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Individuals with motor disabilities often rely on assistive devices for support. However,
conditions that affect upper limbs, particularly hand function, pose a challenge in the user
interface design. In this context, inertial sensor-based movement classification rises as a
method to interact with these devices by exploring residual motor capabilities [17]. State-of-
the-art movement classification systems are based on machine learning algorithms. These,
even the ones described as “explainable”, are not transparent and user-friendly when it comes
to movement analysis and understanding, which is vital for this demographic [9, 16, 10].

Addressing these concerns, we present a novel movement classifier that uses Fréchet and
Dynamic Time Warping (DTW) distances based on inertial data. Our classifier aims to be
customizable to individuals with various levels of motor impairment, following the work by
Fonseca et al. (2019 and 2022) [9, 8]. In these studies, sensors were placed on the upper limbs
of participants with tetraplegia. Inertial data was captured in pre-defined time windows
and used to calculate features as input for machine learning classifiers. In [9], Fonseca et al.
developed an adapted version of the k-nearest neighbour using PCA for feature dimension
reduction. In [8], Fonseca et al. achieved superior results with an SVM algorithm. However,
in both cases, unknown movements were incorrectly classified as one of the trained ones.
Furthermore, incorrect classifications were difficult to assess, particularly by the participants.

The classifier proposed here introduces several enhancements over existing models. Our
nearest centroid classifier is straightforward in identifying movements outside existing classes,
providing an intuitive visualization of movements, and is independent of specific features.
The integration of “time warping” distance functions introduces flexibility to variances in
the speed of movements, no longer requiring a time window. Finally, our classifier facilitates
a swifter classification (both Fréchet and DTW distances take quadratic time to compute).
This is particularly beneficial in assistive technologies, where rapid actuation is crucial.

Contribution. We present a novel nearest centroid classifier for movements that utilizes
Fréchet and Dynamic Time Warping (DTW) distances. We aim to enhance explainability, a
critical yet often underemphasized aspect in assistive technology interfaces [10]. To define
the centroids under DTW for each class, we use DTW Barycenter Averaging (DBA). For
Fréchet distance, we define a DBA-like heuristic to produce a representative curve for each
class. We then generate a simple data set to test our system.

Related work. The training data for each class is given by a set of m polygonal curves,
each with at most n points. We wish to obtain a representative (centroid) curve for each
class to act as the class centroid. A natural choice would be to compute an “average” curve.
A natural definition of an average curve is the curve that minimizes the sum of distances
from the average curve to the curves in the set (as in [4]). This is also called the mean
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curve. Unfortunately, Bulteau, Froese and Niedermeier [6] showed that, under DTW distance,
computing the mean curve is NP- and W([1]-hard (when parameterized by m). Buchin,
Driemel and Struijs [4] show the same under discrete (and continuous) Fréchet distance.
They also describe approximation algorithms that run in time polynomial in m, n and the
length ¢ of the median curve. Petitjean, Ketterlin and Gangarski [13] introduced a popular
heuristic algorithm called DTW Barycenter Averaging (DBA) to approximate the mean
curve under DTW. Another good candidate for centroid is the center curve, defined as the
curve minimizing the maximum distance from itself to a curve in the set. Buchin et al. [3]
showed that computing the center curve under discrete Fréchet distance is NP-hard, and
they also give approximation algorithms whose runtime depend on the length ¢ of the output
curve. In the context of clustering, a method similar to DBA was proposed by Buchin et
al. [5] for the continuous Fréchet distance to improve a candidate for a center curve. Our
method is basically the same but applied to the discrete Fréchet distance. We are unaware
of literature investigating the computation of the center curve under DTW distance.

Considerable previous work has been done regarding k-clustering using Fréchet and DTW
distances ([4, 3, 7, 11] to name a few). There are some applications that use DTW in nearest
cluster classifiers [14, 12]. However, we are unaware of any application using Fréchet distance
in the same setting.

1 Methodology

We utilize sets of training and test data labeled with their classes. Each data file represents
a sequence of movements interspersed with rests (periods that the subject do not move).
In our target application, the classification of the movements happen online, meaning that
each point of the input is received streaming one at a time. It is desirable that a classifier
outputs quickly after the end of a movement, or even before the movement ends, so that the
appropriate action by the assistive device is performed. Note that we do not mean online
learning where the training data is received in an online fashion. We take this fact into
consideration to define three problems which must be addressed by our system:

Segment the input data into rest and movement segments.

Compute a centroid for each class using the movement segments of the training data.

Implement an efficient nearest centroid classifier that uses the centroids computed in the

previous step.

Our source code is available at:
https://anonymous.4open.science/r/curves_classifier-DD4F

Data. Data were collected using one Xsens (Henderson, USA) inertial measurement unit
(IMU) from one able body subject (34 years old, right-handed). The IMU was placed on their
left shoulder, and the sample frequency was set to 100Hz. The sensor is connected wirelessly
to its base, which is interfaced with the computer by the Xsens MTManager software. The
data is extracted from the software as unit quaternions, which are calculated based on
the fusion of 3 degrees-of-freedom (3 DoFs) accelerometer, gyroscope and magnetometer
data with the Xsens Kalman Filter for 3DoF orientation for Human Motion (XKF3hm).
The subject was asked to perform three different shoulder movements: forward, upward
and backward, always starting and finishing in a rest position. Figure 3 (in the appendix)
illustrates the sensor placement and the movements directions. For each of the three required
movements, a total of 20 repetitions were collected in the training scenario. For the test
scenario, each sequence consisted of 10 repetitions.
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Data Segmentation. We use two parameters: k, called window size, and r, called threshold
radius. If the radius of the minimum enclosing ball of k subsequent data points is less than
or equal to r, then these data points are defined to be at rest. A rest segment is a maximal
contiguous subsequence of data points that are at rest. A maximal contiguous subsequence
of data points not at rest is a movement segment.

We implement a straightforward greedy segmentation algorithm using CGAL [15] for
minimum enclosing ball computations. For constant k, each computation takes O(1) time.

Centroid Computation. For each class, we wish to compute a representative curve using
the training data. We start by computing all pairwise distances between movement segments
of a class. We noticed that, for both distance functions, the distance between a pair grew
depending on the time gap between the execution of the movements, suggesting that the
IMU sensor was slowly drifting during the data collection, or that the subject initial position
was not maintained during the data collection. In [9, 8] this was not noticeable because
the data pre-processing involved a differentiation step, which minimizes low frequencies in
the signal, virtually disregarding the movement initial position. To attenuate this effect, we
applied a translation for each movement segment to align their starting points at the origin.
We offset each point on a movement segment to the radius of the minimum enclosing ball
created with the last k points on the last seen rest segment.

For both DTW and Fréchet distances, we use a copy of one of the movement segments
as a centroid and incrementally improve it using heuristics until convergence. We use the
pairwise distance computations to choose the initial guess as the movement segment that
minimizes the maximum distance between itself and the others in the same class. We then
apply DBA and the Fréchet analog to improve the centroid for DTW and Fréchet distances.

Nearest Centroid Classifier. To perform the segmentation of the test data online, we
use a simple state machine, similar to Fonseca et al. [9], but with only two states: rest and
movement. We start at rest state. For each new data point, we check whether the radius of
the minimum enclosing ball of the last k points is within r. We used the same parameters
k and r as for the training data. As soon as this condition is not met, we enter movement
state. If we are in movement state and the condition is met, we enter rest state.

As soon as we enter a movement state, we start computing DTW and Fréchet distances.
We also apply a translation to bring the first data point to the origin. Recall that both
distances have very similar Dynamic Programming (DP) implementations. We have a DP
table for each centroid (two per class, one for each distance function, with a total of 6 tables).
Let ¢ be the length of a centroid curve P. For each new point, we add a new row of length ¢
to the corresponding DP table. This can be done in O(¥) time. At each moment, we can
compare the distances from the current movement segment to each centroid. We perform
one classification for each distance function at the end of the movement segment.

2 Results

Segmentation. We manually found parameters k£ = 20 and r = .005 that correctly segment
each training data file, obtaining 20 movement segments for each class. Figure 1 shows an
example of the training data files and the computed segmentation.

Centroid computation. After applying the translation to each movement segment, the
starting data point was set to the origin. Figure 2 show an example of the obtained centroids
for the DBA and Fréchet analogue methods. We note that the centers using DBA showed
“spike artifacts” This is a known effect of DBA [1]. The DBA and FCH computations
performed a maximum of 35 and 22 iterations, respectively.
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Upward Training Data Segmentation
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Figure 1 Training Data Segmentation. The vertical red lines represent when a movement start,
and the blue vertical line represent the start of a rest. The blue, green, yellow and red curves
represent the four coordinates of the quaternion data.
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Classification. Both instances, the one using DTW and the one using Frechet distance,
achieved 100% accuracy. Tables 1 and 2 (in the appendix) show respectively the distances
between the test and each centroid. In every case, the distance between the test curve and
the centroid of the class it’s labeled as is smaller than the distance between the test curve
and the other centroid. Although 100% accuracy was achieved for both distance methods, we
observed that the difference in the distances between the test curves and all three centroid
was more prominent when we used DTW as the distance function.

3  Future Work

In our simple data set, both our classifiers obtained 100% accuracy. The data collected for
this work was meant to serve as a baseline for a proof-of-concept and do not represent a
real-life scenario. In future work, we will analyze the behavior of these classifiers in a more
complex and realistic data set with more variation on the length of movements, and with
data collected from subjects with motor disabilities. We also leave for future work to develop
a method that allows the classification to happen as early as possible (as opposed to when a
new rest starts) while maintaining the accuracy.

While DBA is widely used and has a fast convergence in practice for many applications,
we don’t know if that is the case for the Fréchet analogue. Indeed, our results suggest that
the convergence for FCH is faster. An interesting open problem is to try to generalize the
analysis by Briining et al. [2] to the Fréchet distance.
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A  Appendix

Figure 3 Sensor placement and shoulder movement directions.
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Forward (2.93564) Up (2.81197) Back (1.51583)

Up 5.08359 1.76751 4.36188
Forward 1.82604 4.76715 5.61986
Up 5.0193 1.92057 4.32075
Back 6.78597 4.03471 3.49427
Forward 2.12297 5.28419 6.12749
Back 6.09581 3.82701 2.76364
Forward 1.74797 4.85909 6.10829
Up 4.87847 2.31186 4.36646
Forward 1.59563 4.52471 5.70002
Forward 1.80807 4.96765 6.26574
Up 4.54756 1.84179 3.87357
Up 4.36569 2.14165 4.42327
Forward 2.51372 5.03914 5.93439
Up 4.51764 1.72154 3.77269
Forward 2.43589 5.072 6.08485
Forward 2.03448 4.66486 5.93898
Up 6.35574 2.93209 4.22205
Forward 1.90855 4.89245 5.90856
Back 6.83771 4.73186 3.42432
Back 6.96181 3.85901 2.53403
Back 5.90154 3.63211 2.5899
Forward 1.9541 5.34266 6.78012
Up 5.74237 2.30056 3.598
Back 6.82603 4.66437 3.62769
Up 5.8303 2.8356 5.0788
Forward 2.1149 5.08505 6.30179
Forward 3.27591 4.91543 6.29541
Forward 2.57902 5.44063 6.47033
Up 5.56865 2.19873 4.00986
Up 5.21602 2.17869 3.98014

Table 1 DTW: Distances between test curve and centroid
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Forward (0.112586)

Up
Forward
Up
Back
Forward
Back
Forward
Up
Forward
Forward
Up
Up
Forward
Up
Forward
Forward
Up
Forward
Back
Back
Back
Forward
Up
Back
Up
Forward
Forward
Forward
Up
Up

Table 2 Frechet Distance:

0.108214
0.0555512
0.102874
0.105634
0.0496826
0.107653
0.0492905
0.103817
0.0516548
0.0481151
0.1082
0.107375
0.0515642
0.103852
0.0488261
0.0525987
0.124464
0.0494689
0.108041
0.111256
0.104614
0.0476759
0.108117
0.107322
0.105665
0.0499374
0.0525162
0.0546177
0.108339
0.108237

Up (0.0931776)
0.0354834
0.0674876
0.0488166
0.0806102
0.0855315
0.0879584
0.0.0879081
0.0565963
0.0730864
0.0848726
0.0436746
0.0556671
0.0752174
0.0382095
0.0847435
0.0773703
0.0661044
0.0745088
0.0972703
0.080132
0.0855337
0.0710307
0.0529512
0.0892985
0.0520633
0.0776967
0.0833213
0.0853659
0.0592446
0.0559229

Back (0.0971985)
0.0757051
0.0757051
0.0864274
0.0610774
0.0849349
0.0488565
0.086147
0.0850903
0.0850903
0.0871019
0.0787153
0.0787153
0.0787153
0.0787153
0.0788105
0.078932
0.0663126
0.0749716
0.0558157
0.0487224
0.0495288
0.0944706
0.0641397
0.0600195
0.0841367
0.0841367
0.0846168
0.0868744
0.0801229
0.0746656

Distances between test curve and centroid
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