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The loss function plays an important role in deep learning models as it determines the 
model convergence behavior and performance. In semantic segmentation, many methods utilize 
pixel-wise (e.g. cross-entropy) and region-wise (e.g. dice) losses while boundary-wise loss is 
underexplored. It is known that one of the key aims of semantic segmentation is to precisely 
delineate objects’ boundaries. Hence, it is essential to design a loss function that measures the 
errors around objects’ boundaries. Fuzzy rough sets are constituted by the fuzzy equivalence 
relation, which is commonly used to measure the difference between two sets. In this paper, 
the lower approximation of fuzzy rough sets is proposed to construct the boundary-wise loss in 
deep learning models for the first time. The experiments with various segmentation models and 
datasets have verified that the proposed fuzzy rough sets loss is superior to other boundary-wise 
losses in terms of segmentation accuracy and time complexity. Compared with the commonly 
used pixel-wise and region-wise losses, the proposed boundary-wise loss performs similarly in 
dice coefficient, pixel-wise accuracy, but has a better performance in Hausdorff distance and 
symmetric surface distance. It indicates that the proposed loss provides a better guidance for 
segmentation models in producing more accurate shapes of the target objects. Code is available 
online at Github: https://github .com /qiaolin1992 /Boundary -Loss.

1. Introduction

With the rapid development of computer technology and the growth of data sources, deep learning is deemed as one of the 
cornerstones of artificial intelligence (AI) and successfully applied to various fields such as automatic speech recognition [1], image 
recognition [2], natural language processing [3], bioinformatics [4], and medical image analysis [5]. In some cases, the performance 
of deep learning is on a par with that of human experts [6]. One of the main components in deep learning methods that determines 
model performance is loss function.

Loss function (also called cost function or error function) is a function that measures the difference between the predicted values 
and the actual values. For deep learning optimization problems, the network parameters are estimated by minimizing the given loss 
function iteratively in a training process. The selection of loss functions is generally specified based on various tasks: classification, 
segmentation, object detection, etc. The loss function plays a considerably important role in the training process of deep learning 
networks as it instigates the convergence process and affects the performance of neural networks.
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Researchers have designed various types of loss functions to address specific problems. In this paper, we primarily focus on 
the task of image segmentation. Cross entropy loss [7] and dice coefficient loss [8] are the commonly used image segmentation 
losses. Cross entropy loss is a type of pixel-wise loss, which is calculated by the negative average of the log of corrected predicted 
probabilities. This loss focuses on the predicted value for each pixel and performs less robust for unbalanced data. Thus many cross 
entropy variation losses are proposed to handle unbalanced data issues, including balanced cross entropy loss [9], focal loss [10]. 
Dice coefficient loss is a region-wise loss that quantifies the intersection regions of the predicted segmentation and the ground truth 
segmentation. This loss performs well on unbalanced datasets but its training error curve is unstable and gives no information for 
the convergence procedure. To take advantages of both dice and cross entropy loss, Taghanaki et al. [11] introduced a hybrid loss 
that combines both the dice loss and cross entropy loss.

All the aforementioned losses are pixel-wise and region-wise losses. In image segmentation tasks, uncertainty and misclassification 
normally happen at the boundaries [12]. Therefore, if a loss function is designed to concentrate on the boundary, the image segmen-

tation performance can be potentially improved. The research conducted by Karimi et al. [13] discussed the boundary difference 
between the predicted segmentation and the ground truth segmentation. In their study, distance transforms and morphological op-

erations were applied to construct the semantic segmentation boundary-wise loss, which calculated the Hausdorff distance between 
the predicted image boundary and the ground truth image boundary. However, as the range of Karimi’s boundary-wise loss [13] is 
from 0 to infinity, the convergence efficiency is potentially low and the gradient descent process is unstable leading to unsatisfying 
segmentation performance. Moreover, Karimi et al. [13] only studied the performance of a combined loss based on region-wise and 
boundary-wise losses without in-depth investigation of the boundary-wise loss itself.

On the other hand, in 1990, Dubois et al. [14] introduced a novel theory named fuzzy rough sets which combined fuzzy sets 
with rough sets. The key idea of the fuzzy rough sets is to supersede the equivalence relation of rough sets by a fuzzy equivalence 
relation [15]. Thus, the fuzzy rough sets have the ability to manage data with fuzziness and vagueness based on the similarity 
of different attributes. As the generalizations of classical rough sets, fuzzy rough sets are commonly used in image segmentation 
[16], dimensionality reduction [17], feature selection [18], etc. Although fuzzy rough sets are applied widely in a multitude of AI 
tasks, no research proposed the use of fuzzy rough sets as the loss function in machine learning models. In this paper, as the lower 
approximation of fuzzy rough sets has the ability to evaluate the difference between two sets, we propose a novel boundary-wise 
loss based on fuzzy rough sets to pay more attention to the boundary with more satisfying segmentation accuracy and lower time 
complexity in comparison to other methods mentioned above.

The main contributions are summarized as follows.

• This is the first time that fuzzy rough sets are incorporated in deep learning models as a loss function for image segmentation.

• A Gaussian kernel is applied to normalize the boundary of the predicted segmentation and the ground truth segmentation, which 
plays a significant role in stabilizing the training process and saving computational time.

• Based on two public datasets with various of object shape and size, our proposed boundary loss has shown to outperform existing 
boundary-wise losses in terms of segmentation accuracy and time complexity based on three widely used deep learning image 
segmentation models. Moreover, the proposed boundary-wise loss was found to produce distinct and smoother borders compared 
to the pixel-wise loss (cross-entropy loss) and the region-wise loss (dice loss).

The structure of the remainder of this paper is as follows. Background information about semantic segmentation loss functions 
and fuzzy rough sets are introduced in Section 2. The mathematical derivation of fuzzy rough sets loss in semantic segmentation 
models is given in Section 3. The evaluation metrics, implementation details and experimental results are presented in Section 4. 
Finally, the discussion and conclusions are in Section 5 and Section 6 respectively.

2. Background

In this section, the background information about semantic segmentation loss functions and mathematical definitions of fuzzy 
rough sets are given.

2.1. Semantic segmentation loss functions

2.1.1. Semantic segmentation

Image segmentation is one of the most important tasks in image comprehension and computer vision. It aims to divide a given 
image into several disjoint areas based on distinct features such as shape, image intensity, and texture so that all the features share 
a high level of similarity in the same area. Classical image segmentation technologies are primarily unsupervised learning methods: 
edge detection [19], threshold [20], region growing [21], and clustering [22]. These methods are not robust and have low-quality 
segmentation results when the boundary of the original image is complicated and overlapped. To mitigate this problem, end-to-

end convolutional neural networks (CNNs)-based semantic segmentation techniques have gradually become the mainstream image 
segmentation algorithms and achieved outstanding performance in numerous computer vision tasks.

Semantic segmentation can be treated as pixel-level classification. Every individual pixel in the input image is assigned to one 
of multiple classes by a trained segmentation model using a set of training images. The general structure of semantic segmentation 
models is constituted by convolutional, pooling, and de-convolutional layers. Convolutional and pooling layers are applied to extract 
2

the spatial and channel information of the input image, while de-convolutional layers are leveraged to resize the feature maps so 
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that the sizes of the output image and the ground truth image are consistent. The most widely used semantic models include Fully 
Convolutional Networks (FCN) [23], UNet [24], SegNet [25], Deconvnet [26] and DeepLab series [27–30].

2.1.2. Loss functions

The above mentioned CNN models aim to estimate a set of intrinsic model parameters by minimizing a loss function that measures 
the difference between the currently predicted segmentation and the ground truth segmentation. This minimization process is per-

formed iteratively by error back propagation using gradient descent algorithm. As the loss function instigates the learning process of 
the semantic segmentation models, the selection of loss function is of great importance. The loss functions for semantic segmentation 
are divided into three categories: pixel-wise loss, region-wise loss and boundary-wise loss [31]. The pixel-wise losses include Cross 
Entropy Loss [7], Weighted Cross Entropy Loss [32], Balanced Cross Entropy Loss [9], and Focal Loss [10]. Cross Entropy Loss is the 
widely used pixel-wise loss. The others are the cross entropy variation losses, which is proposed to deal with unbalanced data issues. 
The Cross Entropy Loss (CELoss) is defined as:

𝐿𝐶𝐸 = 1
𝑁

𝑁∑
𝑖=1

𝐾∑
𝑡=1

−𝑦𝑖𝑡 log
(
�̂�𝑖𝑡

)
, (1)

where 𝑦 is the label pixel value and �̂� is the predicted pixel value, 𝐾 is the number of classes, 𝑁 is the number of pixels.

The region-wise losses contain Dice Loss [8], Sensitivity-Specificity Loss [33], Tversky Loss [34], Focal Tversky Loss [35], Log-

Cosh Dice Loss [31]. Among them, Dice Loss is the most representative and commonly used region-wise loss. DiceLoss (DLoss) is 
represented as:

𝐿𝐷 = 1
𝐾

𝐾∑
𝑡=1

(
1 −

2
∑𝑁

𝑖=1 𝑦𝑖𝑡�̂�𝑖𝑡∑𝑁
𝑖=1 𝑦

2
𝑖𝑡
+
∑𝑁

𝑖=1 �̂�
2
𝑖𝑡

)
, (2)

where 𝑦, �̂�, 𝐾 , 𝑁 have the same meaning as 𝐿𝐶𝐸 .

The research about boundary-wise loss is limited. There are two popular boundary-wise losses namely Hausdorff loss (HDLoss) 
[13] and Dual HausdorffLoss (DHDLoss) [13] proposed to focus on the segmentation boundary. HDLoss is yielded from Hausdorff 
distance 𝑑 (𝑋,𝑌 ) = max𝑥∈𝑋 min𝑦∈𝑌 ‖𝑥 −𝑦‖2, where 𝑥 and 𝑦 are the elements of 𝑋 and 𝑌 respectively. Since the formula of Hausdorff 
distance is non-convex, it cannot be directly applied to calculate the image segmentation loss. The variation of Hausdorff distance 
has the ability to make the HDLoss tractable, which is represented as:

𝐿𝐻𝐷 = 1|𝛺| ∑
𝛺

(
(𝑝− 𝑞)2 ⊗

(
𝛼
𝑝

))
, (3)

where 𝑝 and 𝑞 are the predicted binary image and the ground truth image respectively, 𝑝 refers to the distance map of 𝑝, 𝛼 is equal 
to 2, ⊗ represents the pixel-wise multiplication operator, 𝛺 is the whole area of the given image. Since 𝑝 and 𝑞 are not equal, a 
dual direction Hausdorff loss (DHDLoss) is proposed:

𝐿𝐷𝐻𝐷 = 1|𝛺| ∑
𝛺

(
(𝑝− 𝑞)2 ⊗

(
𝛼
𝑝 +𝛼

𝑞

))
, (4)

From the equation of HDLoss and DHDLoss, the distance value in distance map has a large range which may cause instability 
in the training process of semantic segmentation models and lead the segmentation model to fail to converge to the optimal value. 
In this paper, to manage the limitations of existing boundary-wise losses and capture the more accurate segmentation boundary, a 
novel boundary-wise loss function based on fuzzy rough sets is proposed.

2.2. Fuzzy rough sets

Rough sets [36] use the lower and the upper approximation of the original set to approximate the original set, which are 
particularly useful in dealing with ambiguity, vagueness and general uncertainty problems. However, the classical rough sets are 
only effective when the data is symbolic-valued [37] and cannot manage the relationship between two sets. To address the above 
restrictions and broaden the application range of rough sets, Dubois et al. [14] proposed a novel theory named fuzzy rough sets 
which combined fuzzy sets and rough sets. The key idea of the fuzzy rough sets is to supersede the equivalence relation of rough sets 
by a fuzzy equivalence relation [38,39]. The introduction of a fuzzy equivalence relationship in fuzzy rough sets makes it possible to 
evaluate the relation between two sets.

Definition 1. Given a universe 𝑈 , 𝑅 is a fuzzy equivalence relation on 𝑈 . For ∀𝑥, 𝑦 ∈𝑈 , the fuzzy rough sets are defined as [14]

⎧⎪⎨⎪⎩
𝑅max𝑋 (𝑥) = 𝑖𝑛𝑓

𝑦∈𝑈
max (1 −𝑅 (𝑥, 𝑦) ,𝑋 (𝑦))

𝑅min𝑋 (𝑥) = 𝑠𝑢𝑝
𝑦∈𝑈

min (𝑅 (𝑥, 𝑦) ,𝑋 (𝑦))
(5)
3

where 𝑋 is a subset of 𝑈 .
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Based on [40][41], if the 𝑅 is a fuzzy 𝑇 -equivalence relation on 𝑈 , the more general fuzzy operator t-norm, s-norm defined above 
are applied to substitute ‘max’ and ‘min’, that is⎧⎪⎨⎪⎩

𝑅𝑠𝑋 (𝑥) = 𝑖𝑛𝑓
𝑦∈𝑈

𝑠 (𝑁 (𝑅 (𝑥, 𝑦)) ,𝑋 (𝑦))

𝑅𝑡𝑋 (𝑥) = 𝑠𝑢𝑝
𝑦∈𝑈

𝑡 (𝑅 (𝑥, 𝑦) ,𝑋 (𝑦))
(6)

where 𝑋 is the subset of 𝑈 and 𝑁 is the fuzzy complement. 𝑅max𝑋 (𝑥) and 𝑅𝑠𝑋 (𝑥) are the lower approximation and represent 

the degrees the x certainly belongs to the set X. 𝑅min𝑋 (𝑥) and 𝑅𝑡𝑋 (𝑥) are the upper approximation and denote the degrees the x 
possibly belongs to set X.

3. A new boundary-wise loss for semantic segmentation

In this section, a new boundary-wise loss for semantic segmentation is proposed. Based on the theory of fuzzy rough sets, the 
lower approximation 𝑅𝑠𝐷𝑖 (𝑥) of fuzzy rough sets means the degrees the x certainly belongs to the set 𝐷𝑖. Therefore, the sum (∑

𝑥∈𝑋 𝑅𝑠𝐷𝑖 (𝑥)
)

is applied to evaluate the similarity between two sets 𝑋 and 𝐷𝑖. The key point of the boundary-wise loss is to 
calculate the difference between the set of predicted image boundary pixels and the set of ground truth image boundary pixels. It 
is a natural idea to use the lower approximation of fuzzy rough sets to calculate the boundary-wise loss. The detailed mathematical 
derivation is as follows.

3.1. The lower approximation of fuzzy rough sets

Given a finite and nonempty set of samples 𝑈 , and decision 𝔻 which partitions the samples into subsets 
{
𝐷1,𝐷2,⋯ ,𝐷𝑀

}
. For 

∀𝑥 ∈𝑈 , if 𝑥 ∉𝐷𝑖 (𝑥), 𝐷𝑖 = 0, otherwise 𝐷𝑖 (𝑥) = 1. Based on the definition of fuzzy rough sets, the membership degree of x certainty 
belonging to the given class 𝐷𝑖 is calculated by the lower approximation of fuzzy rough sets 𝑅𝑠𝐷𝑖 (𝑥) = 𝑖𝑛𝑓

𝑦∈𝑈
𝑠 
(
𝑁 (𝑅 (𝑥, 𝑦)) ,𝐷𝑖 (𝑦)

)
. 

Herein, inspired by [42], the s-norm 𝑠cos (𝑎, 𝑏) = min
(
𝑎+ 𝑏− 𝑎𝑏+

√
2𝑎− 𝑎2

√
2𝑏− 𝑏2,1

)
is chosen to compute the lower approxima-

tion:

𝑅𝑠𝐷𝑖 (𝑥) = 𝑖𝑛𝑓
𝑦∈𝑈

𝑠cos
(
1 −𝑅 (𝑥, 𝑦) ,𝐷𝑖 (𝑦)

)
= 𝑖𝑛𝑓

𝑦∈𝑈
min(1 −𝑅 (𝑥, 𝑦) +𝐷𝑖(𝑦) − (1 −𝑅 (𝑥, 𝑦)

×𝐷𝑖 (𝑦) +
√
1 −𝑅2 (𝑥, 𝑦)

√
2𝐷𝑖 (𝑦) −𝐷2

𝑖 (𝑦),1) (7)

= 𝑖𝑛𝑓
𝑦∈𝑈

{
1, 𝑦 ∈𝐷𝑖

1 −𝑅 (𝑥, 𝑦) , 𝑦 ∉𝐷𝑖

= 𝑖𝑛𝑓
𝑦∉𝐷𝑖

(1 −𝑅 (𝑥, 𝑦))

where 𝑅 (𝑥, 𝑦) is the fuzzy equivalence relation between samples and is computed by some kernel functions [43].

𝑅𝑠𝐷𝑖 (𝑥) = 𝑖𝑛𝑓
𝑦∉𝐷𝑖

(1 −𝑅 (𝑥, 𝑦)) means that the degree of x certainty belonging to 𝐷𝑖 relies on the closest sample of another category. 

Consider a special situation in which there are only two classes 𝐷1 and 𝐷2. The formula 𝑅𝑠𝐷1 (𝑥) = 𝑖𝑛𝑓
𝑦∈𝐷2

(1 −𝑅 (𝑥, 𝑦)) denotes the 

likelihood of sample x belonging to class 𝐷1 increases with the distance between x and class 𝐷2. That is if x is far apart from class 
𝐷2, then it is more likely to belong to class 𝐷1.

3.2. Fuzzy rough sets loss

For a semantic segmentation model, the training process is that given the input image array 𝑋 ∈ℜℎ×𝑤×𝑐 (ℎ, 𝑤 and 𝑐 refer to the 
height, weight and channel of 𝑋), the output predicted image is obtained by

𝑌 = 𝑓 (𝑊 ⊗𝑋) , (8)

where 𝑌 ∈ ℜℎ′×𝑤′×𝒫 (ℎ′ and 𝑤′ are the height and weight of 𝑌 , 𝒫 is the number of pixel categories), 𝑊 represents the model 
parameters, and 𝑓 means the softmax function. Then the loss value is back-propagated to update the parameters. The abstract loss 
function is written as 𝑙𝑜𝑠𝑠 = 𝐹

(
𝑌 ,𝑌

)
where 𝑌 and 𝑌 are the predicted image and the corresponding ground truth image, and 𝐹

means the selected loss function. The loss value increases with the distance between 𝑌 and 𝑌 .

Fig. 1 shows the predicted image that is the output of a given semantic segmentation model and the corresponding ground truth 
image. For the ground truth image, the boundary pixel sets belong to the class 𝐷1, while the rest parts of pixels are assigned to class { }
4

𝐷2. In the predicted image, the boundary pixel sets are 𝑥𝑖 ∶ 𝑥𝑖 ∈𝑋 . For the binary categories semantic segmentation, the ground 
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Fig. 1. The left part refers to the predicted image and the right part is the ground truth image. Black circle is the predicted image boundary pixel sets; orange circle 
is the ground truth image boundary pixel sets and belongs to the class 𝐷1; the rest parts of the ground truth image pixels belong to the class 𝐷2; gray part is the area 
of segmentation object.

truth image only has two categories 𝐷1 and 𝐷2 (𝐷1 ∩𝐷1 =⊘, 𝐷1 ∪𝐷1 = ℧, where ℧ refers to the whole ground truth image) so that 
the similarity between 𝑋 and 𝐷2 can be applied to assess the distance of 𝑋 and 𝐷1. The greater the similarity value of 𝑋 and 𝐷2 is, 
the farther 𝑋 is from 𝐷1, which means the loss difference between 𝑋 and 𝐷1 is greater. Therefore, the boundary loss is represented 
as

𝑙𝑜𝑠𝑠𝑃 =ℒ
(
𝑌𝑋,𝑌𝐷2

)
. (9)

where ℒ is the similarity of 𝑋 and 𝐷2.

From the section 3.1, the lower approximation 𝑅𝑠𝐷𝑖 (𝑥) = 𝑖𝑛𝑓
𝑦∉𝐷𝑖

(1 −𝑅 (𝑥, 𝑦)) of fuzzy rough sets means the degrees the x certainly 

belongs to the set 𝐷𝑖. Therefore, given the 
{
𝑥𝑖 ∶ 𝑥𝑖 ∈𝑋

}
and 𝐷𝑖 =𝐷2, the similarity of X and 𝐷2 is assessed by the average of the 

lower approximations for all x: 1
𝑚

(∑
𝑥∈𝑋 𝑅𝑠𝐷2 (𝑥)

)
where 𝑚 is the number of 𝑋. The boundary loss is evaluated by

𝑙𝑜𝑠𝑠𝑃 = 1
𝑚

(
𝑚∑
𝑖=1

𝑅𝑠𝐷2
(
𝑥𝑖
))

= 1
𝑚

𝑚∑
𝑖=1

⎛⎜⎜⎜⎜⎜⎝
𝑖𝑛𝑓

𝑗 ∈ {1,2, ..., 𝑘}
𝑦𝑗 ∉𝐷2

(
1 −𝑅

(
𝑥𝑖, 𝑦𝑗

))⎞⎟⎟⎟⎟⎟⎠
(10)

where 𝑥𝑖 ∈𝑋, 𝑦𝑗 ∉𝐷2, 𝑅 is the fuzzy equivalence relation of 𝑥𝑖, 𝑦𝑗 . Furthermore, based on Fig. 1, the ground truth image only has 
two categories 𝐷1, 𝐷2 and 𝐷1 ∩𝐷2 =⊘, so 𝑦 ∉𝐷2 ⇔ 𝑦 ∈𝐷1. It means that the boundary loss can be calculated by the boundary 
sets of the predicted image and the ground truth image. The widely used Gaussian kernel 𝑅 (𝑥, 𝑦) = exp

(
− ‖𝑥−𝑦‖2

𝜎

)
[37] is applied to 

calculate the fuzzy equivalence relation. The final boundary-wise loss formula is obtained by

𝑙𝑜𝑠𝑠𝑃 = 1
𝑚

𝑚∑
𝑖=1

⎛⎜⎜⎜⎜⎜⎝
𝑖𝑛𝑓

𝑗 ∈ {1,2, ..., 𝑘}
𝑦𝑗 ∈𝐷1

(
1 −𝑅

(
𝑥𝑖, 𝑦𝑗

))⎞⎟⎟⎟⎟⎟⎠
= 1
𝑚

𝑚∑
𝑖=1

⎛⎜⎜⎜⎜⎜⎝
𝑖𝑛𝑓

𝑗 ∈ {1,2, ..., 𝑘}
𝑦𝑖 ∈𝐷1

(
1 − exp

(
−
‖𝑥𝑖 − 𝑦𝑗‖2

𝜎

))⎞⎟⎟⎟⎟⎟⎠
(11)

and named as Fuzzy Rough Sets Loss (FRSLoss).

To make the proposed loss more robust and satisfy the symmetric condition, the predicted image is separated into two categories 
and the boundary pixels sets of the ground truth image are the samples to be classified. Then the average of the lower approximation 
for all boundary pixels of the ground truth is adopted to calculate the boundary-wise loss:

𝑙𝑜𝑠𝑠 = 1
(

𝑘∑
𝑅 𝐷

(
𝑦
))
5

𝐺 𝑘
𝑗=1

𝑠 2 𝑗
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Fig. 2. Euclidean Distance Transform for a simple binary image: after applying the distance transform operator, the distance from each pixel to the nearest boundary 
pixel is calculated.

= 1
𝑘

𝑘∑
𝑗=1

⎛⎜⎜⎜⎜⎜⎝
𝑖𝑛𝑓

𝑖 ∈ {1,2, ...,𝑚}
𝑥𝑖 ∈𝐷1

(
1 −𝑅

(
𝑦𝑗 , 𝑥𝑖

))⎞⎟⎟⎟⎟⎟⎠
(12)

It is noted that 𝐿𝑜𝑠𝑠𝑃 ≠𝐿𝑜𝑠𝑠𝐺 . Therefore, the Dual Fuzzy Sets Loss (DFRSLoss) is introduced as 𝐿𝑜𝑠𝑠𝐷 =
(
𝐿𝑜𝑠𝑠𝑃 +𝐿𝑜𝑠𝑠𝐺

)
.

The aforementioned loss is only suitable for binary classification: one category is the object pixels and the other is the background 
pixels. Nevertheless, numerous practical segmentation tasks are required to address multi-class issues. Therefore, to expand the 
application scope of our proposed loss, the binary formula is extended to calculate the multi-class segmentation loss. Given the 
number of the categories is  , the multi-class segmentation can be divided into  binary-class segmentation tasks. Thus, the multi-

class FRSLoss is:

𝐿𝑜𝑠𝑠𝑀 = 1


∑
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2
(
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𝜚
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𝑖𝑛𝑓
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1

(
1 −𝑅
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𝜚
𝑖
, 𝑦

𝜚
𝑗

))⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
(13)

3.3. Distance transform

Based on equation (11), the FRSloss are one non-convex function. In order to make the loss applicable in the segmentation model, 
the distance transform algorithm is utilized to calculate the FRSLoss in practical applications.

Distance transform is a type of image operator only applied to the binary image, which specifies the distance from each pixel to 
the nearest boundary pixel. Given a binary image 𝐼 , the distance transform is defined as

 (𝐼) =
{
 (𝑝) = min

𝑞∈𝔅
(𝑑 (𝑝, 𝑞)) |𝑝 ∈ 𝐼

}
, (14)

where 𝔅 refers to the boundary pixel sets, 𝑑 means one given distance metric that is utilized to determine the distance between 

the two pixels 𝑝 and 𝑞. Herein, Euclidean Distance is chosen to evaluate the distance: 𝑑 (𝑝, 𝑞) =
√(

𝑥𝑝 − 𝑥𝑞
)2 + (

𝑦𝑝 − 𝑦𝑞
)2

, where (
𝑥𝑝, 𝑦𝑝

)
, 
(
𝑥𝑞, 𝑦𝑞

)
represent the coordinate values of pixel 𝑝 and 𝑞. Fig. 2 shows the Euclidean Distance Transform for a simple binary 

image.

Due to the practicability and effectiveness of Distance Transform in computer vision [44] [45] [46] [47], many researchers 
devote themselves to find the optimal algorithm to calculate the distance map. In this paper, a linear-time algorithm based on 
min-convolutions and squared Euclidean distance is adopted to calculate the Distance Transform [48]. This algorithm is less time-

consuming (O(N)) and suitable for the application in arbitrary dimension images. The primary computation procedure is as below:

• define squared Euclidean distance transform formula of p as 𝑓 (𝑝) = min
(
(𝑝− 𝑞)2 + 𝑓 (𝑞)

)
, where 𝑞 is the argument of the 

parabola function, 𝑓 is a sampled function [48]

• iterate through all the candidate pixels and obtain the distance transform based on the intersection point value 𝑠 between the 
parabolas 𝑠 =

(
𝑓 (𝑟)+𝑟2

)
−
(
𝑓 (𝑞)+𝑞2

)
2𝑟−2𝑞 and lower envelope of each parabola, where 𝑟 and 𝑞 represent different parabolas.

3.4. Computational details of FRSLoss

Based on the FRSLoss formula (11) and Euclidean Distance Transform (Section 3.3), the computational procedure of the proposed 
6

FRSLoss is described in Algorithm 1.
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Algorithm 1 Fuzzy Rough Sets Loss.

Input: semantic segmentation model 𝑀 , raw input image 𝐼 , corresponding ground truth image 𝑌
Output: FRSLoss

1: input image 𝐼 into the model 𝑀 and generate the predicted image 𝑃

2: obtain the predicted binary image 𝑌 using the binaryzation operator 𝑌 =

{
1, 𝑝 ≥ 0.5
0, 𝑝 < 0.5

, where 𝑝 is the pixel value of 𝑃

3: obtain the boundary pixel set 𝔅 of 𝑌
4: calculate the difference map 𝐹 = |𝑌 − 𝑌 |
5: use Euclidean Distance Transform equation (14) to get the distance map  (𝑌 )
6: calculate the minimum distance between predicted image boundary and ground truth image boundary 𝛬 = 𝐹 ⊗, where ⊗ means pixel-wise multiplication

7: apply Gaussian kernel 𝑘𝐺 = exp
(
− |𝛬|2

𝜎

)
8: 𝐹𝑅𝑆𝐿𝑜𝑠𝑠 =𝐴𝑣𝑒𝑟𝑎𝑔𝑒(1 −𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝛬)).
9: return FRSLoss

From the Algorithm 1, to obtain the minimum distance between predicted image boundary and ground truth image boundary, 
Euclidean Distance Transform algorithm has played the pivotal role. As each value in the product map 𝛬 refers to the minimum 
distance from the boundary pixels in 𝑌 to the boundary pixels in 𝑌 , the product map 𝛬 can be treated as the equivalence results 
of the 𝑖𝑛𝑓 operators. In this way, the non-convex issue of the FRSLoss is handled successfully. Next section, several experiments are 
implemented to evaluate the effectiveness of FRSLoss.

4. Evaluation

In this section, two public datasets with various object shape and size and three widely-used semantic segmentation models 
including UNet, FCN and SegNet are utilized to assess the performance of the proposed boundary-wise loss. Evaluation metrics, 
implementation details and experimental results are described in the following subsections.

4.1. Datasets

In the next experiments, nuclei and kidney cell datasets were adopted. Both of the datasets have multiple segments in each 
image. However, the nuclei dataset has more complicated boundaries than the cell datasets (seen in Fig. 4). The primary merit of 
our proposed boundary-loss is that it pays more attention to the boundary compared with other types of losses. Therefore, to verify 
the effectiveness and applicability of the proposed new boundary-based loss, it is reasonable and meaningful to choose datasets with 
diverse boundaries.

• Nuclei dataset comes from the 2018 Data Science Bowl, the goal of which is to segment nuclei boundary from given divergent 
images (https://www .kaggle .com /c /data -science -bowl -2018 /data). It includes 670 raw images and the corresponding ground 
truth images are also available. As the nuclei dataset has multiple segments in each image, its boundaries are relatively compli-

cated and diverse.

• The kidney renal clear cell dataset [49] contains 462 raw images with corresponding ground truth images annotated by experts. 
The pixel size of each image is 400 × 400. For sake of avoiding the overfitting issue, data augmentation including flipping 
and rotation was utilized to increase the quantity of this dataset. Compared with the nuclei dataset, this cell dataset has less 
complicated boundaries.

4.2. Metrics

To evaluate the segmentation performance of our proposed boundary-wise loss (FRSLoss and DFRSLoss) and compare it against 
other pixel-wise loss (CELoss), region-wise loss (DLoss), and boundary-wise losses (HDLoss and DHDLoss), pixel-wise metric (pixel 
accuracy (PA)), region-wise metric (Dice coefficient (DC)), and boundary-wise metrics (95th-percentile of Hausdorff distance (HD) 
and average symmetric surface distance (ASD)) are used and expressed as below.

𝐷𝐶 = 2 |𝑃 ∩𝑅||𝑃 |+ |𝑅| (15)

where 𝑃 and 𝑅 present the foreground areas of the ground truth image and the predicted image respectively.

𝑃𝐴 = 𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(16)

where TN, FN, FP and TP refer to the true negative, false negative, false positive and true positive rates respectively. Note that DC 
belongs to the region-wise metric and PA is the pixel-wise metric [23].
7

𝐻𝐷 (𝑋,𝑌 ) = max
𝑥∈𝑋

min
𝑦∈𝑌

‖𝑥− 𝑦‖2 (17)

https://www.kaggle.com/c/data-science-bowl-2018/data
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Fig. 3. Segmentation performance with different 𝜎, when 𝜎 = 1, the semantic segmentation model achieves the best performance.

where 𝑋 and 𝑌 are the boundaries of the predicted image and ground truth image, respectively. The standard HD (equation (17)) is 
sensitive to outliers and not robust for the performance measurement since it exclusively takes the maximum value into consideration. 
To avoid the effects of outliers, 95th-percentile HD is utilized to measure segmentation performance.

𝐴𝑆𝐷 = 1|||𝑆 (
𝑌
)|||+ |𝑆 (𝑌 )| ( ∑

𝛼∈𝑆(𝑌 )
min

𝛽∈𝑆
(
𝑌
)‖𝛼 − 𝛽‖

+
∑

𝛽∈𝑆
(
𝑌
) min
𝛼∈𝑆(𝑌 )

‖𝛽 − 𝛼‖) (18)

where 𝑆(𝑌 ) refers to the boundary pixels set of the ground truth image and 𝑆(𝑌 ) is the boundary pixels set of the predicted image, 
𝛼 and 𝛽 are the elements of boundary sets 𝑆(𝑌 ) and 𝑆(𝑌 ) respectively. ASD is a symmetric measure of the average distance between 
two segmented boundaries.

4.3. Implementation details

In this paper, without loss of generality, three commonly used semantic segmentation models, FCN [23], UNet [24] and Seg-

Net [25], were applied as the backbone and evaluated on two public datasets. FCN is the most classical semantic segmentation model 
and firstly proposed the encoder-decoder framework for semantic segmentation. In the encoding stage, the semantic segmentation 
model constituted by convolutional layers, maxpooling layers and relu activation function is applied to capture the deep features. 
In the decoding stage, deconvolutional operators are adopted to resize the feature maps in order to make the output image and the 
ground truth image have the same size. In the FCN model, the size of convolutional filter is 3 × 3 with the corresponding stride is 
1, while the size of deconvolutional filter is 3 × 3 with the corresponding stride is 2. UNet and SegNet models are the improvement 
of FCN. They share the same encoder-decoder framework. The difference is that UNet uses skip connection to transmit the features 
extracted from the encoding stage to the decoding process. Whereas, the SegNet introduces an index function to record the maximum 
value in each sliding window of pooling layers and during the decoding stage uses the index function to recover the feature maps 
by up-maxpooling operators instead of the deconvolutional operator. In the Unet mode, the size of convolutional filter is 3 × 3 with 
the corresponding stride is 1, while the size of deconvolutional filter is 2 × 2 with the corresponding stride is 2. In the SegNet mode, 
the size of convolutional filter is 3 × 3 with the corresponding stride is 1, while the size of up-maxpooling filter is 2 × 2 with the 
corresponding stride is 2.

Numerous semantic segmentation losses have achieved exceptional performance in various sorts of datasets [7,8]. To verify the 
effectiveness of our proposed loss, comparison experiments were conducted. Herein, we choose pixel-wise loss (CELoss), region-wise 
loss (DLoss), and boundary-wise loss (HDLoss and DHDLoss) for comparison. CELoss, DLoss, HDLoss and DHDLoss are calculated by 
the equation (1)—(4). Each dataset was divided into five groups for five-fold cross-validation. In each fold, four groups were used 
for training (80%) and validation (20%), and the remaining group was used for testing.

The detailed algorithm procedure of our proposed FRSLoss is given in Section 3.4. Moreover, based on equation (11), the Gaussian 
kernel in the FRSLoss, which is applied to normalize the distance between the predicted image and the ground truth image, has a 
hyperparameter 𝜎. From equation (11), the value of 𝜎 controls the shape of the Gaussian that helps to map the distance between the 
predicted image and the ground truth image to a proper loss value range. The higher the precision in delineating the relationship 
between loss and distance, the more effectively the segmentation model will be trained. It is necessary to determine an optimal value 
for 𝜎. Thus, we conducted related experiments with the different values of 𝜎 = {0.5, 1, 2, 3, 5, 10} to find the optimal value that yields 
the best performance on a validation set. Fig. 3 shows variation curves of the performance evaluation indices with various values of 
𝜎. The experimental results show that when 𝜎 was equal to 1, the semantic segmentation model performed best. Therefore, in all 
8

following experiments, the value of 𝜎 was set to 1, which achieved the best performance.
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Table 1

Experimental results for boundary-wise losses, pixel-wise loss and region-wise loss in Unet, FCN and 
SegNet on the nuclei dataset. Mean ± standard deviation values are reported for all the evaluation 
measures. ∗ represents FRLoss and CELoss are significantly different with 𝑝 < 0.05; ♯ represents 
FRLoss and DLoss are significantly different with 𝑝 < 0.05.

Model Loss DC (%) ↑ PA (%) ↑ ASD (𝑚𝑚) ↓
95th-percentile

of HD (𝑚𝑚) ↓

UNet

FRSLoss 91.02 ± 0.04 𝟗𝟕.𝟔𝟒± 𝟎.𝟎𝟑 𝟎.𝟖𝟐± 𝟎.𝟎𝟐 ∗ 𝟒.𝟕𝟒± 𝟎.𝟐𝟎 ∗ ♯
HDLoss 74.75 ± 4.05 94.90 ± 0.41 4.43 ± 0.94 35.78 ± 5.70
DFRSLoss 𝟗𝟏.𝟎𝟕± 𝟎.𝟎𝟒 97.60 ± 0.02 0.83 ± 0.02 5.09 ± 0.31
DHDLoss 75.39 ± 2.17 94.49 ± 0.34 2.88 ± 0.22 17.84 ± 1.62
CELoss 90.97 ± 0.07 97.58 ± 0.01 0.92 ± 0.01 7.83 ± 0.13
DLoss 90.73 ± 0.13 97.51 ± 0.08 0.83 ± 0.04 5.92 ± 1.01

FCN

FRSLoss 90.39 ± 0.11 97.58 ± 0.04 𝟎.𝟖𝟏± 𝟎.𝟎𝟏 ♯ 𝟒.𝟏𝟎± 𝟎.𝟎𝟑 ∗ ♯
HDLoss 82.77 ± 0.60 96.26 ± 0.17 1.81 ± 0.38 8.95 ± 1.73
DFRSLoss 90.57 ± 0.08 97.62 ± 0.06 0.84 ± 0.01 4.15 ± 0.12
DHDLoss 83.41 ± 0.45 96.37 ± 0.05 1.35 ± 0.05 5.26 ± 0.28
CELoss 90.49 ± 0.07 97.55 ± 0.03 0.84 ± 0.01 4.97 ± 0.08
DLoss 𝟗𝟎.𝟕𝟒± 𝟎.𝟏𝟎 𝟗𝟕.𝟔𝟑± 𝟎.𝟎𝟐 0.86 ± 0.02 5.62 ± 1.35

SegNet

FRSLoss 89.56 ± 0.53 𝟗𝟕.𝟐𝟐± 𝟎.𝟏𝟐 𝟎.𝟗𝟖± 𝟎.𝟎𝟔 ∗ ♯ 6.23 ± 1.28 ∗ ♯
HDLoss 77.66 ± 2.76 95.11 ± 0.72 3.07 ± 0.59 22.15 ± 2.94
DFRSLoss 𝟖𝟗.𝟗𝟖± 𝟎.𝟏𝟓 97.19 ± 0.13 0.98 ± 0.12 𝟓.𝟖𝟏± 𝟐.𝟏𝟖
DHDLoss 81.93 ± 1.29 95.75 ± 0.31 2.16 ± 0.50 11.18 ± 2.17
CELoss 89.46 ± 0.26 97.17 ± 0.04 1.14 ± 0.20 8.89 ± 1.74
DLoss 88.97 ± 0.47 96.98 ± 0.16 1.11 ± 0.08 7.86 ± 0.51

All the experiments were implemented based on Pytorch. Adam optimization algorithm was applied to update the weights with 
an initial learning rate of 0.0001. The training time was about 1.5 hours for one semantic segmentation model on a workstation with 
i7-3820 CPU and NVIDIA GeForce GTX1080Ti.

4.4. Experimental results

4.4.1. Nuclei

Table 1 depicts the experimental results for boundary-wise losses in different semantic segmentation models. DC is generally 
used to assess the segmentation performance and belongs to the region-wise metric, pixel accuracy (PA) is one type of pixel-wise 
evaluation method, ASD and 95th-percentile of HD are adopted to evaluate the boundary distance of the predicted image and the 
ground truth image. It should be noted that ASD and 95th-percentile of HD have the inverse trend compared to DC and PA: when 
ASD and 95th-percentile of HD have lower values, segmentation performance is better; while when DC and PA have lower values, 
segmentation performance is worse.

FRSLoss, DFRSLoss are our proposed boundary-wise losses. HDLoss and DHDLoss are the other boundary-wise losses proposed in 
[13]. To make a fair comparison, FRSLoss and HDLoss only take the distance transform of the ground truth image into account, while 
DFRSLoss and DHDLoss consider both directions using the distance maps of the predicted image and the ground truth image. It can 
be seen in Table 1 that the performance of UNet, FCN, and SegNet with FRSLoss and DRSLoss are improved in DC, PA, ASD and 95th-

percentile of HD compared with HDLoss and DHDLoss, which means that our proposed losses are superior to the Hausdroff distance 
based boundary-wise losses in all given segmentation performance evaluation. Moreover, in comparison of the experimental results 
of UNet, FCN and SegNet with FRSLoss, HDLoss, DFRSLoss and DHDLoss, the performance variation of our proposed loss function is 
much smaller across different segmentation models than Hausdroff distance based losses. In addition, the standard deviations of the 
experimental results indicate that FRSLoss and DFRSLoss are more stable than HDLoss and DHDLoss.

Table 1 also shows the experimental results for pixel-wise loss and region-wise loss in different semantic segmentation models. 
Herein, we only discuss widely used pixel-wise (CELoss) and region-wise (DLoss) losses. As reported in Table 1, CELoss and DLoss 
have similar segmentation accuracy to FRSLoss in DC and PA but FRSLoss performes better in boundary-wise metrics (measured 
by ASD and 95th-percentile of HD). This means that our proposed novel boundary-wise loss method pays more attention to the 
boundaries than the region-wise and pixel-wise losses. Furthermore, to further verify if there is a statistically significant difference 
between FRSLoss, CELoss and DLoss, wilcoxon sign rank test with 𝑝 < 0.05 is adopted. In Table 1, ∗ represents FRLoss and CELoss 
are significantly different; ♯ represents FRLoss and DLoss are significantly different. Hence, for DC and PA, no statistical difference 
between our method and DLoss/CELoss. However, FRLoss has a statistically significant difference with CELoss and DLoss in 95th-

percentile of HD for Unet, FCN and SegNet models, while for the ASD boundary metric, FRSLoss has a statistically significant 
difference with DLoss on the FCN and SegNet models, with CELoss on the Unet and SegNet models. On the other hand, for different 
segmentation models, the proposed boundary-wise loss, the widely-used pixel-wise loss and the region-wise loss have consistent 
performance: they perform best in the UNet model and perform worst in the SegNet model.

Table 2 shows the training time to achieve model convergence of the UNet, FCN and SegNet models using FRSLoss, DFRSloss, 
9

HDLoss and DHDloss as the loss function for the nuclei dataset. The segmentation models with FRSloss and DFRSloss require less 
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Table 2

Convergence time of the UNet, FCN and SegNet models with different 
boundary-wise losses.

Model FRSLoss HDLoss DFRSLoss DHDLoss

UNet 40.71 min 67.17 min 65.10 min 90.43 min

FCN 57.20 min 93.53 min 91.18 min 101.55 min

SegNet 68.57 min 115.12 min 87.45 min 137.95 min

Table 3

Experimental results for boundary-wise losses, pixel-wise loss and region-wise loss in Unet, FCN and 
SegNet on the cell dataset. Mean ± standard deviation values are reported for all the evaluation 
measures. ∗ represents FRLoss and CELoss are significantly different with 𝑝 < 0.05; ♯ represents 
FRLoss and DLoss are significantly different with 𝑝 < 0.05.

Model Loss DC (%) ↑ PA (%) ↑ ASD (𝑚𝑚) ↓
95th-percentile

of HD (𝑚𝑚) ↓

UNet

FRSLoss 75.11 ± 0.21 𝟗𝟐.𝟓𝟕± 𝟎.𝟎𝟖 2.42 ± 0.03 ♯ 𝟏𝟔.𝟓𝟗± 𝟎.𝟏𝟕 ∗ ♯
HDLoss 72.84 ± 0.13 89.97 ± 0.58 2.93 ± 0.08 21.06 ± 1.46
DFRSLoss 75.16 ± 0.15 92.56 ± 0.19 𝟐.𝟒𝟐± 𝟎.𝟎𝟏 16.90 ± 0.09
DHDLoss 72.79 ± 0.21 91.29 ± 0.98 2.79 ± 0.04 18.34 ± 0.88
CELoss 75.55 ± 0.12 92.31 ± 0.15 2.43 ± 0.02 17.20 ± 0.09
DLoss 𝟕𝟓.𝟔𝟖± 𝟎.𝟎𝟓 92.05 ± 0.04 2.47 ± 0.01 18.19 ± 0.22

FCN

FRSLoss 74.65 ± 0.13 𝟗𝟐.𝟔𝟒± 𝟎.𝟎𝟓 2.42 ± 0.00 ∗ 𝟏𝟔.𝟏𝟓± 𝟎.𝟏𝟏 ∗ ♯
HDLoss 72.90 ± 0.81 91.88 ± 0.37 3.04 ± 0.21 22.43 ± 0.93
DFRSLoss 75.59 ± 0.41 92.55 ± 0.06 𝟐.𝟑𝟗± 𝟎.𝟎𝟓 16.74 ± 0.27
DHDLoss 73.53 ± 0.83 91.82 ± 0.30 2.74 ± 0.13 18.74 ± 0.96
CELoss 75.52 ± 0.17 91.91 ± 0.19 2.50 ± 0.03 17.83 ± 0.40
DLoss 𝟕𝟓.𝟕𝟎± 𝟎.𝟎𝟒 92.04 ± 0.11 2.44 ± 0.02 17.63 ± 0.34

SegNet

FRSLoss 74.21 ± 0.43 𝟗𝟐.𝟐𝟎± 𝟎.𝟏𝟑 2.55 ± 0.03 ♯ 17.40 ± 0.25 ∗ ♯
HDLoss 71.07 ± 0.23 91.90 ± 0.15 3.43 ± 0.07 25.73 ± 0.56
DFRSLoss 74.41 ± 0.17 91.97 ± 0.18 𝟐.𝟓𝟒± 𝟎.𝟎𝟑 𝟏𝟕.𝟏𝟖± 𝟎.𝟐𝟓
DHDLoss 72.20 ± 0.77 91.91 ± 0.09 2.82 ± 0.07 18.88 ± 0.76
CELoss 74.37 ± 0.20 92.10 ± 0.16 2.56 ± 0.04 17.94 ± 0.32
DLoss 𝟕𝟒.𝟖𝟔± 𝟎.𝟏𝟗 91.84 ± 0.10 2.60 ± 0.04 18.61 ± 0.34

time to reach the optimal state than that with HDLoss and DHDloss. It means that our proposed boundary-wise losses are capable of 
boosting the convergence speed compared with other boundary-wise losses. Note that the memory consumption of all methods is the 
same as they use the same backbone models for comparison.

4.4.2. Cell

Table 3 shows the performance on the cell dataset using different losses. FRSLoss and DFRSloss performed better than HDLoss 
and DHDLoss in DC, PA, ASD and 95th-percentile of HD. It further verifies that our proposed boundary-wise losses are superior to 
Hausdroff distance based losses and achieved higher stability in training segmentation models.

Table 3 also depicts the experimental results for the pixel-wise loss and region-wise loss in the UNet, FCN and SegNet models. It 
can be seen that the FRSLoss achieves better performance than CELoss and DLoss in the boundary-wise measures (measured by ASD 
and 95th-percentile of HD), which indicates that our proposed FRSLoss pays more attention to the boundaries than the pixel-wise 
and region-wise losses. As the same with the Nuclei dataset, wilcoxon sign rank test with 𝑝 < 0.05 also is adopted to explore if there 
is a statistically significant difference between FRSLoss, CELoss and DLoss. Experimental results in Table 3 show that FRLoss has a 
statistically significant difference with CELoss and DLoss in 95th-percentile of HD for all three semantic segmentation models, while 
for the ASD boundary metric, FRSLoss has a statistically significant difference with DLoss on the Unet and SegNet models, with 
CELoss on the FCN model. For DC and PA, no statistical difference between our method and DLoss/CELoss

4.4.3. Qualitative analysis

Table 1 and Table 3 show the results of quantitative analysis in comparison of different loss functions. In this section, the 
corresponding qualitative analysis is provided. Fig. 4 shows some segmentation results for the three semantic segmentation models 
and two datasets. Fig. 4 (a)(b) are the original image and the corresponding label image, respectively. From Fig. 4 (b), the nuclei 
dataset has more complicated segmentation boundaries and the boundaries appear as various shapes compared with the cell dataset. 
Fig. 4 (c)(e) are the predicted segmentation image of our proposed FRSLoss and DFRSloss. Fig. 4 (d)(f)(g)(h) are the predicted 
segmentation images based on HDLoss, DHDLoss, CELoss and DLoss, respectively. As shown in Fig. 4, the semantic segmentation 
models with FRSLoss yield more precise boundary. Although the evaluation indexes of segmentation performance are nearly the same 
for FRSLoss, CELoss and DLoss, the predicted segmentation images in Fig. 4 show that the boundary of CELoss is relatively blurry 
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and the boundary of DLoss is not as smooth as that of FRSLoss (The red circles and arrows in Fig. 4 represent the boundary difference 
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Fig. 4. Segmentation results for two datasets and three models: (a) original image; (b) benchmark image; (c) predicted segmentation image of FRSLoss; (d) predicted 
segmentation image of HDLoss; (e) predicted segmentation image of DFRSLoss; (f) predicted segmentation image of DHDLoss;(g) predicted segmentation image of 
CELoss; (h) predicted segmentation image of DLoss. The red circle and arrow represent the boundary difference between FRSLoss, CELoss and DLoss.

between FRSLoss, CELoss and DLoss). It suggests that the boundary-wise loss pays much attention to the boundary, resulting in 
FRSLosss achieving more accuracy and distinct boundaries than CELoss and DLoss.

5. Discussion

Table 1 and Table 3 show that our proposed novel boundary-wise losses, FRSLoss and DFRSLoss, have the ability to enhance the 
segmentation performance considerably compared with the other boundary-based losses, HDLoss and DHDLoss. To further explore 
the differences between FRSLoss and HDLoss, the training process and testing process for the nuclei dataset are visualized. Fig. 5

and Fig. 6 depict the variation curves of the training and testing processes for FRSLoss, HDLoss, DFRSLoss and DHDLoss. Blue curves 
mean the UNet model, orange curves refer to the FCN model and green curves are the SegNet model. As shown in Fig. 5 and Fig. 6, 
the training process and testing process for HDLoss and DHDLoss fluctuate violently, while the training process and testing process 
for FRSLoss and DFRSLoss are more stable. Moreover, the range of FRSLoss and DFRLoss value is from 0 to 1, while the range of 
HDLoss and DHDLoss value is from 0 to infinity. The aforementioned differences in Fig. 5 and Fig. 6 are due to the fact that there is a 
Gaussian function in the formula of FRSLoss and DFRLoss, which plays an important role in normalizing the distance. There are two 
merits for the normalization operator: 1) it excludes the influence of outliers and makes the gradient descent process more stable and 
robust (shown in Fig. 5 and Fig. 6); 2) it accelerates the convergence rate and reduces the training time (shown in Table 2). Thus, 
our proposed novel boundary-wise losses, FRSLoss and DFRSLoss are more stable and efficient than the other boundary-based losses, 
HDLoss and DHDLoss.

Compared Table 1 with Table 3, our proposed FRSLoss and DFRSLoss perform better on the nuclei dataset than that on the cell 
dataset. The segmentation performance difference between our proposed boundary-wise losses and other boundary-wise losses on 
the nuclei dataset is more than four times than that on the cell dataset. The reason is that the nuclei dataset has more complicated 
boundaries than the cell dataset. From Fig. 4, the boundaries of the nuclei dataset have various shapes while the boundaries of the 
cell dataset are relatively simple and uniform. The primary merit of our proposed boundary-loss is that it pays more attention to the 
boundary compared with other types of losses. Therefore, FRSLoss and DFRSloss are more beneficial to be applied to objects with 
complicated boundaries.

Furthermore, Table 1 and Table 3 show that our proposed loss concentrates more on the boundaries than the pixel-wise and 
region-wise losses. In many practical applications, for instance 3D multi-class image segmentation problems, one single loss is 
generally unable to obtain a satisfying segmentation result. The popular solution is to integrate the pixel-wise loss, region-wise loss 
and boundary-wise loss. In this way, the semantic segmentation models are capable of focusing the pixel, region and boundary 
11

simultaneously, which helps to improve the segmentation performance. Therefore, a stable and robust boundary-wise loss is of 
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Fig. 5. Loss variation curves for UNet, FCN and SegNet: (a) training loss for FRSLoss; (b) testing loss for FRSLoss; (c) training loss for HDLoss; (d) testing loss for 
HDLoss.

Fig. 6. Loss variation curves for UNet, FCN and SegNet: (a) training loss for DFRSLoss; (b) testing loss for DFRSLoss; (c) training loss for DHDLoss; (d) testing loss for 
12

DHDLoss.
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considerable importance. According to the experimental results, our proposed boundary-wide losses, FRSLoss and DFRSLoss, are 
superior to the other boundary-wide losses, HDLoss and DHDLoss, and have the potential to compete with commonly used pixel-wise 
and region-wise losses, which indicates that our proposed boundary-wise loss is more suitable to combine with the pixel-wise loss, 
region-wise loss than other boundary-wise losses.

6. Conclusions

In this paper, we have proposed a novel boundary-wise loss namely FRSL-oss that can be used in various semantic segmentation 
models. The FRSLoss derives from the lower approximation of fuzzy rough sets. In our proposed FRSLoss formula, the introduction 
of the Gaussian kernel is able to normalize the boundary difference between the predicted segmentation and the ground truth 
segmentation, which stabilizes the convergence procedure and consumes less time. Considering the non-convex nature of the lower 
approximation of fuzzy rough sets, the distance transform algorithm is applied to calculate the FRSLoss in semantic segmentation 
tasks. Moreover, the extension of our proposed FRSloss to multi-class semantic segmentation is also investigated and discussed in 
this paper, which broadens the application range further. It should be noted that it is the first time the fuzzy rough sets theory 
is directly implemented in semantic segmentation models. The experiments with various segmentation models and datasets have 
verified that the proposed fuzzy rough sets loss is superior to other boundary-wise losses in terms of the segmentation accuracy 
and time complexity. Compared with the commonly used pixel-wise and region-wise losses, the proposed boundary-wise loss has a 
similar performance but pays more attention to the boundaries.

The selection of s-norm and fuzzy relation in the FRSLoss formula is fixed in this paper. Whether the segmentation performance 
will be enhanced by other s-norms and fuzzy relations is still an open question and requires further exploration. Furthermore, in this 
paper, we only take the signal loss into consideration. However, for many complicated datasets, the combination of the pixel-wise 
loss, region-wise loss and boundary-wise loss will be utilized in semantic segmentation models to deal with the pixel, region and 
boundary simultaneously, which is beneficial for the improvement of segmentation performance. Therefore, in the future, we will 
associate the proposed FRSLoss with CELoss and DLoss to handle 3D multi-class image segmentation problems.
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