVI), soil-adjusted vegetation index
(SAVI), adjusted resistant vegetation index (ARVI2), green near-infrared (G/NIR), and green
shortwave infrared (G/SWIR), out of the twenty (20) VI tested, were consistently sensitive
to the effects of oil pollution on vegetation in the Niger Delta. Similarly, the study by Ansah
et al. [10] shows that three of the indices—EVI, NDVI, and SAVI—were very sensitive
to the effects of oil spills on the different vegetation covers in the Niger Delta among
five (5) vegetation indices. The NDVI has been demonstrated to be a robust vegetation
index in monitoring the impact of oil spills on the health of vegetation [1,12,30,31,44] and is
the most suitable index to detect the effects of petroleum pollution on vegetation [45]. The
NDVI is an index of plant greenness as well as an indicator of the density of plants [46],
which is based on the reflectance properties of the areas covered by the vegetation [47].

The launch of the Landsat (ERTS-1) mission in 1972 sparked investigations surround-
ing its capability for vegetation monitoring and categorisation [8]. The health of vegetation
in the study area was determined using the Landsat collection 1 NDVI product, com-
puted using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery for
the period 2006–2018 via the EROS Science Processing Architecture (ESPA) on-demand
interface. The Landsat 1 data collection comprises derived vegetation indices that are
atmospherically corrected and orthorectified to provide an archive of consistent data for
time-series analysis [48]. The ready-processed Landsat NDVI data were downloaded
from https://espa.cr.usgs.gov/ (accessed on 22 December 2024). geometrically corrected,
and projected to WGS84 Universal Traverse Mercator (UTM) projection Zones 31 and 32
(Table 1). For the period 2006–2018, a total of 22 NDVI images acquired around the timing
of oil spill incidences were used in this study (Table 2). These images were selected to
coincide with the most consistent weather conditions during the dry season from December
to February to minimise cloud cover and temperature variability. Accordingly, the effect of
meteorological conditions on the observed changes in NDVI is mitigated.

The NDVI in the ready-processed data is calculated from each Landsat 7 ETM+ ac-
cording to Equation (1):

NDVI =
NIR − RED
NIR + RED

(1)

where RED and NIR represent the spectral reflectance bands measurements acquired in
the red (visible) and near-infrared regions with a wavelength range of 0.63–0.69 µm and
0.77–0.90 µm, respectively.

Table 1. Sensor and orbit path/row of the Landsat 7 ETM+ imagery.

Satellite Sensor Path/Row UTM Zone

L7 ETM+ 188/56 32
L7 ETM+ 188/57 32
L7 ETM+ 189/56 32
L7 ETM+ 189/57 31
L7 ETM+ 190/56 31

https://espa.cr.usgs.gov/
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Table 2. Image acquisition dates and number of images acquired per year.

Year NDVI Acquisition Dates

2006 9 December 2006
2008 14 February 2008 7 December 2008 30 December 2008
2010 2 January 2010 18 January 2010
2011 11 January 2011 14 January 2011 21 January 2011
2012 17 January 2012 9 February 2012
2013 10 January 2013 21 December 2013
2014 13 January 2014
2015 9 January 2015 16 January 2015 27 December 2015
2016 3 January 2016 29 December 2016
2017 5 January 2017
2018 1 January 2018 8 January 2018

2.2.2. Oil Spill Data

Oil spill data obtained from the Nigerian Oil Spill Monitor website https://
oilspillmonitor.ng/ (Accessed on 11 December 2017) were used to analyse the oil spill
incidences recorded in Nigeria from 2006 to 2018. The data were compiled by the National
Oil Spill Detection and Response Agency (NOSDRA), which relies on the voluntary support
of oil companies to provide information on oil spills, such as their geographic coordinates,
date and estimated spill volumes. The information on oil spills, which encompasses the
dates, times, causes, magnitude, and GPS coordinates of oil spill locations, is determined
through a process called Joint Investigation Visit (JIV), which includes the representatives of
regulatory agencies, the oil company, the affected community, and the security forces [48,49].
The oil spill information is constantly validated and updated on the database as soon as
an oil spill incident occurs [48]. The Nigerian Oil Spill Monitor website has been a source
of data for research that utilises oil spill data in the Niger Delta [48,50–52]. However, no
fieldwork was undertaken to collect ground data to validate the oil spill site or to collect
soil samples. The Niger Delta is a challenging environment for field-based investigations
due to the physical inaccessibility and security threats which makes it impossible to assess
the spatial extent of oil spill impacts using traditional survey and sampling techniques [51],
and it would have been capital-intensive and time-consuming, considering the huge area
involved [10].

Figure 2 shows the distribution of oil spill occurrences within the study area that
were used to determine the impact of oil spills on vegetation. In order to determine
the vegetation-specific effects, the oil spills were split into categories according to the
type of vegetation cover on which they occurred (Figure 2a). Additionally, a separate
corresponding sample of sites not affected by oil spills was selected for each vegetation
type for use as controls against which to compare the health of vegetation exposed to oil
(Figure 2b).

https://oilspillmonitor.ng/
https://oilspillmonitor.ng/
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Figure 2. (a) Spatial distribution of oil spill sample points for determining the effect of oil spills on
the different vegetation types and (b) locations of spills and no-spills sites for temporal monitoring of
oil spill impacts on vegetation.

2.3. Methods
2.3.1. Data Pre-Processing and Plotting

The Landsat-generated NDVIs were already pre-processed, and no further processing
was performed. However, the oil spill data were cleaned to remove some spill points with
incomplete data, such as the lack of complete GPS coordinates (longitude and latitude)
and spill volume. The oil spill data were plotted in ArcGIS 10.8.2 and overlaid on the
NDVI map.

2.3.2. Selection of Oil Spill Sites and Determining the Impact of Oil Spills on Vegetation

The locations of the selected oil spill and non-spill control sites (see Figure 2) across
the study area were used to extract the corresponding Landsat NDVI values for subsequent
analysis. All the sites were selected to ensure they did not fall within the wedge-shaped
scan-to-scan gaps caused by the Landsat 7 ETM+ Scan Line Corrector (SLC) failure on
31 May 2003 [53]. Firstly, to determine the impacts of both oil spill volume and the time
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gap between oil spills and subsequent observations on the vegetation health, oil spill
sample sites totalling 55 for dense vegetation, 60 for sparse vegetation, and 61 for mangrove
vegetation were identified with oil spill volumes ranging from 10 to 5000 bbl. The vegetation
cover class for each spill sample site was determined using high-resolution Google Earth
time series imagery to determine the oil spill point that fell on a particular vegetation
type. The corresponding post-spill NDVI value was extracted (Figure 3) from within a
1 × 1 pixel window around each site from the first available Landsat image acquired after
each spill. A 1 × 1 window was used since the areal extent of oil spills < 225 bbl is typically
smaller than that of a single Landsat pixel (900 m2). The extracted post-spill NDVI values
for the sample sites were then correlated with both spill volume and time gap since the oil
spill occurred in order to determine their effect on vegetation health. The time gap was
computed as the difference between the date of a recorded oil spill and the date of the
corresponding post-spill NDVI observation. Figure 3 shows Google Maps images of some
oil spill sites with their corresponding control sites for some selected dense, sparse, and
mangrove vegetation, respectively.

Secondly, to investigate whether the health of vegetation exposed to oil differs from
vegetation at sites not exposed to oil, pair-wise comparisons of NDVI at spill sites (SSs)
with those at no-spill control sites (CSs) were performed. Spill sites were selected for each
of the three land cover types: eight for dense vegetation, eight for sparse vegetation, and
six for mangroves (Figure 2b). Sites with oil spill volumes in the range of 225–2550 bbl
were specifically selected for this analysis based on the minimum volume for which oil
pollution is readily detectable in the region [32]. At each of the oil spill locations, the
average NDVI value within a 3 × 3 pixel window around the site was calculated because
oil from spills at this volume range may migrate from the point of source, thereby also
affecting neighbouring surroundings [14,31] The same sampling approach was also used
for no-spill sites. For each site, a time series of NDVI values was extracted for a period
covering just before the spill and 4–10 years afterwards, depending on when the oil spills
occurred. However, in this case, instead of using the absolute NDVI values to determine
the temporal response in the health of the vegetation, changes in NDVI at SSs and CSs
were calculated relative to the NDVI value just prior to the timings of spills. Utilising the
change in NDVI accounts for the possibility that some sites may have inherently higher
NDVI values than those at other sites if exposed to different health-affecting external
factors. The potential effects of such external factors on the vegetation’s health were further
mitigated by carefully selecting SS and CS pairs with corresponding conditions, such as
water availability, sunlight, soil composition, and climate (Figure 2).

The NDVI values at each site were used to derive a change in NDVI (∆NDVI) time
series using the following equation using Equation (2):

∆NDVI = NDVIAS
1. . .. . . NDVIAS

s − NDVIBS (2)

where NDVIBS is the baseline NDVI value before an oil spill occurs, whilst NDVIAS
1

and NDVIAS
s are the first and subsequent NDVI values after the occurrence of a

spill, respectively.
Table 3 shows the spill dates, volumes, and temporal coverage for the ∆NDVI time

series for dense, sparse and mangrove vegetation sample spill sites. The oil spill vol-
umes at the selected sites for each vegetation type are 280–1500 bbl for dense vegetation,
228–1500 bbl for sparse vegetation, and 264–2500 bbl for mangrove vegetation.
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Table 3. The volumes of oil spills used to analyse the temporal ∆NDVI at the sample of spill sites.

Sample Points Spill Date Spill Volume (bbl) ∆NDVI Coverage

D1 1 October 2014 280 2014 to 2018
D2 13 October 2011 346 2012 to 2018
D3 25 June 2014 367 2014 to 2018
D4 14 November 2014 367 2014 to 2018
D5 9 April 2011 429 2012 to 2017
D6 25 April 2010 1000 2011 to 2018
D7 31 October 2011 1430 2012 to 2018
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S1 19 January 2014 228 2013 to 2017
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S4 8 August 2008 440.3 2008 to 2018
S5 22 January 2012 530 2011 to 2018
S6 23 December 2010 803 2010 to 2017
S7 25 September 2010 1000 2010 to 2016
S8 5 May 2008 1500 2008 to 2017
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Table 3. Cont.

Sample Points Spill Date Spill Volume (bbl) ∆NDVI Coverage

M1 14 August 2013 264 2013 to 2018
M2 26 June 2010 800 2010 to 2018
M3 1 February 2010 1020 2010 to 2018
M4 5 August 2010 1510 2009 to 2018
M5 15 May 2009 1554 2008 to 2018
M6 15 June 2009 2500 2008 to 2018

D—Dense vegetation sample site; S—Sparse vegetation sample site; M—Mangrove sample site.

2.3.3. Statistical Analysis

Statistical methods provide tools for making quantitative decisions about a process or
processes [54]. Regression is a statistical technique used for prediction and causal inference
to determine the linear relationship between two or more variables [55]. Here, regression
analysis was carried out to determine the impact of oil spill volume, the time gap between
oil spills and image acquisition date on vegetation health (i.e., NDVI), and the nature of any
relationship between the variables and NDVI. Regression analysis was used by Adamu
et al. [32] to determine the impact of oil spills on the vegetation. To analyse the effect of time
on vegetation health recovery following exposure to oil, paired t-tests were used to compare
∆NDVI values from spill sites with those from non-spill sites [1,31,44] for a period of several
years. A paired t-test is used to compare the two population samples; observations in one
sample are paired with observations in the other sample [56] to determine the level of
significance difference between any two observations.

3. Results and Discussion
Vegetation indices derived from remote-sensing images are an efficient tool for high-

lighting the spectral differences due to changes in leaf pigments and internal leaf structure,
which are indicators of plant health [57]. The NDVI can detect changes in vegetation
chlorophyll content, internal leaf structure, and water content that relate to stress [31].
The leaf chlorophyll content is sensitive to hydrocarbon pollution, and organic molecules
from crude oil transported into the plant vascular system and intercellular spaces can lead
to cell and tissue damage [58]. Accordingly, higher NDVI values would be expected for
healthy vegetation with high chlorophyll content, whereas low values would be anticipated
for vegetation whose health has been impacted by oil spills. The changes in vegetation
health in oil-polluted sites may depend on the volume of a given oil spill because it is
assumed that a larger volume of oil spills may have a greater impact on the surrounding
vegetation [30]. In this study, we combined satellite base-derived NDVI with statistical
analysis to determine the impact of the oil spill volume and the time after an oil spill using
linear regression. We also determine the difference between the changes in the NDVI values
of the spill site and their corresponding non-spill location using a paired t-test.

3.1. Post-Spill Impacts of Oil Spill Volume and Time Gap on Vegetation Health

Figure 4 summarises the post-spill NDVI value extracted for a sample of 176 spill sites
from the first available Landsat satellite observation acquired immediately after oil spills
that occurred during 2006–2018. From the results, the dense vegetation has the highest
maximum post-spill NDVI values (~0.6), followed by the sparse vegetation (~0.55) and
mangrove (~0.4). Similarly, the dense vegetation has the highest median value (~0.3). In
contrast, mangrove has the lowest median NDVI (0.2) among all vegetation types, with
over 75% of NDVI values being <0.3, making it the most degraded vegetation. Typically,
the NDVI ranges from 0.2 to 0.5 for sparse vegetation, such as shrubs and grasslands,
and from 0.6 to 0.9 for dense vegetation, such as that found in temperate and tropical
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forests or crops at their peak growth stage [59]. However, the post-spill minimum NDVI
values are lower than the minimum NDVI values for typical healthy dense and sparse
vegetation, whilst the maximum NDVI for dense vegetation is approximately the same
as the minimum NDVI value for a typical healthy dense vegetation, which indicates
the impact of oil spill on the health of the vegetation. Regarding healthy mangroves,
Asian mangroves generally have the highest NDVI values, especially in Southeast Asia
(0.80), whilst the average NDVI of African mangroves is typically 0.67 [60]. However,
following exposure to oil, the highest NDVI values in the Niger Delta mangroves are 0.4
(~100%) and 0.2 (~50%) lower than those associated with Asian mangroves and typical
West African mangroves, respectively, which also indicate the impact of oil spills on the
health of the mangrove vegetation. The degradation of mangroves due to the oil spill could
affect their sustainability. It may ultimately lead to the disappearance of the mangroves,
which will have serious consequences for both the people and the fauna in the Niger
Delta who depend on it. The Niger Mangrove ecosystem faces serious threats from crude
oil spills [42]. Specifically, the degradation of mangrove forests will impact biodiversity
and jeopardise the livelihoods of coastal communities that depend on them for food and
resources, leaving them vulnerable to tidal inundation and extreme weather due to the
loss of natural defences [43]. The study by Iliya et al. [61] discovered that, whilst healthy
mangroves reported a net loss, degraded mangroves consistently reported a net gain
between 1988 and 2013. To ensure the sustainability of the mangroves in the Niger Delta,
there is a need for a policy that would mitigate the impact of the oil spill. Aransiola
et al. [43] suggested that the enforcement of laws, public awareness campaigns, educational
programs, and strategies for restoring and conserving the Niger Delta mangroves are
crucial not only for safeguarding biodiversity but also for ensuring sustainable resource
management practices and mitigating environmental threats.
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Figure 4. Box plot statistical summary of post-spill NDVI values for each vegetation type. Min
and Max are the lowest and highest values of NDVI, respectively, excluding the outliers (diamond
symbols). Q1 is the first quartile (25 percentile), and Q3 is the third quartile (75th percentile).

Figures 5–9 show the correlation between post-spill NDVI and oil spill volume for
dense, sparse, and mangrove vegetation. The relationships are between all volumes of the
oil spill (Figure 5), above 225 bbl (Figure 6), between 225 and 400 bbl (Figure 7), between
401 and 1000 bbl (Figure 8) and >1000 bbl (Figure 9). The oil spill volume ranges were deter-
mined based on the work by Adamu et al. [32], who investigated the factors influencing the
detectability of oil spills using spectral indices in an oil-polluted environment in mangrove
vegetation in the Niger Delta. From the results, the dense and sparse vegetation has the
lowest spill points at volume >1000 (Figure 9a,b) due to the lack of available volume oil
spills in that range. It can be observed that, for all volumes of spills and up to volumes
>225–400 bbl, there was a weak relationship between the oil spill volumes and NDVI values
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for all the vegetation types with R2 < 0.03. However, it can be observed that, though the
relationship is weak, different vegetation types respond differently to the oil spill volume
and the time interval between the oil spill dates. When the full range of oil spill volumes is
considered, the relationship between the post-spill NDVI and the volume of oil spilt is weak
for all vegetation types, with the highest R2 = 0.0107 for mangroves (Figure 5). These results
indicate a weak to no linear correlation between NDVI and oil spill volume, concurring
with the lack of correlation (R2 = 0.0001) found by Adamu et al. [32] when considering all
spill volumes in the mangrove of the Niger Delta. However, when considering specific
volume ranges, the NDVI for sparse vegetation is more negatively correlated (R2 = 0.5018)
to oil spill volumes in the range of 400–1000 bbl (Figure 8b). Similarly, the post-spill NDVI
associated with dense vegetation is found to be more negatively linearly correlated with
oil spill volumes >1000 bbl, with R2 = 0.4356 (Figure 9a). Interestingly, at the same oil
spill volumes >1000 bbl, the sparse vegetation is positively correlated with R2 = 0.9700
(Figure 9b). Overall, the post-spill NDVI associated with mangrove vegetation is generally
weakly correlated with spill volume, although a moderate positive correlation (R2 = 0.4520)
is observed for 401–1000 bbl (Figure 7c). However, the lack of a clear relationship between
post-spill NDVI and oil spill volume for mangroves does not necessarily indicate that the
oil spill does not impact the health of the mangroves. From Figure 4, it was observed
that the mangrove is the most degraded type of vegetation. Much crude oil has been
discharged into coastal environments, which makes mangroves extremely vulnerable to
oil and industrial waste [62]. Therefore, the lack of correlation could arise because of
difficulty quantifying the oil spill volume in the dynamic aquatic setting where mangroves
are located, where waves and ocean currents can readily disperse the oil. Furthermore, the
mangroves are often exposed to oil through runoff of spills inland, again making it difficult
to reliably quantify the volume of oil originating at the mangrove sites. Similarly, the biota
of mangroves exposed to oil pollution may experience increased mutation [63].
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(a) dense vegetation, (b) sparse vegetation, and (c) mangrove vegetation.

Similarly, Figure 10 shows the relationship between NDVI and time after the spill
for the dense, sparse, and mangrove vegetation. In terms of the relationship between the
post-spill NDVI and the time after the oil spill, the dense vegetation shows gradual signs
of degradation through a weak decreasing trend in NDVI values following an oil spill
(Figure 10a). This is because the full extent of the oil damage on dense vegetation may not be
obvious until 6–12 months after a spill incident [64]. The sparse and mangrove vegetation
appears not to show signs of degradation within 180 days and 90 days (Figure 10b and
10c, respectively). However, the dense vegetation tends to show non-significant signs of
degradation. The possible reason for the lack of evidence of degradation could be that
sparse vegetation and mangrove vegetation show signs of degradation a few days after an
oil spill. Mangrove stress usually occurs within the first two weeks of an oil spill event, and
these signs are visible in several ways, such as chlorosis and defoliation to tree death [65].
Mangroves are very sensitive to oil, partly because oil sediments thinly cover the highly
sensitive fine-feeding roots of mangrove trees [66]. Additionally, visible oil stress symptoms
of vegetation depend upon the plant species type and degree of stress [67]. Each vegetation
type has different biophysical properties, so their levels of resistance vary.
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3.2. The Temporal Response of Vegetation Health to Oil Spill Exposure

Figure 11 shows the change in NDVI (∆NDVI) at spill sites (SSs) with a spill volume
above 225 bbl and their corresponding non-spill control sites (CSs), relative to a pre-spill
baseline NDVI value, for a number of years after an oil spill occurrence for dense vegeta-
tion (Figure 11a), Sparse vegetation (Figure 11b) and Mangrove vegetation (Figure 11c).
Additionally, Figure 11d presents a boxplot that summarises ∆NDVI for both SSs and
their corresponding CSs for each vegetation type. A negative ∆NDVI suggests signs of
degradation in vegetation’s health condition (a sign of stress) relative to the condition prior
to the occurrence of a spill. Both graphical and statistical analyses using paired t-tests
were used to determine the significance of oil spill-induced differences in ∆NDVI values
of SSs and CSs relative to a pre-spill baseline NDVI value for each site (Figure 11d). As
previously mentioned, ∆NDVI was used instead of absolute NDVI values at different time
points because the magnitude of NDVI at some sites may be inherently higher than at
others due to the additional influence of other factors that affect vegetation health. These
include soil type and both water and nutrient availability, among others [67]. For instance,
vegetation at oil spill sites could be healthier (and, hence, have a higher NDVI) before a spill
than vegetation not exposed to a spill if located in an area with better water and nutrient
availability. Calculating the NDVI changes at a site relative to a pre-spill baseline NDVI,
therefore, acts to isolate the effect of exposure to oil from the influence of these external
factors. The influence of these factors was further mitigated by carefully selecting CS and
SS pairs with corresponding conditions (e.g., sunlight, soil composition, climate).

The correlation between the ∆NDVI relative to pre-spill baselines for each site and
the number of days after a spill shows that the vegetation health varied considerably
during the study period at both the SSs and CSs (Figure 11). Although both positive and
negative ∆NDVI values are observed at SSs and CSs for all vegetation types, the negative
∆NDVI values have a greater magnitude at the SSs, especially for sparse and mangrove
vegetation. Dense vegetation at SSs exhibited 38% positive ∆NDVI values within the first
730 days (2 years) after a spill, sparse vegetation had 24% positive ∆NDVI values, whilst
the mangrove vegetation displayed only negative ∆NDVI values within the first two years
(Figure 10a–c). Dense vegetation at CSs exhibits a negligible decreasing trend in ∆NDVI
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during the time period, whilst the vegetation health at SSs remains stable following an
initial decrease in NDVI (∆NDVI = −0.05) immediately after oil spills. For the sparse
vegetation (Figure 11b), the CSs exhibit an increasing trend in positive ∆NDVI during the
entire time period, indicating that the vegetation health is improving over time. Although
vegetation at the SSs shows signs of recovery through a similar increasing trend in ∆NDVI
following exposure to oil, the vegetation health does not return to its pre-spill baseline
condition until the ninth year (3285 days). The ∆NDVI trends for mangroves are similar to
those observed for dense vegetation in that there is a negligible decrease in the vegetation
health over time at CSs, whilst the vegetation health at SSs decreases (∆NDVI = −0.1)
immediately following exposure to oil and then remains consistent for the remainder of the
time period.
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Figure 11. Relationship between ∆NDVI and number of days after a spill for volumes above
225 bbl and control sites for (a) dense vegetation, (b) sparse vegetation, and (c) Mangrove vegetation
and (d) boxplot summary of ∆NDVI for spill sites (SSs) and control sites (CSs) for dense, sparse,
and mangrove vegetation with the p-values from paired t-test analysis to determine the statistical
differences in post-spill ∆NDVI for corresponding pairs of SSs and CSs located within dense (n = 8),
sparse (n = 8) and mangrove vegetation (n = 6). Levels of significance: p-value < 0.0010 (highly
significant); p value < 0.0100 (very significant); p-value < 0.0500 (significant); p-value ≥ 0.0500 (not
significant) Figure 11d.

It can also be observed from the boxplot in Figure 11d that the median ∆NDVI is
lower for SSs than CSs for all the vegetation types, with the biggest differences observed
for sparse vegetation and mangroves. Moreover, the mangrove vegetation has more than
75% of ∆NDVI values below zero compared to less than 75% for the sparse and dense
vegetation. Furthermore, Figure 11d shows that the ∆NDVI values at SSs are highly
statistically different (p-value < 0.0010) from those at CSs for both sparse and mangrove
vegetation and very significant (p-value < 0.0100) for dense vegetation. These observations
concur with the findings of Adamu et al. [31], which found a significant difference with a
p-value of <0.0050 between the NDVI values derived from the Landsat image of vegetation
at spill sites and non-spill sites in mangrove vegetation in the Niger Delta. Also, Ozigis
et al. [14] found a significant difference with a p-value < 0.0500 between the LAI, NDWI,
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and NDVI values derived from the Sentinel 2 multispectral bands for grassland in the
Niger Delta. In summary, the statistical tests confirm that sparse and mangrove vegetation
is most responsive to oil exposure in the region. Mangrove tidal wetland habitats are
highly vulnerable to large and chronic oil spills [66]. Past oil spill events worldwide
demonstrate that mangroves can suffer lethal and sublethal effects when exposed to oil,
which can be impacted regardless of the distance from shore if oil reaches their roots and
pneumatophores [68]. The presence of polynuclear hydrocarbons in the soil increases the
incidence of a mangrove mutation in which chlorophyll is deficient or absent [69]. Also,
continuous exposure of mangrove trees to high levels of pollution affects their health and
productivity in the long term by imposing permanent stressful conditions [70].

3.3. The Response of Vegetation Health to the Volume of Oil Spills for Individual Locations

Table 4 presents a comparison of ∆NDVI for each pair of CSs and SSs for different oil
spill volumes. Overall, this shows that oil spills, irrespective of volume, have less significant
impacts on the health condition of dense vegetation than other vegetation types, with only
one site (D1 at spill volume 280 bbl) experiencing significant differences in ∆NDVI values
compared to its corresponding CS. The sparse vegetation has more impacted locations, with
five out of eight spill locations exhibiting very significant differences in ∆NDVI compared
to their SS, which indicates negative impacts on the vegetation health condition following
exposure to oil spills. This is followed by the mangrove vegetation, with three out of six CS
locations having a significant difference in their vegetation health condition compared
to their SS counterparts. The results also show that the significant difference in ∆NDVI
between SS and their CS is not directly positively correlated to the spill volume. For
instance, the only significant difference for dense vegetation is observed for a spill volume
of 280 bbl (p-value < 0.05), which is the smallest spill volume for such sample sites. A
similar scenario is also observed for the mangrove vegetation for a spill volume of 1554 bbl,
which has larger statistically significant differences in ∆NDVI than for a spill volume of
2500 bbl. One potential reason for this could be gas flaring from nearby refineries [67,71],
which increases the temperature and affects the soil quality around SSs located closer to
refineries. The impact of oil spills on vegetation is beyond the spill volume, though it is an
important factor, as reported by [32]. However, Mohamadi et al. [67] reported that impacted
area size, spilt oil volume, residual oil volume on-site, impacted area environment, and
response, recovery, and clean-up timing are major determinants of oil spill influence on the
Niger Delta’s vegetation.

Table 4. Paired t-test analysis of ∆NDVI values after a spill between each spill site (SS) and control
site (CS) at different volumes for dense, sparse, and mangrove vegetation.

Sample
Points

Spill Volume
(bbl) p-Value Sample

Points
Spill Volume

(bbl) p-Value Sample
Points

Spill Volume
(bbl) p-Value

Dense Vegetation Sparse Vegetation Mangrove Vegetation

D1 280 * S1 228 * M1 264 *
D2 346 ns S2 235 ns M2 800 ns

D3 367 ns S3 260 ** M3 1020 ns

D4 367 ns S4 440.3 ns M4 1510 ns

D5 429 ns S5 529.5 ns M5 1554 **
D6 1000 ns S6 802.5 ** M6 2500 *
D7 1430 ns S7 1000 *
D8 1500 ns S8 1500 **

Note: Levels of significance: ** p-value < 0.01 (very significant); * p-value < 0.05 (significant), ns p-value ≥ 0.05
(not significant).
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3.4. Time Series Analysis of ∆NDVI for SS and CS

The graphs of the time series of ∆NDVI for the pairs of sites in dense, sparse, and
mangrove vegetation are shown in Figures 12–14. Figures 12–14 show the temporal changes
in NDVI values of each spill site (SS) with its corresponding control site (CS) from the
values extracted from Table 4. Figure 12a–h is the graph for dense vegetation having
several years ranging from 0–4 years (Figure 12a,c,d), 0–6 years (Figure 12e,f) and 0–7 years
(Figure 12b,g,f) with the lowest and highest oil spill volumes of 280 and 1500 bbl, respec-
tively, and with 4 and 7 years being the lowest and the highest number of years. The
range of years for sparse vegetation in Figure 13a–h are 0–4 years (Figure 13a), 0–5 years
(Figure 13b,g), 0–7 years (Figure 13e,f), 0–8 years (Figure 13c) and 0–10 years (Figure 13d,h),
with the lowest and highest oil spill volumes of 234 and 1500 bbl and with the lowest
and highest numbers of years of 4 and 10 years, respectively. For mangrove vegetation in
Figure 14a–f, the years range from 0–5 years (Figure 14a,d), 0–6 years (Figure 14b,f) and
0–7 years (Figure 14c,e), with the lowest and highest oil spill volumes of 264 and 2500 bbl
and with both the lowest and highest numbers of years being 5 and 7 years, respectively.
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For most sites, the SSs and CSs exhibit the same underlying trend in ∆NDVI, likely due
to the vegetation at those locations being exposed to the same inherent environmental con-
ditions, such as water availability and soil type. However, the negative ∆NDVIs over time
are generally of greater magnitude at SSs than at CSs. For example, the negative ∆NDVI
values are all notably greater in magnitude at SSs than at CSs for dense vegetation at a spill
volume of 280 bbl (Figure 12a), for sparse vegetation at spill volumes of 260 bbl (Figure 13c),
803 bbl (Figure 13f) and 1500 bbl (Figure 13h). Furthermore, for mangrove vegetation,
negative ∆NDVI values are most notable at spill sites with volumes of 1554 bbl (Figure 14e)
and 2500 bbl (Figure 14f). Nonetheless, several CSs exhibit negative ∆NDVI values despite
not being exposed to an oil spill. In these cases, factors such as seasonal changes in rainfall
and weather conditions could be responsible for affecting the condition of the vegetation.
It is apparent that oil spills have clearly affected the recovery of some vegetation in the
Niger Delta. Although the vegetation condition at some SSs appeared to recover after
the oil spill (e.g., dense vegetation—Figure 12a; sparse vegetation—Figure 13c,e–h; man-
grove vegetation—Figure 14b,d), it was not able to recover within the same period at other
SSs (e.g., dense vegetation—Figure 12c; sparse vegetation—Figure 13b). Mangroves and
rainforests affected by hydrocarbon have been shown to have reduced chlorophyll [1,45].
However, the oil pollution impact on adult trees is weak [71].

Figure 15 shows ∆NDVIs categorised according to spill volume for the different
vegetation types. From the result, there is no apparent relationship between the health
of vegetation at SSs and the volume of the oil spill. For instance, it can be observed that
100% of the ∆NDVI values for dense vegetation (Figure 15a) were negative at spill volumes
280, 1000, and 1500 bbl, whereas more than 75% were greater than zero at 346 and 429 bbl,
with the most degradation occurring at spill volumes of 1000 and 1500 bbl. For sparse
vegetation (Figure 15b), degradation during the time period overall appears to become
less severe with an increase in spill volume of up to approximately 500 bbl before then
increasing in severity again at higher spill volumes. Overall, some degradation of mangrove
vegetation (Figure 15c) persists throughout the time period, although it is greatest at spill
volumes of 1554 and 2500 bbl when 100% of ∆NDVIs are less than zero. Overall, vegetation
degradation is not directly proportional to the oil spill volume. Possible reasons could be
that some oil spills were remediated quicker than others or due to differences in the toxicity
of the oil at some locations. Nevertheless, regardless of the vegetation type, the negative
impact on the health was most prominent for oil spill volume above 1500 bbl. Another
factor that could impact the impact of the oil spill in the Niger Delta is the topography and
the relief of the spill site. High topography can influence the migration of large oil spills
from the source [30]. Therefore, each spill site must be treated on an individual basis.
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3.5. Limitations of This Study

There are a few limitations to this study. One is that using only linear regression may
not fully reveal the nonlinear relationship between the oil spill volume, the time gap after
oil and the NDVI values for each vegetation. Secondly, there is a lack of soil and climatic
data. However, the contributions of soil and climate on vegetation health were mitigated
using pair-wise comparisons of spill and non-spill sites that are proximal to each other.
Also, all the NDVI data were for the dry season (December and January), with similar
weather conditions. Regarding the use of field data, that will be performed in future work.

4. Conclusions
This study utilised Landsat satellite-derived NDVI to determine the impact of oil

spills on dense, sparse, and mangrove vegetation in the Niger Delta region using linear
regression to determine the impact of oil spill volume and the time gap after an oil on the
health of the vegetation, and, secondly, used Pared t-test determines the difference between
the health of the vegetation exposed to an oil spill and the vegetation not exposed to the oil
spill. The major findings are as follows:

• The mangrove and sparse vegetation are the most degraded vegetation in the Niger
Delta, and the sparse vegetation is the most affected among the three vegetation types
by oil spills between 401 and 1000 bbl, whilst the dense vegetation responds more at a
higher volume >1000 bbl.

• The effect of the time gap after a spill is not statistically significant for all the vegeta-
tion types.

• There is a statistically significant difference in the health condition of vegetation
affected by oil spills compared to the vegetation unaffected by the oil spill.

Despite the lack of a statistically significant relationship between the oil spill volume
and time gap for most volume ranges, there is clear evidence that the health of vegetation
in the Niger Delta is degraded when it is exposed to oil spills for all vegetation types.
However, the result shows a statistically significant difference between spill sites and non-
spill over time for all vegetation types. This has provided insight into how different types
of vegetation respond to an oil spill, which could help in designing an oil spill clean-up
program to reduce the impact of oil spills on different types of vegetation in the Niger
Delta by prioritising oil spill clean-up based on the vegetation type that is most affected
by the impact of the oil spill. The implication of the results is that the oil spill volume
should not be the sole requirement when responding to or mitigating the impact of the oil
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spill on vegetation. Each site should be treated differently based on other factors such as
the soil type, topography, etc. The long-term impact of oil spills on the vegetation could
be mitigated by designing an early oil spill detection and clean-up response program to
ensure that such vegetation recovers within the shortest period. The use of satellite-based-
derived NDVI provides a unique option to monitor the health of vegetation in places
like the Niger Delta. It provides spatiotemporal data without the need to visit the site
due to security concerns. However, further research is recommended for the mangrove
to investigate the lack of correlation between the oil spill and the NDVI value through
ground visits and analysis of the leaf sample to determine if the mangrove has developed
some form of resistance to the oil spill’s impact due to constant exposure. Future work
is being undertaken to understand vegetation impacts using leaf samples. In addition,
other nonlinear regression analyses may be used since regression may not fully reveal a
nonlinear relationship.
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