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ABSTRACT
In this paper we develop a new unsupervised machine learning technique comprised of a feature
extractor, a convolutional autoencoder (CAE), and a clustering algorithm consisting of a Bayesian
Gaussian mixture model (BGM). We apply this technique to visual band space-based simulated
imaging data from the Euclid Space Telescope using data from the Strong Gravitational Lenses
Finding Challenge. Our technique promisingly captures a variety of lensing features such as Einstein
rings with different radii, distorted arc structures, etc, without using predefined labels. After the
clustering process, we obtain several classification clusters separated by different visual features
which are seen in the images. Our method successfully picks up ∼63 percent of lensing images from
all lenses in the training set. With the assumed probability proposed in this study, this technique
reaches an accuracy of 77.25±0.48% in binary classification using the training set. Additionally, our
unsupervised clustering process can be used as the preliminary classification for future surveys of
lenses to efficiently select targets and to speed up the labelling process. As the starting point of the
astronomical application using this technique, we not only explore the application to gravitationally
lensed systems, but also discuss the limitations and potential future uses of this technique.

Key words: gravitational lensing: strong – techniques: image processing – method:
unsupervised machine learning

1 INTRODUCTION

Gravitational lensing has become established as a powerful
probe in many areas of astrophysics and cosmology (e.g.,
see reviews by Mao 2012; Meneghetti et al. 2013; Fu & Fan
2014; Rahvar 2015; Mandelbaum 2018; Bartelmann & Ma-
turi 2017, and references therein). The phenomenon has been
detected since Walsh et al. (1979) and over a wide range
of scales, from Mpc in the weak-lensing regime (e.g. Bacon
et al. 2000; Hamana et al. 2003; Castro et al. 2005; Schmidt
2008; Bernardeau et al. 2012; Jee et al. 2016; Kilbinger et al.
2017; Troxel et al. 2018), to kpc in strong lensing (e.g. Lynds
& Petrosian 1986; Soucail et al. 1987; Fort et al. 1988; Hud-
son et al. 1998; Hewitt et al. 1988; Barvainis & Ivison 2002;
Oldham et al. 2017; Stacey et al. 2018; Talbot et al. 2018)
and down to pc and sub-pc scales probed by microlensing
(e.g. Bruce et al. 2017; Shvartzvald et al. 2017; Han et al.
2018). As such, lensing can be exploited to measure the dis-
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tribution of mass in the Universe (e.g. Newman et al. 2013;
Han et al. 2015; Diego et al. 2018; Jauzac et al. 2018), en-
hance the study of lensed high redshift galaxies (e.g. Coe
et al. 2013; Jones et al. 2013; Stark et al. 2015; Dye et al.
2015) and constrain cosmological models (e.g. Suyu et al.
2013, 2014; Liao et al. 2015; Magaña et al. 2015), amongst
other applications.

Galaxy-galaxy strong lensing (GGSL) is a particular
case of gravitational lensing in which the background source
and foreground lens are both galaxies, and the lensing effect
is sufficient to distort images of the source into arcs or even
Einstein rings. Since the discovery of the first GGSL system
in 1988 (Hewitt et al. 1988), many valuable scientific appli-
cations have been realized for them, such as studying galaxy
mass density profiles (e.g. Sonnenfeld et al. 2015; Shu et al.
2016b; Küng et al. 2018), detecting galaxy substructure (e.g.
Vegetti et al. 2014; Hezaveh et al. 2016; Bayer, Chatterjee,
Koopmans, Vegetti, McKean, Treu & Fassnacht 2018), mea-
suring cosmological parameters (e.g Collett & Auger 2014;
Rana et al. 2017; Suyu et al. 2017), investigating the na-
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ture of high redshift sources (Bayliss et al. 2017; Dye et al.
2018; Sharda et al. 2018), and constraining the properties of
the self-interaction physics of dark matter (e.g. Shu, Bolton,
Moustakas, Stern, Dey, Brownstein, Burles & Spinrad 2016;
Gilman et al. 2018; Kummer et al. 2018).

Increasing the statistical power of these applications
and improving sample uniformity requires a large increase
in the number of known GGSL systems. Next generation
imaging surveys arising from facilities such as Euclid, the
Large Synoptic Survey Telescope (LSST), and the Wide
Field Infrared Survey Telescope (WFIRST) are anticipated
to increase the number of known GGSLs by several orders
of magnitude (Collett 2015). These forthcoming datasets
present a challenge for identifying new GGSLs using auto-
mated procedures that operate in an efficient and reliable
manner. To this end, a number of algorithms have been de-
veloped to detect GGSLs in image data by recognising arc-
like features and Einstein rings (e.g. Gavazzi et al. 2014;
Joseph et al. 2014; Paraficz et al. 2016; Bom et al. 2017).
In addition, instead of recognising arc-like features, an al-
ternative detection technique that has had some success is
to attempt to fit lens mass models to candidate GGSLs and
reject those systems that do not converge (Marshall, Hogg,
Moustakas, Fassnacht, Bradač, Schrabback & Schrabback
2009; Sonnenfeld et al. 2018).

More recently, efforts to automate GGSL finding have
turned to machine learning algorithms given their strong
performance in the general field of image recognition. In
particular, a class of deep learning networks known as con-
volutional neural networks (CNNs) can be trained to iden-
tify specific image features and thereby distinguish differ-
ent categories of objects. In astronomy, these algorithms are
beginning to be used in categorizing galaxy morphologies
(e.g. Dieleman et al. 2015; Huertas-Company et al. 2015;
Domı́nguez Sánchez, Huertas-Company, Bernardi, Tuccillo
& Fischer 2018; Cheng et al. 2019), measuring photometric
redshifts (Cavuoti et al. 2017; Sadeh et al. 2016; Samui &
Samui Pal 2017), and classifying supernovae (Lochner et al.
2016). Recent work has also shown that CNNs can be used
to perform lens modelling as a vastly more efficient alterna-
tive to traditional parametric methods (Hezaveh et al. 2017;
Pearson et al. 2019).

The application of CNNs for detecting these GGSL sys-
tems has reached a high success rate in binary classification
(Jacobs et al. 2017; Petrillo et al. 2017; Ostrovski et al. 2017;
Bom et al. 2017; Hartley et al. 2017; Avestruz et al. 2017;
Lanusse, Ma, Li, Collett, Li, Ravanbakhsh, Mandelbaum &
Póczos 2018); however, the application of supervised ma-
chine learning such as CNNs is prone to human bias and
training set bias which may not properly represent the di-
versity of real GGSL systems observed in future surveys.
Additionally, GGSLs are rare events in the Universe so that
there is insufficiently homogeneous data for training in su-
pervised machine learning methods. Although simulated im-
ages can be used for training, they are generally lacking in
the complexity of real observed data.

Unlike supervised machine learning which requires a
large amount of labelled data, which can be expensive and
misleading, unsupervised machine learning can be applied
directly to observed data without labelling that helps to re-
duce human bias while training a machine. Therefore, scien-
tists have started to explore the application of unsupervised

machine learning to, e.g. phtometric redshifts (Geach 2012;
Way & Klose 2012; Carrasco Kind & Brunner 2014; Siudek
et al. 2018a), as well as to classification using photometry or
spectroscopy (D’Abrusco et al. 2012; Fustes, Manteiga, Da-
fonte, Arcay, Ulla, Smith, Borrachero & Sordo 2013; Siudek
et al. 2018b).

The application of unsupervised machine learning be-
comes more challenging when using high dimensional data
such as images. Hocking et al. (2018) and Martin et al.
(2019) are amongst the first studies of unsupervised ma-
chine learning applications using imaging data and who ap-
plied the Growing Neural Gas algorithm (Fritzke 1995). In
our study, we explore a different technique from Hocking
et al. (2018) and Martin et al. (2019) in which we apply
a convolutional autoencoder (CAE) (Masci et al. 2011) to
do feature extraction before connecting with unsupervised
machine learning algorithms.

Our unsupervised machine learning gives an alternative
way to approach human identifications without labels on au-
tomate GGSL detection that can be also used as the prelim-
inary selection in future surveys to find initial set of lenses.
Furthermore, without human bias, we can explore unique
GGSL systems that would not be found by other methods
without this unsupervised machine learning technique.

This paper is structured as follows. The unsupervised
machine learning technique adopted in this paper is intro-
duced in Section 2. Details about the implementation, in-
cluding the pipeline and dataset, are described in Section 3.
Section 4 discusses our findings. The discussion of future
work is discussed in Section 5. Finally, the conclusions are
presented in Section 6.

2 METHODOLOGY

The application of unsupervised machine learning has
achieved successes on one dimensional data in astronomy
such as with spectroscopic data or photometric parameters
(e.g. D’Abrusco et al. 2012; Geach 2012; Way & Klose 2012;
Fustes, Manteiga, Dafonte, Arcay, Ulla, Smith, Borrachero
& Sordo 2013; Carrasco Kind & Brunner 2014; Siudek et al.
2018a,b). However, the capability of unsupervised machine
learning for high dimensional data such as imaging data has
not been well explored.

The latest astronomical approaches of unsupervised ma-
chine learning application using imaging data made by Hock-
ing et al. (2018) and Martin et al. (2019) apply the concept
of deep clustering. Deep clustering (e.g. Hsu & Kira 2015;
Hershey et al. 2015; Xie et al. 2016; Caron et al. 2018) is a
clustering method that groups together the features learned
through a neural network. Both Hocking et al. (2018) and
Martin et al. (2019) apply a neural network called ‘growing
neural gas algorithm (GNG)’ (Fritzke 1995), which is a type
of self-organizing map (Kohonen map) (Kohonen 1997), to
create feature maps from imaging data. They then connect
these feature maps with a hierarchical clustering technique
(Hastie et al. 2009).

In addition to neural networks, studies in computer sci-
ence also use an architecture of both supervised (CNNs) and
unsupervised convolutional neural networks (UCNNs) (e.g.
Dosovitskiy et al. 2014) to the process of feature learning
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Figure 1. The schematic overview for the architecture of our convolutional autoencoder (CAE) which is composed of two parts, the

encoder and the decoder. The encoder starts from an input image with a size of 101 by 101 pixels (leftmost side) which is then connected

with 5 convolutional layers (filter size: 128, 64, 32, 16, and 8). Each convolutional layer is followed a pooling layer. Three dense layers
(units: 128, 64, 32) follow the fifth convolutional layer. The central dense layer of the architecture is called the ‘embedded layer’. We

explore different number of units for this layer in this study (section 3.2). The decoder has similar structure to the encoder, and we use

the units in the embedded layer to reproduce the input image as the output (rightmost side).

(computer science: e.g. Dundar et al. 2015; Bautista et al.
2016; Borji & Dundar 2017).

There are a variety of unsupervised approaching for
deep clustering using the architecture of CNNs. However,
most of them use alternative unsupervised algorithms (e.g.
k-mean) to calculate the weights between layers that reduces
the power of CNNs for capturing features fit with human
judgement when using imaging data. Therefore, instead of
variational CNNs, we propose to use a convolutional autoen-
coder (CAE, Section 2.1) as the feature extractor (Masci
et al. 2011) in this study. This preserves the intrinsic fea-
tures of the images (Guo et al. 2017; Li et al. 2017; Dizaji
et al. 2017). For the clustering part we apply the Bayesian
Gaussian mixture model (BGM, Section 2.2) to images pre-
sented by the features extracted by the CAE to group the
input features in a high-dimensional feature space.

2.1 Convolutional AutoEncoder (CAE)

The convolutional autoencoder (CAE) (Masci et al. 2011) is
a kind of autoencoder (AE) which is mostly well known for
denoising images (Vincent et al. 2010). The function of an
AE is to learn a prior which features best represent the data
distribution. With a limited number of features available, an
AE intentionally captures significant features from images
rather than the details of the background noise. The AE
can then reconstruct images with this obtained prior.

The CAE improves the performance of an AE by con-
sidering the structures within two dimensional images that
are ignored in the AE. Hence, the CAE preserves spatially
localised features from image patches, while the AE can only
obtain the global features.

The architecture of the CAE used in this study is shown
in Fig. 1. It includes two parts: encoder (left) and decoder
(right). The encoder extracts the representative features
from the input image. For an input x, the j-th represen-
tative feature map is given by

hj = f
(
x ∗W j + bj

)
, (1)

where W are filters, ∗ denotes the 2 dimensional convolution
operation, b is the corresponding bias of the j-th feature

map, and f is an activation function. The encoder in this
study is built with five convolutional layers (filter size: 128,
64, 32, 16, and 8) and three dense layers (units: 128, 64.
32). The activation function used in the convolutional layers
is the Rectified Linear Unit (ReLu) (Nair & Hinton 2010)
such that f(z) = 0 if z < 0 while f(z) = z if z ≥ 0. Each
convolutional layer is followed by a pooling layer with a size
of 2 by 2 pixels. The pooling layer is also referred to as a
downsampling layer which is to reduce the spatial size and
reduce the parameters involved in the CAE.

The decoder then reproduces input images from the rep-
resentative features; therefore, the architecture of the de-
coder is symmetric but reverse to that of the encoder. We
invert the procedure of the encoder to reconstruct the rep-
resentative feature maps back to the original shape of the
input image by using the following formula:

y = f

(∑
j∈H

hj ∗
∼
W

j

+ c

)
, (2)

where
∼
W is the flip operator that transposes the weights, ∗

denotes 2 dimensional convolution operation, c is the corre-
sponding bias, f is an activation function, and H indicates
the group of feature maps. The design for the number of fil-
ters in the convolution processes is based on the size of input
images to form a symmetric structure between encoder and
decoder.

We have three dense layers (units: 32, 64, and 128),
five convolutional layers (filter sizes: 8, 16, 32, 64, and 128)
using the ReLu activation function (Nair & Hinton 2010),
and an extra convolutional layer (filter: 1) using the softmax
function (Bishop 2006), f (z) = exp (z)/

∑
exp

(
zj
)
, as the

output for the decoder. Each convolutional layer apart from
the last layer (output) is followed with an upsampling layer
which has the opposite function to the pooling layer that is
used for recovering the resolution.

The central dense layer of the CAE is called the ‘em-
bedded layer (EL)’ (see Fig. 1). This is composed of the final
latent representation features used for the reconstruction of
the input images. In section 3.2, we explore the number of
units required for the EL.
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The CAE extracts the latent representative feature
maps by minimizing the reconstruction error. In this study,
we use binary_crossentropy in the keras library1 to cal-
culate the loss function of the CAE which is given by the
following form,

L = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log (1− ŷn)], (3)

where N is the number of samples, yn are targets, and ŷn are
the reconstructed images (equation 2). We build our CAE
using the keras library and the TensorFlow backend 2

(Abadi et al. 2015).

2.2 Bayesian Gaussian Mixture Model (BGM)

A Gaussian mixture model is a probabilistic model for ei-
ther density estimation or clustering using a mixture of a
finite number of Gaussian distributions to describe the dis-
tributions of data points on a feature map. Given K com-
ponents, the algorithm uses Kmeans to initialise the weights,
the means, and the covariances for the K Gaussian distri-
butions which are given in the form:

p (x) =

K∑
k=1

wkG (x|uk, εk) , (4)

where G (x|uk, εk) represents k-th Gaussian, uk denotes the
mean of the k-th Gaussian distribution, εk is the covariance
matrix of the k-th Gaussian, and wk is the prior probability
(weight) of the k-th Gaussian where,

K∑
k=1

wk = 1. (5)

The algorithm then searches for the best fit of the K Gaus-
sian distributions to the data distribution through an itera-
tive process.

A two dimensional illustration of the BGM is shown in
Fig. 2 (Equation 4). The input data are distributed on the
feature map (black dots). We use 3 Gaussian distributions
in this illustration (coloured ellipses), to fit the data distri-
bution on the feature map.

In unsupervised learning, expectation-maximization
(EM) (Hartley 1958; Dempster et al. 1977; McLachlan &
Krishnan 1997) is used to find the maximal log-likelihood
estimates for the parameters of the Gaussian mixture model
by an iterative process. The log-likelihood of the Gaussian
mixture model is calculated using the formula:

ln [p (x|u, ε, w)] =

N∑
n=1

{
ln

[
K∑
k=1

wkG (x|uk, εk)

]}
, (6)

where N is the number of samples.
The Bayesian Gaussian mixture model (BGM) is a vari-

ational Gaussian mixture model (Kullback & Leibler 1951;
Attias 2000; Bishop 2006) which maximises the evidence
lower bound (ELBO) (Kullback & Leibler 1951) in the log-
likelihood. In this study, we apply the BGM from the scikit-
learn library 3 (Pedregosa et al. 2011).

1 https://keras.io
2 https://www.tensorflow.org
3 https://scikit-learn.org/stable/index.html

K=3

Figure 2. An illustration of the Gaussian Mixture model we use.

The K value is the number of Gaussian distributions. The black
dots show the data distribution on the feature map, and the

coloured ellipses represent the three Gaussian distribution we ap-

plied here to fit the data distribution.

3 IMPLEMENTATION

In this section, we first introduce the datasets used in this
study. The feature learning procedure is discussed in sec-
tion 3.2. Section 3.3 presents the clustering and classifying
phase which explains how to obtain the predicted lensing
probability for each image. The tests for quantifying the per-
formance of the classifications are described in section 3.4.

3.1 Data Sets

The strong lensing data are from the Strong Gravitational
Lens Finding Challenge (Lens Finding Challenge) (Metcalf
et al. 2019). The generation of mock images follows the
procedures described in Grazian, Fontana, De Santis, Gal-
lozzi, Giallongo & Di Pangrazio (2004) and Meneghetti et al.
(2008), and starts with a cosmological N-boby simulation,
the Millennium simulation (Boylan-Kolchin et al. 2009). The
background objects are modeled by the sources from the
Hubble Ultra Deep Field (UDF). The detail of the simula-
tion setup can be found in Metcalf et al. (2019).

We use the datasets which mimic the data quality of ob-
servations that will be taken by the Euclid Space Telescope
(Laureijs et al. 2011) in the visual (VIS) band. The pixel
size is set to 0.1 arcsec and a Gaussian point spread func-
tion is applied to the images. Additionally, the noise follows
a Gaussian distribution which is added to the final images
(Metcalf et al. 2019).

There are 20,000 labelled images with lenses for training
(13,968 lensing images; 6,032 non-lensing images, see Fig 3)
and 100,000 unlabelled images with lenses for testing in the
Lens Finding Challenge.

We split the training set received from the Lens Finding
Challenge into two parts, our own training set and testing
sets. We randomly pick 12,800 lensing images out of 13,968
lensing images to obtain enough information for feature ex-
traction. Additionally, we rotate a random set of 3,200 non-
lensing images 4 times (0, 90, 180, 270 degrees) to obtain the
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Figure 3. An example of the training set for Lens Finding Challenge Top: non-lensing image; Bottom: lensing image.

same number of images as there are lensing images (12,800
images) for our training set. An extra insignificant Gaussian
noise is added into the rotated images to enhance the dif-
ference between the rotated images and the original images.
The ratio between lensing and non-lensing images is 1 in the
training set to make the convolutional autoencoder (CAE)
consider both types equally when extracting features.

The rest of the images are the candidates for the testing
sets. In our own testing sets, we initially have 1,168 lensing
and 2,832 non-lensing images, which are leftover from the se-
lection of the training set. We rotate the non-lensing images
4 times (0, 90, 180, 270 degrees) and add Gaussian noise to
increase the number of images to 11,328 non-lensing images.

We test several different ratios between the number of
lensing and non-lensing images to mimic a more realistic
case. To avoid a biased influence from lensing images, we
use the same set of lensing images in the testing process.
We generate different ratios by randomly and repeatedly
picking samples from the set of rotated non-lensing images.
The arrangement is shown in Table 1 and is based on the
prediction of Collett (2015) which forecasts 2,400, 120,000,
and 170,000 detectable galaxy-galaxy strong lenses out of
11 million lenses from their model for lensing systems in the
Dark Energy Survey4, Large Synoptic Survey Telescope5,
and Euclid Space Telescope, respectively. This arrangement
for the fractions of lensing images in the testing sets cover
from 50 percent to 0.01 percent.

3.2 Feature Learning

There are three steps to take in the application of the tech-
niques used in this study: (1) denoising the images by the
convolutional autoencoder (CAE) with a simpler structure;
(2) extracting the features of the images using the CAE
(Fig. 1); (3) identifying clusters using the features extracted
from the CAE by the Bayesian Gaussian mixture model
(BGM).

4 https://www.darkenergysurvey.org/
5 https://www.lsst.org

Labels Ratios Number of data in each type

1 1:1 lensing:1168/ non-lensing:1168
2 1:2 lensing:1168/ non-lensing:2336

3 1:20 lensing:1168/ non-lensing:23360

4 1:50 lensing:1168/ non-lensing:58400
5 1:100 lensing:1168/ non-lensing:116800

6 1:1000 lensing:1168/ non-lensing:1168000

7 1:10000 lensing:1168/ non-lensing:11680000

Table 1. The arrangement of the testing datasets in this study.

The ratios between lensing and non-lensing images are shown in
the second column and the content included in the datasets are

shown in the third column.

15 0.23 0.3 0.38 0.46 0.53 0.61 0.69 0.76 0.84 0.9

Figure 4. An example of the denosing process. Left: the original

image. Right: the image after denoising by an alternative CAE

architecture described in section 3.2

We recognise that the background noise in images in-
fluences the result of feature extraction because the CAE
can overfit to the noise. As mentioned in Section 2.1, an
autoencoder learns the prior distribution from the input im-
ages (with noise) which preferentially captures the represen-
tatively strong features in images, but ignores insignificant
features such as noise. Therefore, the reconstruction based
on the prior distribution learnt through an autoencoder gen-
erates noiseless reconstructed images. We apply a CAE with
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a simpler architecture without hidden layers in Fig. 1 to gen-
erate noiseless images at the first step.

This architecture contains five convolutional layers (fil-
ters: 128, 64, 32, 16, 8) with ReLu activation function for
the encoder, five convolutional layers (filters: 8, 16, 32, 64,
128) with ReLu activation function for the decoder, an out-
put layer with a softmax activation function. Each convo-
lutional layer is followed with either a pooling layer or an
upsampling layer in the encoder or decoder, respectively.
The effect is shown in Fig. 4. The left panel is the original
image, and the right panel is the image after denoising. Al-
though the reconstructed images have lower resolution, they
preserve and emphasize the features of lenses and sources
that helps our CAE (Fig. 1) to capture meaningfully repre-
sentative features from images in the second step.

Secondly, we apply the CAE to carry out feature ex-
traction (Fig. 1). The final representative features are lo-
cated within the embedded layer (EL) in the centre of the
architecture. Finally, these extracted features are the input
for the third step - clustering using the Bayesian Gaussian
mixture model (BGM) utilising the representative features
extracted by the CAE from the images.

The number of clusters, K, when using unsupervised
machine learning is generally unknown and difficult to be
determined as there is not yet a reliable optimisation process
to decide this quantity in unsupervised machine learning.

In Guo et al. (2017), they suggest the number of ex-
tracted features to use should be the same as the number of
clusters of datasets used (MNIST6). These number of clus-
ters are however known in their case. This arrangement en-
sures that: (1) the dimension of the embedded layer was
lower than the input data, and (2) the network could be
trained directly in an end-to-end manner without any regu-
larisations.

In contrast, the number of clusters is unknown in our
work, and the number of extracted features is a hyper-
parameter which can be controlled. Therefore, we decided
to set the number of clusters, K, using the opposite concept
from Guo et al. (2017), to be the same as the number of
extracted features.

We can explain this decision using a simplified condition
by assuming each feature decides one cluster; therefore, the
number of features would be the intrinsic minimal number
of clusters used.

The process of feature learning using the CAE is com-
putationally expensive. Presently, it takes up to 5 days to
train 100,000 images running on a NVIDIA GeForce GTX
1080 Ti GPU. In the future a more complex analysis of this
issue can be carried out once computing power significantly
improves.

3.3 Clustering and classifying

After clustering by the Bayesian Gaussian mixture model
(BGM), we obtain the probability of each image belonging
to each cluster. These probabilities are used to calculate the
overall probability of each image being a strong lensing sys-
tem.

6 http://yann.lecun.com/exdb/mnist/

With the probability of the n-th image to the k-th clus-
ter, given by P kn and known fractions of lensing and non-
lensing images in the k-th cluster, P klen and P knon, we are
able to calculate the predicted probability of different types,
lensing (Pnlen) and non-lensing (Pnnon) for the n-th image by
the formulas:{
Pnlen =

∑K
k=1 P

k
len×P kn

Pnnon =
∑K
k=1 P

k
non×P kn

. (7)

However, our technique is meant to be unsupervised;
therefore, P klen and P knon are unknown. Without the label
information, the network has no prior knowledge regarding
classes of lensing or non-lensing. Therefore, to be able to
compare the performance of this work and others, we must
involve human classification after the step of the feature
learning.

Supervised machine learning methods applied to strong
lens finding typically require tens of thousands of labelled
images for training. This is of course too large for viable hu-
man classification and negates the whole purpose of using
machine learning in the first place. Therefore, we propose a
vastly streamlined way to calculate the predicted lensing and
non-lensing probability for the n-th image by assuming the
probability of each type for the k-th cluster through looking
at the representative features of each cluster. We assume the
lensing probability for the k-th cluster is 1.0, i.e. P klen = 1.0,
if the representative features of this cluster have significant
lensing features (e.g. Einstein rings, distorted arc, etc) (see
the bottom of Fig. 5). If the features of this cluster are con-
vincingly non-lensing features (e.g. singly isolated and oval
object), the lensing probability of the k-th cluster is set to
0.0, i.e. P klen = 0.0 (see the top of Fig. 5). In the condition
where it is difficult to classify such as those with multiple
objects, the probability is assumed to be 0.5, i.e. P klen = 0.5
(see the middle of Fig. 5).

The summation of the lensing and non-lensing proba-
bilities (equation 7) may not be 1.0 when using assigned
probabilities for clusters because the assigned probabilities
cannot accurately represent the distribution of lensing and
non-lensing images in each cluster. Therefore, we unify the
predicted lensing and non-lensing probabilities as follows:
Pn

′
len = Pnlen/(P

n
len + Pnnon) and Pn

′
non = Pnnon/(P

n
len + Pnnon).

The combination of assigned probabilities within our
unsupervised technique promisingly reduces the quantita-
tive effort of human judgement on data labelling whereby
experts classify a few images that are grouped based on fea-
tures rather than derived by a machine using over 10,000
images. The comparison of the results using true fractions
and assumed probabilities are discussed in section 4.1.

3.4 Examinations

With the information on the lensing and non-lensing prob-
ability in each cluster, we can compare the performance of
our technique with other supervised machine learning tech-
niques using the Receiver Operating Characteristic curve
(ROC curve) (Fawcett 2006; Powers 2011). On a ROC curve
the y-axis is the true positive rate and the x -axis is the false
positive rate; therefore, the closer the ROC curve gets to the
corner (0,1), the better the performance is. The definition of
the true positive and the false positive are shown in Fig. 6 in
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Unsupervised Lens Finding 7

Figure 5. Examples of the denoised images from which we as-

sume the lensing probability for clusters. The ‘p’ value repre-
sents the assumed lensing probability for clusters. Top: the exam-

ples of visually non-lensing images (p=0.0). Middle: the uncertain

case (p=0.5). Bottom: the visually lensing images are presented
(p=1.0).

terms of the confusion matrix. Therefore, the true positive
rate (TPR) and false positive rate (FPR) are defined as,

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
. (8)

With the ROC curve, an evaluation factor called ‘area
under the Receiver Operating Characteristic curve (AUC)’
(Bradley 1997; Fawcett 2006) is measured to evaluate the
performance of machine learning algorithms. The AUC can
be interpreted as the probability that a classifier ranks a
randomly chosen positive example greater than a randomly
chosen negative example. This factor also indicates the sep-

Figure 6. The confusion matrix. The x -axis label is the predicted

label and the y-axis label is the true label. The ‘0’ means negative
as well as non-lensing type while ‘1’ represents positive signal and

lensing type in this study.

Figure 7. The graph of AUC versus the number of extracted fea-

tures in the CAE (Section 2.1). The black solid line represents
the mean value of the AUC trained by images with a logarithmic

scale, and the orange dashed line is trained by images with a lin-

ear scale. The lighter shadings show the variation defined by the
maximum and minimum of three reruns. The two dotted lines are
locations of AUC = 0.80 and 0.85.

arability - how well the classifications can be correctly sep-
arated from each other.

In this study, we apply AUC to find the most optimal
number of extracted features within the EL in the CAE. In
Fig. 7, the black solid line shows the results trained by the
images in a logarithmic scale, and the lighter orange dashed
line presents the one trained by the images within a linear
scale. The lighter shadings show the variation in training
defined by the maximum and minimum of three reruns.

Once the CAE model has been trained, the results of the
clustering do not change as long as we use the same datasets.
Therefore, the main uncertainty in the procedure is from the
training process in the CAE. To determine the variation of
results using different training we rerun our CAE three times
for different numbers of features of the EL within the CAE,

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/staa1015/5821287 by U

niversity of N
ottingham

 user on 27 April 2020



8 Ting-Yun Cheng et al.

and use the maximal and minimal value of the AUC as the
uncertainty for each number of features (Fig. 7).

We discover that the CAE cannot reproduce the input
images if we have an insufficient number of neurons in the
EL. However, too many neurons cause overfitting such that
the CAE captures noisy features. We find that the highest
value of the AUC is carried out from the training by using
logarithmically scaled images and the optimal number of
neurons in the EL is 24 according to Fig. 7. As such, we
adopt this set up for all results presented in this work.

Apart from the ROC curve and the AUC value men-
tioned in section 3.2, we also use some other evaluation fac-
tors such as recall, precision, f1 score, and accuracy, which
are measured based on a probability threshold p = 0.5. The
definition of ‘recall’ is identical to the TPR in statistics
which represents the completeness that shows the fraction of
true types correctly identified, while ‘precision’ indicates the
contamination which means the fraction of true types in the
list of candidates predicted. The ‘f1 score’ is a weighted av-
erage of the precision and recall which can be interpreted as
the overall performance considering the contributions from
both completeness and contamination. This is calculated by
the formula (Powers 2011):

f1 = 2× (precision× recall)

(precision + recall)
. (9)

The accuracy is defined by the formula:

accuracy =
TP + TN

TP + FP + TN + FN
, (10)

such that the meaning of this is defined as how many suc-
cessfully classified samples there are out of all the samples.

4 RESULTS

In this section, we first compare the results using two differ-
ent calculations of the lensing and non-lensing probabilities
for each image (section 3.3) in Section 4.1. The capability of
our unsupervised technique to distinguish different types of
lenses, and the performance of classification are presented in
Section 4.2.1. We also analyse our technique on the testing
datasets with different fractions of lensing images; the result
of this is shown in section 4.2.2. Finally, we revisit the Strong
Gravitational Lens Finding Challenge; we present our com-
parison with other supervised machine learning methods and
human inspection in Section 4.2.3.

4.1 Comparison of Known and Assumed Probabilities

The comparisons of results with a known fraction of lensing
and non-lensing images and an assumed probability of lens-
ing (P klen) and non-lensing (P knon) in the k-th classification
cluster (Section 3.3) are shown in Fig. 8 using images with
logarithmic scale and 24 units in the embedded layer (EL)
of the convolutional autoencoder (CAE).

The left panel in Fig. 8 presents the Receiver Operat-
ing Characteristic curve (ROC curve); the right panel is a
comparison of different factors between these two methods
such as recall, precision, f1 score, and accuracy. In Fig. 8,
the black solid line shows the mean value of the ROC curve
using a known fraction of lensing images, and the orange

dashed line represents the mean value of the results using an
assumed probability. The colour shadings represent the vari-
ation defined by the maximum and minimum within three
reruns.

Although the results of the ‘assumed probability’ show
larger scatter and slightly worse performance than the re-
sults of the ‘known fraction’, the scatter of the ‘assumed
probability’ method is consistent with the results of the
‘known fraction’ method. Additionally, the mean values of
both methods are close to each other. Overall, these two
methods show consistent results in their general perfor-
mance, which is shown through the ROC curve, recall, pre-
cision, f1 score, and accuracy (calculated based on a proba-
bility threshold of p = 0.5).

This comparison confirms that the alternative calcula-
tion assigning an assumed probability to the classification
clusters can be used to obtain promising lensing and non-
lensing probabilities for each image. Furthermore, this indi-
cates that the classification clusters obtained by our tech-
nique captures representative features from images and re-
flects the real lensing fractions in the clusters. Additionally,
this result also shows an advantage of our technique for sav-
ing effort on data labelling by clustering the data before
classifying it so that we can classify the feature of the small
number of classification clusters instead of each image it-
self. This can be used as a preliminary selection method for
future surveys when using a large amount of data.

4.2 Identifying Lenses

4.2.1 Initial Results

We begin with the results of binary classification using the
predicted lensing probability obtained using the ‘assumed
probability’ method in Section 3.3. In Fig. 9, we present
the confusion matrix of the training set. The accuracy of
our technique reaches 0.7725± 0.0048 and the AUC reaches
0.8617±0.0063 using a probability threshold of p = 0.5. The
error estimation of the accuracy on the AUC is based on the
standard deviation of 3 reruns.

This method promisingly separates features in a way
similar to how a human would. Fig. 10 shows examples of
the classification clusters with a high fraction of lensing im-
ages (≥0.6). Every classification cluster shown in Fig. 10
has its own characteristic features, which indicates that our
technique is able to capture the visual difference and similar-
ity between images. Additionally, these classification clusters
with a fraction of ≥0.6 contain ∼63 percent of lensing ob-
jects in the training set. The last row in Fig. 10 shows an
example of the simulated data without lenses for the classifi-
cation cluster. It is clear that our technique captures features
such as Einstein rings with different radii, different strength,
and distorted arc structures, etc, and images without lenses.
The classification clusters with significant lensing features
such as Einstein rings and arc structures are easily distin-
guishable (the fraction of lensing images in these groups is
≥0.8) in our results.

In the same run, there are 7 classification clusters which
have a high fraction of non-lensing images (≥0.7); 6 out of 7
clusters include≥0.9 fraction of non-lensing images. The fea-
tures of these classification clusters are round or oval and iso-
lated objects (Fig. 11). The feature of cluster 0 looks oval and
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Unsupervised Lens Finding 9

Figure 8. The comparison of two methods to obtain the predicted probability of each class for each image using a known fraction and

an assumed probability (section 3.3). The black solid line represents the mean value using a known fraction, and the orange dashed line

shows the mean value using an assumed probability of each class. The colour shadings are the variation defined by the maximum and
minimum within three reruns. Left: the ROC curve. Right: the comparison of different statistic factors, e.g. recall, precision, f1 score,

accuracy.
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Figure 9. The confusion matrix of the training set trained with
24 features in the embedded layer (EL) of the convolutional au-

toencoder (CAE). The floating values show the mean of the three
reruns and the deviation from the maximum and minimum.

The red and green texts shown below the fraction are the actual
number in the quadrant.

isolated, but has a relatively lower fraction of non-lensing
images than others. It is produced by visually insignificant

arc-like structures in the images that might also be created
through the process of denoising.

The last four columns in Fig. 11 which contain images
with a fraction of non-lensing images between 0.6 and 0.7
are visually multiple objects. It is difficult to distinguish the
classification of these types of images without colour infor-
mation; however, our data is limited to a single visual band
(section 3.1) so the decrease of performance is unavoidable.
Additionally, these four classification clusters are similar to
each other, but they are in a different orientation which
shows that our technique cannot take care of rotation in-
variance at the current stage (also see Appendix A and the
discussion in section 5).

The remaining 6 classification clusters are regarded as
uncertain types because the fractions of lensing images in
these groups are within the range from 0.4 to 0.6 (Fig. 12).
Apart from clusters 15 and 23, the features of other classi-
fication clusters are single or double objects with filament
or arc-like structures which might also be generated by the
denoising process. The main features of cluster 15 is a round
and single object with lenses surrounded by a halo-like struc-
ture, which can occur when the Einstein radius of lensing
is equal to or smaller than the size of lenses. On the other
hand, cluster 23 has similar features to clusters 9, 13, 18, and
19 which all show multiple object types in the images. As
mentioned in the previous paragraph, the images shown in
the clusters 15 and 23 cannot be easily distinguished without
colour information; therefore their categories are ambiguous.

Overall, it is more challenging to correctly classify im-
ages of lensing and non-lensing types without significant
lensing features, such as Einstein rings, and highly distorted
arc structures seen using our technique with a single band.
Our method obtains classification clusters with lensing fea-
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10 Ting-Yun Cheng et al.

Figure 10. Examples of the classification clusters having a high fraction of lensing types in individual clusters (denosied images). The
top of each column shows the classification cluster index, the fraction of lensing (lensing) and non-lensing (non) in the cluster, and the

fraction of lensing in the cluster of all lensing images in the training set (F len). The last row shows the simulated data without lenses

within each column.

Figure 11. Examples of the classification clusters having a high fraction of non-lensing images (denoised images). The top of each column

shows the number of the cluster and the fraction of lensing (lensing) and non-lensing (non) in that cluster.
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Unsupervised Lens Finding 11

Figure 12. Examples of the classification clusters with uncertain

classification (denoised images). The top of each column shows
the number of the classification cluster and the fraction of lensing

(lensing) and non-lensing (non) in the cluster.

tures containing ∼63 percent lensed images from all lensed
images in the training set (Fig. 10). The remaining lensed
images are distributed in the classification clusters with dif-
ficult features (e.g. the last four columns in Fig. 11 and
Fig. 12).

We anticipate that the inclusion of colour will enhance
the performance of this method on the basis that additional
diagnostic information would be provided from other sur-
veys with multiple broad-band filters rather than the single
Euclid Space Telescope with VIS band.

As part of our investigation, we applied our pre-trained
CAE on the simulated data without lenses (central galaxies)
(Appendix A). Examples are shown in Fig. A1 which con-
firms that the CAE promisingly captures the structure of
different lensing types: Einstein rings with different radii, in-
complete Einstein rings, arc structures with different lengths
and positions, extended objects, etc, from these simulated
images.

4.2.2 Test on datasets with different fractions of lenses

A detectable galaxy-galaxy strong lensing event is an ex-
tremely rare event in the universe, e.g. 0.05 percent of
640,000 early type galaxies in the Canada France Hawaii
Telescope Legacy Survey are strong galaxy-galaxy lenses
(Gavazzi et al. 2014). To be capable of a more realistic case,
we test our CAE and pre-trained Bayesian Gaussian mixture
model (BGM) on datasets using logarithmic images with
different fractions of lensing images from 50 percent to only
0.01 percent of lensing images (Collett 2015) (Table 1).

The results are shown in Fig. 13. Here we always use the
‘assumed probability’ to calculate the predicted probability
of each type for each image (section 3.3). Different colours
represent testing sets with different fractions of lensing and
non-lensing images. The dashed lines are the average of the

Figure 13. The ROC curve of the testing sets using different frac-

tions of lensing images. Different colours represent different frac-
tions (Table 1). The dashed lines show the average of the ROC

curves within three reruns and the shading areas show the varia-

tion.

ROC curves and the shadings are the variation within three
reruns.

Fig. 13 clearly shows that there is not a significant differ-
ence between the performance of the testing sets with differ-
ent fractions of lensing images using our technique. Secondly,
Fig. 14 shows the accuracy of the classification in terms of
a confusion matrix using the testing set with 0.01 percent
of lensing images; this result is consistent with the results
from training (Fig. 9).

Both figures show that our unsupervised machine learn-
ing technique can maintain its performance even if the lens-
ing events are rare in the data (to 0.01 percent of lensing
images) when the model is well pre-trained.

4.2.3 Comparison with Other Methods

To further compare the performance of our technique with
other supervised machine learning methods and human in-
spection, we revisit the Strong Gravitational Lens Finding
Challenge (Lens Finding Challenge) (Metcalf et al. 2019).
The final challenge testing data in the Lens Finding Chal-
lenge includes 100,000 images, which are ∼60 percent of non-
lensing images and ∼40 percent of lensing images.

A visually detectable lensing feature generally has a
high Signal-to-Noise Ratio (SNR) or has a low SNR but
a larger number of correlated lensed pixels. Fig. 15 shows
the comparison of the SNR and the number of lensed pixels
above 1σ between the training set and the challenge test-
ing data. The value of the SNR in Fig. 15 is calculated by
SNR = S

σ
√
N

, where S
σ

represents the intensity (flux) in a
sigma contributed by the N lensed pixels. This figure shows
that the fraction of the images that are difficult to visually
classify has increased from the training set to this challenge
testing data.

In addition to the value of AUC, Metcalf et al. (2019)
apply two other factors: TPR0 and TPR10 to score the per-
formance of their techniques. The TPR0 is defined as the
highest TPR reached when the FPR=0 in the ROC curve.
This quantity is used to recognise the classifiers whose high-

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/staa1015/5821287 by U

niversity of N
ottingham

 user on 27 April 2020



12 Ting-Yun Cheng et al.

0 1

Predicted label

0

1

Tr
ue

 la
be

l

7102195
0.65+0.06

-0.04
3835524
0.35+0.04

-0.06

103
0.09+0.05

-0.03
1019
0.91+0.03

-0.05

Confusion matrix

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 14. The confusion matrix of the testing set containing 0.01

percent lensing images using the pre-trained model with 24 neu-
rons in the embedded layer (EL) of the convolutional autoencoder

(CAE). The floating values show the mean of the three reruns

and the deviation from the maximum and minimum. The red
and green texts shown below the fraction are the actual number

in the quadrant.

est classification levels are not conservative enough to elim-
inate all false positives; therefore, the TPR0 of these classi-
fiers are often equal to 0. The TPR10 is defined when TPR
at the point where less than ten false positive are made.

We apply the same architecture for the CAE as we do
for the training set (Fig. 1), followed by the training process
shown in section 3.2, and the classifying process shown in
section 3.3 whereby we are applying the ‘assumed probabil-
ity’ to this challenge testing data. The results are shown in
Table 2.

Our unsupervised machine learning technique using a
single band is more sensitive to significant lensing features.
However, the challenge testing data contains the most visu-
ally difficult images with lower SNR and fewer lensed pixels
resulting in poorer performance (‘Unsupervised technique’
in Table 2) compared to the training set (labeled as * at the
bottom row in Table 2).

To fully test our method, we make a cut at 100 pixel
and 50 SNR to exclude visually difficult images. This cut is
determined by Fig. 15 and a visual assessment to the images
with these criteria. Applying this cut improves the perfor-
mance of our technique from AUC = 0.72 to AUC = 0.83
that indicates that the difference in performance (i.e. AUC)
between the two highlighted entries in Table 2 using our
method is caused by the difference in the distribution of
SNR and lensed pixels between the training and testing data.
The comparison between applying the cut and not doing so
is shown in Fig. 16.

As in most methods, both TPR0 and TPR10 are equal
to 0.00 using the challenge testing data in our results. How-

ever, in Fig. 16, both curves have a nearly vertical line at
False Positive Rate ∼0 until True Positive Rate ∼0.1 (be-
fore) and ∼0.2 which means that although our technique is
not able to eliminate all the misclassifications when the prob-
ability threshold is high (left), there are only a tiny number
of images which were predicted incorrectly.

This comparison gives an idea for the feasibility of this
unsupervised machine learning technique compared with su-
pervised methods. However, unsupervised machine learning
is a qualitatively different method than supervised meth-
ods, such that unsupervised methods can explore data with-
out label limitations and addresses questions that current
supervised methods cannot. Therefore, the performance of
unsupervised machine learning methods cannot simply be
compared to supervised methods where the true label infor-
mation is used.

5 FUTURE WORK

In this paper, we describe an unsupervised machine learn-
ing technique for the detection of galaxy-galaxy strong grav-
itational lensing using simulated data based on the Euclid
Space Telescope from the Strong Gravitational Lens Finding
Challenge (Lens Finding Challenge) (Metcalf et al. 2019).
This technique uses feature extraction provided by a convo-
lutional autoencoder (CAE) and a Bayesian Gaussian mix-
ture model (BGM) clustering algorithm.

This is an initial step in the use of convolutional au-
toencoders for astronomical unsupervised learning problems
and as such there are many further explorations and im-
provements for this technique. For instance, there are other
types of autoencoders e.g. variational autoencoder (Kingma
& Welling 2013) for feature learning, and other kinds of clus-
tering algorithms to explore the features and the properties
of the obtained groups e.g. hierarchical clustering such as
Agglomerative Hierarchical Clustering (Bouguettaya et al.
2015) and density-based clustering such as DBSCAN (Ester
et al. 1996), etc.

In addition to other approaches that could be taken
with different autoencoders and different clustering algo-
rithms, some other future improvements are discussed here.
First of all, we use the simulated data with a single VIS
band in the optical region for the Euclid Space Telescope
from Lens Finding Challenge. As shown in Section 4.2.1, the
lack of multiple bands causes difficulty in classifying certain
types of images (Fig. 12). In the future, we will apply our
pipeline to surveys with multiple filters, which is expected
to improve the performance further.

Secondly, the current state of this technique cannot pre-
serve rotation invariance which means it categorises images
differently when we rotate the images (see the last four
columns in Fig. 11 & Fig. A1). This condition does not
affect the current results negatively in distinguishing lens-
ing or non-lensing feature. However, considering the rotation
invariance may help to reduce the number of classification
clusters we obtain from this method when applying this tech-
nique on real data.

On the other hand, using an alternative autoencoder,
the ‘variational autoencoder’ (Kingma & Welling 2013)
which applies Gaussian distributions to map the extracted
features of each images is another potential approach to
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Unsupervised Lens Finding 13

Figure 15. The comparison of the Signal-to-Noise Ratios (SNR) and the number of lensed pixels above 1σ comparing the training set
and the challenge testing data. Left: the comparison of SNR. Right: the comparison of the number of lensed pixels above 1σ. The dashed

lines represents the divide based on a visual assessment whereby the distribution on the left shows significant inconsistency between the

training set and the challenge data set.

Name Author AUC TPR0 TPR10 short description

LASTRO EPFL Geiger, Schäfer & Kneib 0.93 0.00 0.08 CNN
CMU-DeepLens-Resnet Francois Lanusse, Ma, 0.92 0.22 0.29 CNN

C. Li & Ravanbakhsh
GAMOCLASS Huertas-Company, Tuccillo, 0.92 0.07 0.36 CNN

Velasco-Forero & Decencière

CMU-DeepLens-Resnet-Voting Ma, Lanusse & C. Li 0.91 0.00 0.01 CNN
AstrOmatic Bertin 0.91 0.00 0.01 CNN

CMU-DeepLens-Resnet-aug Ma, Lanusse, Ravanbakhsh 0.91 0.00 0.00 CNN

& C. Li
Kapteyn Resnet Petrillo, Tortora, Kleijn, 0.82 0.00 0.00 CNN

Koopmans & Vernardos

CAST Bom, Valent́ın & Makler 0.81 0.07 0.12 CNN
Manchester1 Jackson & Tagore 0.81 0.01 0.17 Human Inspection

Manchester SVM Hartley & Flamary 0.81 0.03 0.08 SVM / Gabor

NeuralNet2 Davies & Serjeant 0.76 0.00 0.00 CNN / wavelets
YattaLensLite Sonnenfeld 0.76 0.00 0.00 Arcs / SExtractor

All-now Avestruz, N. Li & Lightman 0.73 0.05 0.07 edges/gradiants and Logistic Reg.
Unsupervised technique This Work (Section 4.2.3) 0.72 0.00 0.00 Deep Clustering

GAHEC IRAP Cabanac 0.66 0.00 0.01 arc finder

*Unsupervised technique This Work (Training, Fig. 8) 0.87 0.08 0.08 Deep Clustering

Table 2. Edited based on the Table 3 in Metcalf et al. (2019). The AUC, TPR0 and TPR10 for the entries in order of AUC. The highlighted

entry without a * is the result of the challenge testing data (this Section). The bottom row with * shows the result obtained by using
the training set (Fig. 8), which is used for comparing with the result of the testing data (the highlighted entry above without a *). The

difference in AUC using our method between these two entries is due to the difference in the distribution of signal-to-noise ratio and

lensed pixels between two datasets (Fig. 15).

solve the issue of this rotation variance of clustering results.
Preservation of rotation invariance in this way will be left
for future work.

Thirdly, in our Appendix A, we show a perfect sepa-
ration between lensing and non-lensing using the simulated
data without lenses (i.e. central galaxies) within our tech-

nique. Although it is an unrealistic result considering we
cannot perfectly deblend lenses and sources in real data, it
is an indication of the improvement we might see without
lenses through a pre-processing procedure of removing cen-
tral galaxies.

One of the main issues of this technique is that we need
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Figure 16. The comparison of the ROC curve between before and

after a cut at images with sizes greater than 100 lensed pixels and
with a Signal-to-Noise Ratio larger than 50.

a certain amount of data with strong features (e.g. lensed
images, merger events, feature galaxies, etc) to let a CAE
capture a variety of features from these objects. If the data
with strong features is rare, the CAE would fail to capture
the features and reproduce an inaccurate image.

The galaxy-galaxy strong lensing systems are relatively
rare events in the universe. We have therefore had to use an
amount of simulated data to train on. This situation could
be potentially improved upon by further modification of the
CAE architecture and possible data pre-processing. How-
ever, this technique is likely suitable for the astronomical
objects with a relatively balanced distribution of features,
such as the classification of galaxy morphology. However,
few-shot learning (Li et al. 2006) can be used when the la-
belled data is very limited. This could be one direction for
improving the issue of having an extremely imbalanced data
set within strong lensing detection scenarios.

On the other hand, the true power of an unsupervised
machine learning technique is to find the hidden patterns
or unrevealed characteristics in imaging data rather than
just improving the efficiency or the performance for a known
classification. To reveal the power of this unsupervised tech-
nique, we need to reconsider the selection method to deter-
mine the optimal number of the neurons in the embedded
layer (EL) of the CAE to replace the value of AUC (Fig. 7) in
the future. Additionally, a forecast for the minimum num-
ber of features needed when using real observed data will
be investigated in future work by improving the quality of
the simulations and by adding more categories with realistic
contamination. The ultimate determination for the optimal
number of extracted features is also crucial for future us-
age when applying this unsupervised technique to observed
data.

6 CONCLUSION

The purpose of this paper is to introduce an unsupervised
machine learning technique that differs considerably from
previous related works on the application to astronomical

data. The unsupervised machine learning technique adopted
in this paper is composed of the feature extraction by a
convolutional autoencoder (CAE) and a clustering algorithm
- a Bayesian Gaussian mixture model (BGM). We go beyond
previous unsupervised work such as Hocking et al. (2018)
and Martin et al. (2019) who applied Self-Organised Map
(neural network) (Kohonen 1997) and hierarchical clustering
to carry out feature extraction and clustering, respectively.

We use the spaced-based simulated data from the Euclid
Space telescope with a visual band (VIS) from the Strong
Gravitational Lenses Finding Challenge (Lens Finding Chal-
lenge) (Metcalf et al. 2019) and revisit this challenge.

To compare our result with other lens-finding ap-
proaches, we propose a simple way to calculate the predicted
probability of an image to be within each type - lensing and
non-lensing by classifying the features of each cluster (Sec-
tion 3.3). This method, which promises to save an extensive
effort need for data labelling in supervised machine learning,
reaches an AUC value of 0.8617±0.0063 and an accuracy of
0.7725± 0.0048 on the classification of galaxy-galaxy strong
lensing events using the training set of the space-based sur-
vey from the Lens Finding Challenge.

The main accomplishment of this study is that our tech-
nique captures meaningful features which follow human vi-
sual assessment from images without any initial label infor-
mation. Additionally, this technique distinguishes a variety
of lensing types (e.g. Einstein rings with different radii, dif-
ferent appearance of arcs) (Fig. 10 & Fig. A1) and poten-
tially can detect unusual lensing features. The discriminat-
ing ability is highlighted in Appendix A using a pre-trained
CAE model on the simulated data without lenses.

We then revisit the Lens Finding Challenge by applying
our technique on their challenge testing data (section 4.2.3).
The results show a degradation in performance from the
training set to the challenge testing data which is due to
the difference in the distribution of the Signal-to-Noise Ra-
tios (SNR) and the number of lensed pixels above 1σ in the
lensed images in the challenge testing data. Therefore, we
applied a cut at 100 pixels and 50 SNR to the challenge test-
ing data, with the results shown in Fig. 15. As can be seen,
by removing these systems we improve the performance of
our technique.

Another advantage of our technique is that it also re-
tains its discriminating ability when the fraction of lensing
images varies. As is shown in Section 4.2.2, the performance
is consistent for the cases of the data holding ∼0.01 per-
cent or ∼50 percent of lensing images, once the unsupervised
model is well pre-trained.

The most promising advantage of this technique is the
pre-selection in the process of searching for strong lenses in
upcoming large scale imaging surveys. It reduces the sample
size of the dataset needed for the classification by cleaning up
apparent non-lensing systems. Also, our approach can iden-
tify rare lensing systems with unusual characteristics such
as multiple Einstein Rings, which can be identified as non-
lenses with a high probability by supervised finders if the
training sets do not contain these features.

In the future, as discussed in Section 5, we will try
to improve the competitiveness of our approach by adopt-
ing different architectures of neural networks, alternative
autoencoders or clustering algorithms. Combining unsuper-
vised and supervised techniques is another direction we plan
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for increasing the performance of the identification of strong
lenses. Finally, the development of a quantitative validation
tool for unsupervised machine learning techniques such as
the Receiver Operating Characteristic curve (ROC curve)
(Fawcett 2006; Powers 2011) for supervised machine learning
techniques is of great importance for future work. Without
such diagnostics, it is not possible to objectively compare
unsupervised machine learning approaches.
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APPENDIX A: A TEST ON SIMULATED DATA
WITHOUT LENSES

As part of our investigation, we test our pre-trained convo-
lutional autoencoder (CAE) (section 3.2) on our simulated
data without lenses (i.e. central galaxies) in this study. The
result is shown in Fig. A1. The purpose of this test is to
explore the potential usefulness for this technique when de-
blending of the lenses from the sources is possible.

The simulated data we used is the training set from the
Strong Gravitational Lenses Finding Challenge (Lens Find-
ing Challenge) (Metcalf et al. 2019). This challenge offered
participants images with all possible image types (lenses,
sources, and background noise), images with lenses only,
and images with sources only. The simulated data without
lenses (central galaxy, i.e. with source only) emphasizes the
features of the images, thus, we use the pre-trained model
trained by images with linear scale using 20 features (Fig. 7)
in the embedded layer (EL) of the CAE.

The result reconfirms our results in section 4.2.1. We
ordered the clusters based on the appearance of the images
in the cluster in Fig. A1 such that it is easier to see the
trend. Above the first row in Fig. A1 shows the cluster ID
and the fraction of both lensing (lensing) and non-lensing
(non) in the cluster.

The first column (cluster) contains all the non-lensing
images, which are shown as empty images when there are no
lenses in the images. From the second to the eighth column
in Fig. A1 show the structure of Einstein rings with differ-
ent radii and from the ninth column in Fig. A1 to Fig. A1
(continued) show the arcs structure with different features
such as positions, lengths, or the radii of arcs.

We also reconfirm that the rotation invariance can-
not be preserved using our current technique (the last four
columns of Fig. 11 in section 4.2.1). The characteristic of
the CAE is to minimize the difference between input and
output images; therefore, arcs with similar radii and lengths
but located at different positions are identified as different
clusters by our unsupervised technique at the current stage.
Although this rotation variant has no significant effect on the
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Figure A1. Examples of classification clusters using the simulated data without lenses (central galaxies). The top of each column shows

the number of the cluster and the fraction of lensing (lensing) and non-lensing (non) in the cluster. The figure is continued in Fig. A1
(continued).

final result, the improvement on considering rotation invari-
ance might be helpful to reduce the complexity of extracted
features when applying this technique to real data.

Additionally, the lensing and non-lensing images are
perfectly separated in this test. Although it is unrealistic,
we might be able to significantly improve the performance
and strengthen the usefulness of this technique by approach-
ing the condition of the images in this test through a pre-
processing procedure of removing central galaxies which is
possible.
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Figure A1 (continued). The continued figure of Fig. A1.
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