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Abstract
Peatlands account for 10% of UK land area, 80% of which are degraded to some degree, emitting carbon at a 
similar magnitude to oil refineries or landfill sites. A lack of tools for rapid and reliable assessment of peatland 
condition has limited monitoring of vast areas of peatland and prevented targeting areas urgently needing 
action to halt further degradation. Measured using interferometric synthetic aperture radar (InSAR), 
peatland surface motion is highly indicative of peatland condition, largely driven by the eco-hydrological 
change in the peatland causing swelling and shrinking of the peat substrate. The computational intensity of 
recent methods using InSAR time series to capture the annual functional structure of peatland surface 
motion becomes increasingly challenging as the sample size increases. Instead, we utilize the behaviour of 
the entire peatland surface motion time series using object oriented data analysis to assess peatland 
condition. Bayesian cluster analysis based on the functional structure of the surface motion time series 
finds areas indicative of soft/wet peatlands, drier/shrubby peatlands, and thin/modified peatlands. The 
posterior distribution of the assigned peatland types enables the scale of peatland degradation to be 
assessed, which will guide future cost-effective decisions for peatland restoration.
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1 Introduction
For over 25 years, global peatland restoration has been actively promoted in the hope that the deg
radation of peatlands can be reversed (Verhoeven, 2014). Accounting for one third of Earth’s soil 
carbon despite only covering 3% of the land area, peatlands contain up to 95% water and 5% 
organic matter and provide a full spectrum of ecosystem services such as flood regulation 
(Grayson et al., 2010), carbon sequestration (Pawson et al., 2012), and water quality (Evans & 
Lindsay, 2010). Erosion and organic matter loss have a detrimental impact on provision of these 
services as the peatland system state, or condition, is highly vulnerable to societal pressure, 
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(e.g. grazing, burning, agriculture, forestry, recreation, development, and extraction), and suscep
tible to climate change (Andersen et al., 2017; Ise et al., 2008; Rochefort & Andersen, 2017).

The UK has 2 Mha of peatlands (10% land area), mostly as blanket bog, a globally rare type of 
peatlands. However, up to 80% of these peatlands are degraded to some degree (Bain et al., 2011). 
It is estimated that degraded UK peatlands emit 10 million metric tonnes of CO2 per year, a similar 
magnitude to oil refineries or landfill sites (DBEIS, 2019), placing the UK among the top 20 coun
tries for emissions of carbon from degrading peat (Joosten, 2012).

To date, condition assessment of all UK peatlands has been impeded by the lack of cost-effective 
ways to monitor large and often remote areas of peatland. However, recently the use of interferom
etry synthetic aperture radar (InSAR) signals (Sowter et al., 2013) to measure peatland surface mo
tion has proved fruitful as a relatively low cost alternative to taking ground measurements (Marshall 
et al., 2022). Recent literature has found peatland surface motion, a direct consequence of eco- 
hydrological change in the peatland, to be highly indicative of peatland condition (Alshammari 
et al., 2020, 2018; Bradley et al., 2022; Marshall et al., 2022). Surface motion of peatland is mostly 
driven by the seasonal fluctuation in the water table causing swelling and shrinking of the peat sub
strate manifesting as an up-down motion (e.g. Howie & Hebda, 2017). In particular, the character
istics (e.g. timing and amplitude of seasonal peaks, overall trend) of these time series are indicative of 
the peatland condition (Bradley et al., 2022). This annual cycle of peatland displacement has been 
termed ‘bog breathing’ (Ingram, 1983), and we expect a single peak and a single trough each year in 
the annual cycle for peatland in good condition (Bradley et al., 2022). The large volume of data 
means that current hands-on approaches to data analysis become computationally challenging as 
study sites increase in area, and so it is of interest to develop a more objective statistical learning 
method that would bring more consistency and efficiency to mapping peatland condition.

Our raw data are surface motion time series at a set of spatial locations, and we can view each 
time series as observations from a smooth underlying function. More detail on the data and pro
cessing is given in Section 2.

Our primary objective is to cluster the locations into a small number of classes, which are in
formative regarding the condition of the peat. Therefore, at heart our goal is clustering of function
al data. We use the Object Oriented Data Analysis (OODA) framework (Marron & Alonso, 2014; 
Marron & Dryden, 2022; Wang & Marron, 2007), which provides a general framework for the 
analysis of complex-structured data. Rather than perform clustering directly on the functions, we 
extract a small number of key features from the functions (which are estimated from the raw time 
series via smoothing splines), guided by the scientific knowledge of the ‘bog-breathing’ behaviour 
of peat and its relation to peat condition. This provides a low-dimensional, parsimonious re
presentation of the data which we show to be effective for the task at hand. More discussion of 
OODA in general, as well as how it informs our analysis, is given in Section 2.2.

As mentioned above, a time series is observed at each of N spatial locations. We extract the fea
tures independently for each site, giving a D-dimensional vector at each of the N sites, and we 
model these data as a mixture of multivariate normal distributions. We then perform clustering 
via Bayesian inference, jointly modelling the data, parameters in the likelihood and the cluster la
bels (which identify the mixture components). Spatial smoothing is achieved via a Potts model 
(Green & Richardson, 2002) as a prior distribution over the cluster labels. This is presented for
mally in Section 3.1, but intuitively, this model encourages nearby spatial locations to belong to 
the same cluster. Conditional on cluster labels, we model each location independently of the rest.

We now briefly summarize the key steps and ideas in our process. 

1. The raw data are InSAR time series, giving surface motion recorded every 6 or 12 days. There 
is one time series observed at each of N spatial locations. We view the underlying object giving 
rise to each time series as a smooth, continuous process, observed at discrete time points (the 
observed time series).

2. Two levels of smoothing are applied to each time series: a higher degree of smoothing to 
estimate an underlying longer term trend, and a lower amount of smoothing to estimate a 
seasonal oscillations component of the underlying process.

3. From these two components, we derive 3 measures which are designed to capture important 
information regarding trend and oscillations of the peat surface motion. Crucially, these 
measures are defined with direct reference to expert scientific knowledge about the behaviour 
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of peat surface motion and its relationship with peat condition. Thus, each location is then 
described by a vector xi ∈ R3, i = 1, . . . , N.

4. Further modelling and inference is then performed using the {xi}
N
i=1. Specifically, a Bayesian 

formulation is used, with a Gaussian likelihood on the {xi}, conditional on unknown cluster 
labels. Spatial smoothing of the cluster labels is achieved via a Potts model on the cluster la
bels, and joint posterior inference for the model parameters and the cluster labels is carried 
out via MCMC. Crucially, the clusters have meaningful physical interpretations correspond
ing to peat condition due to the direct reference our measures {xi} make to the available sci
entific knowledge. Posterior probabilities of cluster membership can be estimated from the 
MCMC output, thereby quantifying uncertainty in condition type.

As mentioned above, our task is in essence one of clustering functional data. For a comprehensive 
review of clustering of functional data, see Jacques and Preda (2014). A key contribution of this 
article is to show how OODA principles can be used to extract key features from functional data 
for the required task—in our context, features related to peatland condition, grounded in expert 
knowledge and scientific evidence, which are meaningful and interpretable to peatland experts and 
which are also highly effective for classifying peatland condition.

The rest of the article is organized as follows. In Section 2, we describe the data and the process
ing methods used to extract the key features following OODA principles. In Section 3, we describe 
the Bayesian spatial model used to perform clustering on the features extracted. The results ob
tained from applying our analysis to data from the Flow Country are presented in Section 4, where 
we also compare with a recent functional clustering method. We conclude with a discussion.

2 The Flow Country and OODA
2.1 The Flow Country data
Covering approximately 4,000 km2 of land in the Caithness and Sutherland counties of northern 
Scotland, the Flow Country is known for being the largest expanse of blanket peatland in Europe 
(Andersen et al., 2018; Lindsay et al., 1988) and the largest carbon store naturally occurring in 
the UK (Chapman et al., 2009). The remote nature of the Flow Country also serves as a refuge 
for many bird species (Lindsay et al., 1988). The current consideration to make the Flow 
Country a World Heritage site highlights the conservation importance of this area. Compared to 
other UK peatlands, the Flow Country peatlands remain in good condition overall. However, there 
remains evidence of past interference from land use changes over the last centuries and more recent
ly, including peat cutting, drainage, burning, and afforestation. The preservation of the current peat
land condition and the reversal of peatland degradation in this region is key for the UK to reduce 
carbon emissions from peatland.

Classifying peatland condition for the Flow Country will indicate which areas are to be targeted 
for conservation, preservation, and restoration. Based on local expert field knowledge, a diverse 
range of near-natural peatland conditions are captured by five sub-sites in the Flow Country 
(Figure 1), each roughly 10–15 km2 with unique environmental and management properties 
(Bradley et al., 2022). We assess peatland condition for these five sub-sites using InSAR time series 
between 12th March 2015 and 1st July 2019. Cross Lochs (58.39◦N, −3.94◦E) at 180 metres 
above sea level (m.a.s.l), Loch Calium (58.44◦N, −3.68◦E) at 120 m.a.s.l, and Balavreed 
(58.38◦N, −3.50◦E) at 180 m.a.s.l have evidence of low levels of grazing. Cross Lochs and 
Balavreed consist of flat pool systems whilst Loch Calium has gentle slopes leading down into a 
central loch. Munsary (58.39◦N, −3.35◦E) at 100 m.a.s.l has been more intensely drained and 
grazed in the past. Finally, Knockfin (58.32◦N, −3.80◦E) at a much higher altitude (360 m.a.s.l) 
is an upland plateau with pool systems amongst wind-eroded peat islands, with past grazing 
and drainage. These peatland areas spanning a wide range of naturally occurring peatlands 
make them ideal for our analysis based on peatland surface motion.

The coupling between ecohydrological condition and motion of the peat surface (Mahdiyasa 
et al., 2022; Marshall et al., 2022) make the characteristic time series of surface motion measured 
by the InSAR technique highly suited to quantifying peatland condition (Alshammari et al., 2018; 
Bradley et al., 2022). The InSAR signals that measure surface deformation are from the European 
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Space Agency Sentinel-1A and Sentinel-1B satellites and are processed by Terra Motion Limited 
(Sowter et al., 2013) to generate a peatland surface motion time series. The surface motion time 
series are measured at high spatial (80 × 90 m2 units) and temporal (every 6–12 days) resolution 
across the UK. From 12th March 2015, the surface motion time series are every 12 days and an 
increase in resources with two satellites in operation enabled measurements to be taken every 
6 days from 26th September 2016 until 1st July 2019. The characteristics of these surface motion 
time series are indicative of the peatland condition. In total, there are N = 9,662 geographical 
locations in the five regions.

2.2 Object oriented data analysis
From Marron and Dryden (2022), OODA involves the analysis of complex data that often lie in 
non-Euclidean spaces, such as functions, shapes, images, graphs, and trees. The OODA frame
work involves asking a series of questions to domain expert collaborators to guide the most appro
priate analysis. In particular, first it is important to decide what actually are the data objects under 
study, as there are frequently many choices available leading to different analyses. Second the 
choice of object space in which the objects lie will determine which metrics and mathematical tools 
are available. Third the space itself may be complex, and possibly infinite dimensional, and so we 
need to decide what are the important features for statistical analysis. Finally, we must decide what 
types of methods are appropriate for statistical analysis.

In extensive discussions we have formulated some initial answers to the following four OODA 
questions: 

1. ‘What are the data objects?’ 
The recorded data are noisy ground displacement time series observed each 6–12 days at a 

set of spatial locations (where each location is a pixel of area 80 × 90 m2). However, these are 
just partial observations of the underlying continuously moving surface. We choose to con
sider the idealized data objects as functions of continuous time located at discrete locations 
in space. It is natural to consider the peatland bogs as analogous to ‘breathing’ continuously 
in time, at discrete locations in space.

2. ‘In what space do the objects lie?’ 
The idealized object space is a product of function spaces, where each function measures 

the ground displacement versus time at a particular location. We also require the functions 
to be differentiable among other properties, and details are given in Section 2.5.

Figure 1. Location of five peatland sub-sites in the Flow Country, Scotland (inset): Cross Lochs (1), Knockfin (2), 
Loch Calium (3), Balavreed (4), and Munsary (5). Map grid units in decimal degrees. Base map data: ©2022 Google. 
Base map imagery: ©2022 TerraMetrics.
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3. ‘What are the important features for practical data analysis?’ 
From past studies (Bradley et al., 2022), it is evident that the condition of the peat is re

flected by changes of the peat levels over two different time scales. Over several years there 
is a smooth trend in the level of the peat, and on a shorter time scale there is often an oscil
lating behaviour on an annual basis with a single peak and single trough in the peat levels 
(the ‘bog breathing’). The features of importance are the peak amplitude, peak timing, and 
trend gradient. Higher amplitude and earlier (Winter) peaks are indicative of ‘soft/wet’ 
peat; lower amplitude and later (Summer) peaks are indicative of ‘drier/shrubby’ peat; and 
inconsistent oscillations are indicative of ‘thin/modified’ peat. In addition, a positive trend 
gradient can indicate improving peat and a negative trend gradient can indicate deteriorating 
peat.

4. ‘What methods will be used?’ 
After the features have been obtained, we develop a Bayesian spatial model for clustering 

each spatial location into similar types of peat. A joint prior smoothing model for the cluster 
labels will be specified for all locations to encourage neighbours to have similar labels. The 
posterior distribution is obtained by Markov chain Monte Carlo simulation. The aim is to 
produce a map of the area, with estimated class labels indicating similar types of peatland con
dition, and in addition a measure of the uncertainty in the estimates.

The initial answers to the OODA questions have been developed over a sustained period by nu
merous interactions and collaborations with experts on peatland monitoring. The responses to 
the questions are developed further in the rest of the article.

2.3 Smoothing the peat surface motion time series
To obtain relevant features from each time series we fit two smoothing splines (Green & 
Silverman, 1993; Hastie et al., 2008) with two different levels of smoothing: larger smoothing 
to obtain the trend, and smaller smoothing to obtain the annual cycles. The difference between 
the two splines is the de-trended peat level, which we call the oscillations.

An example of a peat surface motion time series with estimated smooth functions for the oscil
lations and trends is given in Figure 2. We use the smooth.spline command in R (R Core Team, 
2023) with parameter spar (a smoothing parameter, with higher values giving more smoothing). 
When spar = 0.7 the estimated function, fj say, (Figure 2a) captures the annual oscillations 

(a) (b) (c)

Figure 2. Example of a smoothed peatland surface motion time series. (a) small level of smoothing with spar = 0.7 
to capture trends and oscillations combined, (b) large level of smoothing with spar = 1 to capture the overall trend, 
and (c) oscillations extracted once the trend has been removed.
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combined with an overall trend at location j. When spar = 1, the estimated function fj estimates 
the overall trend at location j (Figure 2b) without the annual oscillations. These choices of smooth
ing were informed using simulation experiments over a range of parameter values and calibrating 
with the scientific knowledge about expected bog-breathing behaviour. Full details of these experi
ments are given in the online supplementary material (Mitchell et al., 2024). The difference be
tween the two smoothed functions gives the de-trended oscillations attributed to bog breathing 
(Figure 2c). The smoothed functions of the oscillations and trends will be used hereafter. Note 
that we estimate the oscillation plus trend, and trend separately. An alternative approach to de
composing the data is to estimate the seasonal and trend components simultaneously allowing 
for warping, which is the approach considered by Tai et al. (2017).

Since interest lies in the rise and fall of a surface within the time series itself, the gradient function 
of the trend is also considered for the following analysis. The gradient accentuates features inter
rupting the constant rate accumulation/degradation of peatlands, such as their response to ex
treme weather events and restoration.

For the surface motion time series in the Flow Country sub-sites, we smooth the function be
tween 12th March 2015 (t1) and 1st July 2019 (t202), where for all locations Lj = 202 is the num
ber of time points we have measurements for with either 6 or 12 day spacings. Fitting cubic splines 
to the data collected every 6–12 days allows for interpolated daily data to be estimated and outliers 
to be smoothed over.

2.4 Examples of different types of peat surface motion time series
In Figure 3, we see some example surface motion time series in the left-hand column; in the middle 
column are the oscillations for these example locations; and in the right-hand column, we see the 
trends of peatland motion for these examples. The rows of Figure 3 indicate example locations of 
(first row) soft and wet peatland, (second row) drier, shrubby peatland, and (third row) thin, 

(a)

(b)

(c)

Figure 3. Left: InSAR time series of peatland surface motion in the Flow Country from 12th March 2015 to 1st July 
2019, centre: examples of oscillations, right: examples of trends of peatland surface motion. Time series in each 
row share oscillatory or trend features, found to be important from past studies. The rows indicate example 
locations of (first row) soft/wet peatland, (second row) drier/shrubby peatland, and (third row) thin/modified peatland. 
(a) Example locations of soft/wet peatland. (b) Example locations of drier/shrubby peatland, and (c) example locations 
of thin/modified peatland.
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modified peatland. (These locations are randomly sampled from each of the identified peat types 
(see Section 4) covering all of the sub-sites shown in Figure 1, and we observe no discernible dif
ference between the peat types between the sub-sites.) For brevity, we denote these types of peat
land as ‘soft/wet’, ‘drier/shrubby’ and ‘thin/modified’ throughout the article. It can be seen that the 
soft/wet peatland has larger amplitude oscillations with earlier timed peaks (in Winter, due to 
swelling), the drier/shrubby peatland has smaller amplitude peaks with later timed peaks (in 
Summer, due to a build-up in vegetation from the growing season). The thin/modified peaks do 
not have a consistent structure of oscillations. The trend is more downward for the thin/modified 
peatlands whereas it is more flat for the soft/wet and drier/thinner peat here. It is not surprising to 
see a downward trend towards the end of the series, even in the good ‘soft/wet’ peatlands, due to 
the drought of 2018 affecting the water table depth over the whole region. The ability to respond 
to such climactic conditions in subsequent wetter years is a sign of peat in good condition: if we 
followed the series further into the future, we would expect to see the trend rise again in response 
to wetter years for peat in good condition. Hence, the features of amplitude, timing and trend in 
these examples highlight our chosen features of interest.

2.5 Square root velocity functions
Recall that the OODA approach has led to the data being treated as functions at discrete spatial 
locations. Functional data analysis (Ramsay & Silverman, 2005; Srivastava & Klassen, 2016) pro
vides a powerful statistical framework to analyse data as functions of time, where possible warp
ing of the time axis may be needed to register similar features of curves. In our case, variability in 
timing and amplitude of the oscillation functions is of interest, and functional data analysis allows 
us to capture this. We analyse the trend functions separately, where variability in amplitude but 
not timing is of interest—our treatment of the trend component is discussed briefly at the end 
of this section, and in the next.

Warping involves matching each peatland surface motion oscillation component to another 
template function by time warping to minimize a distance metric such as the L2 distance. A popu
lar method for warping functions involves first converting them to their respective square root vel
ocity functions (SRVFs) (Srivastava, Klassen, et al., 2011; Srivastava, Wu, et al., 2011). As well as 
performing well in a wide variety of applications and being straightforward to calculate, the meth
od has appealing theoretical properties. In particular, the L2 distance between the SRVFs is equiva
lent to an elastic metric which is right invariant under simultaneous warping of both functions.

Without loss of generality, time points t are assumed to lie in [0, 1] (Srivastava, Klassen, et al., 
2011). For each j ∈ {1, . . . , N}, suppose the continuous function fj is defined by fj : [0, 1]→ R and 
the square-root velocity function qj : [0, 1]→ R of fj is given by

qj(t) =
ḟ j(t)
�������

| ḟ j(t)|
􏽱 (1) 

when | ḟ j(t)| ≠ 0 and 0 otherwise, where ḟ j is the derivative of fj (Srivastava, Klassen, et al., 2011). 
Note that the functions fj, j = 1, . . . , N are in a product of first-order Sobolov spaces (Bauer et al., 
2016).

Then, the warping function γj ∈ Γ is chosen by minimizing the squared Euclidean distance be
tween qj and a template square-root velocity function q∗, with a penalty placed on how far the 
warping function γj is from the identity:

γ̂j = arginf
γj∈Γ

q∗ − (qj ◦ γj)
��
γ̇j

􏽱􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
2

2
+ λ 1 −

��
γ̇j

􏽱􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
2

2
, (2) 

where λ ≥ 0 and the Lp norm is ‖f‖p = { ∫10 f (t)pdt}1/p, p ≥ 1. Being a popular choice for penaliza
tion (Srivastava & Klassen, 2016), the penalty placed on the warping function is based on the 
squared L2 distance between the first-order derivative of the warping function γj and 1, and so 
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this captures the distance to the identity warp (where there is no warping). We denote the jth reg
istered function to the template q∗ as q̃j, where

q̃j = (qj ◦ γ̂j)
��
˙̂γj

􏽱

, j = 1, . . . , N. (3) 

In our context, the functions to be registered will be oscillation components of the peatland surface 
motion time series transformed to their SRVF representations. This will extract the variability in 
peak timing of the oscillations, captured by γj, from the variability in peak amplitude, captured by 
q̃j from (3).

In practice, the function fj, j ∈ {1, . . . , N}, is obtained by smoothing the raw data to give esti
mated values at discrete daily time points {1, . . . , 1, 573}, with t = 1 being the 12th March 
2015 and t = 1, 573 being the 1st July 2019. To improve computational efficiency, each SRVF 
is sub-sampled at every 20th day when computing the warping and distances.

The warping penalty, i.e. the second term of Equation (2), restricts the level of warping permit
ted when matching each component of peatland surface motion to their respective reference func
tions. This allows for some movement in the timings but avoids over-warping to depict the 
reference functions exactly, which may no longer represent the features in the original function 
(Wu & Srivastava, 2011). Recall that we expect one cycle each year, and over-warping can mani
fest itself by squeezing together peaks should more than one peak occur annually in the oscillation 
function. We choose λ = 0.1 to fulfil the trade-off between over-warping to the reference function 
and negligible warping.

In order to find the warping function associated to each registered function, a choice needs to be 
made for the reference function q∗. We use a sinusoidal wave with peaks occurring in the middle of 
astronomical spring every year (approximately May 5th) and troughs appearing in the autumn 
(Figure 4a). According to the individual warping functions, registering to peaks in mid-spring 
will split those peaking in winter, indicative of soft/wet peatlands, and those peaking in summer, 
indicative of drier/shrubby peatlands. Warping functions used to register to the reference function 
can be found using pair_align_functions in the R package fdasrvf (Tucker, 2021; Tucker et al., 
2013). The corresponding registered SRVFs can be found by first converting each function to 
their SRVF using f_to_srvf, then warping the SRVF according to the warping function 
already found using warp_q_gamma. These functions are also included in the R package 
fdasrvf. In summary, to assess the peak timing we carry out the warping using the square-root 
velocity function of the oscillation curve to an annual sine wave template with peak at May 5 
approximately.

(a) (b)

Figure 4. (a) Standardized sinusoidal template with peaks at the middle of astronomical spring (roughly 5th May) and 
troughs at the middle of autumn (roughly 5th November). (b) Standardized trend gradient mean.
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In terms of the trend, we work with the gradient of the trend component, i.e. fj is the first deriva
tive of the trend in this case. As with the oscillations, we then convert each fj to its SRVF qj, and 
measure distances of each to a template. Little is known about the overall trend for peatlands ex
cept there should be very little difference in the timing of the trends within the region, so the arith
metic mean of the observed SRVFs, q∗ =

􏽐N
j=1 qj/N (Figure 4b), is a natural choice of reference 

template often used in the alignment of functional data (e.g. Tucker et al., 2013). Since very little 
difference in the timing of the trends is expected, warping is not considered within this procedure 
(γj is fixed as the identity function). The procedure is further discussed in the next section, where 
we describe how our key features are computed from the SRVFs and (in the case of oscillations) 
warping functions.

2.6 Distance measures
Registering each peatland surface motion time series oscillation function to the sinusoidal wave 
results in two further functions of interest: the warping function reflecting the difference in timing 
between the peatland oscillations and the sinusoidal wave, and the registered oscillations once the 
difference in timing has been removed.

For analysis of the trend, we compare the SRVF of each trend function’s first derivative to the 
overall arithmetic mean of all such curves, without warping. Based on these functions, we compute 
three key measures to be used to classify peatland condition, which we now describe.

Table 1 gives the formal definition of each measure. The first measure (oscillation amplitude dis
tance) is the L1 distance between the registered oscillation function and the sinusoidal wave once 
standardized in q-space, which captures how peat reacts to water storage change (Roulet, 1991; 
Waddington et al., 2010). In order to provide comparable distances over the region, each SRVF 
is standardized to have mean zero and standard deviation 1. An example of a curve, its warp to 
the template, and the respective standardized SRVF functions is given in Figure 5.

The second measure (integrated warp difference, Table 1 (2)) captures the differences in timing 
between the oscillation functions and the sinusoidal wave with peaks in mid-Spring, which is re
lated to peatland ecohydrology (Alshammari et al., 2020; Tampuu et al., 2020). Large positive/ 
negative values of this measure correspond to warping functions which lie above/below the iden
tity warping function, and thus the measure discriminates between regular peaks in winter and 
summer—see Figure 6, top row. Note that this measure does not discriminate between no warping 
and warping which switches between above/below the identity—see Figure 6, bottom row. 
A measure such as L1 of (γ̂ − γid) could be used to separate such cases. We found this was not ne
cessary in our context, as signals had either strong, regular peaks in summer or winter, else low 
amplitude oscillations, and these three situations are characteristic of the three clusters we 
identify—see Section 4. Over the timescales in our data, the condition of the peat, and hence 
peak timing, is not expected to change appreciably. Over longer timescales, where it is of interest 
to also detect changes in peat condition, a measure such as L1 of (γ̂ − γid) could be used to discrim
inate between no warping and warping which switches between ahead/behind the identity.

The third measure (trend gradient amplitude distance) measures how far each trend gradient 
SRVF is from the mean trend gradient SRVF, and we use L2 distance so that large departures 
have more weight. The oscillation measures are calculated using the L1 norm. This will not pen
alize a peatland surface motion function as a result of our choice of timing of the peaks of the 
sinusoidal wave as much as if the L2 norm was used.

Table 1. Distance measures based on the registered and warping functions for the oscillations and the registered 
functions for the trend gradients

Oscillations

1 Amplitude distance ‖
(q̃osc − mean(q̃osc))

sd(q̃osc)
− (q∗osc − mean(q∗osc))

sd(q∗osc)
‖1

Figure 5

2 Integrated warp difference ‖(γ̂ − γid)+‖1 - ‖(γ̂ − γid)−‖1 Figure 6

Trend gradients

3 Amplitude distance ‖
(qtre − mean(qtre))

sd(qtre )
− (q∗tre − mean(q∗tre))

sd(q∗tre)
‖22
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Clustering can now be directly applied to these three measures for the peatland surface motion 
time series using a common clustering algorithm such as k-means clustering or hierarchical clus
tering using Ward’s method (Ward, 1963). However, these clusters will not account for the spatial 
dependency between neighbouring peatland locations, whereas an observed site is more likely to 
be in the same cluster as another one within its vicinity. In our Bayesian framework, we include 
spatial dependency using a Potts prior on the cluster labels—see Section 3.1.

3 Bayesian cluster and uncertainty analysis
3.1 Likelihood, prior, and posterior distribution
We consider a multivariate normal model for each peat condition measurement (key feature). We 
write x(m) for the N-vector of measurement type m taken at each of the N sites, and m = 1, . . . , D. 
We use the N × K indicator matrix Z to denote the cluster membership for each site, which has a 1 
in the vth column of the jth row if site j is in cluster v, j = 1, . . . , N, v = 1, . . . , K, and 0 otherwise. 
The cluster means for measurement type m are written as μ(m), which is a K vector. Each measure
ment vector x(m) given the cluster labels Z has a multivariate normal distribution:

x(m) ∼ NN(Zμ(m), (σ2)(m)IN), 

(a)

(b)

Figure 5. (a) the warped oscillations (darker solid line) from the original oscillations (lighter solid line) to the 
sinusoidal wave (dashed line) in the original function space. (b) the warped SRVF (darker solid line) from the original 
SRVF (lighter solid line) to the SRVF representation of the sinusoidal wave (dashed line). The distance measure is 
calculated between the SRVFs of the sinusoidal wave and the warped oscillations (vertical solid lines). The L1 norm 
is taken between the two functions. All functions have been standardized.
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independently for each m = 1, . . . , D, where IN is the N × N identity matrix. So, the log-likelihood 
for the data is:

log L(x(1), . . . , x(D)|Z, μ(1), . . . , μ(D), (σ2)(1), . . . , (σ2)(D)) = −
ND

2
log (2π) −

N
2

􏽘D

m=1

log ((σ2)(m))

−
􏽘D

m=1

1

2(σ2)(m)
(x(m) − Zμ(m))T(x(m) − Zμ(m)).

The prior distribution for the cluster labels is a Potts model (Green & Richardson, 2002), which en
courages neighbouring locations to have similar labels. We also use the alternative notation Zj = vj to 
denote that site j has cluster label vj, which is equivalent to the jth row of Z having a 1 in column vj 

and 0 otherwise, vj ∈ {1, . . . , K}. The Potts model prior has log density of {Zj = vj : j = 1, . . . , N} 
equal to

log π(Z) = constant +
􏽘N

j=1

λ
|Δj|

(#neighbours of site j in cluster vj), 

Figure 6. Warping function (black solid line) to register the time series to the sinusoidal wave, where the identity 
warping function (black dashed line) represents no warping. The integrated warp difference (Table 1) measures the 
difference between the shaded areas above and below the identity.
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where Δj is the set of neighbours of site j, |Δj| is the number of neighbours of site j, and the cluster label 
at site j is vj ∈ {1, . . . , K}, for j = 1, . . . , N. Two sites are neighbours when the distance between the 
sites is less than some chosen distance dmax; we take dmax = 0.00157 in our results of Section 4, giving 
an average of 7 neighbours per location. The parameter λ is non-negative, and the greater the value of 
λ, the more labels are encouraged to be in the same cluster as their neighbours. Note that the marginal 
distribution of each Zj is uniform across the labels (Green & Richardson, 2002).

The prior distribution for each (σ2)(m) is an inverse Gamma(α, β) distribution, and μ(m) are uni
formly distributed on a large bounded region, and so have a uniform prior density. Finally, note 
that Z, μ(1), . . . , μ(D), (σ2)(1), . . . , (σ2)(D) are a priori mutually independent.

The log-posterior density is therefore given by:

log π(Z, μ(1), . . . , μ(D), (σ2)(1), . . . , (σ2)(D)|x(1), . . . , x(D))

= log L(x(1), . . . , x(D)|Z, μ(1), . . . , μ(D), (σ2)(1), . . . , (σ2)(D))

+ log π(Z) + log π(μ(1), . . . , μ(D)) + log π((σ2)(1), . . . , (σ2)(D)) + constant 

3.2 MCMC sampling
Once initial clusters have been formed using Ward’s clustering algorithm (Ward, 1963), a Markov 
chain Monte Carlo (MCMC) sampler (Geman & Geman, 1984) is constructed based on the three 
measures used for clustering, enabling samples to be generated approximately from the marginal 
posterior distributions for the cluster centres and cluster labels.

There are actually three Gibbs steps in each iteration. 

1. Cluster assignments: Let us write Z(jv) for the matrix which is equal to Z except in the jth row, 
which has a 1 in the vth column. This matrix represents the assignment of the cluster label at 
site j to cluster v.

log p Zj = v|rest
( 􏼁( 􏼁

= −
􏽘D

m=1

1

2(σ2)(m) (x(m) − Z(jv)μ(m))T(x(m) − Z(jv)μ(m))

+
λ
|Δj|

􏽘

h∈Δj

I(Zh = v), + constant.

and therefore,

Zj|rest ∼ Multinomial{p(Zj = 1|rest), . . . , p(Zj = i|rest), . . . , p(Zj = K|rest)}. (4) 

This Gibbs step is repeated for each observation j in a randomized order resampled each time 
a cycle of the MCMC sampler has been run.

2. Cluster means: Once all cluster labels have been updated, next the cluster means of these are 
updated with a Gibbs step for each cluster i, i = 1, . . . , K. The conditional distribution of 
{μ(m)|rest} is

μ(m)|rest ∼ NK(BZTx(m), (σ2)(m)B) , 

where B = (ZTZ)−1.
3. Cluster variance: The final Gibbs step of the MCMC sampler is to update each (σ2)(m) with log 

conditional distribution

log p((σ2)(m)|x(1), . . . , x(D), Z, μ(1), . . . , μ(D))
􏼐 􏼑

= −
N
2

+ α + 1
􏼒 􏼓

log (σ2)(m)
􏼐 􏼑

−
β

(σ2)(m)

−
1

2(σ2)(m) (x(m) − Zμ(m))T(x(m) − Zμ(m)) + constant 
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i.e. an inverse Gamma distribution,

(σ2)(m) ∼ IG
N
2

+ α, β +
1
2

(x(m) − Zμ(m))T(x(m) − Zμ(m))
􏼒 􏼓

.

The MCMC sampler is repeated T times to get samples for Zj for j = 1, . . . , N and μ(m), (σ2)(m) for 
m = 1, . . . , D, which approximately come from the joint posterior distribution and their respect
ive marginal distributions. For the cluster allocations Zj, j = 1, . . . , N, the approximation to the 
posterior distribution for Zj allows for probabilities of belonging to each cluster to be estimated. 
We shall also look at the means of the approximate posterior distributions for the cluster centres to 
assess what each cluster may represent.

3.3 Posterior inference
We carry out Markov chain Monte Carlo simulation, and after many iterations the values of the 
chain will be (approximate) dependent samples from the posterior distribution. Trace plots are 
used to identify an appropriate burn-in period, with the remainder of the simulated values used 
for inference.

The estimated probability of each location j being in cluster k is simply the proportion of time 
after burn-in that its cluster label spends in each cluster. Where a single allocation of each location 
to a particular cluster is desired, the clustering is estimated by using the marginal maximum 
a posteriori (MMAP) estimate (Doucet et al., 2002), which is the labelling that gives the largest 
posterior probability from the marginal distribution of Zj, j = 1, . . . , N. The results will be dis
played graphically using a map of the MMAP cluster labels, and individual maps for the estimated 
probability of the location being in each cluster.

Note that there is a potential for label switching between the clusters, and hence in general it 
may be necessary to post-process the MCMC output using an appropriate loss function for the 
labels. We did not observe label switching: the clusters are identified by clearly separated mean 
vectors, and switching would be evident in the observed chains, which we did not see any evi
dence of.

4 Results
We run the MCMC chain for 160,000 iterations and inspect trace plots of the parameters. For 
these data, the burn-in period only needs to be short and the chains mix well quickly, but being 
cautious we take 10,000 as the burn-in period leaving 150,000 observations for the sample. We 
take every 5th sample to reduce dependency between the samples, which leaves 30,000 samples 
to base our analysis on. Plots of the sample paths can be found in the online supplementary 
material document (Mitchell et al., 2024). We take λ = 0.1 for the parameter controlling spatial 
dependency in the Potts prior, and we set α = β = 0.001 for the priors on the (σ2)(m).

The posterior means for each cluster mean μ(m) are given in Figure 7. These posterior means 
enable us to interpret the type of peatland which each cluster represents. The posterior mean in
dicated by the blue density and red density have similar amplitude distances on average for os
cillations and trend gradient, but the timing measure as per the integrated warp difference is 
clearly very different with the blue density being earlier in the year than the sine template 
peak at May 5th, and the red density being later in the year after May 5th. Hence, the blue dens
ity cluster is indicative of soft/wet peatlands, whose peaks occur in winter due to swelling from 
the hydrological recharge following the growing season (Alshammari et al., 2020). The red dens
ity cluster, with later peaks, is indicative of drier/shrubby peatlands due to a build-up in vegeta
tion from the growing season. The gradient trends for the red density cluster are similar to those 
in the blue density cluster, both being close to the arithmetic mean and similar long-term change 
in peatland depth.

The posterior mean of the cluster represented by the white density has a large oscillation amp
litude distance suggesting that regardless of how much warping is applied to the oscillations, the 
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oscillations will not closely resemble the sinusoidal wave. The integrated warp difference is 
quite close to zero suggesting that warping will rarely achieve oscillations close to the sinusoidal 
wave and so there is little warping to avoid further penalization. There is a very large trend gra
dient amplitude distance, and so the trend gradient is far from the mean for the region. This 
cluster is indicative of thin/modified peatlands. Examples for each class can be found in the 
Figure 3.

Samples approximately drawn from the posterior distribution for the cluster labels are also pro
vided by the MCMC sampling scheme. For each of the N = 9662 peatland locations, the propor
tion of samples assigned to each cluster is the estimated probability of being assigned to that 
peatland type. We also find the MMAP estimate, the peatland type with the highest probability, 
for each peatland location. For Balavreed, one of the five sub-sites in the Flow Country, the 
MMAP estimates and the corresponding probabilities for each peatland type are plotted in 
Figure 8. The plots for the remaining four sub-sites can be found in the online supplementary 
material (Mitchell et al., 2024).

Though there is no formal classification with which to quantify the accuracy of our classifica
tions (according to MMAP) in the traditional way, some of the authors (RA,AB,DL) and col
leagues have extensive experience with these areas of the Flow Country. Extensive field-based 
assessment of site condition has been undertaken by one of the authors on the same locations 
at a suitable spatial scale, as part of previous work specifically seeking to relate InSAR with vege
tation, hydrology, and land-use (Alshammari et al., 2020; Bradley et al., 2022). As part of this 
work, it was clearly demonstrated that InSAR-based surface motion represents real, spatially or
ganized dynamic behaviours relatable to eco-hydrological condition on the ground (Bradley et al., 
2022). Notably, Bradley et al. (2022) demonstrated that the InSAR-based surface motion was ex
tremely effective at predicting areas where pool systems—the most dynamic part of the system cor
responding to a ‘soft/wet’ class—were likely to occur. The authors are confident that the current 
classification carries meaning in a similar way, displaying the same correspondence to expert 
knowledge gathered from field surveys but grounded in a more robust and principled statistical 
methodology.

Figure 7. Violin plots of the posterior means for each of the cluster centres. From the positioning of the posterior 
means, in each panel the right-hand density represents soft/wet peatland, the left-hand density represents drier/ 
shrubby peatland, and the middle density represents thin/modified peatland.
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4.1 Model checking
To check our model is a good fit to our data, we simulated replicate data sets from the model using 
parameter configurations from our posterior samples, and inspected plots to check for consistency 
with our observed data. Figure 9 shows pairwise plots of draws from our model for one randomly 
chosen parameter configuration from the MCMC run, along with the observed data. (Five hun
dred randomly chosen points are plotted for clarity.) The plot shows good agreement, evidencing 
that our model gives a faithful representation of the data.

4.2 Comparison with FPCA with warping
A standard method to perform dimension reduction with functional data is functional principal 
component analysis (FPCA) (Ramsay & Silverman, 2005). This assumes the functions are aligned 
in time (or phase), and extracts information about amplitude variability. This is not the case in our 
application, where peak timings differ and contain valuable information about peat condition, as 
discussed earlier. In other words, functions should be warped before comparing amplitude across 
functions via standard FPCA, and the warping contains information about peak timing—recall 
how we have used information from the warping functions to define two of the key features in 
our approach. Tucker et al. (2013) proposed a framework for exploring the amplitude variability 
(via vertical FPCA) and warping variability (via horizontal FPCA), and this is a natural method to 
compare with our approach.

To investigate this, we first smoothed our time series, similar to the first step in our approach. 
However, we did not specify the spar parameter, instead using the R default value for each time 
series. We chose the endpoint of each series as the ‘f (0)’ parameter of Tucker et al. (2013), which 
enables reconstruction of f from q since q is invariant to vertical shifts.

Figure 8. (a) MMAP estimate for peatland condition in Balavreed, one of the five sub-sites in the Flow Country. 
Different shadings are indicative of soft/wet peatland, drier/shrubby peatland, and thin/modified peatland. 
(b) probability of drier/shrubby peatland, (c) probability of soft/wet peatland, and (d) probability of thin/modified 
peatland (here darker represents higher probability and white low probability). Base map data: ©2022 Google. 
Base map imagery: ©2022 CNES/Airbus, Getmapping plc, Landsat/Copernicus, Maxar Technologies.
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Figure 10 shows the first 4 principal components from the vertical FPCA, in the original 
function space. The FPCA itself is carried out in q-space (on the warped q functions), where 
principal-geodesic paths corresponding to each principal component are also defined. Functions 
in the original function space can then be obtained via integration. The middle function in each 
plot of Figure 10 corresponds to the mean, and the upper and lower functions correspond to ± 
one step along the geodesic path for each component. These first four components account for 
94.2%, 1.2%, 0.71%, and 0.59% of the amplitude variability, respectively, so the first mode of 
variation overwhelmingly dominates. This mode essentially reflects the variability in the endpoint 
of the series, which is analogous to the variability our trend measure captures.

Figure 11 shows the first 4 principal components from the horizontal FPCA. These components 
account for 24.0%, 15.1%, 11.8%, and 8.9% of the warping variability, respectively. Here, the first 
9 components are needed in order to explain 90% of the variability, and they are not particularly 
easy to interpret in a simple and meaningful way for peatland scientists. It is not surprising that a 
relatively large number of components are needed to explain all the observed variation in warpings 
over a number of years, but in fact what is important is the broad classification of peak timings into 
winter and summer. Our simple measures effectively achieve this in a low-dimensional, parsimo
nious manner.

Figure 9. Simulated samples (triangles) and observed data (circles).
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To produce a classification, we used the first 3 vertical FPCA coefficients and the first 9 horizon
tal FPCA coefficients to represent each location as a vector in R12, and obtained a classification via 
Ward’s method on the Euclidean distances between these points. To compare the clusters with 
ours, we relabelled in such a way as to maximize the number of locations classified to the corre
sponding clusters from each method.

Overall, we find that 54% of locations are classified the same, but interestingly we find quite 
a strong agreement between our soft/wet cluster and the corresponding cluster from FPCA 
(see Table 2). If one delves deeper, we find that the locations which ‘disagree’ are generally the 
ones which are more uncertain according to our MMAP probabilities, whereas the ones which 
‘agree’ tend to have very high MMAP probabilities (>0.9) of being soft/wet. The classification 
map from FPCA for Balavreed can be seen in Figure 12, which can be compared to those from 
our method. There is less obvious agreement between the other two classes, with thin/modified 
having the poorest agreement.

The functional PCA approach can be viewed as a pure exploration of the variability in the func
tional data. A potential disadvantage is that the modes of variation may not have an obvious sim
ple interpretation, and clustering on the coefficients may not produce useful clusters for end users. 
In our approach, we tackle this head-on, by defining measures that are designed to extract features 
that will be physically interpretable and relate to the scientific knowledge of peat motion behav
iour. A pure exploration of the variability is undoubtedly an extremely valuable exercise, which 
we view very much as a complementary tool to our proposed method.

Figure 10. Vertical FPCA principal components and geodesic paths for the first four components, clockwise 
from top left. The middle line in each plot corresponds to the mean, and the upper and lower functions correspond 
to ± one step along the geodesic path for each component.
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Figure 11. Horizontal FPCA principal directions.

Table 2. Contingency table of classifications from OODA and FPCA

OODA

Drier/shrubby Thin/modified Soft/wet

Drier/shrubby 1,786 713 895 52.6%

FPCA Thin/modified 1,525 1,006 223 36.5%

Soft/wet 585 500 2,429 69.1%

45.8% 45.3% 68.5% 54.0%

Note. The final column gives the percentage of each FPCA class that agrees with OODA, and the final row gives the 
percentage of each OODA class that agrees with FPCA. The overall percentage agreement is 54.0%.

Figure 12. FPCA classifications (left) and OODA classifications (right) for Balavreed. Base map data: ©2022 Google. 
Base map imagery: ©2022 CNES/Airbus, Getmapping plc, Landsat/Copernicus, Maxar Technologies.
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5 Discussion and conclusions
Our analysis of peatland surface motion between 12th March 2015 and 1st July 2019 from InSAR 
data of five sub-sites in the Flow Country identified areas of soft/wet, drier/shrubby, and thin/ 
modified peatland. Areas identified as thin/modified with a high level of certainty can be ear
marked for future restoration and monitored in the meantime. Identified areas of soft/wet and dri
er/shrubby peatlands must be protected to continue to act as a carbon sink. The areas identified are 
sensible from ground observations whilst time and expense of conducting field studies are saved. 
Additionally, this method is far less computationally demanding for larger areas compared to pre
vious methods to assess peatland condition (Bradley et al., 2022).

The first part of the method involved constructing measures based on distances between the reg
istered oscillations and an oscillatory template and the trend gradients and a trend template. To 
register the oscillations, a reference function was required to base our analysis on. Guided by ex
pert knowledge of peatlands, we used a sinusoidal template with peaks in the middle of astronom
ical spring and troughs in the middle of autumn which is known to be midway between distinct 
types of peat: shrubby marginal peats peak in summer and soft wet sphagnum peaks in winter. 
It would be unusual for the peatland surface motion to be exactly represented by this wave 
once warped, nevertheless we would expect something close to this for the warped versions of 
the soft/wet and drier/shrubby peatlands due to the hydrological recharge of the shrubs in the 
dry peatlands during the summer growing season and the soft/wet peatlands during the winter.

To find the peatland oscillation motion attributed to the peat substrate and not the motion from 
the underlying hydrology, it would be useful to gather precipitation data for the area and incorp
orate this, alongside topographic information, into our preconception of the local oscillations for 
specific years.

An alternative approach, which would avoid selecting the reference function, is to take the ref
erence function as the Karcher mean (Srivastava, Wu, et al., 2011) of the set of oscillation SRVF 
functions. However, some concerns include the influence of non-oscillatory regions such as the 
thin/modified peat, and also the effect of outliers.

We restricted the level of warping for the oscillations using smoothness penalty λ = 0.1 to allow 
peak timing to be shifted, at most, approximately half a year. It would be unreasonable to suggest 
the timing between two peatland surface motion time series differed by over half a year since we 
expect the oscillatory cycle to repeat annually. Further work could entail switching to a Bayesian 
approach for functional data analysis (Cheng et al., 2016) and putting a prior such as half-Cauchy 
on 1/λ to favour larger levels of λ. A fully Bayesian approach could propagate other sources of un
certainty due to variations in the registration of the functional data (Kurtek, 2017; Lu et al., 2017; 
Tucker et al., 2021).

In addition to the oscillations, our analysis is also based on the trend gradients, where we chose 
to not include any warping. Little is known about the trends in the region except that there should 
be very little difference in the timing of the trends. Hence, there is very little difference between 
taking the arithmetic mean or the Karcher mean as the reference function, but finding the 
Karcher mean is far more computationally demanding.

An extension of the model is to consider spatially correlated noise rather than i.i.d noise. For 
example, we have experimented with a conditional autoregression (CAR) model (Clayton & 
Kaldor, 1987) where there is correlation between errors if they are from neighbouring sites. 
However, this error model does not perform well, as there will often be correlations across cluster 
boundaries. The two types of smoothness (cluster label Potts model and CAR error model across 
the whole region) are in competition, and from experiments this results in less smooth cluster la
bels than when using the i.i.d. noise model. A CAR model that is dependent on neighbours being in 
the same cluster is computationally challenging, as the normalizing constant for the likelihood 
would need recomputing at each iteration of the MCMC scheme. We will investigate this model 
in future work, but note that the correlations captured through the Potts model and i.i.d errors 
work well in this application.

One important question is whether the OODA part of our method, based on the five sub-sites in 
the Flow Country, can be extended to other regions. These sites were selected because they con
tained varied blanket peatland conditions in a near-natural state. For other regions, the underlying 
analysis of the oscillations based on a fixed sinusoidal template can be transferred. The overall 
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trend was based on the arithmetic mean of the trend gradients of the surface motion time series in 
the five sub-sites. The speed at which the overall trend declines within these regions increases until 
late 2017, where it continues to rapidly decrease at the same pace. This could be a result of extreme 
weather events during 2017 and 2018 from which the peatland has yet to recover (Fenner & 
Freeman, 2011; Stirling et al., 2020; Undorf et al., 2020). If the trend gradients were included 
in the clustering, a different region, which may not have exhibited such weather events, with dif
ferent trend gradients would be classed as degraded when compared to the Flow Country. 
Topography, climatology, and geography of a landscape can all influence peatland surface mo
tion. A potentially fruitful area of research work would be to study different sites with varied peat
land conditions, climate and topography and compare their means.

Related to the above point, there is the question of how to validate results in new areas where 
such excellent local knowledge is not available. In other work, we have demonstrated that the 
same classification system can effectively be applied to areas where there was no prior knowledge, 
using a simple field-validation tool and management information. In terms of further validation in 
completely new areas, the simplicity of the wide applicability of our physically and ecologically 
grounded conceptual framework gives us confidence that the algorithm can be reliably deployed 
for blanket bogs and raised bogs within a similar climate space. Should we wish to deploy a similar 
approach to a different peatland system (e.g. fen peat in which the hydrology is controlled by 
groundwater, tropical peat with a different pattern of wet and dry season, or peat experiencing 
severe freezing in winter), then we would start by first developing a new conceptual framework 
reflecting expected peatland behaviour, and adapt our choice of measures and condition classes 
to reflect scientific knowledge of key behaviours.

We fixed the number of clusters in this article to be K = 3, to reflect our knowledge of the peat
lands largely consisting of soft/wet peatlands, drier/shrubby peatlands, and thin/modified peat
lands. If we were to move to a different region, those which have significantly different trend 
gradients may be classed as thin/modified, although they may still contain the oscillatory behav
iour found in soft/wet or drier/shrubby peatlands. A potentially fruitful area of work would be 
to investigate the possibility of further sub-clusters by varying the number of clusters, either by 
penalizing for the number of clusters included or creating a tree structure, for example by first clas
sifying according to trend gradients followed by classifying according to oscillations. Penalization 
can be incorporated as a Poisson or Gamma prior placed on the number of clusters in the prior 
model when smoothing to account for neighbours.

Another interesting question, which is beyond the scope of the present paper, is to assess the 
peatlands’ response to restoration by examining the behaviour of the function before restoration 
and the behaviour afterwards. Testing the success of restoration would instead require a sliding 
window approach to find if and when the functional behaviour changes. In addition to restoration 
success, a sliding window would allow peatland condition to be assessed through time. If we con
tinue to use a sinusoidal wave as the template for the oscillations and cluster according to the meas
ures inside the sliding window, the changepoint could be identified as the point where the peatland 
type probabilities significantly change. This would not only enable reflection on the success of past 
restoration, it would also indicate best restoration practices for varied types of peatland environ
ments, to support future action.

We have provided a new method for the analysis of environmental time series which would also 
be appropriate in many more general applications, such as monitoring ocean temperatures, El 
Niño and the Southern Oscillation (ENSO), phenology, and gas emissions, where seasonal cycles 
and trends are present. Using the same Object Oriented Data Analysis approach to building appro
priate methodology is anticipated to be a valuable approach in such applications.
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