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1. Introduction

The general study of the classification and construction of nonassociative algebras is 
a classical subject, dating back to pioneering works of [1,2,7]. It is a rich area, including 
such important examples as Jordan algebras which go back to [12], and semifields (i.e., 
nonassociative division algebras over finite fields).

In this paper, we give a parametrization of the isomorphism classes of a particular class 
of nonassociative algebras first defined (slightly more generally) as Sandler semifields in 
[27], and later studied over any base field (e.g. in [30]): nonassociative cyclic algebras 
of degree m (Definition 2.1). They are defined by a cyclic Galois field extension K/F

of degree m, a generator σ of Gal(K/F ), and an element a ∈ K � F , and are denoted 
(K/F, σ, a). In particular, when the degree m is prime, and F contains a primitive mth 
root of unity, a nonassociative cyclic algebra of degree m over F is necessarily a division 
algebra [30]. These algebras are a direct generalization of associative cyclic algebras 
which, over local and global fields F , generate the Brauer group of (associative) central 
simple algebras over F . Associative central simple algebras similarly arise as the key 
objects in the theorems of Merkurjev and Suslin on the m-torsion of Brauer groups over 
arbitrary fields.

After deriving our explicit parametrizations (in the quadratic case in Theorem 4.2 and 
in the case of extensions of odd prime degree m, assuming F contains a primitive mth 
root of unity in Theorem 5.5), we go on to apply our parametrization to nonassociative 
cyclic algebras over local nonarchimedean fields F . These are the finite algebraic exten-
sions of the p-adic numbers Qp, together with Laurent series over a finite field. Local 
nonarchimedean fields lie at the intersection of real and finite fields: they are complete 
locally compact fields that are suitable for use in analysis, but retain abundant number-
theoretic properties related to their finite residue fields. We exploit these features to 
give a classification that is elegant and completely explicit under mild hypotheses on the 
field: for nonassociative quaternion algebras, the relevant results are Theorems 4.4, 4.5
and 4.6; for higher prime degree, our general result follows from Proposition 5.6 and we 
present in detail the case of m = 3 in Theorem 5.7.

In the course of deriving our results, we also prove the following counterintuitive result 
(Theorem 5.1), valid for nonassociative cyclic algebras of arbitrary degree (and in direct 
contrast with the associative case).

Theorem. Let F be an arbitrary field and let m ≥ 3 be the degree of a cyclic Galois 
extension K/F . For any two distinct generators σ1 �= σ2 of the Galois group Gal(K/F ), 
and for any a1, a2 ∈ K � F , we have

(K/F, σ1, a1) �∼= (K/F, σ2, a2).

Given the importance of associative cyclic algebras in the Brauer group of F , it is 
natural to expect that nonassociative cyclic algebras (which are pivotal examples of 
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semiassociative algebras) will play a similarly central role in the recently defined semi-
associative Brauer monoid [4,23]. Nonassociative cyclic algebras also recently appeared 
as first examples of residue m-hyperrings [26, Example 4.10 (i), Remark 4.11].

Furthermore, in the special case that m is equal to 2, the nonassociative cyclic algebras 
over F are exactly all the four-dimensional unital algebras over F which have a separable 
quadratic field extension of F contained in their nucleus [31]. They are also identical to 
the nonassociative quaternion (division) algebras that are obtained by a generalized 
Cayley-Dickson doubling [3].

In general, the classification of n-dimensional nonassociative algebras is a wild prob-
lem. Rough classifications up to the derivation types of the algebras, or up to their 
automorphism groups, are more tractable, and are possible for small dimensions, fixed 
base fields, or certain families of nonassociative algebras. Classifications up to isotopy, 
or even up to isomorphism, are often difficult even for small dimensions and special 
base fields. Investigations of special classes of small dimensional algebras usually involve 
structure constants. For a comprehensive recent literature review, see [13, Section 2.1].

Three- and four-dimensional nonassociative division algebras over a p-adic field were 
roughly classified up to isotopy in [6] and Limburg [17] by studying the determinant of the 
matrix of their left multiplication and classifying it up to isometry. Unfortunately, this 
classification does not reveal the algebraic structure for some of the classes of algebras 
listed.

To our knowledge, ours are some of the first known parametrizations of a large class 
of nonassociative division algebras over nonarchimedean local fields F , and our work 
invites several interesting next directions.

For one, there should be a relationship between the nonassociative cyclic algebras 
arising from unramified extensions and those arising from the corresponding extensions 
of the finite residue field, through localization. Note that nonassociative cyclic alge-
bras are special cases of Petit algebras [19,20,16], and over finite base fields isotopic to 
Jha-Johnson semifields [11], which form one of the largest known classes of semifields. 
However, it is evident from examples that this localization depends on the parameters 
in ways that are not evident from the high-level theory.

We also believe that the explicit nature of our parameterization will help in tackling 
concrete open problems in the new theory of semiassociative algebras. We note that 
nonassociative cyclic algebras are also employed in the construction of space-time codes 
which are used in digital data transmission, and in linear code constructions; see, for 
example, [22,24,25]. It would be very interesting to explore how to exploit the essen-
tially binary nature of nonassociative cyclic algebras over F2( (t) ), for example, to the 
development of more efficient linear codes.

The paper is organized as follows. We set our notation and collect some main results 
on nonassociative cyclic algebras and nonarchimedean local fields in Sections 2 and 
3. In Section 4 we prove our parametrization (a classification up to isomorphism) of 
nonassociative quaternion algebras, first over general fields of characteristic different 
from 2 (Theorem 4.2), and then specialized to nonarchimedean local fields, including the 
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characteristic 2 case, which has a very different flavor (Theorem 4.6). In particular, we 
have thus achieved full parametrizations of exactly all four-dimensional unital algebras 
over F which have a separable quadratic field extension of F contained in their nucleus.

Section 5 contains the two main results of this paper (Theorems 5.1 and 5.5). We then 
derive the parametrization over local nonarchimedean fields of residual characteristic 
different from m (and containing μm) employing Lemma 5.6 and in particular for degree 
three in Section 5.4. We conclude in Section 6 with a short exploration of the case of 
degree 4 nonassociative cyclic algebras over a local nonarchimedean field such that p �= 2.

2. Notation and background

We use R× to denote the group of invertible elements of a unital associative ring R, 
and denote by (R×)n the subgroup {xn | x ∈ R×}. Let F be a field and let μm be the 
group of mth roots of unity in a fixed algebraic closure of F , when the characteristic of 
F does not divide m.

2.1. Nonassociative algebras

An F -vector space A is an algebra over F if there exists an F -bilinear map A ×A → A, 
(x, y) �→ x · y. We denote this multiplication in A simply by the juxtaposition xy. An 
algebra A is called unital if there is an element in A, denoted by 1, such that 1x = x1 = x

for all x ∈ A. We will only consider unital finite-dimensional nonzero algebras.
Define the associator of A by [x, y, z] = (xy)z − x(yz). The left, middle and right 

nucleus of A are defined as Nucl(A) = {x ∈ A | [x, A, A] = 0}, Nucm(A) = {x ∈
A | [A, x, A] = 0} and Nucr(A) = {x ∈ A | [A, A, x] = 0}, respectively. These are 
associative subalgebras of A and their intersection Nuc(A) = {x ∈ A | [x, A, A] =
[A, x, A] = [A, A, x] = 0} is the nucleus of A. The center of A is C(A) = {x ∈ A | x ∈
Nuc(A) and xy = yx for all y ∈ A}.

An algebra A �= 0 is called a division algebra if for any a ∈ A, a �= 0, the left 
multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are 
bijective. If A has finite dimension over F , A is a division algebra if and only if A has 
no zero divisors [28, pp. 15, 16].

2.2. Nonassociative cyclic algebras

We now define our principal objects of study; we adapt the definition from [30], where 
the opposite algebras were considered instead.

Definition 2.1. Let K/F be a cyclic Galois field extension of degree m and let σ be a gen-
erator of Gal(K/F ). Then for any a ∈ K×, the nonassociative cyclic algebra (K/F, σ, a)
of degree m is the unital algebra of dimension m2 defined by
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(K/F, σ, a) =
m−1⊕
s=0

Kts

with F -bilinear multiplication defined for 0 ≤ s, s′ < m and k, k′ ∈ K by

(kts)(k′ts
′
) =

{
kσs(k′)ts+s′ if s + s′ < m;
kσs(k′)ats+s′−m if s + s′ ≥ m.

(2.1)

In particular, tm = a.

Note that for all a ∈ K � F the algebra (K/F, σ, a) is not associative, not even 
power-associative, since for example t(tm) = ta = σ(a)t but (tm)t = at. If we instead 
choose a ∈ F×, then the definition above yields the classical central simple associative 
cyclic algebra (K/F, σ, a) of degree m [10, §1.4]. In the following, we call a nonassociative 
cyclic algebra (K/F, σ, a) that is not associative (i.e. a ∈ K�F ) sometimes also a proper
nonassociative cyclic algebra.

An equivalent way to define (K/F, σ, a) involves twisted polynomials: Let f(t) =
tm − d ∈ R = K[t; σ]. Then Rm = {g ∈ K[t; σ] | deg(g) < m} together with the usual 
addition and the multiplication defined via g ◦h = gh modrf , where the right hand side 
is simply the remainder of gh after division by f of the right, is the nonassociative cyclic 
algebra (K/F, σ, a), also denoted by R/R(tm−a) as it is a special case of a Petit algebra 
[19]. Note that when deg(g) + deg(h) < m, the multiplication in (K/F, σ, a) is the same 
as the multiplication in R. If a ∈ F× then (K/F, σ, a) is the classical central simple 
associative cyclic algebra (K/F, σ, a) which can also be written as the quotient algebra 
K[t; σ]/(f) [19, (7), (9), (10)], [10, p. 19]. This justifies the notation R/Rf introduced 
by Petit.

We record some quick properties.

Lemma 2.2. [19] Let A = (K/F, σ, a) with a ∈ K � F . Then C(A) = F , Nucl(A) =
Nucm(A) = K and Nucr(A) = {g ∈ R/Rf | fg ∈ Rf}.

Note that {g ∈ R/Rf | fg ∈ Rf} can be identified as the 0-eigenspace of the right 
multiplication operator Rf , also called the eigenspace of f [19].

In particular when m is prime we must have Nucr((K/F, σ, a)) = K. We also know 
that (K/F, σ, a) is a division algebra if and only if Nucr((K/F, σ, a)) is a division algebra, 
e.g. see [9, Proposition 4].

Nonassociative cyclic algebras of degree 2 are also called nonassociative quaternion 
algebras, and were first described by Dickson [7]. They can also be constructed by a 
generalized Cayley-Dickson process Cay(K, a) [3, Lemma 1], as it coincides with the 
specialization to m = 2 of Definition 2.1.
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2.3. Properties and isomorphisms

Let us now summarize some needed results from the literature.

Theorem 2.3. [19] Suppose either that m = 2 or 3, or that m ≥ 5 is a prime such that 
F contains a primitive mth root of unity. Let a ∈ K �F . Then (K/F, σ, a) is a division 
algebra.

The case m = 2 is distinguished: nonassociative quaternion algebras are, up to iso-
morphism, the only four-dimensional unital division algebras over a field F that have 
a quadratic field extension K/F in their nucleus, and which are not associative [31, 
Theorem 1]. We thus put a special emphasis on them in this paper.

When m is not prime, we have the following statement.

Theorem 2.4. [30, Theorem 4.4, Corollary 4.5] Suppose that (K/F, σ, a) is a nonasso-
ciative cyclic algebra where K/F is of degree m. If a does not lie in a proper subfield of 
K/F , then (K/F, σ, a) is a division algebra.

Proof. If 1, a, · · · , am−1 are linearly independent over F , then (K/F, σ, a) is a division 
algebra [30, Theorem 4.4]. The elements 1, a, · · · , am−1 are linearly independent over F
if and only if the minimal polynomial of a over F has degree at least m, whence F (a)/F
has degree at least m. Thus this condition is equivalent to having K = F (a) and thus 
that a lies in no proper subfield of K. �

We now turn to the question of when two such algebras are isomorphic.

Lemma 2.5. Suppose K, K ′ are two distinct cyclic Galois extensions of a field F . Then 
for any generators σ, σ′ of their respective Galois groups, and any a ∈ K�F , a′ ∈ K ′�F , 
we have

(K/F, σ, a) �∼= (K ′/F, σ′, a′).

The proof is immediate, since isomorphic algebras will have the same left nuclei. In the 
rest of the paper, we will rely on the following strong classification theorem [5, Corollary 
32].

Theorem 2.6. Let K be a cyclic Galois extension of F and let σ be a generator of 
Gal(K/F ). For a, b ∈ K � F we have that (K/F, σ, a) ∼= (K/F, σ, b) if and only if 
there exists some τ ∈ Gal(K/F ) such that

a ∈ τ(b)NK/F (K×). (2.2)
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For each such extension K, we denote by ∼ the equivalence relation on K � F in-
duced by (2.2), that is, a ∼ b if and only if there is some power i ∈ Z such that 
a ∈ σi(b)NK/F (K×).

3. Background on p-adic fields

A local nonarchimedean field is a locally compact, nondiscrete field equipped with an 
ultrametric norm | · |. For each prime number p, there are precisely two kinds: the finite 
algebraic extensions of the p-adic numbers Qp, which are the completion of a number 
field with respect to the p-adic norm; and the fields Fq( (t) ) of Laurent series over a finite 
field of order q = pn for some n ≥ 1, with |t| < 1. The former are called p-adic fields, 
and have characteristic zero. An excellent resource for the summary given here is [14, 
Chapter II]; for examples, see [18].

Let F be a local nonarchimedean field. Its integer ring is its maximal compact open 
subring R = {x ∈ F : |x| ≤ 1}. This ring is local, with unique maximal ideal P = {x ∈
F : |x| < 1}. Its unit subgroup of invertible elements is then R× = R � P. The quotient 
κ := R/P, called the residue field of F , is a finite field of order q = pn for some n ∈ N

and prime p (called the residual characteristic of F ).

Example 3.1. If F = Fq( (t) ) then R = Fq[[t] ], P = (t), and κ = Fq. Similarly, if F = Qp

then we have

Q×
p = {a =

∞∑
i=N

aip
i : N ∈ N, ai ∈ {0, 1, . . . , p− 1}}

with addition and multiplication computed “with carrying” as one would for finite sums. 
Here the least i such that ai �= 0 is the p-adic valuation of a, and in this case |a| = p−i. 
The p-adic integers R = Zp is the set of all elements of valuation at least 0.

More generally, we define the valuation of a ∈ F× by v(a) = min{n ∈ Z : a ∈ Pn}
and scale the norm so that |a| = q−v(a). We fix a generator � of P for once and for all; 
it satisfies v(�) = 1.

The fundamental relationship between F and κ is captured by Hensel’s Lemma. The 
following general version is adapted from [8, Thm 7.3].

Lemma 3.2 (Hensel’s Lemma). Let f(x) ∈ R[x] be a polynomial and f ′(x) its formal 
derivative. If a ∈ R satisfies

f(a) ≡ 0 mod f ′(a)2P,

then there exists a unique b ∈ R satisfying

f(b) = 0 and b ≡ a mod f ′(a)P.
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Example 3.3. The elements of κ× are the roots of f(x) = xq−1 − 1. For each a ∈ κ×, 
choose a ∈ R to be some preimage. Since f(a) ≡ 0 mod P and f ′(a) = (q−1)aq−2 ∈ R×, 
Hensel’s Lemma implies that there exists a unique b ∈ R satisfying bq−1 = 1 and such 
that b ∈ a + P. The set of all such b (sometimes called Teichmüller lifts of elements of 
κ×) are distinct and form the group of (q− 1)th roots of unity μq−1 in F . Note that we 
similarly recover μn ∩ F for any n not divisible by p, and this group will have order n
exactly when n|(q − 1).

It is sometimes convenient to decompose F× as the direct product of groups

F× ∼= μq−1 × (1 + P) × Z (3.1)

via the map that associates to a triple (b, u, n) the element bu�n.
Finite algebraic extensions of F are again local nonarchimedean fields and they come 

in two forms. There is a unique (Galois) unramified extension of each degree n, which is 
the splitting field of xqn − x. We often denote it Ln. Its residue field is κLn

∼= Fqn and 
its maximal ideal PLn

is generated over RLn
by �.

At the other extreme are the totally ramified extensions K of F of degree n, of which 
there are usually several (in fact, infinitely many if the characteristic of F is p = n), and 
not all of which are Galois. They each have the property that their residue field satisfies 
κK

∼= κ and � generates Pn
K .

A general finite algebraic extension K of F can be uniquely factored as an unramified 
extension L/F of degree f followed by a totally ramified extension K/L of degree e, the 
ramification index. We say K/F is tamely ramified if (e, p) = 1 and wildly ramified if 
not. The totally and tamely ramified extensions of degree e are all obtained by adjoining 
to F a root of xn − u�, for some choice of u ∈ R×/(R×)e; these are Galois only if F
contains a primitive eth root of unity.

By local class field theory [14, XI §4], the Galois extensions of degree n of F are in 
one-to-one correspondence with the subgroups of index n of F×, via the map that assigns 
K/F to the subgroup NK/F (K×), which is the image of the norm map. In particular, 
this implies that F×/NK/F (K×) is a finite group of order n equal to the degree of the 
extension.

For example, if K = Ln is an unramified extension, then upon restriction to the integer 
ring, the norm map NK/F : R×

K → R× is surjective, and the group F×/NK/F (K×) is 
represented by the elements

{1, �,�2, · · · , �n−1}.

On the other hand, for a totally and tamely ramified extension, F×/NK/F (K×) ∼=
R×/(R×)n and Hensel’s Lemma identifies this group with κ×/(κ×)n.

These features make the explicit classification of nonassociative cyclic algebras over 
F quite tractable.
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4. Nonassociative quaternion algebras

In this section, we first derive some general results about nonassociative quaternion 
algebras and then apply these to the case of local nonarchimedean fields. As noted, 
these algebras exhaust the four-dimensional unital nonassociative division algebras that 
contain a quadratic field extension in their nucleus.

4.1. Isomorphism classes of nonassociative quaternion algebras in odd characteristic

Throughout this section, let F denote an arbitrary field of characteristic different from 
two.

Lemma 4.1. If A is a proper nonassociative quaternion algebra over F , then there exists 
a unique (nontrivial) coset c(F×)2 ∈ F×/(F×)2 and an element a ∈ F (

√
c) � F such 

that

A ∼= (F (
√
c)/F, σ, a),

where σ ∈ Gal(F (
√
c)/F ) denotes the unique nontrivial element of the Galois group of 

this quadratic extension.

Proof. Since the characteristic of F is odd, or zero, the distinct quadratic field extensions 
of F are given by F (

√
c) as c runs over the distinct nontrivial classes in F×/(F×)2. 

Applying Lemma 2.5 then yields the assertion. �
We now refine this to an explicit classification of these nonassociative cyclic algebras.

Theorem 4.2. Suppose K is a separable quadratic extension of a field F of the form 
K = F (

√
c), for some c ∈ F× � (F×)2 and let σ ∈ Gal(K/F ) be nontrivial. Let CK

denote a set of coset representatives of F×/NK/F (K×). Then the distinct isomorphism 
classes of the nonassociative quaternion algebras with left nucleus K are represented by 
(K/F, σ, a) where a is chosen from the set S(K) given by

S(K) =

⎧⎪⎪⎨
⎪⎪⎩
{r√c, r + s

√
c | r ∈ CK , s ∈ F×/{±1}} if −1 ∈ NK/F (K×)

{r′√c | r′ ∈ CK/{±1}}
∪{r + s

√
c | r ∈ CK , s ∈ F×/{±1}} if −1 /∈ NK/F (K×).

Proof. We begin by noting that if −1 /∈ NK/F (K×), then the quotient group 
F×/NK/F (K×) contains a class represented by −1, whence the normal subgroup we 
denote {±1}; this defines the expression CK/{±1}.

Since S ⊂ K � F , each a ∈ S defines a nonassociative cyclic algebra (K/F, σ, a)
with left nucleus K. By Theorem 2.6, two nonassociative cyclic algebras (K/F, σ, a) and 
(K/F, σ, b) are isomorphic if and only if a ∼ b, that is, if
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a ∈ bNK/F (K×) ∪ σ(b)NK/F (K×).

What we will show is that for every b ∈ K �F , there exists a unique choice of a ∈ S(K)
such that either b ∈ aNK/F (K×) or σ(b) ∈ aNK/F (K×). We begin with existence.

Let b ∈ K � F . Then there exist b0 ∈ F, b1 ∈ F× such that b = b0 + b1
√
c.

If b0 = 0, then since b1 ∈ F×, we may write b1 = rn for a unique choice of r ∈ CK

and n ∈ NK/F (K×), whence b ∈ r
√
cNK/F (K×).

If b0 ∈ F×, then there exists a unique r ∈ CK and n ∈ NK/F (K×) such that b0 = rn. 
Setting s = b1n

−1, we have

b = (r + s
√
c)n ∈ (r + s

√
c)NK/F (K×).

Since σ(r + s
√
c) = r − s

√
c, the elements r ± s

√
c always represent the same iso-

morphism class of an algebra. On the other hand, since σ(r
√
c) = −r

√
c, σ preserves 

the class r
√
cNK/F (K×) if and only if −1 ∈ NK/F (K×), in which case each of these 

elements represent pairwise nonisomorphic algebras. If −1 /∈ NK/F (K×), then instead 
only the elements r′

√
c, for r′ ∈ CK/{±1}, are pairwise nonisomorphic. �

For use in practice, we briefly offer an alternative parametrization of these nonasso-
ciative quaternion algebras.

Corollary 4.3. In the setting of Theorem 4.2, we may alternatively parametrize the dis-
tinct isomorphism classes of nonassociative quaternion algebras with left nucleus K by 
elements of the set S′(K), where

S′(K) =
{
{t + r

√
c | r ∈ CK , t ∈ {0} ∪ F×/{±1}} if −1 ∈ NK/F (K×);

{t + r
√
c, r′

√
c | r ∈ CK , r′ ∈ CK/{±1}, t ∈ F×/{±1}} if −1 /∈ NK/F (K×).

Proof. The elements of the form r
√
c in S(K) and S′(K) are in bijection. Suppose r +

s
√
c ∈ S(K). Then s = r′n for a unique r′ ∈ CK and n ∈ NK/F (K×). Therefore with 

t = rn−1 we have

r + s
√
c = (rn−1 + r′

√
c)n ∈ (t + r′

√
c)NK/F (K×).

Since s was only defined as an element of F×/{±1}, the same is true of t, whence the 
bijection. �
4.2. Case of local nonarchimedean fields of odd residual characteristic

In this section, let F be a nonarchimedean local field of residual characteristic p �= 2; 
that is, we exclude the finite algebraic extensions of Q2 and of F2( (t) ). We provide a fully 
explicit parametrization of the nonassociative quaternion algebras in this case, based on 
Theorem 4.2.
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First note that the square classes in F× are represented by

F×/(F×)2 = {1, ε,�, ε�}

where ε ∈ R× � (R×)2 is a fixed nonsquare element of valuation zero, which may be 
thought of as a lift to R× of a nonsquare element of the residue field via Hensel’s 
Lemma 3.2. Therefore there are exactly three distinct quadratic extensions of F in this 
case:

• L2 = F (
√
ε), the unique unramified quadratic extension;

• K� = F (
√
�), a ramified extension;

• Kε� = F (
√
ε�), a second ramified extension.

Secondly, note that local class field theory gives F×/NK/F (K×) ∼= Gal(K/F ). Ex-
plicitly, when K/F is quadratic, this means we may take our set of representatives to 
be

CK =
{
{1, �} if K = L2 is unramified over F ;
{1, ε} if K/F is ramified.

Thirdly: when K = L2 is unramified, −1 ∈ R× ⊂ NK/F (K×), independent of p > 2. 
When K/F is ramified, however, then −1 ∈ NK/F (K×) if and only if −1 ∈ (F×)2. Since 
p �= 2, Hensel’s Lemma 3.2 implies this occurs if and only if −1 is a square in the residue 
field Fq. Since F×

q is a cyclic group of order q − 1, we infer directly that −1 is a square 
if and only if q ≡ 1 mod 4.

Finally, note that when p �= 2, we choose a set of representatives for F×/{±1} via a 
choice of representatives of κ×/{±1}. Let Sκ be such a set; then via the isomorphism 
κ× ∼= μq−1 ⊂ R× of Example 3.3 we can lift this to a subset of R× contained in the 
subgroup μq−1. Then using (3.1) we may take

F×/{±1} = {su1�
n | s ∈ Sκ, u1 ∈ 1 + P, n ∈ Z} ∼= (μp−1/μ2) × (1 + P) × Z.

Putting these together gives the following satisfyingly explicit and simple statement.

Theorem 4.4. Let F be a local nonarchimedean field of odd residual characteristic, and 
suppose its residue field κ has q elements. Let K be a quadratic extension of F . Then the 
distinct isomorphism classes of nonassociative quaternion algebras with left nucleus K
are given by (K/F, σ, a) where σ ∈ Gal(K/F ) is the nontrivial element and a ∈ S(K), 
where S(K) is given as follows:

(1) If K = F (
√
ε) is unramified, then

S(K) = {
√
ε, �

√
ε, 1 + s

√
ε, � + s

√
ε | s ∈ F×/{±1}}.
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(2) If K = F (
√
α) is ramified, where α ∈ {�, ε�}, then

(a) If q ≡ 1 mod 4 then

S(K) = {
√
α, ε

√
α, 1 + s

√
α, ε + s

√
α | s ∈ F×/{±1}}.

(b) If q ≡ 3 mod 4 then

S(K) = {
√
α, ±1 + s

√
α | s ∈ F×/{±1}}.

Proof. We apply Theorem 4.2. If K/F is unramified, then CK = {1, �} and −1 ∈
NK/F (K×), yielding the first case. If it is ramified, then CK = {1, ε}. By the preceding, 
if q ≡ 1 mod 4 then −1 ∈ (F×)2 ⊂ NK/F (K×), and this yields the second case. In the 
last case, we have −1 /∈ (F×)2, which implies we may without loss of generality choose 
ε = −1. Thus CK = {±1}, giving the desired result. �

Note that for p-adic fields F , p �= 2, these algebras lie in class one or two, or are new 
examples for class three or four in [17], since proper nonassociative quaternion algebras 
are not isotopic to twisted fields.

4.3. Case of 2-adic fields

The classification of nonassociative quaternion algebras given in Theorem 4.2 applies 
also to the quadratic extensions of 2-adic fields (meaning, finite algebraic extensions of 
Q2), since these have characteristic zero. There are two differences.

For one, when F has residual characteristic 2, we have

|F×/(F×)2| = 2e+2

were e is the ramification degree of F over Q2. That is, the number of distinct quadratic 
extensions of F increases exponentially with its absolute ramification index. As these give 
the distinct choices for the left nucleus of a nonassociative quaternion algebra, the number 
of isomorphism classes of nonassociative quaternion algebras increases exponentially in 
the ramification index as well. Nonetheless, for any given choice of F , we can generate 
an explicit list of representatives of R×/(R×)2 using Hensel’s Lemma 3.2, and then 
the distinct quadratic extensions are obtained as F (

√
c) as c varies over the nontrivial 

elements of the product

{1, �} × R×/(R×)2.

For another, while local class field theory implies that |CK | = |F×/NK/F (K×)| = 2, 
it can be nontrivial to generate an explicit representative, such as would be obtained 
from the Artin reciprocity map. Of course, in degree two this is simply equivalent to 
identifying an element of F× that is not in the image of the norm map.
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To give a flavor of the parametrization of isomorphism classes of nonassociative quater-
nion algebras in this case, we present the example of F = Q2 in detail.

Theorem 4.5. Let F = Q2. Then F has seven distinct quadratic extensions K, enumer-
ated in Table 1. The isomorphism classes of nonassociative quaternion algebras with left 
nucleus K are represented by (K/F, σ, a) where σ ∈ Gal(K/F ) is the nontrivial element 
and a ∈ S(K), where S(K) is given as follows:

(a) If K = Q2(
√
−3), then this extension is unramified and

S(K) = {
√
−3, 2

√
−3, 1 + s

√
−3, 2 + s

√
−3 | s ∈ Q×

2 /{±1}}.

(b) If K = Q2(
√
α) with α ∈ {2, −6}, then this extension is ramified and −1 ∈

NK/F (K×). We have

S(K) = {
√
α, 3

√
α, 1 + s

√
α, 3 + s

√
α | s ∈ Q×

2 /{±1}}.

(c) If K = Q2(
√
α) with α ∈ {−1, −2, 3, 6}, then this extension is ramified and −1 /∈

NK/F (K×). We have

S(K) = {
√
α, ±1 + s

√
α | s ∈ F×/{±1}}.

Proof. We record in Table 1 several facts about the quadratic extensions of Q2, as 
follows. Using Hensel’s Lemma, we deduce that there are no solutions to x2 = α for 
α ∈ {−1, −3, 3} but that every element of 1 + 4Z2 is a square; moreover, no element 
of valuation equal to 1 may have a square root in F . We deduce that Q×

2 /(Q
×
2 )2 =

{±1, ±2, ±3, ±6}. Thus the first column lists the distinct quadratic extensions of Q2, 
with the unramified extension (the one containing the cube roots of unity) being listed 
first. The second column is taken from [29, p. 34] where the image of the norm map was 
computed explicitly on a case-by-case basis. In the third column we record a convenient 
choice of element γ such that CK = F×/NK/F (K×) = {1, γ}.

The theorem is now a direct application of Theorem 4.2. To specify the cases of that 
theorem that apply, we explicitly record in the fourth column of Table 1 whether or 
not −1 is in the image of the norm map, and in the final column put a label to the 
corresponding case of the statement of Theorem 4.5. �
4.4. Case of Laurent series over a finite field of characteristic two

Suppose now that we are in the last remaining case, that of characteristic two.
Note first that extensions of the form F (

√
c) for any c /∈ (F×)2 are (purely) insepa-

rable. Instead, the distinct Galois quadratic extensions over a field F of characteristic 2
are obtained, by the Artin–Schreier Theorem [15, Ch VI Thm 6.4, 8.3], as
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Table 1
The distinct quadratic extensions of Q2.

K = F (
√
c) NK/F (K×)/(F×)2 CK −1 ∈ NK/F (K×)? Case

Q2(
√
−3) {±1,±3} {1, 2} yes (a)

Q2(
√
−6) {±2,±6} {1, 3} yes (b)

Q2(
√

2) {±1,±2} {1, 3} yes (b)
Q2(

√
−1) {1,−2,−3, 6} {±1} no (c)

Q2(
√
−2) {1, 2, 3, 6} {±1} no (c)

Q2(
√

3) {1,−2−, 3, 6} {±1} no (c)
Q2(

√
6) {1,−2, 3,−6} {±1} no (c)

K = F (x)/(x2 + x + c)

where c ∈ F ranges over the nontrivial cosets of the additive subgroup P2 = {z2 + z |
z ∈ F}. Note that if α ∈ K is a root of x2 + x + c then so is α + 1, so K = F (α).

In this section, we let F be a local nonarchimedean field of characteristic two. Then 
we have F = F2f ( (t) ), for some f ∈ N.

While F admits a unique quadratic unramified Galois extension, it has infinitely many 
distinct ramified Galois quadratic extensions. For example, since each element of P2 �R

must have even valuation, it follows that the elements of {t−2k−1 : k ∈ N}, whose distinct 
differences have odd valuation, represent infinitely many distinct cosets of P2.

The classification of the distinct nonassociative quaternion algebras over F corre-
spondingly assumes a different flavor. For one, there will be infinitely many distinct 
choices for the left nucleus, corresponding to these various distinct quadratic Galois 
extensions. On the other hand, the parametrization of the isomorphism classes corre-
sponding to a fixed quadratic extension admits a simpler description, as follows.

Theorem 4.6. Suppose K = F (α) is a separable quadratic extension of a local field F of 
characteristic 2. Let γ be a nontrivial element of F×/NK/F (K×) and σ the element of 
Gal(K/F ) such that σ(α) = α + 1. The distinct isomorphism classes of nonassociative 
quaternion algebras with left nucleus K are represented by (K/F, σ, a) where a is chosen 
from the set S(K) given by

S(K) = {s + α, γ(s + α) | s ∈ F/{0, 1}}

where F/{0, 1} denotes the quotient of the additive group of F by the two-element prime 
field F2.

Proof. Let m(x) = x2 + x + c be the minimal polynomial of α. Its other root is α + 1, 
and these are linearly independent over F . Thus

{α, α + 1}

forms a basis for K/F . Let us evaluate the equivalence relation ∼ arising from Theo-
rem 2.6 on K � F . Write a = a0 + a1α; then a1 �= 0 since a /∈ F . Thus there exists a 
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unique r ∈ {1, γ} and n ∈ NK/F (K×) such that a1 = rn. Setting s = a0n
−1, it follows 

that a ∈ (s + rα)NK/F (K×).
Since σ(s +α) = (s +1) +α and σ(s +γα) = (s +γ) +γα, and since the characteristic 

of F is 2, it follows that the distinct isomorphism classes are parametrized by the set

{s1 + α, sγ + γα | s1 ∈ F/{0, 1}, sγ ∈ F/{0, γ}}.

As the map sending a ∈ F to aγ ∈ F is an additive group automorphism sending {0, 1}
to {0, γ}, we deduce the final form of the parameter set S(K). �
5. Nonassociative cyclic algebras of degree m > 2

In this section, we begin with some results for nonassociative cyclic algebras of degree 
m > 2, before specializing to the case that m is prime (and F contains a primitive mth 
root of unity), concluding with an application to the case of local nonarchimedean fields.

5.1. Different generators of Gal(K/F ) give nonisomorphic algebras

Let F be an arbitrary field such that F admits a cyclic Galois extension K of degree 
m > 2. By Lemma 2.5, the choice of field K is an invariant of the isomorphism class.

In the case of associative cyclic algebras, that is, when a ∈ F×, one has (K/F, σ, a) ∼=
(K/F, σk, ak) [21, 15.1 Corollary a], that is, different choices of generator of the Galois 
group yield isomorphic algebras.

We show that, in stark contrast, nonassociative cyclic algebras corresponding to dis-
tinct choices of generator σ ∈ Gal(K/F ) are never isomorphic.

Theorem 5.1. Let F be an arbitrary field and let m ≥ 3 be the degree of a cyclic Galois 
extension K/F . For any two distinct generators σ1 �= σ2 of the Galois group Gal(K/F ), 
and for any a1, a2 ∈ K � F , we have

(K/F, σ1, a1) �∼= (K/F, σ2, a2).

Proof. Suppose to the contrary that there exists an isomorphism ϕ : (K/F, σ1, a1) →
(K/F, σ2, a2); this is an isomorphism of F -vector spaces satisfying ϕ(uv) = ϕ(u)ϕ(v) for 
all u, v ∈ (K/F, σ1, a1). In particular, ϕ restricts to a field automorphism of K; since 
the Galois group is cyclic, and thus abelian, this implies ϕ commutes with σi on K, for 
i ∈ {1, 2}.

By Definition 2.1, (K/F, σi, ai) =
⊕m−1

s=0 Ktsi with an F -bilinear multiplication defined 
for 0 ≤ s, s′ < m and k, k′ ∈ K by

(ktsi )(k′ts
′

i ) =
{
kσs

i (k′)ts+s′

i if s + s′ < m;
kσs(k′)a ts+s′−m if s + s′ ≥ m.
i i i
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In particular, we infer that the left K-submodule Ktsi can be characterized as

Ktsi = {u ∈ (K/F, σi, ai) | ∀k ∈ K,uk = σs
i (k)u}.

Since σ1, σ2 both generate Gal(K/F ), there is some 1 < j < m, with (j, m) = 1, such 
that σ1 = σj

2. It follows that ϕ(t1) = ktj2 for some k ∈ K.
Let 
 be the least positive integer such that 
j > m; since σ1 �= σ2, we have 
 < m. 

For any index s ≥ 1, set γs(k) = kσj
2(k)σ2j

2 (k) · · ·σ(s−1)j
2 (k). Then one can show by 

induction that

ϕ(ts1) =
{
γs(k)tsj2 if 1 ≤ s < 
;
γ�(k)a2t

�j−m
2 if s = 
.

Since 1 ≤ 
 < m, we have

t1 · t�1 = t�1 · t1 =
{
t�+1
1 if 
 + 1 < m;
a1 if 
 + 1 = m.

However, we have

ϕ(t�1)ϕ(t1) = γ�(k)a2t
�j−m
2 · ktj2 =

{
γ�+1(k)a2t

�j+j−m
2 if (
 + 1)j < 2m;

γ�+1(k)a2
2t

�j+j−2m
2 if 2m ≤ (
 + 1)j

whereas

ϕ(t1)ϕ(t�1) = ktj2 · γ�(k)a2t
�j−m
2 =

{
γ�+1(k)σj

2(a2)t�j+j−m
2 if (
 + 1)j < 2m;

γ�+1(k)σj
2(a2)a2t

�j+j−2m
2 if 2m ≤ (
 + 1)j.

It follows that ϕ is well-defined only if σ1(a2) = σj
2(a2) = a2, meaning that a2 lies in 

the fixed field of σ1. But this is impossible: σ1 generates the cyclic Galois group, and 
a2 /∈ F , by construction. �
5.2. An explicit parametrization of isomorphism classes

Now suppose that m is an odd prime and that F contains a primitive mth root of 
unity. If F has prime characteristic p then this condition implies that gcd(m, p) = 1. 
Kummer theory [15, Ch VI Thm 6.2, 8.2] ensures that the Galois extensions of F of 
degree m are in bijection with the subgroups of F×/(F×)m of order m.

By Theorem 5.1, we may fix a choice of cyclic field extension K/F of degree m and 
a choice of generator σ of Gal(K/F ). We wish to classify the algebras (K/F, σ, a), as a
runs over K � F , up to isomorphism.
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Let ζ ∈ F be a primitive mth root of unity. By Kummer theory, K is the splitting 
field of some polynomial xm − b, with b /∈ (F×)m. Thus we may choose β ∈ K to be a 
root of xm − b for which σ(β) = ζβ. Then

{1, β, β2, . . . , βm−1}

is an F -basis for K with the property that σ(βk) = ζkβk for all 0 ≤ k < m.
We first prove that the isomorphism classes of cyclic algebras (K/F, σ, a) admit a 

coarse partition into 2m−1 subsets with respect to this choice of basis, inspired by the 
classification of quaternion algebras in Theorem 4.2.

Definition 5.2. Let I = P({0, 1, . . . , m − 1}) � {{0}, ∅} be the set of nonempty subsets of 
{0, 1, . . . , m − 1}, excluding the set {0}. For each I ∈ I, define

K(I) = {
m−1∑
i=0

aiβ
i | ∀i ∈ I, ai ∈ F×,∀i /∈ I, ai = 0} ⊂ K � F.

Thus for example if m = 3, K({1, 2}) = {a1β+a2β
2 | a1, a2 ∈ F×}. It follows directly 

that

K � F =
⋃
I∈I

K(I),

and that these sets K(I) are invariant both under the action of σ, and under multipli-
cation by elements of F×. Applying Theorem 2.6 gives the following lemma.

Lemma 5.3. Suppose I, J ∈ I are distinct. Then for any a ∈ K(I), b ∈ K(J), we have

(K/F, σ, a) �∼= (K/F, σ, b).

To further refine these partitions, we require the following definition.

Definition 5.4. Let I ∈ I be such that |I| = k + 1 ≥ 2. Write F [×k] for the k-fold direct 
product F× × F× × · · · × F×. If the elements of I are i0 < i1 < · · · < ik then let

ΔI = {(ζs(i1−i0), ζs(i2−i0), . . . , ζs(ik−i0)) ∈ F [×k] | 1 ≤ s ≤ m}

where ζ is any primitive mth root of unity. Write F [×k]/ΔI for any fixed choice of 
representatives for these cosets. For any fixed choice of ai0 ∈ F×, define

K(I; ai0) = {ai0βi0 +
k∑

j=1
aijβ

ij | (ai1 , ai2 , . . . , aik) ∈ F [×k]/ΔI}.

Finally, set K(I; ai0) = {ai0βi0} when I = {i0} ∈ I.
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We may now state our main classification theorem for cyclic extensions of odd prime 
degree.

Theorem 5.5. Suppose m is an odd prime and F contains a primitive mth root of unity 
ζ. Then the distinct isomorphism classes of nonassociative cyclic algebras of degree m
over F are represented by

(K/F, σ, a)

where:

• K is one of the distinct cyclic Galois field extensions of F of degree m, and CK

denotes a set of representatives of F×/NK/F (K×);
• σ is a generator of Gal(K/F ); and
• a ∈ S(K) ⊂ K � F

where S(K) is defined as follows.
If ζ ∈ NK/F (K×), then we take

S(K) =
⋃

I∈I,ai0∈CK

K(I; ai0),

whereas otherwise, we may take CK = μm and then

S(K) =
⋃

I∈I:i0=0,a0∈μm

K(I; a0) ∪
⋃

I∈I:i0>0

{1 +
|I|−1∑
j=1

aijβ
ij | ∀j, aij ∈ F×}.

Proof. By Theorem 5.1 and Lemma 5.3, it suffices to partition K(I) into equivalence 
classes under ∼ for each fixed K/F , σ and I ⊂ I.

Let CK be a fixed set of representatives for F×/NK/F (K×). When ζ /∈ NK/F (K×), it 
follows that μm ∩NK/F (K×) = {1} and thus this m-element group must represent the 
quotient, allowing us to set CK = μm.

Let a ∈ K(I) and let i0 < i1 < · · · < ik be the distinct elements of I. Then ai0 = cn

for some unique c ∈ CK and some n ∈ NK/F (K×). Consequently, scaling a by n−1 gives

a ∼ cβi0 +
k∑

j=1
aijβ

ij

for some aij ∈ F× and c ∈ CK . Furthermore, for any s ∈ Z, we have

σs

⎛
⎝cβi0 +

k∑
j=1

aijβ
ij

⎞
⎠ = cζsi0βi0 +

k∑
j=1

aijζ
sijβij . (5.1)
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If ζ ∈ NK/F (K×), then we may scale this expression by ζ−si0 ∈ NK/F (K×) to produce 
an equivalent element of K(I). It follows that the equivalence classes are parametrized 
by

{cβi0 +
k∑

j=1
aijβ

ij | (ai1 , . . . , aik) ∈ F [×k]/ΔI} = K(I; c),

as c varies over CK , as required.
If instead we have CK = μm, then there are two cases. If i0 = 0, then the relations 

induced by (5.1) imply directly, as above, that every element a ∈ K(I) is equivalent to a 
unique element of the set K(I; c). However, if i0 > 0, then as s varies over {1, 2, · · · , m}, 
the coefficient of βi0 in (5.1) varies over CK . Consequently, every a ∈ K(I) is equivalent 
to one for which the first nonzero coefficient c is equal to 1, and no two distinct elements 
of this form will be equivalent. Taken together, this gives the set S(K) in this second 
case. �
5.3. Application to local nonarchimedean fields

From now on, let F be again a local nonarchimedean field of residual characteristic p
and residue field of order q. Let m be an odd prime distinct from p; then all extensions 
of degree m of F are tamely ramified. Let us furthermore assume that F contains a 
primitive mth root of unity, or equivalently, that m|(q− 1), where q = |κ| is the order of 
the residue field of F .

Since F×/(F×)m ∼= Z/mZ × Z/mZ, Kummer theory implies that we have precisely 
m + 1 distinct Galois extensions of degree m, corresponding to all order-m subgroups, 
and consequently m + 1 collections of isomorphism classes, one for each such extension.

We now make the parametrization given in Theorem 5.5 wholly explicit in this setting, 
by defining a set CK of representatives of F×/NK/F (K×) for each degree m extension 
of F , and determining the conditions under which μm ⊂ NK/F (K×).

Proposition 5.6. Let K be a cyclic Galois field extension of degree m of a local nonar-
chimedean field F , such that μm ⊂ F and m �= p. Let q denote the order of the residue 
field κ of F . Then F×/NK/F (K×) is represented by

CK =

⎧⎪⎪⎨
⎪⎪⎩
{1, �,�2, · · · , �m−1} if K/F is unramified;
μm(F ) if K/F is ramified and m2 � (q − 1);
{1, ξ, ξ2, · · · , ξm−1} if K/F is ramified and m2|(q − 1),

where ξ ∈ μq−1(F ) is any choice of primitive (q − 1)th root of unity in F .

Proof. Since m �= p, Hensel’s Lemma implies that the map x �→ xm is a bijection on 
1 + P, and that μq−1(F ) ∼= κ× as in Example 3.3.
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Thus via the map sending a pair (a, 
) ∈ κ××Z to a��, we have κ×/(κ×)m×Z/mZ ∼=
F×/(F×)m. Now (F×)m ⊂ NK/F (K×) ⊂ F× and |F×/NK/F (K×)| = m by local class 
field theory. When K/F is unramified, the norm map surjects onto R×, so we may take 
our representatives CK from powers of �. When K/F is (totally) ramified, we instead 
have NK/F (K×) ∩ R× = (R×)m so it suffices to identify a set of representatives from 
among the Teichmüller lifts of elements of κ×/(κ×)m.

If m2 � (q − 1), then no primitive mth root of unity can be an mth power, and thus 
we may take CK = μm as a preferred set of representatives. Otherwise, one may take 
the first m powers of any primitive element of μq−1(F ) ∼= κ× (or indeed, of any element 
whose order k satisfies mk � (q − 1)). �
5.4. An explicit example: nonassociative cyclic algebras of degree 3

In this section, we specialize the results of the preceding section to degree 3, to better 
illustrate the combinatorial and explicit nature of the parametrization.

Theorem 5.7. Let F be a local nonarchimedean field of residual characteristic different 
from 3 such that F contains a primitive cube root of unity ζ. Write μ3 = 〈ζ〉 and 
set Δ3 = {(a, a−1) ∈ F× × F×|a ∈ μ3}. Then the distinct isomorphism classes of 
nonassociative cyclic algebras of degree 3 over F are represented by (K/F, σ, a) where σ
is a nontrivial element of Gal(K/F ) and K and a ∈ S(K) are determined as follows:

(a) K = L3 is the unique unramified extension of F and

S(K) = {rβ,rβ2, rβ + sβ2, r + sβ, r + sβ2, r + s1β + s2β
2 |

r ∈ {1, �,�2}, s ∈ F×/μ3, (s1, s2) ∈ (F× × F×)/Δ3}.

(b) K = F (β) is one of the three ramified extensions, where β3 = u� for some u ∈
R×/(R×)3, and
(a) if q �≡ 1 mod 9, then

S(K) = {r + s1β + s2β
2, β + sβ2, β2|r ∈ μ3, s ∈ F, (s1, s2) ∈ (F× × F×)/Δ3};

(b) if q ≡ 1 mod 9, then let F×/NK/F (K×) = R×/(R×)3 = {1, γ, γ2} and set

S(K) = {rβ,rβ2, rβ + sβ2, r + sβ, r + sβ2, r + s1β + s2β
2 |

r ∈ {1, γ, γ2}, s ∈ F×/μ3, (s1, s2) ∈ (F× × F×)/Δ3}.

Proof. Note that μ3 ⊂ R× implies that 3 divides q − 1 or q ≡ 1 mod 3, where q
is the order of the residue field of F . Similarly, ζ is itself a cube if and only if F×

contains a primitive 9th root of unity, which is the condition that 9|(q − 1). Here, I =
{{1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}. When I = {i} ∈ I, we have K(I, r) = {rβi}; 
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when I = {i0 < i1} ∈ I, we have K(I, r) = {rβi0 + sβi1 : s ∈ F×/μ3}; and when 
I = {0, 1, 2}, we have K(I, r) = {r + s1β + s2β

2 : (s1, s2) ∈ Δ{0,1,2} = Δ3}. The 
statement now from Theorem 5.5. �
6. Nonassociative cyclic algebras of degree four

When the degree of the nonassociative cyclic algebra is not prime, its structure be-
comes more interesting. Let K/F be a cyclic Galois field extension of degree m with 
Galois group G = Gal(K/F ) = 〈σ〉 and a ∈ K � F .

When m is not prime, then there is a nonassociative subalgebra of (K/F, σ, a) associ-
ated to each 1 < s < m such that (s, m) �= 1. Namely, set E = Fix(σs) to be the subfield 
of K fixed by σs; then (K/E, σs, a) is a cyclic algebra over E, that is nonassociative if 
a /∈ E, and that is an F -subalgebra of (K/F, σ, a).

In particular, if we let H = {τ ∈ G | τ(a) = a} be the subgroup of the (cyclic) Galois 
group fixing a, and let E = Fix(H), then H = σs for some divisor s of m and by [23, 
Theorem 1] we have

Nucr((K/F, σ, a)) = (K/E, σs, a),

where this latter is now an associative cyclic algebra of degree r over E = Fix(σs) (and 
hence independent of the choice of generator σs).

We briefly discuss the degree four case.
We first consider F an arbitrary field of characteristic different from 2. Let K/F be 

a cyclic Galois field extension of degree four with Gal(K/F ) = 〈σ〉. Then K has exactly 
one quadratic subfield E = Fix(σ2).

Let a ∈ K �F and consider (K/F, σ, a). This is a 16-dimensional algebra over F . We 
know by Theorem 2.4 that if a /∈ E then (K/F, σ, a) is a division algebra.

Using Definition 2.1 or the general results mentioned above, the nonassociative cyclic 
E-algebra B = (K/E, σ2, a) can be embedded as the F -subalgebra generated by 1 and 
t2 in (K/F, σ, a); it is 8-dimensional over F .

Lemma 6.1.

(a) If a �∈ E, then B is a proper nonassociative quaternion division algebra over E, 
hence also a nonassociative division algebra over F .

(b) If a ∈ E, then B is the right nucleus of A. In this case, it is an associative quater-
nion algebra over E, which is a division algebra if and only if a �∈ NK/F (K×). 
Furthermore, then B is a division algebra if and only if (K/F, σ, a) is a division 
algebra.

We give an explicit, but coarse, classification of these algebras in the case of local 
nonarchimedean fields as follows (note that these may not all be division algebras).
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Proposition 6.2. Let F be a local nonarchimedean field of residual characteristic different 
from 2. Then every nonassociative cyclic algebra of degree four over F is of one of the 
following types, and moreover, algebras corresponding to distinct field extensions and 
distinct generators of the Galois group are nonisomorphic:

(1) (L4/F, σ, a), corresponding to the unique unramified extension of degree 4. Here B =
(L4/F (

√
ε), σ2, a).

(2) (K0/F, σ, a), corresponding to the extension K0 = E(√εE�) where E = F (
√
ε) and 

εE is a nonsquare of R×
E � R×. Here B = (K0/E, σ2, a).

(3) If −1 ∈ (F×)2: for i ∈ {1, 2, 3, 4}, (Ki/F, σ, a), corresponding to the extension Ki =
F ( 4

√
εi�). The intermediate subfield is E = F (

√
�) if i is even and E = F (

√
ε�)

if i is odd. Here B = (Ki/E, σ2, a).

Proof. Let A be a nonassociative cyclic algebra of degree four over F . Since the left 
nucleus of A is invariant under isomorphism, it suffices to generate a list of distinct 
cyclic Galois extensions K of F of degree 4. Moreover, by Theorem 5.1, we know that 
for the two distinct choices of generator σ of Gal(K/F ) the resulting algebras will be 
nonisomorphic.

It can be shown that F admits 6 cyclic Galois extensions of degree four if −1 ∈ (F×)2

and only two otherwise. The first of these is the unique unramified extension L4, with 
intermediate subfield E = L2. The second is a partially ramified extension K0, obtained 
as the quadratic extension of E = L2 by an element of the form u�, where u is chosen 
as a nonsquare of R×

L2
that does not lie in R×.

When −1 ∈ (F×)2, then F contains a primitive 4th root of unity, and there are corre-
spondingly four additional Galois totally ramified extensions, given as Ki = F ( 4

√
εi�). 

Their unique intermediate subfield is E = F (
√
�) if i is even and E = F (

√
ε�) if i is 

odd. �

Thus we count four different types for each such field F if −1 �∈ (F×)2 and twelve if 
−1 ∈ (F×)2.

While in the associative case, all cyclic algebras of degree m over F are isomorphic to 
an algebra of the type (Lm/F, σ, a) for some a ∈ F×, this proposition shows once again 
that the situation in the nonassociative setting is more varied.
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