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Abstract: We estimate Cobb-Douglas production functions that parameterize unobserved total factor

productivity as a global technology process interacted with country-specific absorptive capacities. In

contrast to the existing literature we do not require proxies for these absorptive capacities but instead

estimate them as time-varying stochastic processes. Our implementation allows us to test the contrasting

predictions of alternative growth models and our results for a panel of advanced economies support the

multicountry endogenous growth model in that an enhancement in absorptive capacity raises a country’s

long-run productivity level but not its growth rate. This finding is confirmed in an extended model where

we allow a set of policy variables (financial development, human capital, competition policy, and knowl-

edge stock) to affect absorptive capacity, none of which induce permanent growth effects. The proxies

for financial development and knowledge stock stand out for their significant level effects.
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1 Introduction

Output per capita shows enormous and persistent differences across countries. As variations in factor

inputs are unable to explain these differences, there is an important role for disparities in total factor

productivity (TFP). The relative importance of TFP vis-à-vis factor accumulation for economic growth

has occupied economists not least since Tinbergen (1942), Abramovitz (1956) and Solow (1956). The

traditional neoclassical growth model leaves TFP unexplained and, in the famous words of Edward Deni-

son (1967, 282), assumes that “[b]ecause knowledge is an international commodity, [we] should expect

the contribution of advances of knowledge. . . to be about the same size in all the countries.” Much of the

early endogenous growth literature relates a country’s TFP growth rate to its research efforts. The im-

plication of this type of single-country model without international spillovers is long-run divergence of

incomes across countries, given that countries with higher research efforts should permanently leave all

others behind. However, this prediction seems at odds with the available data on cross-country income

differences. Situated in-between the neoclassical and single-country endogenous growth models are the

multicountry endogenous growth models of Eaton and Kortum (1999), Howitt (2000), and Klenow and

Rodrı́guez-Clare (2005), among others. These models are in the neoclassical tradition, in that economic

growth in steady state is equal for all countries (thanks to knowledge spillovers), but they also capture

some of the defining features of endogenous growth models since differences in innovation efforts among

countries are important for steady state levels of TFP.1 In this strand of the literature, TFP is given the

interpretation of successfully assimilated (‘absorbed’) global technology. What unites concepts such as

absorptive capacity and alternatives — e.g. social capability (Abramovitz, 1986) — is the notion that de-

spite the designation of knowledge as a public good or being in the public domain, technological catch-up

is by no means guaranteed, but requires considerable efforts and investments (see Parente and Prescott,

1994, 2002; Aghion and Jaravel, 2015, among others).2 Related work by Benhabib and Spiegel (1994,

2005) builds on and extends the Nelson and Phelps (1966) model which assigns a central role for human

capital in the knowledge diffusion process: instead of playing the role of a (mere) factor input such as in

Mankiw et al. (1992), among many others, human capital is suggested to facilitate knowledge diffusion.

Here the implication is that an increase in average education levels (proxying absorptive capacity) leads

to a permanent increase in TFP growth.3

In the empirical growth literature there is a long tradition of quantifying ‘foreign’ elements of TFP by

assuming specific channels through which international knowledge spillovers can occur and/or pinpoint-
1We can further extend the notion expressed in Howitt (2000) that countries which develop their absorptive capacity (he

uses R&D) converge, whereas those where incentives to develop these characteristics are missing will fall behind.
2For a detailed discussion of the origins of absorptive capacity see Fagerberg et al. (2010). In this article we use knowledge

spillovers synonymously with ‘technology spillovers’ or more broadly the assimilation of ideas and innovations developed in
other countries. Technology is used interchangeably with productivity, knowledge and TFP.

3For the diffusion function of human capital Benhabib and Spiegel (2005) provide two alternative specifications, although
in our advanced country context it would seem unlikely that ‘follower’ human capital stock could be too low and thus leading
to TFP divergence as postulated in their ‘logistic model.’
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ing country characteristics deemed synonymous with absorptive capacity. The most prominent channels

are arguably the patterns of international trade, foreign direct investment and international migration

(Coe and Helpmann, 1995; Pottelsberghe and Lichtenberg, 2001; Madsen, 2007; Acharya and Keller,

2009; Bahar et al., 2014; Bosetti et al., 2015; Fracasso and Marzetti, 2015, see also Keller (2004, 2010)

for detailed surveys). Human capital (Griffith et al., 2004; Benhabib and Spiegel, 2005; Madsen et al.,

2010; Ertur and Musolesi, 2017) and investment in R&D (Aghion and Howitt, 1998; Griffith et al., 2003;

Mancusi, 2008; Lu et al., 2017) are frequently employed as proxies for absorptive capacity. While a

priori all of these factors and channels are likely to be relevant to capture the discovery and assimila-

tion of ideas developed elsewhere, estimates are biased if the proxies included are correlated with other,

omitted determinants. This criticism points to recent efforts to quantify the quality of management or

productivity-enhancing investment in intangible capital, of which formal R&D is only one element (see

e.g. Acharya, 2016; Bloom et al., 2016; Corrado et al., 2017). Moreover, Eberhardt et al. (2013) ar-

gue that the empirical literature on knowledge spillovers following the seminal contribution by Coe and

Helpmann (1995) suffers from an omitted variable bias induced by spillovers and common shocks with

heterogeneous impact. They show that private returns to R&D are dramatically lower once this type of

cross-sectional correlation is taken into account.

The present paper takes a different approach. We specify a Cobb-Douglas production function that pa-

rameterizes unobserved total factor productivity as a global technology process interacted with country-

specific absorptive capacity that varies stochastically over time. We demonstrate that our econometric

specification is a generalization of the multicountry endogenous growth model referred to above. To

identify unobserved global technology, we extend Pesaran’s (2006) common correlated effects (CCE)

approach to a setup where factor loadings evolve according to random walks. Written in state space rep-

resentation, the model can be estimated using Bayesian Markov Chain Monte Carlo (MCMC) sampling

methods. This produces time-varying country-specific indices for absorptive capacity that do not rely

on ad hoc proxies or impose explicit channels through which knowledge spills over but encompass all

of these. We show how the relevance of time variation in absorptive capacities can be tested as part of

the implementation using the stochastic model specification search of Frühwirth-Schnatter and Wagner

(2010). This allows us to test the differential implications of alternative theoretical growth models about

whether improvements in absorptive capacity have growth or merely level effects.

We also estimate an extended model including observed country characteristics that are believed to affect

absorptive capacity. This more general specification maintains the flexibility of the baseline approach

yet allows absorptive capacity to be driven by both an unobserved stochastic component and observed

(policy) variables. We will focus on a set of variables highlighted in the recent Schumpeterian growth

literature dominating the current debate on policy for economic growth: financial development, human

capital, competition policy and the R&D knowledge stock.
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We estimate our baseline model for a panel of 31 countries covering the period 1953-2014. The choice

of sample countries is driven by our desire to capture the technology diffusion and absorption process

in today’s advanced economies, including economies such as the United States which have been at the

frontier throughout this period, as well as others such as South Korea or Taiwan, which have experienced

impressive catch-up growth. Our first finding is that there is relevant time variation in absorptive capac-

ities. Especially countries like Ireland, South Korea and Taiwan have been able to increase their ability

to assimilate foreign knowledge over the sample period. Second, changes in absorptive capacity are not

found to have permanent growth effects, but merely to affect the level of TFP.

Our third finding relates to the country-specific evolution of absorptive capacity, which can be squared

with policy levers to promote innovation and technical change:4 We estimate an extended model using

a reduced panel of 21 countries for which we have indicators of financial development, human capital,

competition policy/regulation, and R&D expenditure over the period 1970-2009. In line with the baseline

model, none of these variables induces permanent growth effects. In our results financial development

has a strong positive effect on absorptive capacity, yet is subject to diminishing returns, echoing the “too

much finance” argument in recent work on economic growth (Arcand et al., 2015). Moreover, R&D

stock is found to contribute substantially to our measure of absorptive capacity in line with arguments

for the ‘two faces of R&D’ (Griffith et al., 2004).

The remainder of this study is structured as follows. Section 2 sets out the baseline empirical specifi-

cation, demonstrates how it can be squared with a multicountry endogenous growth model and outlines

the Bayesian simulation-based method that will be used to estimate the model. The data along with the

empirical results are discussed in Section 3. In Section 4 we present and estimate an extended model

that allows absorptive capacity to be driven by both an unobserved stochastic component and observed

variables. Section 5 concludes.

4In ?? we cherry-pick three economies (Ireland, Sweden, and Japan) with very different trajectories and provide a coherent
narrative in this vein.
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2 Empirical specification and implementation

We present a factor-augmented Cobb-Douglas production function with time-varying absorptive capacity

and suggest a CCE approach to identify unobserved global technology. Transformed into a state space

model our empirical model can be estimated using MCMC simulation methods, which can further be

employed to test whether changes in absorptive capacity induce level or growth effects.

2.1 Empirical model

We model output in country i = 1, . . . , N at time t = 1, . . . , T using a Cobb-Douglas production

function with constant returns to scale

Yit = ΛitK
βi
it L

1−βi
it eεit , with 0 < βi < 1 ∀i, (1)

where Yit is real GDP,Kit is the real aggregate (private and public) capital stock, Lit is total hours worked

and εit is a zero-mean stationary error term uncorrelated across countries. The country-specific elasticity

of output with respect to capital βi is approximated by country i’s share of GDP that is not earned by

labor (i.e., one minus the economy-wide labor income share). Equation (1) implies that unobserved TFP,

Λit, is defined to capture the stock of intangible technology and knowledge, and the effects of human

capital, among other factors.

Common factor structure of time-varying absorptive capacity

Building on an established strand of the literature that considers a country’s TFP to be the successful

assimilation of global technology (Parente and Prescott, 1994, 2002; Alfaro et al., 2008), we parameterize

Λit using a common factor framework

Λit = AitF
ϑit
t , (2)

where Ft is a common factor that we interpret as representing the worldwide available technology and

knowledge stock while Ait and ϑit capture country-specific endowments, institutions, investments and

policies that determine how much of Ft is successfully assimilated (henceforth ‘absorptive capacity’).

Substituting equation (2) in (1), dividing by hours worked Lit and taking logarithms yields the following

expression for log TFP, λit = ln (Λit)

(yit − βikit) = λit = ait + ϑitft + εit, (3)

where yit = ln (Yit/Lit), kit = ln (Kit/Lit), ait = ln (Ait) and ft = ln (Ft).
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Impact of changes in absorptive capacity: shifts in TFP levels versus growth rates

The empirical specification in equation (3) is closely related to that of Eberhardt et al. (2013), who

use a common factor framework with time-invariant parameters, and Everaert et al. (2014), who allow

absorptive capacity to vary as a function of fiscal policy variables. Our main methodological contribution

is to allow for a flexible evolution in ait and ϑit, and hence in absorptive capacity, that is able to capture

all relevant channels through which knowledge spills over. This empirical specification for Λit is a

generalization of the multicountry endogenous growth model outlined in Eaton and Kortum (1999),

Howitt (2000) and Klenow and Rodrı́guez-Clare (2005), among others, where differences in policies

or other country efforts to improve absorptive capacity generate shifts in TFP levels rather than growth

rates. The main result of this type of model is that in the long-run all countries share a common growth

rate equal to the growth rate of global TFP — a result they empirically motivate by demonstrating that

countries with high investment rates typically have higher levels of wealth rather than higher growth

rates. In our empirical specification this equates to setting ϑit = 1. In order to allow for an endogenous

type of growth where country-specific characteristics, research efforts or policies can have permanent

growth effects (Benhabib and Spiegel, 2005) we allow for the possibility that ϑit 6= 1 and that it varies

across countries and time. The advantage of the exponential common factor structure for Λit in equation

(2) is that it allows us to distinguish between advances in absorptive capacity that lead to level versus

growth shifts in a country’s TFP. To illustrate this, it is convenient to study a Taylor expansion of Λit

Λit = eait+ϑitft = (1 + ait) + (1 + ait)ϑitft + . . . , (4)

together with the growth rate of Λit

∆λit = ∆ait + ∆ϑitft−1 + ϑit∆ft. (5)

In the absence of any changes in ait and ϑit, the level and growth rate of a country’s TFP Λit are both

fixed proportions of the level and growth of global TFP ft. Equation (4) shows that an increase in ait

implies that a country is able to assimilate more of the global technology ft, while from equation (5) it

is clear that this leaves the future TFP growth rate unaffected. Hence, advances in absorptive capacity

that lead to a level shift in a country’s TFP will be captured by changes in ait. Policy interventions or

other efforts that lead to an increase in ϑit induce a similar TFP level shift but, as apparent from the term

ϑit∆ft in equation (5), these also imply that the economy’s TFP will now grow at a permanently higher

rate as more of the global TFP growth is absorbed.

Further note that the limiting case where countries grow in isolation of the world (as in early endogeneous

growth models) is obtained by setting ϑit = 0 in equation (3) with ait then capturing country-specific

growth. Moreover, the neoclassical growth model is also nested in our framework. Here, as Denison
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(1967) notes, global knowledge is assumed available to all countries without restrictions, implying that

in our framework ϑit = 1 in combination with ait = a (e.g. Mankiw et al., 1992).5

2.2 CCE approach to identify unobserved worldwide technology

Worldwide technology ft in equation (3) is unobserved and can therefore not directly be included as an

observed regressor. However, given that ft is a factor common to all countries, it can be inferred from

the cross-sectional dimension of the panel. Factor-augmented regressions have become very popular

in the recent panel data literature. A number of alternative estimation procedures are available. The

dynamic factor model literature specifies a data generating process for ft (e.g., a random walk with time-

varying drift) and then casts the model in state space form such that ft can be estimated from the data

using the Kalman filter (see Stock and Watson, 2016, for a general discussion). Alternative estimators

rely on cross-sectional averages or principal component analysis (see Westerlund and Urbain, 2015,

for a comparison of these two approaches). Important to note is that, independently of the estimation

approach, only the product ϑitft is identified but not its constituent components: multiplying the loadings

ϑit by a rescaling constant c while dividing the common factor ft by the same c would leave the product

unchanged. This rotation indeterminacy can be solved by imposing normalization constraints on the

loadings and/or the factor. In dynamic factor models, a standard normalization is to constrain the scale

of the factor ft by fixing the variance of its innovations to be one. However, while being effective in

a model with fixed loadings, time variation brings about challenges to identification as the rescaling

term can now be a time-varying sequence ct rather than a constant c. A further identification problem

may arise when separating the idiosyncratic components ait and ϑit: although these are assumed to be

uncorrelated across countries, this is not explicitly imposed by the Kalman filter used to estimate them,

such that there is some scope for ait to pick up common technology trends that should in fact be captured

by ϑitft.

The above mentioned identification issues can be avoided by using cross-sectional averages to proxy the

unobserved common factor ft. Inspired by the CCE approach of Pesaran (2006), taking cross-sectional

averages of the model in equation (3) yields

λt = at + ϑtft + εt, (6)

where λt = 1
N

∑N
i=1 yit and similarly for the other variables. Solving for ft

ft =
1

ϑt

(
λt − at − εt

)
, (7)

5Since it is widely accepted that TFP level differences across countries are a salient feature of the data (e.g. Islam, 1995)
this aspect can be accommodated by setting ait = ai. But this is a ‘stylized fact’ derived from the data rather than from the
neoclassical model and rules out absolute convergence.
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and substituting this solution back into equation (3) yields

λit =

(
ait −

ϑit

ϑt
at

)
+
ϑit

ϑt
λt +

(
εit −

ϑit

ϑt
εt

)
, (8)

= αit + θitλt + εit, (9)

where αit = ait − ϑit
ϑt
at, θit = ϑit

ϑt
and εit = εit − ϑit

ϑt
εt. Given the assumption that εit is a zero-mean

white noise term uncorrelated across cross-sectional units, we have that εt
p−→ 0 as N → ∞ such that

equation (6) implies that the cross-sectional average λt of TFP can be used as an observable proxy for

the rescaled and recentered factor ϑtft + at.

It is easily verified that the implicit normalizations imposed when going from equation (1) to (9) solve

the identification issues outlined earlier in this subsection. First, the scale of λt, used as a proxy for ft,

is determined as it can be calculated directly from the observed data. Second, the factor loadings θit are

normalized to be one on average across countries in every period, i.e. 1
N

∑N
i=1 θit = 1

N

∑N
i=1 ϑit/ϑt = 1

∀t, such that they can no longer be multiplied by a time-varying sequence ct. Third, the cross-sectional

average of ait is normalized to zero in every period, i.e. 1
N

∑N
i=1 αit = 1

N

∑N
i=1(ait −

ϑit
ϑt
at) = 0 ∀t,

such that it cannot pick up common technology trends.

Note that the cross-sectional average λt of TFP used as a proxy for f̂t should not be interpreted as the

world TFP frontier but rather as an index of average world technology, with the combination of αit and θit

indicating whether a country operates below or above this average. Nevertheless, the normalized versions

αit and θit can still be used for the main goal of the paper, which is testing the contrasting predictions

of alternative growth models about the long-run effects of a country’s investment in absorptive capacity

development. In particular, the proposition of the multicountry endogenous growth model (as outlined

in Section 2.1 above) that the original ϑit is one implies that also the rescaled θit is one, while the

alternatives that ϑit 6= 1 or is time-varying will be reflected in θit as well.

2.3 Modeling and testing for time-varying absorptive capacity

At the heart of our paper are the time-varying parameters αit and θit measuring a country’s capacity to

incorporate the world technology into its own production techniques. This time variation implies that

equation (9) cannot be estimated using the standard CCE approach of Pesaran (2006). As an alternative,

we set up a state space model. We further use a Bayesian model specification search procedure to analyze

whether our generalization to a time-varying parameters setting is empirically relevant. If the restrictions

αit = αi and θit = θi are valid, our model simplifies to a standard common factor error structure that

can be estimated using the conventional CCE approach.
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State space model

We complete the model by assuming that the absorptive capacity parameters αit and θit evolve according

to random walk processes

αit = αit−1 + ψαit, ψαit ∼ N(0, ςα), (10)

θit = θit−1 + ψθit, ψθit ∼ N(0, ςθ). (11)

The random walk assumption allows for a very flexible evolution of the parameters over time. The model

can then be cast in a state space representation with (9) being the ‘observation equation’, where for the

noise term εit we assume εit ∼ N
(
0, σ2ε

)
, and (10)-(11) the ‘state equations’ such that the random walk

components αit and θit can be estimated using the Kalman filter.

Bayesian stochastic model specification search

To determine whether the proposed time variation in the parameters αit and θit is relevant implies that

we have to test whether the innovation variances ςα and ςθ in equations (10)-(11) are zero or not. From a

classical point of view this is cumbersome as the null hypothesis of zero variance lies on the boundary of

the parameter space. We therefore use the stochastic model specification search of Frühwirth-Schnatter

and Wagner (2010), generalizing standard Bayesian variable selection to state space models. This in-

volves reparameterizing the state equations (10)-(11) to

αit = αi0 +
√
ςαα̃it, with α̃it = α̃i,t−1 + ψ̃αit, α̃i0 = 0, ψ̃αit ∼ N (0, 1) , (12)

θit = θi0 +
√
ςθθ̃it, with θ̃it = θ̃i,t−1 + ψ̃θit, θ̃i0 = 0, ψ̃θit ∼ N (0, 1) , (13)

which splits αit and θit into the initial values αi0 and θi0 and the (possibly) time-varying parts
√
ςαα̃it

and
√
ςθθ̃it.

This ‘non-centered’ parameterization has a number of interesting features. First, the signs of both
√
ςα

and α̃it can be changed without changing their product, and similarly for
√
ςθ and θ̃it. This lack of sign

identification offers a first piece of information about whether time variation is relevant or not: for truly

time-varying parameters, the innovation variance ς will be positive resulting in a posterior distribution

of
√
ς that is bimodal with modes ±√ς . For time-invariant parameters, ς is zero such that

√
ς becomes

unimodal at zero.

Second, the non-centered parameterization is very useful for model selection as it represents αit and θit

as a superposition of the initial values αi0 and θi0 and the time-varying components α̃it and θ̃it. As a

result, in contrast to the centered parameterization in equations (10)-(11), α̃it and θ̃it do not degenerate

to a static component when the innovation variances are zero. In fact, when for instance ςα = 0, then
√
ςα = 0 such that α̃it will drop from the model. As suggested by Frühwirth-Schnatter and Wagner
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(2010), this allows us to transform the test of whether the variances ςα and ςθ are zero or not into a

more regular variable selection problem. To this end we introduce two binary indicators δα and δθ,

which are equal to one if the corresponding parameter varies over time and zero otherwise. The resulting

parsimonious non-centered specification is given by

λit = αi0 + δα
√
ςαα̃it +

(
θi0 + δθ

√
ςθθ̃it

)
λt + εit. (14)

When δα = 1, αi0 is the initial value of αit and
√
ςα is an unconstrained parameter that is estimated

from the data. In contrast, when δα = 0 the time-varying part α̃it drops out and αi0 represents the

time-invariant parameter. A similar interpretation holds for δθ.

A third important advantage of the non-centered parameterization is that it allows us to replace the

standard Inverse Gamma prior on the variance parameters ςα and ςθ by a Gaussian prior centered at zero

on
√
ςα and

√
ςθ.6 Centering the prior distribution at zero is possible as for both ς = 0 and ς > 0,

√
ς is

symmetric around zero, with the main difference being that in the latter case the posterior distribution is

bimodal.

2.4 MCMC algorithm

The state space representation in equations (12)-(14) is a non-linear model for which the standard ap-

proach of using the Kalman filter to obtain the time-varying components and Maximum Likelihood to

estimate the unknown parameters is inappropriate. We therefore use an MCMC approach to jointly

sample the binary indicators δδδ = {δα, δθ}, the unrestricted elements of the parameter vector φφφ =

{αi0, θi0,
√
ςα,
√
ςθ, σ

2
ε}Ni=1 and the latent state processes sss = {{α̃it, θ̃it}Tt=1}Ni=1 from the posterior dis-

tribution g(δδδ,φφφ,sss|xxx) conditional on the data xxx = {{λit}Tt=1}Ni=1. This conveniently splits the non-linear

estimation problem into a sequence of blocks which are linear conditional on the other blocks. Given a

set of starting values, sampling from the various blocks is iterated K times and, after a sufficiently long

burn-in period B, the sequence of draws (B + 1, ...,K) approximates a sample from g(δδδ,φφφ,sss|xxx). The

results reported below will be based on K = 200, 000 iterations with a burn-in of B = 20, 000 draws.

Following Frühwirth-Schnatter and Wagner (2010), we fix the binary indicators in δδδ to be one during the

first 10, 000 iterations of the burn-in period to obtain sensible starting values for the unrestricted model

before variable selection actually starts. More details on our MCMC algorithm can be found in Appendix

A, which includes a detailed description of the different building blocks, an interweaving approach to

boost the mixing efficiency, and a simulation exercise tailored to our dataset to investigate the perfor-

mance of the Bayesian model specification search and the small sample properties of the estimation

method.
6Frühwirth-Schnatter and Wagner (2010) show that compared to using an Inverse Gamma prior for ς , the posterior density

of
√
ς is much less sensitive to the hyperparameters of the Gaussian distribution and, importantly, is not pushed away from zero

when ς = 0.
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3 Data, prior choices and results

3.1 Data

We estimate the empirical specification outlined in Section 2 for a panel of 31 advanced economies using

annual data over the period 1953-2014 taken from the Penn World Table (PWT) version 9 (Feenstra et al.,

2015). Our sample is made up of 26 current OECD member countries (comprising all current members

with the exception of Israel, Turkey and the seven former transition economies), with the addition of

Argentina, Brazil, Colombia, Cyprus and Taiwan. At the start of our sample these 31 countries account

for over 80% of world GDP, declining to just under half in 2014. Table 1 provides details of the data

construction. Real GDP and the real capital stock are in constant 2011 national prices transformed into

2011 US$ values. The capital stock defined by PWT version 9 includes residential structures. Total

hours worked is calculated by multiplying the number of persons engaged times the average annual

hours worked per person. The income share of capital stock, used as a proxy for βi, is measured as 1

minus the economy-wide labor share averaged over the sample period.

Figure 1 plots our TFP measure, calculated as yit − βixit, averaged over countries together with its

growth rate. In line with the productivity growth patterns documented by Blanchard (2004), Madsen

(2008) and van Ark et al. (2008), our average TFP measure shows that the post-war period can be split

into three episodes: First, the 1950s and 1960s are a period of high global TFP growth in excess of 2%

per annum. Second, the early 1970s herald an era of lower growth with a steep decline in TFP growth.

Third, a slight improvement during the 1990s, whereafter global TFP growth nosedives during the Global

Financial Crisis (GFC) in 2007/8 and subsequently seems to stabilize around 0%.7

Table 1: Data construction and sources

Name Notation Construction Code

Real GDP (in million US$, 2005 values) Yit PWT data rgdpna
Real Capital stock (in million US$, 2005 values) Kit PWT data rkna
Number of persons engaged Nit PWT data emp
Average annual hours worked by persons engaged Hit PWT data avh
Total annual hours worked in the economy Lit Nit ×Hit

Income share of labor stock in GDP ωit PWT data labsh
Income share of capital stock in GDP βi 1− 1

T

∑T
1 ωit

Log output per hour worked yit ln (Yit /Lit )
Log capital per hour worked kit ln (Kit /Lit )
Log TFP λit yit − βikit

7This raises the question whether the GFC signals a new era of stagnant global TFP — with the data restrictions on time
since the GFC we are unable to address this in the present study.
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Figure 1: Cross-country average TFP λt and its growth rate
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Note: The smoothed trend in average TFP growth was obtained after applying the Hodrick-Prescott filter with smoothing
parameter equal to 100.

3.2 Prior choices

For the variance σ2ε of the errors terms εit we use an uninformative Inverse Gamma prior distribution

IG (c0, C0), with the shape c0 and scale C0 parameters both set to 0.001. For all other parameters we use

a Gaussian prior distribution N
(
a0, A0σ

2
ε

)
defined by setting a prior belief a0 with prior variance A0σ

2
ε .

Throughout the estimation procedure we fix A0 to 1002 to ensure that posterior results are driven by the

information contained in the data and not by the priors.8 Note that the non-centered parameterization in

equation (14) allows us to make use of a Gaussian prior for the standard deviations
√
ςα and

√
ςθ since

estimating them boils down to a standard linear regression. When sampling the indicators δδδ we assign

50% prior probability that the indicators take on the value 1, i.e. p0 = 0.5. For the initial values of the

time-varying processes, αi0 and θi0, our prior beliefs are 0 and 1, respectively. This is a natural outcome

of the way the CCE approach normalizes αit and θit, i.e. 1
N

∑N
i=1 αit = 0 and 1

N

∑N
i=1 θit = 1 for all

t and hence also for the initial values αi0 and θi0. Our prior belief for
√
ςα and

√
ςθ is 0. We center

this distribution around zero such that our belief is in accordance with the null hypothesis of our test for

whether αit and θit are fixed over time.

3.3 Empirical results

Time variation in the absorptive capacity parameters: level versus growth effects

We start by discussing the results of the stochastic model specification search to analyze whether time

variation in the absorptive capacity parameters αit and θit is a relevant aspect of the model. This enables

us to discriminate between the four possible models nested in our setup, i.e. a model where changes

in absorptive capacity lead to either growth or level shifts in TFP, a combination of the two, or a model
8Given that we use uninformative priors, the results reported below are robust to choosing alternative prior beliefs.
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without any changes in absorptive capacity. This speaks directly to our distinction between the theoretical

models discussed in Section 2.

As a first step, we fix the binary indicators δα and δθ at 1 to obtain posterior distributions for the unre-

stricted model where both αit and θit are allowed to vary over time. When time variation is relevant,

this should show up as bimodality in the posterior distribution of the corresponding innovation standard

deviation
√
ς . A unimodal distribution centered at zero is expected for time-invariant parameters. Figure

2 plots the posterior distributions of
√
ςα and

√
ςθ. The results are decisive in that the posterior distribu-

tion of
√
ςα is bimodal while that of

√
ςθ is perfectly unimodal, offering a strong indication that the data

answer to a model where changes in absorptive capacity lead to TFP level rather than growth shifts.

Figure 2: Posterior distributions of
√
ςα and

√
ςθ

(a)
√
ςα — level shift (b)

√
ςθ — growth shift

Note: Reported are the posterior distributions of the standard deviations
√
ςα and

√
ςθ in equation (14) setting δα = δθ = 1,

based on MCMC with 200, 000 iterations after a burn-in of 20, 000 draws. The integrated autocorrelation time is 1.9 for |√ςα|
and 91.9 for |√ςθ|.

As a more formal test for time variation, we sample the stochastic binary indicators δα and δθ together

with the other parameters in the model. The upper panel of Table 2 reports the posterior probabilities for

the binary indicators being one, calculated as the fraction of MCMC draws for which the stochastic model

specification search prefers a model which allows for time variation in the corresponding parameter. It is

clear that time variation is important as the test assigns a 100% posterior inclusion probability for δα = 1.

The probability that δθ = 1, however, is less than 1%. This finding supports our previous conclusion

that αit exhibits relevant time variation while θit is most likely constant over time. Taken together this

suggests that in our sample we find evidence against the Benhabib and Spiegel (2005) type of model

where the long-run growth rate of TFP can be altered using policy interventions. The lower panel of

Table 2 reports summary statistics for the posterior distributions of
√
ςα,
√
ςθ and σε. In line with the

model specification search, the median of the posterior distribution of
√
ςθ is very close to zero, while

that of
√
ςα has no probability mass at zero. Imposing the restriction that θit = θi does not change the

posterior distributions of
√
ςα and σε.
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Table 2: Posterior estimation results — model selection on αit and θit

Models

Unrestricted Parsimonious (θit = θi) Parsimonious — hybrid

Probability of time variation
αit 1.00
θit 0.00

Parameter summary statistics
|√ςα| 0.0228 0.0228 0.0228

(0.0004) (0.0004) (0.0004)

|√ςθ| 0.0005
(0.0006)

σε 0.0058 0.0058 0.0060
(0.0003) (0.0003) (0.0003)

Notes: The unrestricted model allows for time variation in both ait and θit (binary indicators δα and δθ sampled in the
top panel and set to 1 in the bottom panel); the parsimonious model restricts θit to be time invariant (δθ = 0) but allows
heterogeneity across countries; the parsimonious–hybrid model further sets θi = 1 for those countries where the posterior
probability that θi 6= 1 is smaller than 50%. The priors are as outlined in Section 3.2. The probabilities of time variation are
calculated as the fraction of MCMC draws in which the stochastic model specification search prefers a model which allows
for time variation in the corresponding parameter. The summary statistics for the parameters are the median and the standard
deviation (in parentheses) of their posterior distribution. Results based on MCMC with 200, 000 iterations after a burn-in of
20, 000 draws. The average integrated autocorrelation time (across the parameters of the different models) is 13.0.

In the long-run do all countries grow at the same pace?

Based on the stochastic model specification search, we can conclude that there is relevant time variation

in αit but not in θit. The latter still allows for θi 6= 1, whereas an intrinsic property of the multicountry

endogenous growth models is that θi = 1, such that in the long-run all countries grow at the same pace.

Table 3 reports posterior results for θi obtained from estimating a parsimonious specification where we

set δα = 1 and δθ = 0. For most, but not all, countries the 90% highest density interval (HDI) includes 1.

In order to test this in a more rigorous way, we can again use the stochastic variable selection approach.

To this end we (i) split θi into 1 and its deviation (θi − 1), and (ii) add a binary indicator γiθ that equals

one when the corresponding variable (θi − 1)λt should be included in the model and zero otherwise.

This results in the following specification

λit − λt = αit + γiθ(θi − 1)λt + εit, (15)

where for γiθ = 1 the deviation of θi from one is estimated from the data while γiθ = 0 implies that

θi = 1.

Table 3 reports posterior inclusion probabilities for the term (θi − 1)λt, calculated as the frequency that

γiθ takes on the value of one over the MCMC iterations. For most countries the results are in line with the

model of Klenow and Rodrı́guez-Clare (2005) as deviations of θi from one are not found to be a relevant

aspect of the model. However, for a number of countries the restriction that θi = 1 is not supported

by the data. This is most prominently the case for Argentina, Chile, Cyprus, Portugal and Taiwan, for
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which the posterior model inclusion probability of (θi− 1)λt clearly exceeds 75%, and to a lesser extent

for Australia, Canada, Germany and USA, where the posterior model inclusion probability of (θi− 1)λt

is between 50% and 75%. This suggests that over the period 1953-2014 a number of countries in our

dataset did have TFP growth that permanently differed from the global evolution. However, many of

the aforementioned countries typically are those that have caught up to (Cyprus, Germany, Portugal and

Taiwan) or have been caught-up by (Australia, Canada and USA) the global TFP evolution. As far as

our sample covers a prolonged period of successful catch-up, this may have resulted in θi 6= 1 instead

of showing up as time-variation in αit. A longer sample may be needed to rule out this possibility. For

completeness, the lower panel of Table 2 also reports results for the posterior distributions of
√
ςα, and σε

in a parsimonious hybrid model where θit is restricted to 1 only for those countries where the posterior

probability that θi 6= 1 is smaller than 50%. Compared to the less restricted models in the first two

columns, imposing this hybrid restriction does not affect the posterior distributions of
√
ςα and σε.

Table 3: Posterior estimation results — model selection on θi

θi γiθ θi γiθ

Argentina 0.64 (0.15) 0.82 Italy 1.11 (0.15) 0.24
Australia 0.69 (0.15) 0.69 Japan 1.08 (0.15) 0.22
Austria 1.20 (0.15) 0.40 Luxembourg 1.22 (0.15) 0.43
Belgium 1.07 (0.15) 0.23 Mexico 0.79 (0.15) 0.41
Brazil 1.06 (0.15) 0.21 Netherlands 1.09 (0.15) 0.23
Canada 0.69 (0.15) 0.68 New Zealand 0.85 (0.15) 0.29
Chile 0.51 (0.15) 0.98 Norway 1.00 (0.15) 0.21
Colombia 0.77 (0.15) 0.45 Portugal 1.34 (0.15) 0.76
Cyprus 1.34 (0.15) 0.75 South Korea 1.00 (0.15) 0.20
Denmark 0.87 (0.15) 0.29 Spain 1.23 (0.15) 0.47
Finland 1.22 (0.15) 0.43 Sweden 0.75 (0.15) 0.48
France 1.27 (0.15) 0.50 Switzerland 0.81 (0.15) 0.38
Germany 1.27 (0.15) 0.55 Taiwan 1.41 (0.15) 0.91
Greece 1.20 (0.15) 0.39 UK 0.80 (0.15) 0.39
Iceland 0.97 (0.15) 0.20 USA 0.75 (0.15) 0.52
Ireland 1.02 (0.15) 0.21

Notes: The summary statistics for θi are the median and the standard deviation (in parentheses) of the posterior distributions
obtained from a parsimonious specification where we restrict δα = 1 and δθ = 0. The posterior inclusion probabilities for γiθ
are calculated as the fraction of MCMC draws in which the stochastic model specification search prefers a model with γiθ = 1
(which implies that θi 6= 1). Results based on MCMC with 200, 000 iterations after a burn-in of 20, 000 draws. The average
integrated autocorrelation time (across the reported parameters) is 16.2.
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Figure 3: Posterior results for the absorptive capacity parameter αit
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Notes: Reported are the posterior mean and 68% highest density interval (HDI) for a parsimonious model setting θit = θi.
Results for the global technology leader (US) are presented in Figure 4 below. Based on MCMC with 200, 000 iterations after
a burn-in of 20, 000 draws. The average integrated autocorrelation time (across the plotted α’s) is 1.
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Absorptive capacity evolution

Figure 3 presents posterior results for the time-varying absorptive capacity parameter αit in the parsi-

monious model where θit = θi. Results for the parsimonious-hybrid model where θit = 1 for those

countries where the posterior probability that θi 6= 1 is smaller than 0.5 are presented in Figure ?? in

??. Looking at the evolution in the absorptive capacity parameter αit, there is substantial variation over

time in many countries.9 A first group, including Finland, France, Germany, Iceland, Norway, South

Korea and UK, show an increase in their ability to assimilate foreign knowledge. Ireland and South

Korea are clearly catching up with the rest since they started off well below average absorptive capacity

in 1953. The opposite evolution can be observed for a second group, consisting of Argentina, Chile,

Greece, Japan, Mexico and Switzerland. Other countries show either a modest increase or decrease, with

Australia, Austria, Denmark, France and the Netherlands showing little or no structural movement in

αit. The seemingly ‘static’ nature of the latter group of countries is however somewhat misleading, as

would be the same verdict for the global technology leader, the United States, which we chart in Figure 4:

recall that the absorptive capacity evolution depicted here is a relative index, such that these countries

can be highlighted as having kept up a very strong absorptive capacity performance, which in the case of

Austria, Belgium, and France, among others, was consistently on par or in the case of Australia, Canada,

Denmark, Sweden, Norway, and the US even outpacing the global developments over this time period.

The US have strengthened their position as global technology leader after the global catch-up of the

1950s and 60s and the setbacks of the oil crises in the 1970s. The 2007/8 GFC is clearly marked, though

the trajectory in its aftermath is upward (albeit with reference to zero global TFP growth: see Figure 1).

Figure 4: Posterior results for the absorptive capacity parameter αit — United States
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Notes: Reported is the posterior mean and 68% highest density interval (HDI) for a parsimonious model setting θit = θi.
Based on MCMC with 200, 000 iterations after a burn-in of 20, 000 draws. The average integrated autocorrelation time (across
the plotted α’s) is 1.

9In ?? we for instance pick a number of economies on the basis of their diverging paths relative to the global frontier,
and describe their policy evolution in greater detail, highlighting the correspondence with our estimated absorptive capacity
evolution.
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4 Linking the absorptive capacity evolution to economic policy

While the dynamics and evolution of the absorptive capacity parameters are of great interest in and of

themselves, it is particularly meaningful to determine country-specific drivers of absorptive capacity. In

this section, we therefore extend the empirical specification presented in Section 2 to allow for observed

country-specific variables to affect absorptive capacity. We will focus on a set of indicators highlighted

in the recent Schumpeterian growth literature dominating the current debate on policy for economic

growth: aspects of financial development, human capital, competition policy and the R&D knowledge

stock. This addition of covariates complicates matters substantially, though as our specification tests

reveal our parameters of interest are identified since none of these candidate determinants of absorptive

capacity turn out to have time-variant parameters.

4.1 Extended empirical specification

We specify the data generating processes of the absorptive capacity parameters ait and ϑit in equation

(3) as

ait = a∗it + xitβα, (16)

ϑit = ϑ∗it + xitβθ, (17)

with xit a K-dimensional vector of observed variables demeaned over time and over cross-sectional

units.10 This more general specification maintains the flexibility of our baseline approach by allowing

ait and ϑit to be driven by the stochastic components a∗it and ϑ∗it, such that absorptive capacity can still

be driven by determinants other than those included in xit. We allow xit to enter both absorptive capacity

parameters ait and ϑit to test whether they are related to shifts in the level or in the growth rate of TFP

(see discussion in Section 2.1 above).

Substituting equations (16)-(17) in (3) yields

λit = a∗it + xitβα + (ϑ∗it + xitβθ) ft + εit. (18)

Equivalent to Section 2.2, we use the CCE approach to identify ft. This involves taking cross-sectional

averages of (18), which results in

λt = a∗t + ϑ
∗
t ft + εt, (19)

10Note that a∗it and ϑ∗
it in equations (16)-(17) wipe out any individual and time fixed effects from the original data Xit.

Hence, defining xk,it = Xk,it − Xk,it, with Xk,it =
1
N

∑N
i=1Xk,it +

1
T

∑T
t=1Xk,it −

1
NT

∑N
i=1

∑T
t=1Xk,it, to be the

cross-sectionally and time demeaned version of the kth variable in Xit, implies that Xitβα and Xitβθ are absorbed in a∗it and
ϑ∗
it, respectively.

18



give that xt = 0 by construction. Solving for ft

ft =
1

ϑ
∗
t

(
λt − a∗t − εt

)
, (20)

and substituting this solution back into equation (18) yields

λit = α∗it +
K∑
k=1

βktxk,it + θ∗itλt + εit, (21)

where βkt = βkα + βkθ(λt − a∗t )/ϑ
∗
t . (22)

Further, α∗it = a∗it−ϑ∗ita∗t /ϑ
∗
t , θ
∗
it = ϑ∗it/ϑ

∗
t and εit = εit−

ϑ∗it+xitβθ
ϑ
∗
t

εt → εit as N →∞. Equation (21)

shows that an observed variable xk,it that potentially affects absorptive capacity can simply be added

to the baseline specification. As equation (22) indicates, xk,it will only have a time-varying impact βkt

when it has growth effects. In the absence of growth effects, βkt reduces to the level effect βkα.

In principle, we can estimate an unrestricted version of equation (21) by allowing for separate time-

varying coefficients on each of the observed variables xk,it. However, this ignores that the time variation

in βkt is driven by a common component (λt − a∗t )/ϑ
∗
t . To take this restriction into account, we repa-

rameterize equation (21) to

λit = α∗it + βjtxj,it +

K∑
k=1,k 6=j

(β∗kα + βjtβ
∗
kθ)xk,it + θ∗itλt + εit, (23)

such that βjt = βjα + βjθ(λt − a∗t )/ϑ
∗
t , β
∗
kα = βkα − βjαβkθ/βjθ and β∗kθ = βkθ/βjθ.

Note that βkα and βkθ are not separately identified from estimates of βjt, β∗kα and β∗kθ obtained from

equation (23).11 Nevertheless, our primary question of interest whether observable characteristics such

as financial development or human capital have growth effects (βkθ 6= 0) or not (βkθ = 0) can still be

tested using equation (23). First, βjθ = 0 implies that βjt = βjα + βjθ(λt − a∗t /ϑ
∗
t ) reduces to βjα.

Thus testing for βjθ = 0 can be done by testing for time variation in βjt. Second, conditional on βjt, the

rescaled parameters β∗kα and β∗kθ are identified.12 Although this does not allow us to separately identify

the original βkα and βkθ, testing whether βkθ = 0 can be done by testing β∗kθ = 0.

Further note that if βkθ = 0 (∀k), as we will come to find below, then we can estimate the following

restricted version of equation (23)

λit = α∗it + xitβα + θ∗itλt + εit, (24)

in which βα is identified.

11In particular, βjα and βjθ cannot be calculated from an estimate of βjt because a∗t /ϑ
∗
t is unobserved. This in turn implies

that βkα and βkθ (for k 6= j) are not identified.
12Note that choosing a normalizing variable xj,it for which βjθ = 0 implies that β∗

kθ = βkθ/βjθ = βkθ/0 is not identified.
When estimating the model we will therefore consider alternative choices of normalizing variable to check robustness.
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To complete the model, similarly to the baseline specification, we assume that the unobserved stochastic

parts of the absorptive capacity parameters13 α∗it and θ∗it as well as the time varying parameter βjt behave

as random walk processes

α∗it = α∗it−1 + ψαit, ψαit ∼ N(0, ςα), (25)

θ∗it = θ∗it−1 + ψθit, ψθit ∼ N(0, ςθ), (26)

βjt = βjt−1 + ψβjt, ψβjt ∼ N(0, ςβ). (27)

Testing whether α∗it, θ
∗
it and βjt are constant or vary over time can again be done using the Bayesian

model specification search as outlined in Section 2.3.

4.2 Potential drivers of absorptive capacity

In the following, we put forward a set of policy variables highlighted in the recent Schumpeterian growth

literature to potentially affect absorptive capacity (financial development, human capital, competition

policy and the R&D knowledge stock) and discuss the data sources. Due to data availability the analysis

for this extended specification is carried out on a reduced sample of 21 OECD countries over the 1970-

2009 time period.14

Financial Development

A large branch of the empirical literature has successfully documented a positive link between a well-

developed financial sector and long-run economic growth through capital accumulation and technological

progress. In the absence of financial intermediaries, informational asymmetries, transaction costs and liq-

uidity risk can impede an the optimal allocation of capital, such that innovative projects with potentially

high returns struggle to find financing (see Levine, 1997, for an in-depth discussion). Well-functioning

banks are able to screen new projects at lower costs and can better diversify risk, making it easier to

fund those start-ups with the best chance of employing innovative products and production processes.

This in turn stimulates technological progress. Theoretical evidence for a positive link between financial

development and technological progress can be found inter alia in the endogenous growth models of

De la Fuente and Marı́n (1996) and more recently Laeven et al. (2015), with the direct link to technol-

ogy adoption modeled in Cole et al. (2016). Empirically, King and Levine (1993) confirm that financial

services enhance growth by both fostering capital formation and improving the efficiency of that capital

stock. Numerous studies by Ross Levine and Thorsten Beck (most notably Levine et al., 2000) point to

the positive association between financial innovation on the one hand, and capital allocation efficiency
13The model in (24) is restricted with respect to the growth effects of observed policy variables only. The level or growth

effects of unobserved determinants of absorptive capacity can be controlled by restricting α∗
it and θ∗it as before.

14Compared with our results in Section 3 the following countries drop out of the sample: Argentina, Brazil, Chile, Colombia,
Cyprus, Iceland, Luxembourg, Mexico, South Korea, and Taiwan.
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and economic growth on the other.15 More recently, in the aftermath of the 2007/8 Global Financial

Crisis, concerns over ‘too much finance’ have taken the finance-growth literature into a new direction. In

an article of the same name, Arcand et al. (2015) demonstrate that in countries with very large financial

sectors, as proxied by private credit/GDP, there is no positive correlation between financial depth and

economic growth.

As a proxy for financial development, we use data on total market-value bank credit to the private, non-

financial sector, expressed in percent of GDP, from the Bank of International Settlements (BIS). This

series is adjusted for structural breaks and we imputed missing values splicing the private credit series

from the July 2018 update to Beck et al. (2000). In order to allow for the potential of a ‘vanishing effect’

of financial depth, we include levels and squared terms of the log-transformed debt-to-GDP ratio (Arcand

et al., 2015).

Human capital

The study of human capital in relation to economic growth and development has long suffered from

a failure to distinguish between the types of knowledge/education ‘appropriate’ at different levels of

development — e.g. the Bils and Klenow (2000) ‘puzzle’ of comparatively low importance of education

for growth; or Prichett’s seminal work ‘Where has all the education gone?’ (Pritchett, 2001). The existing

literature on knowledge spillovers typically assumes a human capital angle to absorptive capacity, though

studies disagree on the significance of levels versus growth of ‘skills’ (e.g. Keller, 1996; Kneller and

Stevens, 2006).

Our data are taken from the Penn World Table (Feenstra et al., 2015, v.9.1): the annual human capital

index combines average years of schooling data from Barro and Lee (2010) and Cohen and Leker (2014)

with returns to education estimates at primary, secondary and tertiary level (Psacharopoulos, 1994),

hence emphasizing the differences between different levels of average educational attainment.

Regulation

Much of the recent literature on innovation and growth has worked towards solving the often contradic-

tory theoretical and empirical results on the role of competition by taking a more differentiated view of

‘pre-innovation’ and ‘post-innovation’ rents (Aghion and Griffith, 2005). The well-known inverted-U

shape result of Aghion et al. (2005) for the relationship between competition and sectoral growth is

the result of a (positive) escape competition and a (negative) rent-dissipation effect, with the relative

magnitudes determined by the technological characteristics of the sector.

Existing empirical work on product market regulation has emphasized the transformative force of com-

petitive conditions on productivity, innovation, and technology diffusion (Conway et al., 2007; Aghion,
15Beck et al. (2016) further show that financial innovation is linked to a higher appetite for risk, making bank profits more

volatile, thus leading to higher losses when banking crises occur. The net effect of financial intermediation, however, is positive.
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2016; Cette et al., 2017). Similarly, policy shifts towards greater labor market flexibility are suggested to

accelerate productivity and innovation in advanced countries, perhaps in interaction with liberalization

of product market regulations (Crafts, 2006; Aghion et al., 2009; Aghion, 2016).

Standard measures of competition policy, such as OECD data for labor and product market regulation,

are only available from 1990 onward and in 5-year intervals from 1998, respectively (OECD, 2014),

which would substantially cut into our sample. Instead, we adopt the regulation measure from the Fraser

Institute Economic Freedom of the World panel dataset, which combines measures for regulation of the

labor and credit markets and for business regulations.16 These series are available annually from 2000

and every five years prior to that from 1970 — we linearly interpolate the earlier sample years.

R&D

A large theoretical literature attributes a starring role to R&D in generating productivity gains and long-

run development owing to the generation of knowledge spillovers (Grossman and Helpman, 1991). This

difference between the private and social returns to R&D investments has been used to motivate policy

interventions such as tax credits or R&D subsidies: in the famous words of Zvi Griliches (1979), R&D

expenditure represents “one of the few variables which public policy can affect in the future” (115).

The investigation of domestic R&D stock and weighted foreign R&D stock in their impact on TFP is

a popular empirical exercise since the seminal study by Coe and Helpmann (1995), with more recent

iterations including Coe et al. (2009) and Ertur and Musolesi (2017). An alternative empirical setup

focuses on domestic R&D as a measure for absorptive capacity (Griffith et al., 2003, 2004, the ‘second

face’ of R&D): here, the international technology transfer in the form of knowledge spillovers can only

take place if firms or countries have actively developed their ability to assimilate and employ external

knowledge (Mancusi, 2008), with sufficient prior experience of ‘own’-R&D a prerequisite (an idea going

back to Cohen and Levinthal, 1989).

We follow the standard practice in the literature in adopting a country-level measure of business enter-

prise R&D (BERD) expenditure expressed in terms of GDP share from Madsen and Ang (2016), which

we transform into a real US$ R&D expenditure series using appropriate GDP data, and accumulate into

stocks via the perpetual inventory method (the Appendix of Coe et al., 2009, describes the detailed steps

including base year values), adopting a 5% depreciation rate. The resulting R&D stocks are expressed in

per hour worked and log-transformed.

4.3 Empirical results: extended specification

Our analysis proceeds in two steps. First, we use the unrestricted specification (23) to test whether policy

variables and investments in absorptive capacity — both observed and unobserved — induce growth
16Note that only the aggregate but not the three constituent measures of the regulation index are available.
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effects or merely affect the level of TFP. Second, based on the insights from this model specification

search, we then estimate the restricted specification (24). We discuss these elements in turn below.

The priors are as outlined in Section 3.2, with an uninformative N(0, 1002σ2ε) prior for the additional

parameters√ςβ , β∗α and β∗θ .

Results: unrestricted extended model

The top panel of Table 4 presents results for the Bayesian model specification search on the unrestricted

extended model, in turn using each of the considered observed policy variables to normalize the model

(see footnote 12 for details). The results confirm our previous findings of time variation in α and time

invariance for θ — recall that these capture absorptive capacity other than that driven by the policy

variables. First, α∗it is found to be time varying with probability one while the probability that θ∗it is

time varying is zero. Second, none of the included observed variables have clear growth effects: the

probability that βjt is time-varying is well below 0.5 for all variables. This implies that βkθ = 0 ∀k

and confirms the result of the baseline model that policy interventions — both unobserved and observed

— can affect the level of TFP, but not the growth rate. This finding is reiterated by the magnitudes and

precision of the absolute values of
√
ςα,
√
ςθ and √ςβ reported in the bottom panel of Table 4.

Results: restricted model

Given the probabilities of time variation presented in Table 4, indicating that θ∗it is time invariant and

βkθ = 0 ∀k such that both unobserved and observed policy variables only have level effects, we estimate

the restricted version (24) of the extended model additionally setting θ∗it = θ∗i . The estimated level effects

βα of our set of observed policy variables are presented in Table 5.17

Many existing empirical studies on economic growth emphasize Schumpeter’s well-known argument

that financial intermediaries foster growth through innovation by mobilizing savings, managing risk, and

facilitating transactions (King and Levine, 1993). When financial development is added to TFP or in-

novation diffusion regressions, however, evidence over and above enabling R&D investment is mixed

(Madsen et al., 2010; Comin and Nanda, 2019). In our results for 21 OECD countries, financial develop-

ment has a strong positive effect on absorptive capacity, yet is subject to diminishing returns, echoing the

‘too much finance’ argument in recent work on economic growth by Arcand et al. (2015).18 Note that

like these authors we uncover this nonlinearity despite the sample period for this extended model ending

almost immediately after the 2007/8 Global Financial Crisis.
17Although it is not possible to contribute the explanatory power of the model in equation (24) to its constituent components,

an indication of the relative importance of the observed variables versus the latent components is that the variance in xitβ̂ is
11% of the variance in α̂∗

it + θ̂∗itλt.
18In our model marginal returns turn negative at around 53% of credit/GDP. Although comparison with Arcand et al. (2015) is

fraught with difficulty due to differences in sample and, especially, methodology, it is safe to say that our estimate is substantially
lower than theirs. Note, however, that the marginal returns implied by our parameter estimates suggest a shallow curvature
beyond this threshold.
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Table 4: Results for the extended empirical specification — model specification search

Normalizing variable xj,it

CRE CRE2 REG HC R&D

Probability of time variation
α∗it 1.00 1.00 1.00 1.00 1.00

θ∗it 0.00 0.00 0.00 0.00 0.00

βjt 0.08 0.00 0.02 0.40 0.06

Parameter summary statistics∣∣√ςα∣∣ 0.0136 0.0137 0.0137 0.0135 0.0137
(0.0006) (0.0006) (0.0005) (0.0006) (0.0006)∣∣√ςθ∣∣ 0.0010 0.0010 0.0010 0.0011 0.0011
(0.0009) (0.0010) (0.0009) (0.0009) (0.0009)∣∣√ςβ∣∣ 0.0049 0.0008 0.0013 0.0205 0.0021
(0.0351) (0.0005) (0.0011) (0.0248) (0.0028)

σε 0.0054 0.0054 0.0054 0.0053 0.0054
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Notes: Reported are results relevant for model selection obtained from estimating the unrestricted extended specification in
equation (23). The policy variables included in the extended model are financial development (CRE) in levels and squared terms,
regulation (REG), human capital (HC) and R&D stock (R&D) — all of these are included in all models. Each column reports
results for a different choice of normalizing variable xj,it used to test for growth effects. The priors are as outlined in Section
3.2, with an uninformative N(0, 1002σ2

ε) prior for the additional parameters √ςβ , β∗
α and β∗

θ . The reported probabilities of
time variation are calculated as the fraction of MCMC draws in which the stochastic model specification search prefers a model
which allows for time variation in the corresponding parameter (obtained by sampling the binary indicators). The summary
statistics for the parameters are the median and the standard deviation (in parentheses) of their posterior distribution (obtained
by setting the binary indicators to 1). Results based on MCMC with 200, 000 iterations after a burn-in of 20, 000 draws. The
average integrated autocorrelation time (across the sampled parameters in the different models) is 47.4.

The results for the regulation index suggest no effect on absorptive capacity — this may be due to the

constituent components of this index (regulations of the labor and credit markets, business regulation)

having heterogeneous effects which wash out in the aggregate regulation index.

Previous work by Griffith et al. (2003, 2004) emphasized a role for human capital in absorptive capacity

evolution and hence successful technology transfer in the 1970s and 1980s, though in other studies using

data up to a more recent date the effect was not significant (Madsen et al., 2010). In our preferred

specification the human capital effect is positive albeit very small and statistically insignificant. Figure

?? in the appendix shows that for this sample of advanced economies the evolution of human capital

was linear for virtually every country, which leaves little variance — and hence power — after removing

individual and time fixed effects. The study by Ertur and Musolesi (2017), which like ours accounts

for cross-section dependence, similarly finds no significant effect of human capital once (domestic and

foreign) R&D stock is included in the model.

As the latter qualification signals, the ‘second face’ of R&D as a means to foster absorptive capacity is

clearly borne out by our empirical results. Virtually all of the existing literature on knowledge spillovers

and absorptive capacity has found strong evidence in this regard (e.g. Griffith et al., 2004; Madsen et al.,
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2010; Ertur and Musolesi, 2017), though our overall findings reiterate that a focus on R&D exclusively

is not warranted.

Table 5: Results for the extended empirical specification — restricted version with θ∗it = θ∗i and βkθ = 0 (∀k)

Level effect βα of observed policy variables

CRE CRE2 REG HC R&D |√ςα| σε

0.5145 -0.0648 -0.0051 0.0031 0.1008 0.0137 0.0056
(0.1108) (0.0135) (0.0047) (0.0740) (0.0235) (0.0005) (0.0003)

Notes: The reported results are obtained from estimating the restricted extended specification in equation (24) additionally
imposing that θ∗it = θ∗i is time invariant. The policy variables included in the extended model are financial development (CRE)
in levels and squared terms, regulation (REG), human capital (HC) and R&D stock (R&D). The priors are as outlined in Section
3.2, with an uninformative N(0, 1002σ2

ε) prior for the additional parameters in βα. Reported are the median and the standard
deviation (in parentheses) of the posterior distribution of the parameters. Results bases on MCMC with 200, 000 iterations after
a burn-in of 20, 000 draws. The average integrated autocorrelation time (across the reported sampled parameters) is 2.5.

5 Concluding Remarks

Barriers to technology diffusion potentially have dramatic implications for income and welfare: one

counterfactual estimate suggests that if countries did not share their ideas, world GDP would be a mere

6% of its current level (Klenow and Rodrı́guez-Clare, 2005, emphasis added). In the spirit of our own

investigation we can perhaps rephrase this statement as follows: if countries did not absorb the available

ideas, world GDP would be a mere 6% of its current level. This statement raises a number of important

questions: what is the nature of this absorption process? Do investments in absorptive capacity have

perpetual growth effects or do these benefits peter out after a number of years leaving only a level shift?

In this paper we have introduced an empirical methodology which provides a simple but powerful tool

to help answering these questions. Our contributions relate to (i) the econometric literature in form of

an extension of the Pesaran (2006) common correlated effects (CCE) estimators to a setup where factor

loadings are allowed to differ over time, a characteristic we test for as part of our implementation; and

to (ii) the empirical literature on growth and productivity which to date has operationalized absorptive

capacity by adopting proxies such as R&D investments or human capital, while further specifying explicit

channels such as trade, FDI, or migration, through which global technology can transfer to individual

countries. Our implementation encompasses all of these channels and proxies, but is far less demanding

in terms of empirical data requirements to yield country- and time-specific absorptive capacity indices

for policy analysis.

Estimating our benchmark model using a panel of 31 advanced economies covering 1953-2014, we gain

a number of important insights into the nature of knowledge evolution and the patterns of knowledge

diffusion across this group of countries. First, we establish that time variation in absorptive capacity

matters, particularly so in a group of high-growth late developers including Ireland, South Korea and

Taiwan. Thus, successful development equals successfully improving absorptive capacity. Second, we
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establish that the growth boost from improvements in absorptive capacity is a one-off and does not extend

into perpetuity: absorptive capacity growth (and implicitly policy aimed to foster this growth) has TFP

level effects but not growth effects, a finding in line with theoretical models presented in Klenow and

Rodrı́guez-Clare (2005), Howitt (2000), and others. Our third finding relates to the country-specific

evolution of absorptive capacity, which can be squared with policy levers to promote innovation and

technical change, as advocated by Schumpeterian growth theory. We estimate an extended model using

a panel of 21 countries for which we have indicators of financial development, R&D investment, human

capital and competition policy/regulation over the period 1970-2009. In line with the baseline model,

none of these variables induces permanent growth effects. In our results financial development has a

strong positive effect on absorptive capacity, yet is subject to diminishing returns, echoing the ‘too much

finance’ debate in the growth literature (Arcand et al., 2015). Moreover, R&D knowledge stock is found

to contribute substantially to our measure of absorptive capacity.

The analysis in this study merely represents a starting point. We can further expand the sample of

countries to move away from a focus on countries at the technology frontier and toward a study of

the current ‘laggards’ of economic development: the analysis of absorptive capacity evolution in low-

and middle-income countries can provide important insights into the differential policy implications

at different levels of development. Especially in low-income countries investment in R&D is almost

negligible and the estimated absorptive capacity indices enable us to identify successful countries and/or

time periods which in turn can help point to suitable development policy (Cirera and Maloney, 2017).

The analysis of advanced countries as in the present study but over a much longer time horizon can help

refine our tests of endogenous growth models (Madsen, 2007). Last but not least, the analysis could

move away from aggregate economy data and embrace the rich sector-level data in manufacturing for

advanced economies (Griffith et al., 2004; Eberhardt et al., 2013), and in agriculture for developing and

emerging economies (Fuglie, 2017).

Our empirical results have implications for the use of the Pesaran (2006) CCE estimator in cross-country

productivity analysis. The finding of time-varying intercepts combined with time-invariant factor load-

ings implies that the standard CCE approach is applicable provided that all relevant drivers of absorptive

capacity are included as covariates. Alternatively, our methodology allows us to introduce measured in-

puts in the innovation process (such as R&D stocks) alongside the current time-varying intercept captur-

ing other intangible aspects of productivity and development (Ertur and Musolesi, 2017) and the common

factor error structure capturing global technology.
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