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A chemical discrimination system based on photonic reservoir computing is demonstrated 
experimentally for the first time. The system is inspired by the way humans perceive and process 
visual sensory information. The electro-optical reservoir computing system is a photonic analogue of 
the human nervous system with the read-out layer acting as the ‘brain’, and the sensor that of the 
human eye. A task-specific optimisation of the system is implemented, and the performance of the 
system for the discrimination between three chemicals is presented. The results are compared to the 
previously published numerical simulation (Anufriev et al. in Opt Mater Express 12:1767–1783, 2022, 
10.1364/OME.449036). This publication provides a feasibility assessment and a demonstration of a 
practical realisation of photonic reservoir computing for a new neuromorphic sensing system - the next 
generation sensor with a built-in ‘intelligence’ which can be trained to ‘understand’ and to make a real 
time sensing decision based on the training data.

The human nervous system possesses remarkable computational abilities1,2. It is an incredibly powerful 
biological computer capable of performing pattern recognition, regression and forecasting on massively parallel 
information in real time3,4. Inspired by this, artificial neural networks (ANNs) aim to replicate the neural 
functions of humans as a computational framework. Such systems are called ‘neuromorphic’, as they are inspired 
by the computing architecture of the human nervous system and brain. ANNs and neuromorphic systems have 
shown effectiveness for tasks, like pattern recognition and inference, and found applications in bioinformatics, 
medical image processing, stock market forecasting, and telecom signal recognition5–15.

Numerous architectures, implementations, and applications of ANNs have been demonstrated – both in 
software and as hardware systems16–18. Among those, photonic implementations have been demonstrated to be 
suitable for high-speed processing due to the larger bandwidths offered by optical signals and components18,19. 
Photonic reservoir computing (PhRC) is one such implementation. This offers an alternative approach to the 
architecture and functionality of photonic neural networks20–22, which are based on the conventional feed-forward 
neural networks. In reservoir computing, which was first demonstrated as a software implementation, training 
is exclusively carried out at the read-out layer, allowing the kernel to remain semi-random and untrained18,20–22. 
The reservoir kernel (see Fig. 1(b)) performs complex temporal dynamics and nonlinear transformations which 
processes input data, remapping it to a new higher-dimensional representation space23–25. This higher-dimension 
representations allows for a final linear discrimination to be performed by the read-out layer. PhRC systems 
have been demonstrated in an optical-fibre setup, including electro-optical feedback24,25, all-optical feedback26,27 
and all-optical stimulated Brillouin scattering systems28, in a chip-scale integrated photonic devices, including 
as network of complex interconnected waveguides29, stochastic photonic field30,31, and lasers17,32. Using these 
PhRC platforms, applications for telecommunications, quantum computing, and chaotic time series generation 
and prediction have already been reported20,21.

In the present work, we considered the practical implementation of electro-optical reservoir computing 
(EORC), with an optical fibre delay-line and Mach-Zehnder modulator, which provide the memory and 
nonlinear effects respectively24,25,33. The work presented here focuses on the first experimental demonstration of 
PhRC as neuromorphic chemical sensing system - the next generation of sensing with built-in intelligence. Such 
a system can be trained to make real time sensing decisions based on training data - inspired by the fact that the 
human computing capacity is predominantly used for processing of sensory information34. The sensory part of 
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Fig. 1. (a) Flow diagram for the process of chemical discrimination by the neuromorphic sensing system 
described in this Section. (b) Delayed feedback reservoir computing kernel architecture and the classification 
algorithm. The experimental parameters τ  and θ  are the feedback-delay time and duration for each mask 
value respectively (See Sect. Pre-processing: information representation and time-multiplexing). (c) The 
experimental setup developed in the current work implementing the delayed feedback reservoir computing 
and a summary of components involved in the experimental setup. Variable DC sources were used to tune 
the attenuation of the variable optical attenuator and the gain of the RF-amplifier driven by particle swarm 
optimisation.
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the neuromorphic sensing system was implemented in the infrared, mimicking the properties of human eyes, 
namely the discrete and broadband response of the cone cells in the retina. The application of this neuromorphic 
sensory system was demonstrated to the discrimination of different chemicals.

This paper is structured as follows: Sect. "Methods" describes the neuromorphic sensory system. This starts 
by outlining the experimental operation of the pyroelectric sensing apparatus, describing the experimental 
implementation of the EORC, and the pre- and post-processing of data that was carried out. Section Results and 
discussion presents and discusses the results obtained and their comparison to the earlier work33. Section "Results 
and discussion", further, reports the dynamics of the EORC kernel, before presenting the results on stability 
and performance for the chemical discrimination tasks. The impact of the optimisation parameters on system 
performance is also briefly discussed. The conclusions are provided in Sect. Conclusions.

Methods
In this Section, the experimental implementation of the neuromorphic sensing system is described. Figure 1(a) 
describes the schematic of operation of the sensing system. The neuromorphic sensing system comprises four 
distinct layers (see Fig.  1(c)) – the sensing layer, the EORC kernel, the read-out layer and the control layer. 
Section  "The pyroelectric sensor" and "Pre-processing: information representation and time-multiplexing" 
describe the sensing layer which consists of a pyroelectric sensor, and data pre-processing and generation. 
Figure  1(b) shows the reservoir computing kernel and the algorithm used for chemical classification. 
Section  "Electro-optical reservoir computing (EORC) system" describes the physical implementation and 
components of the EORC shown in Fig. 1(c). This Section also describes the control layer – which was used to 
optimise the EORC through particle swarm optimisation. The state of the signal at every stage of the EORC is 
not described in detail here, and readers are referred to the simulation counterpart of the paper33, but the data 
post-processing which happens at the read-out layer, is described in Sect. "Post-processing: time-demultiplexing, 
training and testing at the read-out layer".

The pyroelectric sensor
A pyroelectric sensor equipped with a tuneable broadband Fabry-Perot filter35 was used for recording the 
transmissive spectral response of chemical samples, see Fig. 2(a). This sensor produced discrete and broadband 
spectral responses. The central wavelength of the Fabry-Perot filter, λ c, was tuneable over a wavelength range 
of 3000 nm ≤ λ c ≤ 4500 nm with a full-width half-maximum (FWHM) of 47.65 nm as depicted in Fig. 2(b). 
The sensor used a broadband thermal blackbody source. The spectral response of the sensor was obtained by 
sweeping the central wavelengths, λ c, of the Fabry-Perot filter across the spectral region of interest, from which 
a low-resolution transmittance spectrum for each sample was obtained. The normalised transmittance, T , 
describes a normalised detected power, Pm, obtained from the sensor with respect to the reference background 
with no-sample present. This can be expressed mathematically as,

 
T (λ c) =

∫
Sin (λ )D (λ , λ c) (1− A (λ ))dλ∫

Sin (λ )D (λ , λ c) dλ
 (1)

where, Sin (λ ) is the spectral power density of the source, D (λ , λ c) is the spectral response of the Fabry-Perot 
filter tuned at centre wavelength, λ c, and A (λ ) denotes the spectroscopic absorption of the sample-under-test. 
It is important to point out, as can be deduced from Eq. (1), that the transmittance of the pyroelectric sensor, T
, was not equal to the spectroscopic transmittance, i.e., T (λ c) ̸= 1− A (λ ).

Motivated by human visual perception, which is capable of discriminating over 100,000 shades of colours 
from only three colour sensitive retinal neuron ends (trichromat arrangement36,37), in this present work only 
three central wavelengths, m, of the Fabry-Perot filter, i.e. λ c,m where m = 1,2, 3, were considered for each 
chemical sample. A set of three selected central wavelengths, λ c,m, was chosen for each group of the samples-
under-test, aiming at maximising the difference between T (λ c,m) within the group. The transmittance obtained 
from the sensor, as well as the three central wavelengths, λ c,m, selected for the chemical discrimination of each 
group, are depicted in Fig. 3(a) for the group of aliphatic alcohols and Fig. 3(b) for the group of essential oils. The 
central wavelengths, λ c, selected are marked with dashed lines. For the group of aliphatic alcohols (Fig. 3(a)) the 
selected central wavelengths were 3140 nm, 3280 nm and 3460 nm. For the group of essential oils (Fig. 3(b)) the 
selected central wavelengths were 3130 nm, 3430 nm and 3700 nm. The spectra depicted in Fig. 3 were collected 
at different times over a period of a week, confirming robustness and reproducibility of the pyroelectric sensing 
apparatus data, and the standard deviation of the transmittance spectral data, T (λ c,m), is shown as error-bars. 
This transmittance dataset was digitally pre-processed and normalised, to be used as input signal to the EORC 
kernel.

Pre-processing: information representation and time-multiplexing
In order for the discrete transmittance data from the sensor to be used, it was represented in a format suitable for 
the EORC kernel through data pre-processing. The first step in pre-processing the raw spectral transmittance data 
was a sample-and-hold of this dataset, only considering the transmittance at three distinct central wavelengths 
(see Fig. 3) T = [T (λ c,1) , T (λ c,2) , T (λ c,3 )], producing an analogue RF signal, j (t). Figure 4(a) illustrates the 
sample-and-hold procedure in which each transmittance data value, T (λ c,m), was held for a duration τ , the 
feedback round-trip delay of the EORC. Thus, resulting from the three central wavelengths considered in this 
work, j (t) was a generated radio frequency (RF) information signal with period of 3τ . To exemplify this, the 
information signal, j (t), for a single spectrum of ethanol is given in Fig. 4(a).
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The subsequent step in data pre-processing was time-multiplexing. Time-multiplexing is a common approach 
used in EORC to increase signal diversity, allowing for an increased number of virtual neural nodes from a single 
physical node24,25. Time-multiplexing was achieved through the imposition of a periodic mask, m (t), to the 
serialised information signal j (t)33. Figure 4(b) shows an example of mask signal, m (t); The mask signal was a 
flat top function with a periodicity of τ , constructed from a series of random numbers. These random numbers 
were generated by a random number generator with a normal distribution, a mean of 1 and a scaling factor of 
0.3, i.e., m (t) ∈ [0.85; 1.15] with τ = Nxθ , where Nx is the number of mask values and θ  is the duration for 

Fig. 2. (a) Schematic of the pyroelectric sensor. (b) The Fabry-Perot filter spectral response.
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Fig. 4. (a) An example of a serialised information signal, j (t), obtained for a single instance of transmittance 
measurement of ethanol T = [T (λ c,1) , T (λ c,2) , T (λ c,3 )]. The signal is periodic with 3τ , where τ  is the 
round-trip time for the EORC. (b) A depiction of a mask signal, m (t), with 30% modulation depth and a 
bias of 1. The mask signal is periodic with τ  and each mask lasts for θ = τ /Nx, where Nx is the number 
of random value masks (5 in this example). (c) An example of the EORC input signal, u (t), created from the 
modulation of the serialised information signal, j (t), by the mask signal, m (t). The depicted example is for a 
single instance of an ethanol transmittance measurement with 5 mask values, shown in different colours. (d) 
A visualisation of demultiplexing for an input signal, u (t), with Nx = 5. Application of demultiplexing to the 
reservoir activation states, x (t), instead, yields the neuron activation states ( X).

 

Fig. 3. The transmittance dataset obtained using the pyroelectric sensor for (a) the group of aliphatic alcohols 
and (b) the group of essential oils. The error-bars represent the standard deviation of the obtained responses, 
T (λ c,m). The wavelengths that were selected for the discrimination algorithm are depicted by black dashed 
lines.
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each mask value. The scaling factor applied to the random number generator was experimental consideration 
which allowed all individual mask values to be resolved within the capability range of the arbitrary waveform 
generator and oscilloscope.

The input signal, u (t), to the EORC, derived from the pre-processed raw spectral acquisition, was then 
achieved through the modulation of the serialised information signal, j (t), by the mask signal, m (t). 
An arbitrary waveform generator (AWG), labelled (8) in Fig.  1(c), was used to produce and feed the input 
signal, u (t), to the EORC kernel. Figure 4(c) shows an example input signal, u (t), for a single transmittance 
measurement of ethanol with Nx = 5. 

Electro-optical reservoir computing (EORC) system
The EORC implementation used a continuous-wave laser operated at 1560 nm, with a maximum power output 
of 100 mW, labelled (1) in Fig.  1(c). The laser provided a carrier-signal which propagated through a 2  km 
single-mode, SMF-28, fibre feedback delay-line system. The laser signal was modulated by a combination of 
an analogue input signal, u (t), and the feedback signal propagating through the system. This was referred to 
the synchronous regime of operation in previous work25. These signals were combined using an RF-combiner 
labelled (9) in Fig. 1(c), and fed through a variable RF-amplifier, labelled (14) in Fig. 1(c), before being used as an 
RF-modulation input to the Mach-Zehnder modulator (MZM). In this way, the EORC kernel had two physical 
optimisation parameters, i.e. the laser power P  and the signal amplification γ . Suitable kernel parameters were 
obtained through a particle swarm optimiser, implemented within MATLAB38. The laser power was controlled 
through a DC signal, supplied to an electronic variable optical attenuator, labelled (2) in Fig. 1(c). To compensate 
for component temperature drifts and obtain a consistently precise and accurate carrier signal power, a simple 
proportional-integral-derivative (PID) controller was implemented. Similarly, the signal amplification was also 
controlled through the supply of a DC signal to a RF-amplifier, labelled (14) in Fig. 1(c). For detailed information 
on particle swarm optimisation, readers are referred to the particle swarm optimisation toolbox38.

Although an additional optimisation parameter could also be found from the MZM operation, in the present 
work, the MZM was operated at quadrature, as previous works suggested that optimal performance of the EORC 
signal discrimination task was obtained in this regime of operation25,33. The negative quadrature point was 
selected, as it was observed that our MZM device exhibited robust operation for DC-bias voltages closest to 0 V. 
Negative quadrature was obtained at a DC-bias of -2 V, while positive quadrature was observed at a DC-bias of 
+ 4 V. The round-trip time for the EORC circuit, τ , was measured as 10.98 µs by recording the pulse delay at the 
read-out layer. Readers are referred to the systematic analysis of the EORC system in previous publications24,25,33.

Post-processing: time-demultiplexing, training and testing at the read-out layer
The signal from the EORC kernel, i.e., the reservoir activation states, was monitored using at an InGaAs 
photodetector, labelled (6) in Fig. 1(c), obtained at the read-out layer feeding into an oscilloscope, labelled (5) in 
Fig. 1(c), at a 1% power optical tap, labelled (12) in Fig. 1(c). An oscilloscope was used in our setup to record an 
averaged steady state of the system and send this to a computer for data post-processing, see Fig. 1(c).

The first step in data post-processing was demultiplexing. Its purpose was to deconvolute the EORC activation 
states at the read-out layer, and thus, obtain the individual neuron activation states based on the virtual RC 
nodes approach. This procedure is most simply shown when considering a system with no feedback and a small 
input signal, u (t); however, the procedure is the same for a system with feedback and any u (t) (see Fig. 4(d)). 
For a system with no feedback and a small input signal, u (t), the reservoir activation states, x (t), observed at 
the read-out were the same as u (t) (see Fig. 4(c)). Since u (t) was created from a periodic perturbation of the 
serialised information signal, j (t), by the mask, Nx neuron activation states, X, were obtained, where Nx is 
the number of masks. The resulting activation states X were then used in the subsequent training and testing 
steps. In the case of a system with a small input signal and no feedback, these activation states all resembled 
j (t) . In systems with feedback, the neuron activation states, X, do not resemble the serialised information 
signal. An example of the demultiplexing process can be seen in Fig. 4(d) for a system with a small input signal 
and no feedback.

The final step in the data post-processing depended on the regime of operation of the neuromorphic sensing 
system, i.e. training or testing. During training, the read-out of the EORC system ‘learned’ about the task by 
evaluating the output weight, Wout, such that the difference between the known Ytraining and the matrix of 
neuron activation states, X, was minimised. This error minimisation-based learning was achieved by Tikhonov 
regularisation with cross-validation as39:

 Wout ← min
[∥∥WoutX

T −Ytraining
∥∥] , (2)

where the desired output, Y, is a numerical representation of the sample-under-test using one-hot-encoding, 
Ytraining refers to the desired outputs used during the training and (· )T denotes the transpose operator. One-
hot-encoding used to represent target chemicals is further detailed in Sect.  "Chemical discrimination by the 
neuromorphic sensing system".

The neuromorphic sensing system was operated in the testing regime after being trained. In the testing 
regime, the read-out layer produced prediction signals, Yprediction, from the Wout obtained while training, 
and a set of neuron activation states, X, for the sample-under-test. Mathematically, this can be expressed as in 
Eq. (3). It should be noted that the transmittance datasets were split for each chemical such that the system was 
trained and tested on different transmittance data.

 Yprediction = Wout X
T (3)
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The overall system performance, i.e., the error rate of the prediction, was evaluated by comparing the predicted 
signal outputs, Yprediction, to the target outputs, Ytarget . In this work, the normalised mean squared error 
( NMSE) defined as the following was used throughout as a metric to evaluate performance,

 
NMSE =

〈
∥Yprediction −Ytarget∥2

〉

var (Ytarget)
, (4)

where var(· ), ⟨·⟩ and ∥·∥ denote the variance, the assemble averaging, and the Euclidean norm operators, 
respectively.

Results and discussion
This Section starts with the characterisation of the EORC with no sensory input present. Section  "Chemical 
discrimination by the neuromorphic sensing system" demonstrates the application of the neuromorphic sensing 
system to the discrimination of chemicals, describes the performance optimisation of the EORC, and the system 
stability.

EORC operation states and bifurcation
The EORC used in the present work was based on a delay feedback system24,25,33. Such a system features 
parameter dependent behaviour and was characterised by the bifurcation diagram.

System bifurcation was achieved in our setup by varying input laser power ( P ) and the gain of the RF-amplifier 
( γ ), labelled (1) and (14) in Fig. 1(c) respectively. First, consider Fig. 5(b), which depicts the bifurcation of the 
monitored optical signal at the read-out photodetector (labelled (6) in Fig. 1(c)). To illustrate this bifurcation 
phenomenon, the states of the optical signal, i.e., the max [x (t)]− min [x (t)], have been plotted. For a fixed 
input laser power of P0 = 55 mW, and low amplification, the states of the optical signal remained constant 
(single-valued), i.e., max [x (t)] ≈ min [x (t)], as the gain of the RF-amplifier, γ , increased. This is because, 
although the gain γ  increased, the optical power provided by the laser module remained constant. In the single-
valued region, the small fluctuation observed was caused by random noise, which was observed to be around 
0.2 V. However, after a specific RF-amplifier gain of γ = 23.4 dB, the states of the optical signal distinctly split 
denoting the bifurcation. Figure 5(c) shows the bifurcation of the optical signal as a function of the input laser 
power ( P ) for a fixed RF-amplifier gain γ = 25 dB. Figure 5(c) demonstrates a similar bifurcation behaviour, 
but with an overall positive gradient due to the increase of overall input laser power. To further illustrate the 
bifurcation phenomenon, examples of the temporal signals of the system are shown in Fig.  5(d)–(f) for the 
specific input laser powers ( P ) marked in Fig. 5(c).

To gain an overall picture of the bifurcation phenomenon, the surface plot in Fig. 5(a) shows the state of the 
optical signal as a function of both the input laser power ( P ) and the RF-amplifier gain ( γ ). Figure 5(a) shows 
two distinct regions: the region where the system response was single-valued (dark blue) and the region where 
the system response was oscillating (not-blue). This bifurcation behaviour, single-valued for both low input laser 
power ( P ) and the RF-amplifier gain ( γ ); and oscillating for high input laser power ( P ) and the RF-amplifier 
gain ( γ ), is consistent with previously published simulation work33. The transition between the two states, 
the bifurcation line, is indicated by the light blue boundary between dark blue and green colours in Fig. 5(a). 
Furthermore, the specific parameters used for Fig. 5(b),(c), namely P0 = 55 mW and γ = 25 dB, are marked 
in Fig. 5(a) by dashed white lines. The method used in characterising the different regions of operation was a 
two-parameter sweep across laser power (P ) and RF-amplifier gain (γ ). This only allowed the location of the 
first order bifurcation points (the first instance of the system response becoming multi-valued). It is possible that 
higher order bifurcations exist, but they were not considered in this paper.

Chemical discrimination by the neuromorphic sensing system
A group of three aliphatic alcohols, i.e. ethanol, methanol, and isopropanol, was first used for chemical 
discrimination to demonstrate the accuracy of the trained system, allowing for direct comparison with previously 
published simulation work33. Furthermore, to show its universal application of handling other chemical samples, 
the sensing system was then trained to classify a group of essential oils - eucalyptus, lavender, and rapeseed 
oils. A dataset of 90 spectral responses was used during the discrimination of the group of aliphatic alcohols 
(30 spectra for each type of alcohol), and 60 spectra during the discrimination of the group of essential oils (20 
spectra for each type of oil). In both cases, 80% of the spectra available were used for training and 20% for testing.

As described in Sect. "Post-processing: time-demultiplexing, training and testing at the read-out layer", one-
hot encoding was used to represent the chemical sample-under-test, here, it is defined as in Table 1.

Discrimination of: Aliphatic alcohols Essential oils

Ytarget =




[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

Ethanol Eucalyptus oil
Methanol Rapeseed oil
Isopropanol Lavender oil

Table 1. One-hot-encoding for discrimination of groups of chemicals.

Particle swarm optimisation is a very common optimisation used in engineering40,41. The details of the 
particle swarm optimisation approach can be found in the documentation for the particle optimisation toolbox38. 
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Fig. 5. Operational states of EORC kernel. (a) The range of reservoir activation states, x (t), observed at 
the read-out photodetector as function of EORC parameters: laser power P  and RF-amplifier gain γ . The 
single-valued system response is shown in dark blue and the region where the system response was oscillating 
is shown with other colours. The colour bar depicts the difference in Volts between the maximum value of 
x(t) and the minimum value of x(t) (i.e. the states of the signal) observed on the oscilloscope. The dashed 
lines mark the specific input laser power P0 = 55 mW and RF-amplifier gain γ = 25 dB, for the bifurcation 
diagram (b) and (c), respectively. The star marks the optimum operation region obtained using particle 
swarm optimisation for the discrimination of a group of aliphatic alcohols. The hexagon marks the optimum 
operation region obtained using particle swarm optimisation for the discrimination of a group of essential oils 
(see Sect. "Chemical discrimination by the neuromorphic sensing system"). (d–f) depict the temporal signals 
x (t) for the specific operation parameters at amplifier gain γ = 25 dB, P = 20 mW, 50 mW, and 90 mW as 
marked in (c).
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Heuristic optimisation using the particle swarm method was employed to find the optimum EORC operational 
parameters for accurate sample classification. This approach yielded a minimised the NMSE between the target 
( Ytarget) and the predicted ( Yprediction) signals. The particle swarm optimisation for this minimisation was 
set to use 200 particles at each iteration. At each iteration, the set of EORC operation parameters, P  and γ , 
which yielded the lowest value of NMSE was recorded. For the aliphatic alcohol discrimination, the optimisation 
concluded after 50 iterations (Fig. 6(a)) and after 20 iterations for the discrimination of essential oils (Fig. 6(b)). 
The EORC operation parameters, P  and γ , that corresponded to the lowest recorded NMSE are marked in 
Fig. 5(a) by a star for discrimination within a group of aliphatic alcohols and a hexagon for the discrimination 
within a group of essential oils. The NMSE for classification of chemicals in each group at optimal parameters is 
shown in Fig. 5(a), Nx = 50 mask values were used for this task. It is noted that the optimum operation point 
for aliphatic alcohol discrimination was not in line with the previously carried out simulation33, where it was 
shown to be near the bifurcation points. We believe that this is due to our use here of the particle swarming 
method, which is based on stochastic optimisation, converging to a local minimum, in contrast to the exhaustive 
search conducted in the simulation work33. This suggests that further system performance improvements could 
be possible.

Figure 7(a) and (b) show a bar chart of the predicted outputs, Yprediction, for the chemical discrimination 
tasks for a group of aliphatic alcohols and a group of essential oil respectively. Distinct discriminations among 
testing samples have been achieved with less than ± 10% error standard deviation as is shown by the error bars 
in Fig. 7. Using ± 10% as a thresholding condition, a 100% classification accuracy was achieved within the group 
of alcohols and a classification accuracy of 94% was achieved within the group of essential oils. The confusion 
matrices for these classifications are shown in Fig. 8(a) and (b) for the group of aliphatic alcohols and the groups 
of essential oils respectively. No testing samples were misclassified by the optimised neuromorphic sensing 
system, and only a single sample was unclassified due to a Yprediction value outside the thresholding limits.

Here, we also report the observation that the neuromorphic sensing system developed here was influenced by 
ambient changes of the environment, including noise (electrical noise, thermal noise, acoustic and mechanical 
vibrations) and thermal component drifts (of the laser and MZM). To exemplify this, Fig. 9 presents a histogram 
of the NMSE values for 100 independent instances of classification for the group of aliphatic alcohols, carried 
out using a fixed set of optimised EORC parameters, P  and γ  (see Fig.  5(a)), at randomly selected times 
over the duration of a week, with the same training and testing datasets used throughout. The NMSE mean 
for an optimised neuromorphic sensing system applied to classification of the group of aliphatic alcohols was 
0.0148 and had an error standard deviation σ = 8.73× 10−4. We believe that the classification robustness of 
the neuromorphic sensing system could be significantly improved by using low-noise photodetectors and RF-
amplifiers, performing signal averaging to enhance the signal-to-noise ratio of the signal at the readout layer, 
x (t), and by employing a more stable (less jittering) control system unit for the VOA and RF-amplifier.

Furthermore, we also investigated the impact of the number of masks, Nx, used to multiplex the input signal, 
u (t), on the system performance, NMSE. Figure 10 shows the NMSE for the discrimination of the group of 
aliphatic alcohols for various numbers of masks, Nx, and the error bars depict the standard deviation from the 
mean values. It confirms that a higher number of masks, Nx, improved the accuracy of the neuromorphic sensing 
system as suggested by previous publications24,25,33. The available number of masks was limited by equipment 
employed in the experiment and a steady increase in the performance of the neuromorphic sensing system is 

Fig. 6. EORC operational parameter optimisation by the particle swarm method. Averaged classification 
NMSE with each particle swarm optimisation iteration for: (a) the group of aliphatic alcohols and (b) the 
group of essential oils.
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observed until Nx = 50. Better performance may be possible, however the standard deviation of the NMSE 
increases after Nx = 50, likely due to the ability of the AWG to resolve individual masks becoming increasingly 
compromised. The rate of increase of system performance as a function of Nx until Nx = 50 was observed to be 
in agreement with the numerical analysis of the same system in previously published simulation work33.

Conclusions
This paper has demonstrated for the first time an experimental implementation of a neuromorphic sensing 
system. This system consists of four distinct parts, namely the control layer, the sensing and pre-processing layer, 
the EORC kernel, and the post-processing and read-out layer. A methodology has been demonstrated for the 
automatic optimisation of the sensing system for the chemical classification task. The performance of the system 
has been evaluated for a group of three aliphatic alcohols and a group of three essential oils. It has been shown 
that using a thresholding limit of just ± 10%, with a training set of as low as 48 essential oils, yields a classification 
success of 94%; a perfect classification was also achieved for aliphatic alcohols with a training set of 72 samples. 

Fig. 7. (a) and (b) depict the discrimination results for groups of aliphatic alcohols and essential oils, 
respectively. Within this classification ± 10% thresholding limits were applied in order to judge the system 
classification quality.

 

Scientific Reports |        (2024) 14:27915 10| https://doi.org/10.1038/s41598-024-79395-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The bifurcation of the system was studied and validated by the numerical simulated results. Finally, the stability 
of the system was studied, and a range of operational parameters suggested for optimal stability.

Fig. 9. A histogram depicting the NMSE for 100 runs of aliphatic alcohol discrimination with the constant 
optimised parameters.

 

Fig. 8. Confusion matrices of the discrimination results for neuromorphic sensing of (a) the group of aliphatic 
alcohols and (b) the group of essential oils.
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Data availability
The data gathered in the experimental work of this study, supporting the findings of this work are available from 
the corresponding author upon reasonable request.
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