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Abstract

Conventional single-vector model predictive control (MPC) can suffer from low control
accuracy, while multi-vector MPC is often criticized for its complexity and heavy com-
putational burden. In order to address these issues, an adjacent vector-based MPC is
investigated in this paper for an electric vehicle battery charging and discharging converter.
The voltage vector selection table based on the principle of using adjacent vectors has been
designed and this reduces the number of iterations and thus the computational burden. A
threshold is used in the adjacent vector-based MPC to coordinate the use of the single and
multi-vector MPCs considering a balance between the control accuracy and computational
burden. In addition, to enhance the robustness of MPC to parameter changes, an extended
state observer for active disturbance rejection control has been used to derive the pre-
dictive model, and an adjacent vector-based MPC using extended state observer is studied.
The method does not need accurate system parameters. Instead, it only requires the system
input and output measurements to calculate the predicted current. The robustness of the
controller against the parameter mismatch is enhanced compared to alternative approaches
and the experimental results verify the feasibility and effectiveness of the proposed strategy.

1 INTRODUCTION

Model predictive control (MPC) has been widely researched
for power electronic converters due to its advantages includ-
ing fast dynamic response, easiness in understanding, simplicity
in implementation, no modulation stage, flexibility in realiz-
ing multi-objective control and including system constraints [1,
2]. However, there are some issues associated with the MPC,
such as dependence on system parameters, variable switching
frequency, heavy computational burden in some cases, and dif-
ficult weighting factor tuning. In addition, MPC is sometimes
criticized for issues such as difficulty in balancing the control
accuracy and computational burden and dependence on sys-
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tem parameters [3, 4]. The balance of the control accuracy and
computational burden is the main concern of this paper.

Traditional single-vector MPC (or 1-vector MPC) only
applies one switch state in each control period. Hence, the
control performance is not always guaranteed under certain
conditions [5, 6]. Large current and power ripples, noticeable
steady-state error and low control accuracy in 1-vector MPC
have been reported [7]. Therefore, various multi-vector MPC
schemes have been proposed in the literature [8–10]. Double-
vector (or 2-vector) MPC uses two voltage vectors to synthesize
the reference vector in one sampling period, which can improve
control accuracy at the cost of increased complexity and com-
putational burden [11]. Three-vector (or 3-vector) MPC uses
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two non-zero voltage vectors and one zero-voltage vector in
one sampling period. Theoretically, any desired bridge arm volt-
age vectors can be formed, thus achieving dead-beat control
accuracy [12, 13]. However, the computational burden is fur-
ther increased. Although the multi-vector MPC can improve
the control accuracy, it is computationally extensive because
of enumeration-based iterative calculations [14]. An adjacent
vector-based MPC (AVB-MPC) strategy that coordinates the
application of 1-vector, 2-vector, and 3-vector schemes has been
studied for motor drives in [15]. However, the calculation of the
duty cycle is rather complicated, and it increases the computa-
tional burden. However, a strategy with high control accuracy
and reasonable computational burden is desired in the field of
MPC. Based on the above analysis, this paper investigates an
AVB-MPC for EV converter to improve control accuracy while
maintaining a low computational burden.

Another challenge MPC faces is the dependence on system
parameters which may change under different operating condi-
tions. Inaccurate system parameters may lead to deteriorated or
even unsatisfactory performance [16, 17]. Some strategies have
been proposed in the literature to reduce the dependence of
the MPC on system parameters and a review can be found in
[18]. Model-free MPC based on the extended state observer
(ESO) has been widely studied recently to address the para-
metric uncertainties [19, 20]. In [15], the full model estimation
method has been proposed to eliminate the influence of param-
eter errors. However, possible rank deficiency issues may affect
estimation performance. In [21], an ESO based on an ultralocal
model has been proposed to achieve model-free MPC. How-
ever, the bandwidth performance of these methods cannot be
further improved due to missing model information [22]. Cas-
caded ESOs and relevant derivatives have also been investigated
for MPC; nevertheless, these methods are either complex or
require extensive computations. There is a lack of a generalized
design procedure for the MPC of power converters based on
ESO in the literature.

The control performance of MPC relies on the accuracy
of model parameters. However, the model parameters may
change under different working conditions or different envi-
ronments, resulting in an inaccurate predictive model and thus
deteriorated control performance. In this paper, inspired by
active disturbance control (ADRC) [23], a disturbance-rejection
predictive model has been investigated from a different per-
spective. ADRC is a model-free control technique that uses
an extended state observer (ESO) to estimate the system’s
unknown dynamics and disturbances. Based on this character-
istic, a disturbance-rejection predictive model is built in which
the system parameter inaccuracy is regarded as part of the dis-
turbance and estimated by ESO, thus reducing the dependence
of the controller on system parameters. With the integration of
ESO into the MPC, the predicted current can be obtained with-
out an accurate system model, thus improving the parameter
robustness.

The main contents of this paper are summarized as follows.
(1) An AVB-MPC with a control error threshold is investigated
to coordinate the use of 1-vector, 2-vector and 3-vector MPC
methods, thus improving the control accuracy and maintaining

FIGURE 1 Topology of EV battery charging and discharging converter.

a low computational burden. (2) A vector selection table based
on the principle of using adjacent vectors and minimum switch-
ing is utilized, which helps reduce the computational burden
and switching frequency. (3) Inspired by ADRC, a disturbance-
rejection predictive model is developed based on ESO to
reduce the dependence of the controller on system parameters.
The AVB-MPC is combined with the predictive model based
on ESO to enhance the overall performance. The proposed
method combines AVB-MPC with ESO and it only requires
input and output data of the system, rather than accurate sys-
tem parameters. A generalized design procedure for a predictive
model based on ESO is presented to facilitate extending the
method for other power electronic converters. Experimental
results obtained on an electric vehicle (EV) battery charging and
discharging converter verify the effectiveness of the proposed
strategies.

2 AVB-MPC PRINCIPLE

2.1 Traditional MPC

The EV battery charging and discharging converter is shown
in Figure 1. According to Kirchhoff’s voltage law (KVL), the
AC-side system model in the dq rotating coordinate system is

⎧⎪⎨⎪⎩
did
dt

=
ed

L
−

ud

L
−

R

L
id + 𝜔iq

diq

dt
=

eq

L
−

uq

L
−

R

L
iq − 𝜔id

(1)

where id, q and ed, q are the d- and q-axis components of the grid
current and voltage; ud, q are the d- and q-axis components of
converter voltage; L and R are inductance and resistance; ω is
the angular frequency. By discretizing Equation (1), the current
predictive model can be derived,

⎧⎪⎨⎪⎩
id (k + 1) =

Ts

L

[
ed (k) − ud (k) − Rid (k) + 𝜔iq

]
+ id (k)

iq (k + 1) =
Ts

L

[
eq (k) − uq (k) − Riq (k) − 𝜔id

]
+ iq (k)

(2)
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2574 ZHANG ET AL.

TABLE 1 AVB-MPC voltage vector selection table.

3-vector scheme

Sector number of the reference voltage
Last applied

vector u0

1-vector

scheme 2-vector scheme I II III IV V VI

u1 u1 (u1, u3), (u1, u2), (u1, u4) (u1, u2, u5) (u1, u3, u5) (u1, u3, u7) (u1, u4, u7) (u1, u4, u6) (u1, u2, u6)

u2 u2 (u2, u5), (u2, u1), (u2, u6) (u2, u5, u8) (u5, u3, u1) (u1, u3, u7) (u1, u4, u7) (u6, u4, u1) (u2, u6, u8)

u3 u3 (u3, u5), (u3, u7), (u3, u1) (u5, u2, u1) (u3, u5, u8) (u3, u7, u8) (u7, u4, u1) (u1, u4, u6) (u1, u2, u6)

u4 u4 (u4, u7), (u4, u6), (u4, u1) (u1, u2, u5) (u1, u3, u5) (u7, u3, u1) (u4, u7, u8) (u4, u8, u6) (u6, u2, u1)

u5 u5 (u5, u2), (u5, u3), (u5, u8) (u5, u2, u1) (u5, u3, u1) (u3, u7, u8) (u8, u7, u4) (u8, u6, u4) (u2, u6, u8)

u6 u6 (u6, u2), (u6, u4), (u6, u8) (u2, u5, u8) (u8, u5, u3) (u8, u7, u3) (u4, u7, u8) (u6, u4, u1) (u6, u2, u1)

u7 u7 (u7, u3), (u7, u4), (u7, u8) (u8, u5, u2) (u3, u5, u8) (u7, u3, u1) (u7, u4, u1) (u4, u6, u8) (u8, u6, u2)

u8 u8 (u8, u6), (u8, u5), (u8, u7) (u8, u5, u2) (u8, u5, u3) (u8, u7, u3) (u8, u7, u4) (u8, u6, u4) (u8, u6, u2)

where Ts represents the sampling time. As observed in Equation
(2), inaccurate parameter values can lead to inaccurate predicted
current values, thus deteriorating the control performance.

MPC uses a cost function to evaluate the impact of each
switching state on the predicted current, so as to select the
switching state that minimizes the cost function. The cost
function is

g =
[
i∗
d
− id (k + 1)

]2
+
[
i∗q − iq (k + 1)

]2
(3)

where id* and iq* are the corresponding references. In the tra-
ditional multi-vector MPC, all switching state combinations are
considered in the predictive model and evaluated by the cost
function. Therefore, the computational burden is remarkably
increased.

2.2 Vector selection table

The AVB-MPC strategy uses a predefined voltage vector selec-
tion table that is designed based on the principle of using
adjacent vectors to select the switching state candidate or com-
binations. Pre-selection of switching states can eliminate the
switching states that are unlikely to be applied and therefore
help reduce the computational burden effectively. The designed
voltage vector selection table is shown in Table 1.

Based on the voltage vector diagram shown in Figure 2,
the design of Table 1 is explained. Assume that the voltage
vector applied in the last control interval is u2 (100). In the
1-vector scheme, u2 is still selected with the principle of the
minimum switching of switches. In the 2-vector scheme, four
2-vector combinations, namely (u2, u5), (u2, u6), (u2, u8), and
(u2 and u1) are considered based on the principle of using adja-
cent vectors and zero vectors. The (u2, u8) combination can be
removed because it causes more switching actions. In the 3-
vector scheme, the reference voltage vector and its location can
be obtained using Equation (2) based on the dead-beat control
theory. If the reference voltage vector is located in sector III, the
possible 3-vector combinations are u3 (010), u7 (011), u1 (000)

FIGURE 2 Voltage vector diagram.

or u3 (010), u7 (011), u8 (111). If the voltage vector at the end of
the last cycle is u2 (100), the 3-vector combination should be (u1,
u3, u7) according to the principle of minimum switching. Based
on the above analysis, Table 1 can be derived.

2.3 AVB-MPC

In the single-vector method, the control accuracy is low because
it is hard to guarantee that the applied vector is the same as the
desired vector. Since only one vector is selected and there is no
need to calculate the duty cycles, the computational burden of
the single-vector scheme is low. In contrast, the control accuracy
of the multi-vector scheme is higher because multiple vectors
are used to synthesize the desired vector. However, the compu-
tational burden is high because the calculation of duty cycles for
each vector is required. The simulated turnaround time of the
1-vector, 2-vector, and 3-vector scheme is roughly 57, 90, and
125 µs, respectively.

Therefore, a controller that coordinates the use of single-
vector and multi-vector schems is studied in this paper. The
AVB-MPC strategy coordinates the selection and application
of 1-vector, 2-vector, and 3-vector MPC schemes by comparing
the control error with the defined threshold Cb. When the
cost function (control error) is lower than the threshold, the
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ZHANG ET AL. 2575

FIGURE 3 AVB-MPC algorithm flowchart.

single-vector scheme is employed. When the control error is
larger than the threshold, the multi-vector scheme is adopted.
Therefore, the threshold coordinates the use of single-vector
and multi-vector schemes and it helps balance the control
accuracy and computational burden. The flow chart of the
AVB-MPC scheme is shown in Figure 3.

The control procedure is arranged as follows:

1) 1-vector scheme

In the 1-vector scheme, the vector applied in the last control
cycle is evaluated. If the control error (calculated by the cost
function using Equation (3) or (4)) caused by 1-vector MPC is
less than Cb, then 1-vector MPC is adopted; otherwise, the 2-
vector MPC is considered.

2) 2-vector scheme

In the 2-vector scheme, 2-vector combinations shown in
Table 1 are evaluated. Firstly, cost functions for vectors in each
2-vector combination are calculated using Equation (3). To facil-
itate analysis and explanation, Equation (3) can be generalized
as

gm
n =

[
i∗
d
− im

dn
(k + 1)

]2
+
[
i∗q − im

qn(k + 1)
]2

(4)

where gm
n is the cost function value corresponding to the mth

vector in the n-vector combination (m≤n and n = 1, 2 or 3);
im
dn

(k+1), im
qn(k+1) are the predicted current corresponding to

the mth vector in the n-vector combination.
In the multi-vector control strategy, the candidate vectors

are used to synthesize the desired vector. Therefore, the cor-
responding action time (or duty ratios) of each vector should be
determined. The action time of each voltage vector in multi-
vector control is inversely proportional to its corresponding
cost function value [7]. That is to say, the larger the cost function
value, the shorter the action time to be applied (because of less
control accuracy). Therefore, the action time of the mth vector
in n-vector control can be calculated by

t m
n =

1

gm
n

1

g1
n

+⋯+
1

gn
n

× Ts (5)

where Ts is the sampling time and t 1
n +…+t n

n = Ts. Conse-
quently, the synthesized vector using multi-vector combinations
can be expressed by

ux
n = u1

nt 1
n +⋯+ un

nt n
n (6)

where ux
n represents the xth synthesized vector using n-vector

combination; x = 1, 2, 3 for 2-vector schemes, and 1 for
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2576 ZHANG ET AL.

1-vector and 3-vector schemes. The synthesized vector can then
be used to calculate the corresponding predictive current using
Equation (2), and the corresponding cost function (g2VB for
the 2-vector scheme and g3VB for the 3-vector scheme) using
Equation (3).

If the control error caused by the optimal 2-vector scheme
is less than Cb, then the optimal 2-vector combination is used;
otherwise, the 3-vector scheme is considered.

3) 3-vector scheme

In the 3-vector scheme, the 3-vector combination is obtained
according to Table 1. Similar to the 2-vector scheme, the cost
functions and action times for each vector in the 3-vector com-
bination are calculated using Equations (4) and (5). Then the
synthesized vector obtained by the 3-vector combination using
Equation (6) is used to derive the predictive current using Equa-
tion (2) and the corresponding cost function using Equation
(3).

If the control error caused by the 3-vector combination is
less than Cb, then the 3-vector scheme is employed as the
optimal scheme; otherwise, the 1-vector, 2-vector, and 3-vector
schemes are overall compared, and the control scheme with the
minimum control error is eventually adopted.

As concluded from the above analysis, the computational
burden is significantly reduced because of the reduced number
of switch candidates, thanks to the predefined vector selection
table. The control accuracy is also guaranteed since a thresh-
old Cb is introduced to coordinate the use of 1-vector, 2-vector,
and 3-vector schemes, while the computation is not noticeably
increased. The design of Cb can be based on the desired control
error depending on specific applications. Cb affects the con-
trol precision and computational burden of the controller. The
larger the Cb, the lower the control precision and the lower the
computational burden.

3 AVB-MPC BASED ON ESO

ESO is generally used in ADRC to estimate system disturbance
[24]. Inspired by this, ESO is used to obtain the disturbance-
rejection predictive model for MPC. A generalized design
procedure for designing the predictive model based on ESO is
presented as follows.

3.1 ESO principle (generalized approach)

The state-space model of a first-order differential system is
expressed by

ẋ = Ax + Bu (7)

y = Cx + Du (8)

where x is the state variable; u is the system input; y is the system
output. A, B, C, D are state-space matrices. ESO is formed by
extending an extra state, i.e. system disturbance.

Let x1 = x and x2 = d = Ax be the system disturbance and
ẋ2= h, then Equations (7) and (8) can be rewritten as

Ẋ =

[
ẋ1
ẋ2

]
= A′

[
x1
x2

]
+ B′

[
u

h

]
= A′X + B′U (9)

Y = C′

[
x1
x2

]
+ D′

[
u

h

]
= C′X + D′U (10)

with

A′
=

[
0 1
0 0

]
,B′

=

[
1 0
0 1

]
,C′

=
[

1 0
]
,D′

= 0

Assume X̂ is the estimated value of the state variable X
and Ŷ is the estimated value of the output Y, then ESO can
be expressed by

̇̂X = A′X̂ + B′U + G(Y − Ŷ ) (11)

Ŷ = C′X̂ + D′U (12)

where G is the gain matrix of the observer. Substituting
Equation (12) into Equation (11) leads to

̇̂X = A′X̂ + B′U + GY − G(C′X̂ + D′U )

= (A′
− GC′ )X̂ + (B′

− GD′ )U + GY (13)

According to Equations (9)–(13), one can derive

Ẋ − ̇̂X = A′X + B′U − (A′
− GC′ )X̂ − (B′

− GD′ )U − GY
(14)

Substituting (10) into (14) results in

Ẋ − ̇̂X = (A′
− GC′ )(X − X̂ ) (15)

If the estimation error is represented by ex = X- X̂ , then
Equation (15) becomes

ėx = (A′
− GC′ )ex (16)

According to automatic control theory, the necessary and
sufficient condition for the equilibrium state (ex = 0) to be
asymptotically stable is that the eigenvalues of (A′-GC′) have
negative real parts. Therefore, in the design of ESO, one can
assume that (A′-GC′) has two same and negative eigenvalues
−ω0.

According to the above analysis, ESO can estimate the
extended state, i.e. the system disturbance d. Based on this
feature, the MPC model parameter mismatch or inaccuracy is
regarded as a system disturbance and estimated by the ESO.

3.2 Predictive model based on ESO

The ESO corresponding to the d-axis model in Equation (1)
is illustrated here and the ESO for the q-axis model can be
obtained using the same way.

 17554543, 2024, 15, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/pel2.12807 by T

est, W
iley O

nline L
ibrary on [19/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHANG ET AL. 2577

The items except for ud on the right side of the d-axis model
in Equation (1) are taken as the total system disturbance repre-
sented by dd, and its derivative is represented by hd. Hence, the
d-axis model in Equation (1) can be rewritten as

[
i̇d
ḋd

]
=

[
0 1
0 0

] [
id
dd

]
+

⎡⎢⎢⎣
1
L

0

0 1

⎤⎥⎥⎦
[

ud

hd

]
(17)

If the gain matrix of ESO for the d-axis model is G = [G1
G2]T, then,|||sI − (

A′
− GC′

)||| = s2 + G1s + G2 =
[
s − (−𝜔0)

]2
(18)

Therefore, one can derive G= [G1 G2]T = [2ω0 ω0
2]T, where

ω0 is called observer bandwidth. Then ESO for the d-axis model
is

[
̇̂id

̇̂d d

]
=

{[
0 1

0 0

]
−

[
2𝜔0

𝜔2
0

] [
1 0

]}[
îd

d̂d

]
+

⎡⎢⎢⎣
1
L

2𝜔0 0

0 𝜔2
0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
ud

id

hd

⎤⎥⎥⎥⎦
(19)

where the derivative of dd is

hd = ḋd = −
ėd

L
−

R

L
i̇d + 𝜔i̇q (20)

The id term in dd can be incorporated into the state variable
matrix. So, Equations (19) and (20) can be restructured as

[
̇̂id

̇̂d d

]
=

⎧⎪⎨⎪⎩
⎡⎢⎢⎣
−

R

L
1

0 0

⎤⎥⎥⎦ −
[

G1

G2

] [
1 0

]⎫⎪⎬⎪⎭
[

îd

d̂d

]

+

⎡⎢⎢⎣
1
L

G1 0

0 G2 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
ud

id

hd

⎤⎥⎥⎥⎦ (21)

hd = ḋd = −
ėd

L
+ 𝜔i̇q = 𝜔

(
uq

L
−

eq

L
−

R

L
iq − 𝜔id

)
= −𝜔2id −

R𝜔

L
iq −

𝜔

L
eq +

𝜔

L
uq (22)

where G = [G1 G2]T is [2ω0-R/L ω0
2]T in this case.

According to Equation (21), the d-axis current predictive
model can be derived

id (k + 1) = îd + Ts

(
−2𝜔0 îd + d̂d +

1
L

ud + 2𝜔0id

)
(23)

Similarly, the q-axis current predictive model can be obtained.
The predicted current is obtained by Equation (23) in the
disturbance-rejection MPC based on ESO (ESO-MPC). This
way, the parameter mismatch or inaccuracy is estimated by ESO
as part of the system disturbance, as long as ESO can effec-
tively estimate the system state. Therefore, the robustness of the
controller is enhanced with the ESO-MPC strategy.

FIGURE 4 ESO-AVB-MPC control block diagram for EV battery
charging and discharging system.

FIGURE 5 Comparative simulation results of AVB-MPC and MPC.
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2578 ZHANG ET AL.

FIGURE 6 Comparative simulation results of AVB-MPC and
ESO-AVB-MPC.

FIGURE 7 Experimental setup of EV battery charging and discharging
system.

The control block diagram for the AVB-MPC based on
ESO (ESO-AVB-MPC) is shown in Figure 4. The Charg-
ing/Discharging Mode block determines the battery state and
generates the inner control loop reference current.

4 SIMULATION VERIFICATION

A simulation model for EV battery charging and discharging is
built to verify the proposed methods. The simulation param-
eters are given in Table 2. The test conditions are shown in
Table 3.

FIGURE 8 Comparative experimental waveform between MPC and
ESO-MPC when model parameters are inaccurate (L = 2 mH in the
algorithm).

TABLE 2 System parameters.

Parameters Values

Source phase voltage RMS e (V) 30

Inductance L (mH) 12.2

Resistance R (Ω) 0.5

DC capacitance C (µF) 1000

DC voltage (V) 80-100

Threshold Cb 0.01

Sampling time Ts (µs) 100

The comparative results between the AVB-MPC and MPC
are shown in Figure 5.

As can be seen from Figure 6a,b, the ripples of DC charg-
ing voltage and current in AVB-MPC are smaller than that of
traditional MPC. In addition, it can be seen from the compari-
son waveform of A-phase current shown in Figure 6c and the
data in Table 3, that the current harmonic content of AVB-MPC
is significantly lower than that of traditional MPC. The simula-
tion results demonstrate that the AVB-MPC shows an improved
overall control performance.

The comparative results between AVB-MPC and ESO-AVB-
MPC are shown in Figure 6. In order to simulate the inaccurate
parameters, the system parameters were changed at 6 s (R from
0.5 to 0.05 Ω, L from 12.2 to 2 mH).

As shown in Figure 6, when the parameters are accurate
(during 0–6 s), the control performance of AVB-MPC and
ESO-AVB-MPC is similar. In addition, the data in Table 3 also
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ZHANG ET AL. 2579

TABLE 3 Comparative simulation results between MPC, AVB-MPC, and ESO-AVB-MPC.

MPC AVB-MPC ESO-AVB-MPC

Time (s)

EV battery

state Control mode

Control

command

Fundamental

(A) THD (%)

Fundamental

(A) THD (%)

Fundamental

(A) THD (%)

0–0.5 Charging Constant current 3.6 A 7.791 1.94 7.759 1.05 7.754 1.53

0.5–1 3 A 6.26 2.35 6.232 1.24 6.23 1.76

1–1.5 Constant voltage 80 V N/A

1.5–2 81 V N/A

2–3 Constant
current

3 A 6.336 2.38 6.314 1.26 6.316 1.81

3–3.5 Discharging PQ control 200 W
10 Var

4.726 2.96 4.702 1.5 4.726 2.03

3.5–4 150 W
30 Var

3.605 3.77 3.596 1.93 3.619 2.45

4–4.5 150 W
−20 Var

3.588 3.77 3.564 1.92 3.569 2.47

4.5–5 100 W
50 Var

2.646 5.41 2.626 2.63 2.631 3.13

5–5.5 Charging Constant
voltage

80 V N/A

5.5–6 Constant current 3 A 6.312 2.43 6.289 1.22 6.28 1.86

6–6.5 3 A N/A 5.665 9.52 5.656 4.31

6.5–7 Constant
voltage

80 V N/A

7–8 Discharging PQ control 100 W
50 Var

N/A 2.53 18.48 2.623 5.94

TABLE 4 Comparative Experimental Results between MPC, AVB-MPC and ESO-AVB-MPC when Model Parameters Are Accurate.

MPC AVB-MPC ESO-AVB-MPC

Test stage

EV battery

state Control mode

Control

command

Fundamental

(A) THD (%)

Fundamental

(A) THD (%)

Fundamental

(A) THD (%)

1 Charging Constant current 2 A 4.917 6.68 4.883 5.46 4.808 5.85

2 3 A 8.623 5.33 8.455 4.17 8.321 4.04

3 Constant voltage 80 V N/A

4 86 V N/A

5 Constant
current

2.5 A 6.686 5.28 6.549 4.2 6.439 4.47

6 Discharging PQ control 90 W
30 Var

2.469 12.85 2.541 8.17 2.396 9.43

7 120 W
30 Var

3.008 9.6 3.062 7.23 2.833 8.52

8 Charging Constant
current

2.5 A 6.669 5.47 6.523 4.01 6.426 4.45

9 Discharging PQ control 120 W
30 Var

3.016 9.94 3.082 6.88 2.848 8.63

10 Charging Constant voltage 83 V N/A
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2580 ZHANG ET AL.

shows that AVB-MPC and ESO-AVB-MPC have similar perfor-
mance. However, when the parameters are inaccurate (during
6–8 s), it is evident from Figure 6 and Table 3 that the ripples of
DC charging voltage and current in ESO-AVB-MPC are smaller
than that of the AVB-MPC. These results verify the robustness
of ESO-AVB-MPC against the parameter inaccuracy. It is worth
mentioning that the more inaccurate the model parameters, the
worse the control performance. According to the simulation
results, the control performance is still satisfactory when the
inductance inaccuracy reaches about 83%, i.e. a discrepancy of
10.2 mH.

5 EXPERIMENTAL VERIFICATION

In order to verify the simulation results, a battery charging
and discharging control experimental platform based on a
three-phase bridge fully-controlled rectifier and an EV bat-
tery simulator is built, as shown in Figure 7. The experimental
parameters are consistent with the simulation parameters given
in Table 2.

Firstly, the ESO-MPC is tested. In order to simulate the sce-
nario where the parameters are inaccurate, the inductance L in
the algorithm is set to 2 mH while the real value is 12.2 mH.
The comparative results between the traditional MPC and the
ESO-MPC are shown in Figure 8.

It can be seen from Figure 8a that the traditional MPC cannot
provide satisfactory performance when the parameter is inaccu-
rate. When the DC voltage reference changes from 80 to 100
V, the traditional MPC cannot effectively regulate the DC volt-
age to follow the reference and an obvious steady-state error
as observed in Figure 8a. In addition, neither the grid current
can be effectively controlled to be in phase with the grid voltage
for a unity power factor operation. However, both the DC volt-
age and grid current (thus input power factor) can be effectively
controlled with the ESO-MPC even when the system param-
eter is not accurately known, as shown in Figure 8b. The DC
voltage is regulated to track the reference and the grid current
is in phase with the grid voltage. The results in Figure 8 demon-
strate the strong robustness of the ESO-MPC to the parameter
inaccuracy or mismatch.

Secondly, in order to demonstrate the feasibility and effec-
tiveness of the AVB-MPC strategy, a comparative experimental
test with the conventional MPC under different charging and
discharging conditions is carried out and results are shown in
Figure 9. The experimental test conditions including ten test
stages and corresponding data are given in Table 4.

As observed from Figure 9, both the traditional MPC and
the AVB-MPC can effectively control the EV converter under
different charging and discharging conditions. As seen in EV
battery voltage and current waveforms in Figures 9c and 9d,
the AVB-MPC offers lower ripples. In addition, the AVB-MPC
exhibits lower fundamental current values (thus higher effi-
ciency) and noticeably lower total harmonic distortions (THD)
of the grid current under various conditions, as seen in Table 4.
The execution time of the AVB-MPC strategy is 81 µs, and it is
similar to the traditional MPC (76 µs). Experimental results vali-

FIGURE 9 Comparative experimental results between MPC and
AVB-MPC.

date that the AVB-MPC strategy provides better overall control
performance and a low computational burden is maintained.

Finally, the proposed ESO-AVB-MPC has been experimen-
tally verified. The comparative experimental results between
AVB-MPC and ESO-AVB-MPC, when parameters are accu-
rately known, are shown in Figure 10. As shown in Figure 10,
both the AVB-MPC and ESO-AVB-MPC methods show sat-
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ZHANG ET AL. 2581

TABLE 5 Comparative experimental results of AVB-MPC and ESO-AVB-MPC when model parameters are inaccurate.

Test

stage Battery state Control mode Control command AVB-MPC ESO-AVB-MPC

1 Charging Constant current 2 A ≈2 A ≈2 A

2 3 A Unsatisfactory ≈3 A

3 Constant voltage 80 V ≈80 V

4 86 V ≈86 V

5 Constant current 2.5 A ≈2.5 A

6 Discharging PQ control 90 W
30 Var

≈90 W
≈30 Var

7 120 W
30 Var

≈120 W
≈30 Var

8 Charging Constant current 2.5 A ≈2.5 A

9 Discharging PQ control 120 W
30 Var

≈120 W
≈30 Var

10 Charging Constant voltage 83 V ≈83 V

FIGURE 10 Comparative experimental results of AVB-MPC and
ESO-AVB-MPC when model parameters are accurate.

isfactory control performance under different test conditions
where the parameters are accurate. The experimental data in
Table 4 also show that both methods have relatively similar per-
formances in regulating EV battery charging and discharging.
The THDs in experimental results are higher than the simu-
lation results because the three-phase voltage source is from
a non-ideal autotransformer, and its output voltage is easily
influenced by the load.

However, when the system model parameters are inaccurate
(L = 2 mH and R = 0.05 Ω in the algorithm), the AVB-MPC
method cannot effectively regulate the system any longer, as

FIGURE 11 Comparative experimental results of AVB-MPC and
ESO-AVB-MPC when model parameters are inaccurate.

observed in the comparative results shown in Figure 11 and
Table 5.

It can be seen from Figure 11a that when the charging current
reference changes from 2 to 3 A, the AVB-MPC cannot achieve
the control objective and the system is in an uncontrolled
state due to the mismatch of system parameters. In contrast,
the ESO-AVB-MPC strategy can still effectively regulate the
EV charging converter under various conditions, even when
the system parameters are inaccurate, as seen in Figure 11b.
The above experimental results illustrate that the proposed
ESO-AVB-MPC has stronger robustness to the parameter
inaccuracy.
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2582 ZHANG ET AL.

6 CONCLUSION

This paper describes an adjacent vector-based model predic-
tive control, which utilizes a predefined vector selection table
based on the principles of using adjacent vectors and minimum
switching actions. A control error threshold is introduced in the
adjacent vector-based model predictive control to coordinate
the use of 1-vector, 2-vector, and 3-vector MPC schemes, so
the control accuracy can be improved without causing a notice-
able increase in computational burden. Secondly, in order to
enhance the robustness of adjacent vector-based model predic-
tive control, a disturbance-rejection MPC based on the extended
state observer has been investigated, in which the parameter
inaccuracy is regarded as par the of the system disturbance
and is estimated by the extended state observer. The proposed
schemes are experimentally validated on an EV converter charg-
ing and discharging control platform. The proposed methods
can be readily extended to the control of other power electronic
converters. Further studies can be carried out to improve the
proposed methods, such as the study on the rigorous design of
the threshold.
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