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BACKGROUND: Glioblastoma multiforme (GBM) is an aggressive cancer with poor prognosis, partly due to resistance to the
standard chemotherapy treatment, temozolomide (TMZ). Phytocannabinoid cannabidiol (CBD) has exhibited anti-cancer effects
against GBM, however, CBD’s ability to overcome common resistance mechanisms to TMZ have not yet been investigated. 4’-
Fluoro-cannabidiol (4’-F-CBD, or HUF-101/PECS-101) is a derivative of CBD, that exhibits increased activity compared to CBD during
in vivo behavioural studies.
METHODS: This anti-cancer activity of cannabinoids against GBM cells sensitive to and representing major resistance mechanisms
to TMZ was investigated. Cannabinoids were also studied in combination with imidazotetrazine agents, and advanced mass
spectrometry with the 3D OrbiSIMS was used to investigate the mechanism of action of CBD.
RESULTS: CBD and 4’-F-CBD were found to overcome two major resistance mechanisms (methylguanine DNA-methyltransferase
(MGMT) overexpression and DNA mismatch repair (MMR)-deficiency). Synergistic responses were observed when cells were
exposed to cannabinoids and imidazotetrazine agents. Synergy increased with T25 and 4’-F-CBD. 3D OrbiSIMS analysis highlighted
the presence of methylated-DNA, a previously unknown anti-cancer mechanism of action of CBD.
CONCLUSIONS: This work demonstrates the anti-cancer activity of 4’-F-CBD and the synergy of cannabinoids with imidazotetrazine
agents for the first time and expands understanding of CBD mechanism of action.

BJC Reports; https://doi.org/10.1038/s44276-024-00088-0

BACKGROUND
It has been reported that cannabinoids exhibit anti-cancer
properties [1–3]. Most activity of cannabinoids is considered to
be a result of interaction with cannabinoid receptors 1 and 2 (CB1
and CB2) of the endocannabinoid system. It has been demon-
strated that CB1 and CB2 receptor expression can be altered in
cancers, often upregulated (for example in hepatocellular
carcinoma) and can be correlated with cancer cell invasion,
proliferation and apoptosis [3, 4]. However, the roles of
cannabinoids and cannabinoid receptor regulation in cancers is
not yet fully understood. In particular, cannabidiol (CBD) and Δ⁹-
tetrahydrocannabinol (THC) are often studied together [1, 2, 5].
These cannabinoids are usually assessed in combination at a ratio
of 1:1 CBD:THC (such as in Sativex®), and sometimes in
combination with other anti-cancer agents, such as temozolomide
(TMZ). Indeed, phase I/II clinical trials in glioblastoma multiforme
(GBM) patients have found that Sativex® was safe to administer
with TMZ [6–8], and further studies are underway to study the
efficacy of this drug combination with radiotherapy [9, 10].
Cannabinoids are reported to exhibit effects against several
cancers. CBD itself has demonstrated activity against colorectal,
breast, glioma, cervical and lung cancers [3, 11].
There are varied reports on the anti-cancer mechanisms of

action of CBD [5, 11–13]. Whilst CBD is understood to have

multiple targets, with a rich and diverse pharmacology, most of
the pathways involved are only hypothesised. The suspected
pathways involved are via transient receptor potential cation
channel subfamily V member 2 (TRPV-2), increased reactive
oxygen species generation and increased endoplasmic reticulum
stress. Some effects have been shown to be reversed following
inhibition of CB1 and CB2 receptors, demonstrating some anti-
cancer activity of CBD via interaction with the endocannabinoid
system [1, 3, 5, 11–13]. Additionally, in in vivo mice studies
(hippocampus analysis and forced swim tests) the effects of CBD
have been reported to involve deoxyribonucleic acid (DNA)-
methylation, predominantly at the C5-cytosine in cytosine-
phosphate-guanine (CpG) islands [14, 15]. DNA-methylation has
not been reported as a mechanism of anti-cancer activity of CBD,
as far as we are aware, and is therefore a hypothesised mechanism
of anti-cancer activity. However, the methylation of cytosine in
CpG islands indicates that nucleotide base methylation does occur
as a result of exposure to CBD, and therefore, DNA-methylation
may be a possible mechanism of CBD anti-cancer activity [14, 15].
Inhibition of CB1, CB2 and TRPV-2 receptors has also been shown
to reverse some of the anti-cancer effects of CBD, however the
pathways involved are not yet fully understood [3, 11].
4’-Fluoro-cannabidiol (4’-F-CBD), also referred to as HUF-101

and PECS-101 in the literature, is a recently synthesised CBD
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derivative [16, 17]. 4’-F-CBD is reported to exhibit increased
potency over CBD in in vivo behavioural assays [16, 18, 19].
Additionally, there is a recent report that 4’-F-CBD can prevent
chemotherapy-induced pain [17]. However, to the best of our
knowledge, the anti-cancer properties of 4’-F-CBD have not yet
been studied.
Glioblastoma multiforme (GBM) is an aggressive grade IV

astrocytoma with a dismal prognosis of 5% 5-year survival [20].
Contributing to the poor prognosis is the common resistance of GBM
to the standard of care chemotherapy, TMZ. TMZ is a DNA-alkylating
agent, predominantly methylating DNA purines at N3-adenine, N7-
and O6-guanine positions. N-methylation is generally repaired quickly
by base excision repair, but O-methylation is not [21, 22]. O-
methylation leads to a mis-pair of guanine with thymine (rather than
cytosine) during DNA replication, triggering DNA mismatch repair
(MMR), leading to cell death via apoptosis or autophagy [23]. There
are two major resistance mechanisms to TMZ demonstrated in GBM.
Firstly, an over-expression of O6-methylguanine-DNA methyltransfer-
ase (MGMT) allows the cells to repair DNA-methylation at the O6-
guanine position, restoring guanine. Secondly, MMR deficiency allows
O6-methylguanine to be tolerated [22, 24]. One method to try to
overcome these common resistance mechanisms to TMZ is to
synthesise analogues of the molecule. T25 is a N3-propargyl, C8-
thiazole analogue of TMZ, created to overcome resistance by MGMT
over-expression. DNA-alkylation with the propargyl group (rather
than methyl of TMZ), means that MGMT is not able to recognise and
remove the DNA-alkylation, and the cells are therefore still sensitive to
treatment [23, 25, 26]. C8-thiazole, replacing carboxamide, has been
shown in vitro to enhance drug metabolism and pharmacokinetic
(DMPK) properties, including stability; crucially, T25 is not a substrate
for P-glycoprotein, an important efflux pump expressed by blood
brain barrier (BBB) epithelia [27].
GBM is difficult to treat due to the location, as the physical BBB

protects the brain, restricting the movement of most therapeutic
agents into the brain [24]. CBD is known to cross the BBB, and many
of the observed effects of CBD are a result of interaction with the
endocannabinoid system in the brain [28–32]. There are few reports
of CBD activity alone against GBM, although these demonstrate a
good response, with the concentration required to inhibit cell growth
by 50% (GI50) ranging from 10.67 ± 0.58 µM against GL216 [33] and
12.75 ± 9.7 µM against U87MG [34–38] to 21.6 ± 3.5 µM against
U373MG [36]. More reports investigate the anti-cancer activity of
CBD against GBM in combination with THC or TMZ [3, 4, 11, 34, 39].
The combination of CBD and TMZ has been reported to cause both
an additive and synergistic response in vitro [35, 40].
However, the few reports of CBD activity alone against GBM

demonstrate a good response, with the concentration required to
inhibit cell growth by 50% (GI50) ranging from 10.67 ± 0.58 µM
against GL216 [33] and 12.75 ± 9.7 µM against U87MG [34–38] to
21.6 ± 3.5 µM against U373MG [36].
Using an in vivo U87MG GBM mouse model, when CBD, THC

and TMZ were administered in combination, tumour growth was
reduced by a larger extent than after administration of TMZ alone
[39]. CBD has also been shown to be effective in in vivo GBM
models U87, U251, GSC3832 and GSC387 at 15–20mg/Kg, in
combination treatments with THC and TMZ [3, 36, 39, 41–43]. This
has been demonstrated after intravenous, intraperitoneal, sub-
cutaneous and oral administration [2, 36]. CBD has also been
investigated in combination with radiotherapy in a mouse GL261
model, resulting in significant growth delay (5.5 ± 2.2 mm3 at day
21, compared to 48.7 ± 24.9 mm3 in the control group) and almost
90% apoptosis [2, 33].
To the best of our knowledge, there are no reports investigating

the activity of CBD alone against TMZ-resistant GBM models.
However, there is a report of CBD activity against the colorectal
cancer cell line, HCT116 [12]. HCT116 cells exhibit a deficiency of
MMR and are therefore commonly used as a model to represent
this resistance mechanism to (or tolerance to treatment by) TMZ.

In the study, CBD was administered alone and found to inhibit cell
growth with a GI50 of 10.8 µM after 24 h exposure [12]. The
common resistance mechanisms to GBM treatment with TMZ
prevent the conversion of DNA-methylation to cell death [22, 24].
As discussed, CBD is thought to act via multiple pathways
[1, 3, 5, 11–13], and therefore may be able to overcome the two
major resistance mechanisms to GBM treatment, MGMT over-
expression and MMR deficiency.
The aims of this work were to assess the anti-cancer activity of CBD

and 4’-F-CBD against GBM. Cells sensitive to TMZ treatment and those
representing the two major resistance mechanisms (over-expression
of MGMT and MMR deficiency) have been studied to understand
whether the cannabinoids‘ activity is impacted by these resistance
mechanisms. As a synergistic response of CBD treatment with TMZ
has been reported previously, and clinical evaluation of TMZ in
combination with Sativex is underway, herein, combination treat-
ments of cannabinoids (CBD and 4’-F-CBD) and TMZ or derivative,
T25, were studied. Finally, 3D Orbitrap secondary ion mass spectro-
metry (3D OrbiSIMS) analysis was used as a novel approach to study
themechanisms of anti-cancer action of CBD. The 3D OrbiSIMS allows
label-free imaging at the subcellular level by combining time of flight
and Orbitrap detectors for analysis with high spatial resolution and
mass resolving power (240,000 at m/z 200) to both analyse the
chemistries and visualise their distribution in a sample [44].

METHODS
Materials
Plant-derived and synthetic CBD were purchased from THC Pharm
(Frankfurt, Germany). 1-Fluoropyridinium triflate was purchased from
Fluorochem (Derbyshire, UK). Isolute HM-N was purchased from Biogate
(Hengoed, UK). Cell lines U373-V and U373-M were supplied by Schering
Plough (NJ, USA). Cell lines HCT116 and MRC-5 were purchased from ATCC
(VA, USA). RPMI-1640, minimum essential medium, foetal bovine serum
(FBS), non-essential amino acids, geneticin G418, gentamicin, L-glutamine,
penicillin/streptomycin, sterile Hepes buffer, sterile cell culture sodium
bicarbonate, ethylenediaminetetraacetic acid, 10× trypsin- ethylenediami-
netetraacetic acid solution, TMZ, ammonium formate, indium tin oxide-
coated glass slides, dry dichloromethane, deuterated chloroform (CDCl3)
and sterile dimethyl sulfoxide were purchased from Sigma Aldrich (Dorset,
UK). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
was purchased from Alfa Aesar (Heysham, UK). T25 was synthesised
within the University of Nottingham by Helen Summers [27]. All other
solvents and reagents used were of high performance liquid chromato-
graphy grade or higher, purchased from ThermoFisher Scientific
(Leicestershire, UK).

General chemistry
A Buchi Rotavapor consisting of a V-850 vacuum controller, R-210
rotavapor and B-491 heating bath was used for drying. A Biotage SP4
flash chromatography system was used for separation with a normal phase
puriFlash (PF-15SIHP-F0004, Interchim, Montluçon, France) column car-
tridge. A flow rate of 5 mL/min was used with line A (hexane) and line B
(20% ether in hexane). The column cartridge was equilibrated with 5% line
B for 3 column volumes (CV) first. After equilibration, the product was
loaded onto the column. The gradient used was 0–2 CV 5% line B, 2–12 CV
5–10% line B, 12–22 CV10% line B, 22–32 CV 10–20% line B, 32–35 CV 20%
line B. Separation was confirmed with thin layer chromatography on silica
precoated aluminium backed 60 F254 plates (Merck, Darmstadt, Germany)
using 6% ether in hexane. Compounds were visualised by a UV lamp at
254 nm.
Liquid chromatography mass spectrometry (LC-MS) was used to verify

the product. A Shimadzu UFLCXR system was used with an Applied
Biosystems API3000 to visualise spectra. Separation was achieved using a
Phenomenex Gemini-NX C18 110 A column (50mm× 2mm× 3 µm) at
40 °C. A flow rate of 0.5 mL/min was used with 0.1% formic acid in water in
line A and 0.1% formic acid in acetonitrile in line B. The gradient used was
0.0–1.0 min 5% line B, 1.0–3.0 min 5–98% line B, 3.0–5.0 min 98% line B,
5.0–5.5 min 98–5% line B, 5.5–6.5 min 5% line B.
Bruker 400 Ultrashield nuclear magnetic resonance (NMR) was used to

assess the product by hydrogen (1H) NMR at 400MHz using CDCl3
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(δ= 7.26). MestReNova software version 14.2.2 (Mestrelab Research,
Santiago de Compostela, Spain) was used to process the data. Chemical
shifts (δ) are reported in parts per million (ppm). Coupling constants (J) are
recorded in Hz, and the multiplicities are described as singlet (s), doublet
(d), triplet (t), multiplet (m) or broad (br).

4’-Fluoro-cannabidiol
The synthesis of 4’-F-CBD is shown in Fig. 1 and was first reported by
Breuer et al. [16], this method was followed, with modifications to improve
the separation of the product from any unreacted CBD.
Synthetic CBD was used as an initial starting point for the synthesis.

1-Fluoropyridinium triflate (79mg, 0.3 mmol), CBD (100mg, 0.3 mmol) and
4.5 mL dry dichloromethane were stirred overnight in a nitrogen
environment at room temperature. The yellow product was washed with
(3 × 5mL) aqueous sodium bicarbonate (NaHCO3). The organic layer was
then dried over sodium sulphate (Na2SO4) anhydrous, filtered and dried
onto isolute (1–2 spatulas). Separation of 4’-F-CBD from any unreacted CBD
was performed by Biotage SP4 flash chromatography and confirmed by
thin layer chromatography.
Characterisation reported by Breuer et al. [16]: total yield (27%), 1H NMR

(300MHz, CDCl3) δ= 6.17 (s, 1H, Ar), 5.52 (s, 1H), 4.56 (s, 1H), 4.44 (s, 1H),
3.92 (s, 1H), 2.50 (br, 2H), 2.19–2.05 (br, 2H), 1.77 (s, 3H), 0.86 (t, 3H), LC-MS
[M+ H]+ m/z= 332.
Characterisation found: total yield (42%), this is higher than reported due

to improved separation by flash chromatography. 1H NMR (400MHz,
CDCl3) δ= 6.20 (d, J= 6.3, 1H, Ar), 5.72 (br, s, 1H, OH), 5.56 (d, J= 2.6, 1H,
CH= C), 5.03 (br, s, 1H, OH), 4.60 (s, 1H, CH= C), 4.47 (s, 1H, CH= C), 3.94
(d, J= 10.1, 1H, Ar-CH), 2.69–2.40 (m, 3H, CH3-C= C), 2.28–2.20 (br, m, 1H,
CH-C= C), 2.17–2.07 (m, 1H, CH-C= C), 1.88–1.75 (m, 2H, CH2), 1.71 (d,
J= 1.3, 3H, CH2-CH), 1.63–1.54 (m, 5H, CH3, CH2), 1.35 (dd, J= 7.3, 2.0, 2H,
CH2), 1.35–1.23 (m, 2H, CH2), 0.91 (t, J= 6.8, 3H, CH3). Whilst Breuer et al.
[16] did not report all 1H NMR peaks, those they did report match those
found, and the additional peaks could all be assigned to the structure as
described. LC-MS: [M+ H]+ calculated m/z= 332.5, found m/z= 332.9,
retention time: 3.26 mins, purity 95%. LC-MS characterisation matches that
reported by Breuer et al. [16].

Cell culture
Human GBM cell lines U373-V (MGMT-low, +MMR) and U373-M (+MGMT,
+MMR) and human colorectal cancer cell line HCT116 (MGMT-low, −MMR)
were used in this work. Cell lines U373-V and U373-M were cultured in
RPMI-1640 medium supplemented with 10% FBS, 1% non-essential amino

acids, 50 µg/mL gentamycin and 400 µg/mL G418. Cell line HCT116 was
cultured in RPMI-1640 medium supplemented with 10% FBS and 1%
penicillin/streptomycin. Non-tumourigenic foetal lung fibroblasts (MRC-5)
were cultured in minimum essential medium supplemented with 10% FBS,
1% non-essential amino acids, 1% penicillin/streptomycin, 2 mM L-
glutamine, 10 mM Hepes buffer and 0.075% sodium bicarbonate. All cell
lines were cultured in an incubator with 5% CO2 at 37 °C.

MTT assay
The MTT assay was used to evaluate the growth and viability of all cell
lines used upon treatment with CBD and 4’-F-CBD alone and
combinations of CBD and TMZ, CBD and T25, 4’-F-CBD and TMZ, and
4’-F-CBD and T25. Briefly, cells were seeded into 96-well plates at the
following densities: 3 days‘ exposure: all cell lines: 3 × 103 cells/well;
6 days‘ exposure: U373-V and U373-M cells: 650 cells/well, HCT116 and
MRC-5 cells: 400 cells/well. After the cells were allowed to attach
overnight, they were exposed to test agents for either 3 or 6 days. MTT
assays were performed at the time of treatment (T0) and following the
exposure time for cells treated and non-treated controls. MTT was
added, and following 2 h incubation, the formazan crystals were
dissolved in 150 µL sterile dimethyl sulfoxide and absorbance was read
at λ= 570 nm on a PerkinElmer EnVision plate reader. GI50 and
combination index (CI) values were calculated using Equations (1)–(3)
outlined in Supplementary information 1.

Cell viability
Results of the MTT assays were confirmed by viable cell count assays. Cells
were seeded into 6-well plates at the following densities: U373-V and U373-M
cells: 4 × 104 cells/well, HCT116 and MRC-5 cells: 2 × 104 cells/well. After the
cells were allowed to attach overnight, they were exposed to test agents for
either 3 or 6 days. Following the exposure time, cells were washed with PBS
and harvested with trypsin-ethylenediaminetetraacetic acid solution. The
viable cells were then counted using a haemocytometer under a Nikon
Eclipse TS100 microscope.

Preparation of cells for 3D OrbiSIMS analysis
Cell samples were prepared for analysis by 3D OrbiSIMS following a
method based on Newman et al. [45]. U373-V cells treated with CBD, CBD
and TMZ, and CBD and T25 were assessed by 3D OrbiSIMS.
Indium tin oxide-coated glass slides were placed into a petri dish and

seeding U373-V cells at a density of 1.6 × 105 cells/well into the dish. Petri
dishes were placed in the incubator at 5% CO2, 37 °C. Cells were exposed
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to the GI50 value of test agents for 3, 6, 24 and 72 h to be able to compare
to the MTT assays. For cells treated with a combination of test agents, the
concentrations were based on combination MTT assays to represent ~75%
growth inhibition, shown in Table 1.
Following the exposure time, the slides were harvested. The cells were

washed (3× 1mL) with 150mM ammonium formate solution at pH 7.4. The
glass slides were then dipped into liquid nitrogen and freeze-dried in a
benchtop freeze dryer (VirTis SP Scientific Sentry 2.0) at −50 °C for 1 h.
Once removed from the freeze drier, the slides were sealed in petri dishes
with parafilm and stored at −80 °C until analysis.

3D OrbiSIMS analysis
The 3D OrbiSIMS technique uses a HybridSIMS instrument (IONTOF GmbH),
which incorporates both time of flight and Q Exactive HF Orbitrap analysers.
Samples were analysed using the single ion beam Orbitrap depth profiling
mode, utilising a 20 keV Ar3000

+ gas cluster ion beam of 20 µm diameter (duty
cycle of 4%) and a target current of 0.2 nA. Both positive and negative mode
ion polarity spectra were acquired with a mass range of m/z= 75–1125. The
profile was performed over an area of 200 × 200 μm using random raster
mode. The injection time was set to 500ms and 80 scans were taken for each
analysis over an average of 120 s. A low energy electron floodgun was used for
charge compensation, additionally, the pressure in the main chamber was
regulated using Ar gas to 9 × 10−7 mbar to enhance the charge compensation.
The mass resolution was 240,000 at m/z 200.
3D OrbiSIMS data were acquired and analysed using SurfaceLab

7 software (IONTOF GmbH, Münster, Germany). Peak lists were auto-
matically generated for all of the spectra with a minimum count value

applied of 10,000 and subsequently combined using the ‘union’ function
with a catch mass radius of 2 ppm. All data were normalised to the total
ion count (TIC) of that analysis. All assignments are based on accurate mass
to within 2 ppm, and those reported throughout are putative. Data were
chemically filtered using molecular formula prediction software, SIMS-MFP
version 1.1 (University of Nottingham, Nottingham, UK) [44], into groups
containing fatty acids (CnHnO2), sulfatides (CnHnN1O11-12S1) and glycer-
ophospholipids (CnHnO8/13P or CnHnNO7-10P) [46]. Data groups were then
analysed using multivariate analysis software, simsMVA [47]. The data
groups were mean-centred, and the principal component analysis (PCA)
function was used in algorithm mode, retaining all components. The scores
and variance were used to find principal components exhibiting
differences between the groups, and loadings allowed visualisation of
the principal components.

Statistical analysis
Chemical structures and schemes were prepared using ChemDraw version
21.0.0 (PerkinElmer Informatics, MA, U.S.A.). One-way ANOVA with
Dunnett’s multiple comparisons, or multiple t-tests where appropriate
were performed in Prism version 9.3.1 (GraphPad, CA, U.S.A.) to assess the
significant differences between sample groups. Differences were con-
sidered statistically significant when the p-value was <0.05 (α= 0.05). All
data (n ≥ 3 independent experimental repeats; n= 5 internal sample
replicates) are represented as mean ± standard deviation (SD).

RESULTS
Cancer cell growth inhibition by cannabinoids
The anti-cancer activity of cannabinoids CBD and 4’-F-CBD was
assessed against a vector control GBM cell line (U373-V) and two cell
lines representing common resistance mechanisms to treatment
with TMZ (U373-M, MGMT-transfected U373-V isogenic partner, and
MMR-deficient HCT116 colorectal cancer). Exposure periods of
6-days as well as 3-days were studied because TMZ is understood to
require at least one cell cycle in order to exhibit its cytotoxic effect
[22]. This is observed in Fig. 2, where the GI50 of TMZ against the

Table 1. Concentration of test agents for preparation of cell exposure,
dosed in combination for 3D OrbiSIMS analysis.
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agent A

Test agent A
concentration (µM)
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Fig. 2 GI50 values of cannabinoids CBD and 4’-F-CBD compared to DNA-alkylating agents TMZ and T25 against (A) U373-V (GBM control,
−MGMT, +MMR, TMZ sensitive), (B) U373-M (GBM, +MGMT, +MMR, TMZ resistant), (C) HCT116 (-MGMT, -MMR, TMZ resistant) and (D) MRC-5
(non-tumourigenic) after 3- and 6-days exposure. Data measured by MTT assay and confirmed by cell count assay. Data are presented as
mean ± SD, three independent repeats of n= 5. One-way ANOVA was performed, comparing test agents to TMZ, α= 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. Differences in GI50 compared to TMZ are shown for for both 3- and 6- days exposure.
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U373-V cell line falls significantly (p < 0.001) from 147 ± 55 µM after
3-days exposure to 10 ± 2 µM following 6-days exposure. After
3-days exposure, T25, CBD and 4’-F-CBD exhibited significantly
lower GI50 values compared to TMZ against all cell lines studied. For
U373-M and HCT116 cell lines (demonstrating resistance to TMZ
treatment), both cannabinoids and T25 also showed significantly
lower GI50 values than TMZ following 6-days exposure. T25 data
corroborate results first reporting T25 potency in cell lines
demonstrating clinical mechanisms of resistance to TMZ [27] and
are consistent with the hypothesis that propargyl lesions are neither
removed (by MGMT) nor tolerated in MMR-deficient cells [48].
To obtain preliminary indications of cancer-selectivity, test

agents were also assessed against non-tumourigenic MRC-5
fibroblasts, as shown in Fig. 2. TMZ was shown to be the least
active, with a GI50 of 323 µM after 3-days exposure, or 724 µM after
6-days exposure. CBD appears to be the most potent, with a GI50
of 5 µM and 7 µM (3- and 6-days exposure). 4’-F-CBD and T25 both
demonstrated GI50 values between 37 and 58 µM.

Synergy of cannabidinoids with imidazotetrazine anti-
cancer agents
Combination treatments of CBD with TMZ or T25 against the three
cell lines were studied by MTT assays and confirmed by cell count
assays. The combination indices (CIs) indicating the cell response
to the combined treatments are shown in Table 2. Briefly, CI= 1
indicates an additive response, CI > 1 is antagonistic and
CI < 1 shows a synergistic response. The data in Table 2 are
demonstrated as a graphical example in Fig. 3, where the
isobolograms of combinations against the U373-V cell line
are shown.
Remarkable synergistic responses were encountered in all 3 cell

lines when CBD and an imidazotetrazine agent (TMZ or T25) were
combined. Table 2 shows that only against the HCT116 cell line
was there a combination that did not provide a synergistic
response, CI= 1, when TMZ (304.5 µM) was used with CBD
(7.5 µM) after only 3-days exposure (when TMZ is less effective, as
shown in Fig. 2). However, when HCT116 cells were treated with

Table 2. CIs of cannabinoids (CBD or 4’-F-CBD) administered in combination with TMZ or T25 after 3- or 6-days exposure against U373-V (GBM
control, −MGMT, +MMR, TMZ sensitive), U373-M (GBM, +MGMT, +MMR, TMZ resistant) and HCT116 (−MGMT, −MMR, TMZ resistant) cell lines.

Combination Treatment time (days) Combination Index (CI)

U373-V U373-M HCT116

−MGMT, +MMR +MGMT, +MMR −MGMT, −MMR

CBD/TMZ 3 0.10–0.89 0.23–0.74 0.11–1.06

6 0.12–0.76 0.21–0.74 0.05–0.95

CBD/T25 3 0.33–0.65 0.22–0.57 0.53–0.93

4’-F-CBD/TMZ 3 0.16–1.01 0.13–0.59 0.37–0.74

6 0.09–0.53 0.05–0.50 0.48–0.79

4’-F-CBD/T25 3 0.21–0.52 0.19–0.75 0.37–0.79

Data represented as a range for the different combination concentrations tested. The full CI data for each combination are shown in Supplementary
Information 2.
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test agents for 6-days (required to observe the full effects of TMZ
in TMZ-sensitive cells), the lowest CI (greatest synergy) was
observed following exposure to CBD (1.3 µM) and TMZ (0.5 µM).
Table 2 and Fig. 3 also show that the combination of CBD and T25
provided the most consistent response, with a smaller range in CI
values (e.g. MGMT+ U373-M 0.22 ≤ CI ≤ 0.57).
Combination treatments of 4’-F-CBD with TMZ or T25 were also

assessed against the three cell lines, showing that the combina-
tion of 4’-F-CBD with TMZ or T25 resulted in a synergistic response
in all three cell lines. The only exception was following 3-days
exposure of U373V cells to 4’-F-CBD and TMZ. Similarly to the only
additive response observed in the CBD combination studies, this
was at low concentrations of the test agents, and at 3-days where
TMZ has not yet been able to exhibit its full effect. Indeed,
following 6 days‘ exposure to 4’-F-CBD and TMZ, the lowest CI of
0.09 was observed in U373-V cells (Table 2). Multiple mechanisms
which may contribute to such synergy are considered in the
discussion.

Indications of anti-cancer mechanisms of cannabidiol activity
by 3D OrbiSIMS
U373-V cells exposed to CBD were investigated by the 3D
OrbiSIMS technique with cells analysed following exposure to CBD
either alone, with TMZ or with T25 for up to 3-days. This technique
was not used to measure cytotoxicity, but to shed light on
potential anti-cancer mechanism of action of CBD. Using the
spectra acquired, a targeted search for secondary ions indicative
of the suspected mechanisms of action was conducted including
glutathione (C10H16N3O6S

-) as an indicator of oxidative stress [49],
ceramide (C63H124NO6S

-) as an indicator of CB1 activity [50], and
anandamide (C22H36NO2

-) as an indicator of interaction with the

endocannabinoid system [51]. These were not observed with 3D
OrbiSIMS analysis; however, DNA and methylated-DNA ions were
observed. From the secondary ion intensity values shown in Fig. 4,
it can be seen that cells exposed to CBD for 24 h exhibited
significantly higher methylated-DNA content compared to the
control samples of non-treated cells. Figure 4 also shows that
following 3 h exposure of the cells to CBD with T25, methylated-
guanine, cytosine and thymine were also observed at significantly
higher levels than in the control sample. T25 is thought to create
propargyl-adducts on DNA, not methyl lesions. Table 3 demon-
strates this for the first time, showing secondary ions related to
propargylated-DNA were found following exposure of U373-V
cells to CBD and T25. Significant differences were not observed
following exposure to CBD alone for 3, 6 or 72 h. Supplementary
Information 3 shows more details of the detection of methylated-
DNA shown in Fig. 4.
Further analysis of the 3D OrbiSIMS data using PCA revealed

that cells exposed to CBD alone exhibited an increase in fatty acid
content. Following exposure for 3 and 6 h, an increase in palmitic,
stearic and octatriacontanoic acids was observed, as well as a
decrease in oleic acid. After 72 h exposure, only an increase in
palmitic acid was observed. The cells exposed to CBD and T25 also
exhibited a change in the fatty acid composition, showing an
increase in palmitic and octatriacontanoic acids, and exposure of
cells to CBD and TMZ resulted in an increase in arachidonic,
cinnamic and palmitic acids. A detailed illustration of the PCA
conducted using the 3D OrbiSIMS data demonstrating the
difference in fatty acid composition of samples is shown in
Supplementary Information 4.
Potential implications of changes in fatty acid composition are

discussed.
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A. Brookes et al.

6

BJC Reports



DISCUSSION
Exploration of the anti-cancer effects of cannabinoids is a growing
area of research. CBD has been shown to exhibit anti-tumour
properties including against breast, colorectal, lung carcinomas
and GBM [5, 12]. The ability of CBD to inhibit GBM cell growth
in vitro is usually studied in combination with either THC or TMZ
[34, 39]. This has led to phase I/II clinical trials in GBM patients
[6–8]. Further clinical trials are underway to study the efficacy of
combinations of radiotherapy, chemotherapy with TMZ and a
mixture of CBD and THC, against GBM [9], as well as daily
administration of CBD with TMZ [10]. As discussed, the anti-cancer
activity of CBD alone against GBM has been studied in cell lines
including U87MG (GI50= 12.75 ± 9.7 µM) [34–38], GL216 (GI50=
10.67 ± 0.58 µM) [33] and U373MG (GI50= 21.6 ± 3.5 µM) [36].
These cell lines do not possess MGMT over-expression or MMR
deficiency that comprise major GBM resistancemechanisms to TMZ,
represented in this work by human GBM U373-M and colorectal
cancer HCT116 cell lines, respectively. CBD’s anti-cancer activity has
been studied against the HCT116 cell line previously for its effects
against colorectal cancer [12]. In this work, HCT116 cells were
utilised to represent the second major resistance mechanism to
TMZ, a deficiency in MMR. To the best of our knowledge, the anti-
cancer properties of 4’-F-CBD have not been studied before. The
potential advantages of treating GBM with 4’-F-CBD, compared to
CBD, are, briefly, that 4’-F-CBD is reported to have increased potency
in in vivo behavioural assays compared to CBD, suggesting
potentially increased binding at the molecular level, or increased
delivery to the brain [16, 18, 19]. The fluorine atom on 4’-F-CBD also
offers imaging and theranostic potential [52, 53].
The activity of all agents was assessed against non-

tumourigenic MRC-5 fibroblasts to indicate putative cancer-
selectivity and therapeutic window. Figure 2 demonstrates that
TMZ showed the greatest, and CBD the least cancer-selectivity
(GI50 values= 724 µM and 7 µM, respectively, following 6-days
exposure). Therefore, although CBD is known to be safe for
humans (≥6000mg/Kg with no adverse side effects [54]), for
cancer treatment, a more cancer-selective drug delivery system
may be considered [55]. Against the U373-V cell line, the TMZ GI50
falls from 147 ± 55 µM after 3-days to 10 ± 2 µM after 6-days
exposure (Fig. 2). This is consistent with TMZ’s understood
mechanism [56] as TMZ must undergo ring opening to MTIC,
before it is able to methylate DNA, most impactfully at O6-guanine
[21, 22]. O6-Methylation leads to a guanine-thymine (rather than
cytosine) mis-pair during DNA replication, triggering MMR and
ultimately leading to cell death via apoptosis or autophagy [23].
This process comprises multiple rounds of futile DNA incision and
thymine re-insertion before DNA-replication fork collapse, thus 6-
days‘ exposure is required to realise the impact of TMZ treatment.

For the 2 cell lines representing common (clinical) resistance
mechanisms (U373-M and HCT 116), TMZ GI50 > 300 µM were as
expected and demonstrated in the literature [22].
Interestingly, for imidazotetrazine analogue T25, CBD and 4’-F-

CBD growth inhibitory effects after 3-days exposure against all 3
cancer cell lines were observed. GI50 values < 50 µM for CBD, 4’-F-
CBD and T25 were consistent across cancer cell lines studied, and
all values were significantly (p < 0.001) lower than that of TMZ
against the two cell lines displaying TMZ resistance. This has been
demonstrated previously within our group for T25 [27], as the
molecule was designed to overcome resistance mechanisms
associated with TMZ treatment, creating larger propargyl DNA
adducts that escape MGMT-mediated removal and tolerance
following MMR-loss. The activity of CBD alone against HCT116 has
also been reported in the literature, supporting the thesis that CBD
activity is not impacted by resistance to TMZ conferred by MMR
deficiency [12]. However, this is the first time that cannabinoids
have been shown to overcome the often-seen inherent- (and
occasionally acquired- [57]) resistance to TMZ conferred by MGMT.
Additionally, 4’-F-CBD demonstrated increased cancer-selectivity
compared to CBD (Fig. 2) and may ultimately provide a safer
treatment option. These are encouraging data, as the poor
prognoses for GBM patients demonstrate the need for new
treatments.
As discussed, synergy has previously been demonstrated

between CBD and TMZ against GBM cell lines U87MG and U251
[35, 40, 58]. However, Deng et al. reported that only certain
concentrations resulted in a synergistic combination, whilst others
resulted in an additive response [35]. The work reported herein
confirms synergy in the U373-V (TMZ-sensitive) cell line, and in the
two cell lines harbouring clinical resistance mechanisms to TMZ
for the first time. The CBD/TMZ combination demonstrated
remarkable synergistic responses with CIs as low as 0.21 and
0.05 in U373-M and HCT116 cell lines, respectively (Table 2).
Against MMR-deficient HCT116 cells, at high TMZ concentrations,
the combination resulted in an additive response. This analysis
indicates that TMZ does not impact growth inhibition, and that
CBD is driving the response. This suggests that CBD is the
predominant cause of growth inhibition, potentially re-sensitising
the cells to TMZ. Mechanisms by which CBD may potentiate
sensitivity to TMZ include TRPV2 channel activation by CBD,
reduction of extracellular vesicles‘- (EV)-mediated drug expulsion
from cells, enhanced DNA-damaging reactive oxygen species‘
(ROS) generation, and down-regulation of RAD51 DNA repair
protein, evidenced in the literature [56, 59, 60] but as yet
unstudied in the work described herein. Some or all of these
mechanisms may result in observed synergy between TMZ
and CBD.

Table 3. 3D OrbiSIMS analysis of U373-V cells exposed to CBD for 3 h, CBD and T25 for 3 h and a non-treated control.

Sample Propargyl-guanine Propargyl-cytosine Propargyl-adenine Propargyl-thymine

Formula C8H6N5O
− C7H6N3O

− C8H6N5
− C7H5N2O2

−

m/z 188.1675 148.1431 172.1685 149.1276

Control 0 1.09 × 10−5

± 2.70 × 10−6
0 7.56 × 10−6

± 2.65 × 10−6

– 0.4 – −0.3

CBD 3 h 0 0 0 0

– – – –

CBD/T25 3 h 4.16 × 10−5

± 0
1.77 × 10−4

± 1.47 × 10−4
3.48 × 10−5

± 0
1.16 × 10−4

± 9.82 × 10−5

−0.1 0.1 0.1 −0.4

Data presented as an average of n= 3 technical repeats. One-way ANOVA was performed, α= 0.05, to compare treated samples to the control, no significant
differences were found.
Peak intensity (secondary ion counts) normalised to the TIC, with deviation below in ppm, of propargylated-DNA.
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T25, able to overcome the two major resistance mechanisms to
TMZ, also demonstrates synergy in combination with CBD,
eliciting enhanced activity in TMZ resistant models (Fig. 2). The
CBD/T25 combination yielded a synergistic response at all
concentrations tested for all cell lines, moreover, CIs were lower
for this combination than for the CBD/TMZ combination (<0.57
compared to <0.74 in U373-M, respectively). The enhanced
synergy in the MGMT positive TMZ-resistant model is likely due
to the increased activity of T25 compared to TMZ. This
combination has not been studied before, mechanisms need to
be resolved, yet the low CIs demonstrate promise for GBM
treatment.
The combined treatment of CBD with T25 was investigated by

3D OrbiSIMS analysis. Propargylated-DNA (expected to occur
following exposure to T25) was found in samples treated with CBD
and T25 (Table 3). In particular, propargyl-guanine and propargyl-
adenine were found to be present in treated samples. This
provides evidence of the activity of T25, and is consistent with
alkylation sites induced by N3-propargyl imidazotetrazine analo-
gue and detected by Thermo aquaticus (TAQ) polymerase stop
assays on runs of guanine residues [48].
Methylated-DNA was also found to be present (at 24 h following

exposure to CBD, and 3 h following exposure to CBD and T25,
Fig. 4); methyl-guanine, methyl-cytosine and methyl-thymine were
all significantly higher than in the non-treated control sample. As
T25 is expected, and shown here, to deposit propargyl groups on
DNA, the methylated-DNA could be a result of CBD activity. Of
particular interest is methyl-cytosine. Methyl-cytosine at the C5-
position of CpG islands is reported to occur after CBD exposure,
however the role of CpG methylation in CBD activity is not yet
clear [14, 15]. Additionally, CpG islands are abundant in promoter
genes, including the MGMT promoter [61]. Methylated MGMT
promoter is an evidenced indicator of the prognosis of GBM
response to therapy [62]. MGMT promoter methylation silences
the gene, MGMT protein is not expressed, and the tumours are
more sensitive to TMZ treatment [63]. The methyl-cytosine
evidenced herein by exposure of GBM cells to CBD could
potentially occur at CpG islands on MGMT promoters. If so, this
could effectively silence MGMT, possibly contributing to the
synergy observed in exposure of the cells to CBD with TMZ.
The presence of methylated-DNA at high OrbiSIMS ion

intensities may represent one mechanism of anti-cancer action
of CBD. DNA damage by methylation can result in mismatched
pairs during replication and ultimately, lead to cell death [64–66].
To the best of our knowledge, this is the first evidence of
methylated-DNA as a potential anti-cancer mechanism of action of
CBD. As discussed, MMR deficiency (as in the HCT116 cell line)
means that mis-matched pairs are tolerated. Therefore, this work
indicates that CBD may re-sensitise MMR-deficient cells to O6-Me
lesions. The synergy between CBD and TMZ or T25 indicates that
CBD also acts via a pathway other than DNA alkylation (the
mechanism of action of imidazotetrazine compounds). The
increase in palmitic, arachidonic and cinnamic acids observed in
cells exposed to CBD is associated with oxidative stress (ROS
generation) and decreased GBM cell viability [57, 66]. This
supports the hypothesis that oxidative stress is enhanced in cells
treated with CBD/imidazotetrazine combinations. Cells treated
with CBD were also found to contain decreased oleic acid
compared to the non-treated control. Oleic acid has been shown
to increase glucose utilisation and stimulate GBM cell growth [65].
However, oleic acid is thought to increase the permeability of the
BBB by interacting with the membranes of brain capillary
endothelial cells, which form the BBB, therefore, a reduction in
oleic acid would impair BBB permeability [67, 68]. Nevertheless,
there are reports that oleic acid decreases P-glycoprotein (P-gp)-
mediated drug efflux [69]. Thus, reduced oleic acid could
potentiate TMZ (a P-gp substrate) levels in the brain. These
findings indicate that the anti-cancer activity of CBD involves a

rich and diverse pharmacology, as is suggested in the literature
[5, 12, 13].
The mechanism of action of 4’-F-CBD was not investigated,

however, as the molecular structures of the cannabinoids are similar
(Fig. 1), it would be reasonable to suggest that the activity of 4’-F-
CBD could be a result of similar pathway(s‘) activation to those of
CBD. Synergy was achieved in all cell lines following exposure to 4’-
F-CBD and TMZ after both 3- and 6-days exposure (Table 2). Only
the highest concentration of TMZ in (TMZ-sensitive) U373-V cells
resulted in an additive response; all other concentrations demon-
strated a synergistic response (Fig. 3). Therefore, the 4’-F-CBD/TMZ
combination produced increased synergy over CBD/TMZ in all cell
lines apart from U373V cells after 3-days treatment. 4’-F-CBD/T25
combinations demonstrated high synergistic responses; CIs are not
significantly different from CBD/T25 combinations.
The work reported herein shows the promise cannabinoids offer

for GBM treatment. Application of 3D OrbiSIMS demonstrates the
potential of this technique to elucidate the mechanism(s) of anti-
cancer activity of CBD. Further work is proposed to fully
investigate the mechanisms proposed in this work. Taq-
polymerase stop assays could be conducted to interrogate the
intensity of alkyl-guanine, following treatment with cannabinoids
in combination with imidazotetrazines TMZ and T25. Analysis of
O6-methylguanine adduct burden in cells would also be useful,
where comparisons of cells exposed to TMZ alone or in
combination with CBD. Additionally, 3D OrbiSIMS has proved
beneficial, the technique is not chemically biased and generates a
range of different ions simultaneously, so is a good starting point
for complex questions which do not have a known direction for
analysis. It is also relatively high throughput for in vitro studies.
Following mechanistic studies, understanding in vivo PK and
biodistribution of 4’-F-CBD will be necessary before investigating
efficacy in in vivo models.
GBM represents an unmet clinical need. Inherent or acquired

resistance to standard of care alkylating agent TMZ chemotherapy
thwarts successful treatment. This work demonstrates for the first
time that CBD and 4‘-F-CBD are able to overcome major resistance
mechanisms to TMZ, MGMT over-expression and MMR-deficiency.
Moreover, the promising in vitro synergy described between
imidazotetrazines (TMZ, T25) and cannabinoids (CBD, 4‘-F-CBD)
indicate this approach could improve treatment options for GBM
patients.
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